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Abstract 1 

Background: Human prostate cancers are highly heterogeneous, indicating a need for various novel 2 

biomarkers to predict their prognosis. Lipid metabolism affects numerous cellular processes, 3 

including cell growth, proliferation, differentiation and motility. Direct profiling of lipids in tissue 4 

using high-resolution matrix-assisted laser desorption/ionization imaging mass spectrometry 5 

(HR-MALDI-IMS) may provide molecular details that supplement tissue morphology.  6 

Methods: Prostate tissue samples were obtained from 31 patients with localized prostate cancer who 7 

underwent radical prostatectomy. The samples were assessed by HR-MALDI-IMS in positive mode, 8 

with the molecules identified by tandem mass spectrometry (MS/MS). The effect of identified 9 

molecules on prostate specific antigen recurrence free survival after radical prostatectomy was 10 

determined by Cox regression analysis and by the Kaplan–Meier method.  11 

Results: Thirteen molecules were found to be highly expressed in prostate tissue, with five being 12 

significantly lower in cancer tissue than in benign epithelium. MS/MS showed that these molecules 13 

were [lysophosphatidylcholine (LPC)(16:0/OH)+H]+, [LPC(16:0/OH)+Na]+, [LPC(16:0/OH)+K]+, 14 

[LPC(16:0/OH)+matrix+H]+, and [sphingomyelin(SM)(d18:1/16:0)+H]+. Reduced expression of 15 

LPC(16:0/OH) in cancer tissue was an independent predictor of biochemical recurrence after radical 16 

prostatectomy.  17 

Conclusions: HR-MALDI-IMS showed that the expression of LPC(16:0/OH) and SM(d18:1/16:0) 18 

was lower in prostate cancer than in benign prostate epithelium. These differences in expression of 19 

phospholipids may predict prostate cancer aggressiveness, and provide new insights into lipid 20 

metabolism in prostate cancer. 21 

 22 
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Introduction 1 

Prostate cancer is one of the most common cancers and the major cause of cancer-related 2 

deaths in men, especially in Western countries 1. Prostate specific antigen (PSA) is widely used to 3 

screen men diagnosed with prostate cancer and is regarded as a useful marker of disease recurrence 4 

subsequent to treatment. PSA, however, lacks specificity as a screening tool for prostate cancer, and 5 

there is no lower limit of PSA that entirely excludes cancer. In addition, although 20% to 30% of 6 

men experience PSA recurrence after radical prostatectomy, preoperative PSA does not correlate 7 

with cancer aggressiveness 2, 3. Therefore, new specific biomarkers associated with cancer 8 

aggressiveness are needed to assist in the detection and treatment of prostate cancer. 9 

Lipid metabolism plays an important role in human carcinogenesis by affecting numerous 10 

cellular processes, including cell growth, proliferation, differentiation and motility 4-6. Many 11 

individual polar lipids, including lysophosphatidic acid (LPA) 7-12 , and cholesterol-like molecules 13, 12 

14 have been associated with the development of prostate cancer. The expression patterns of several 13 

phospholipids have been reported to differ in prostate cancer and benign prostate tissue 15. However, 14 

it has been difficult to measure the levels of expression of these molecules in prostate tissue, because 15 

the procedures used to measure for lipids, including conventional mass spectrometry (MS), require 16 

tissue extraction. This is especially problematic, because the lipids differ in spatial distribution 17 

within cells and tissues. An emerging tool, matrix assisted laser desorption/ionization imaging mass 18 

spectrometry (MALDI-IMS), can provide “in situ imaging”, allowing the histological structures of 19 

bio-materials to be preserved and the mapped images compared with their corresponding histological 20 

images 16-18. Prostate cancer is multifocal, with tumor areas surrounded by benign prostate 21 

epithelium and stroma, making it difficult to identify cancer specific regions by conventional 22 
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resolution MALDI-IMS. The spatial resolution of this technique was recently improved, to less than 1 

10 μm, allowing a detailed two-dimensional analysis of phospholipids 19-24. The 10 μm pitch of 2 

high-resolution matrix-assisted laser desorption/ionization imaging mass spectrometry 3 

(HR-MALDI-IMS) was shown sufficient to clearly visualize prostate cancer specific regions, 4 

enabling us to identify several phosphatidylinositols as being more highly expressed in prostate 5 

cancer than in benign prostate epithelium by HR-MALDI-IMS in negative mode 25. 6 

This study utilized HR-MALDI-IMS analysis in positive mode to investigate the distribution 7 

of other lipids in prostate cancer tissue. This method enabled the identification of several 8 

phospholipids expressed to a lower extent in prostate cancer than in adjacent benign epithelium. 9 

Moreover, one of the identified phospholipids, lysophosphatidylcholine (LPC)(16:0/OH), was found 10 

to be a potential biomarker predictive of PSA recurrence after surgical treatment.  11 

 12 

13 
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 1 

Materials and methods 2 

 3 

Ethics Statement 4 

All patients provided written informed consent for the use of their clinical samples. The study 5 

was approved by the institutional review board of Kyoto University Hospital.   6 

 7 

Preparation of tissue samples 8 

The patient cohort consisted of 31 Japanese males with clinically localized prostate cancer 9 

who underwent radical prostatectomy at Kyoto University Hospital from 2005 to 2008. Prostate 10 

tissue slices 5 mm thick were harvested immediately after removal and embedded in optimal cutting 11 

temperature (OCT) compound (Tissue-Tek®; Sakura Finetek, Torrance, CA, USA), without sucrose 12 

treatment to avoid the influence of fixation, and stored at –80°C. All frozen blocks yielded sections 13 

containing benign epithelium and cancer tissue.   14 

 15 

Histological evaluation and matrix coating of prostate tissue samples  16 

We previously established a protocol using HR-MALDI-IMS to analyze human prostate tissue 17 

samples embedded in OCT compound 25. Samples were evaluated histologically and matrices were 18 

coated as described. The tissue samples were cryosectioned on a cryostat (CM1850; Leica, Wetzler, 19 

Germany) at –20°C, and cryosections 5 μm thick were mounted onto glass slides (MAS coat; 20 

Matsunami, Osaka, Japan) for hematoxylin and eosin (H&E) staining. All slides were evaluated by a 21 

single pathologist (S.S.) to determine tissue morphology and as a guide for HR-MALDI-IMS 22 
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analysis. Additional serial sections 10 μm thick were mounted onto indium-tin oxide–coated (ITO) 1 

glass slides (Sigma-Aldrich, St Louis, MO, USA) and used for HR-MALDI-IMS analysis. Each 2 

section was coated with 9-aminoacridine hemihydrates (9-AA) (Acros Organics, Geel, Belgium), 3 

which served as the matrix for MALDI-MS. Each slide was anchored in vacuum deposition 4 

equipment (SVC-700TM ⁄ 700-2; Sanyu Electron, Tokyo, Japan) and coated with a 9-AA matrix 5 

layer obtained by sublimation at 220°C. The time required for vapor deposition was 8 min. The 6 

sections assessed by HR-MALDI-IMS were also stained with H&E and assessed by the pathologist. 7 

For H&E staining after HR-MALDI-IMS analysis, 9-AA was removed from the slides by dipping 8 

them in methanol for 30 s.   9 

 10 

HR-MALDI-IMS and MS⁄MS analyses.  11 

HR-MALDI-IMS analysis was performed on an atmospheric pressure MALDI-IT-TOF mass 12 

spectrometer (prototype Mass Microscope; Shimadzu, Kyoto, Japan), equipped with a 355-nm Nd: 13 

YAG laser. Mass spectrometry data were acquired in positive mode in the mass range of m/z 14 

490–1000 using an external calibration method with mass resolving power 10,000 at m/z 1000. A 15 

region of interest (ROI) containing benign epithelium, cancer tissue and stroma was randomly 16 

determined from the microscopic view of each slide, and mass spectra were obtained at a spatial 17 

resolution of 10 μm. The ROIs were reconfirmed by analyzing the 10-μm thick samples stained with 18 

H&E after HR-MADLI-IMS. The same instrument was used for tandem mass spectrometry 19 

(MS/MS) analysis; the lipid class and fatty acid composition of the observed peaks were based on 20 

the spectral patterns of the ion peaks of the products. Results were compared with the Human 21 

Metabolome Database (http://www.hmdb.ca/), the Nature Lipidomics Gateway 22 

http://www.hmdb.ca/
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(http://www.lipidmaps.org/) and published MS/MS data 26-30.   1 

 2 

Data processing and statistical analysis of HR-MALDI-IMS results 3 

Using SIMtools software (in-house software; Shimadzu Corporation, Kyoto, Japan), the mass 4 

profiles were normalized relative to the total ion current to eliminate variations in ionization 5 

efficiency, and the obtained normalized signal intensity was used for all imaging and statistical 6 

analyses. Ion images were visualized using Biomap software (Novartis, Basel, Switzerland). 7 

Mann–Whitney (M–W) U tests were used to compare factors between benign epithelium and cancer. 8 

The relationships among the expression of [lysophosphatidylcholine (LPC)(16:0/OH)+H]+, 9 

[LPC(16:0/OH)+Na]+, [LPC(16:0/OH)+K]+ and [LPC(16:0/OH)+matrix+H]+ were analyzed by the 10 

Spearman rank correlation. PSA recurrence was defined as a PSA level ≥0.2 ng/mL after surgery. 11 

Univariate and multivariate Cox regression analyses were used to analyze factors predicting PSA 12 

recurrence free survival after radical prostatectomy. The relationship between PSA recurrence free 13 

survival and LPC(16:0/OH) in cancer tissue was estimated by the Kaplan-Meier method and 14 

compared using the log rank test. Cutoffs used in Cox regression analysis and the Kaplan–Meier 15 

method including median age (65 years), median preoperative PSA level (7.3 ng/mL), and median 16 

levels of expression in cancer tissue of LPC(16:0/OH; signal intensity, 2126.4) and 17 

sphingomyelin(SM)(d18:1/16:0; signal intensity, 640.1). All statistical analyses were performed 18 

using JMP version 10.0.2 software (SAS Institute Japan Inc., Tokyo, Japan), with p <0.05 considered 19 

statistically significant.   20 

21 

http://www.lipidmaps.org/
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 1 

Results 2 

 3 

Thirteen molecules were identified as highly expressed in human prostate tissues 4 

Human prostate tissue samples embedded in OCT compound were analyzed by 5 

HR-MALDI-IMS in positive mode in the mass range of m/z 490–1000 (Figure 1A, B). The 6 

characteristics of the 31 included patients are shown in Table 1. ROIs containing benign epithelium, 7 

cancer tissue and stroma were randomly selected, and the top 50 peaks of the mass spectra were 8 

analyzed in each sample. After matrix and isotopic peaks had been excluded, 13 peaks were present 9 

in 25 or more of the 31 samples (Table S1). The ion images of these 13 molecules could be clearly 10 

visualized in prostate cancer and benign epithelium using HR-MALDI-IMS (Figure 1C).   11 

 12 

The expression levels of 5 phospholipids were lower in cancer than in benign epithelium   13 

A comparison of the signal intensities of these 13 molecules showed that the levels of 14 

expression of five of these molecules were significantly lower in cancer than in benign epithelium 15 

(Figure 1D, E, Table 2), with m/z measurements of 496.3, 518.3, 534.3, 690.4 and 703.5, 16 

respectively. The structures of these molecules were examined by MS/MS analyses of the peaks of 17 

their precursor ions (Figure S1, Table S2), showing that the molecules at m/z 496.3, 518.3, 534.3, 18 

690.4 and 703.5 were [lysophosphatidylcholine (LPC) (16:0/OH)+H]+, [LPC(16:0/OH)+Na]+, 19 

[LPC(16:0/OH)+K]+, [LPC(16:0/OH)+matrix+H]+, and 703.5; [SM(d18:1/16:0)+H]+, respectively. 20 

Representative visualizations of the distribution of these five molecules on HR-MALDI-IMS 21 

analyses indicated that their levels of expression were similarly lower in cancer compared with 22 
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benign epithelium (Figure 2).   1 

 2 

LPC(16:0/OH) expression is a potentially independent biomarker predicting PSA recurrence 3 

Four of the five molecules were LPC(16:0/OH) with various ion adducts, including Na, K and 4 

matrix. The levels of expression of [LPC(16:0/OH)+H]+ in these samples strongly correlated with 5 

the levels of expression of [LPC(16:0/OH)+Na]+ (R2=0.813), [LPC(16:0/OH)+K]+ (R2=0.896), and 6 

[LPC(16:0/OH)+matrix+H]+ (R2=0.856; Figure 3A). Therefore, the level of expression of 7 

[LPC(16:0/OH)+H]+ was considered representative of LPC(16:0/OH). The signal intensities of 8 

LPC(16:0/OH) and SM(d18:1/16:0) in cancer tissue did not correlate with preoperative PSA 9 

concentration, Gleason score or pathological stage (data not shown). To determine whether the 10 

levels of LPC(16:0/OH) and SM(d18:1/16:0) in cancer tissue predicted clinical outcomes, both were 11 

assessed, using univariate and multivariate Cox regression analyses, for the correlation with PSA 12 

recurrence free survival after radical prostatectomy. Univariate analysis showed that the level of 13 

expression of LPC(16:0/OH) was the only significant predictor of PSA recurrence (hazard ratio 14 

[HR] 0.294, 95% confidence interval [CI] 0.081–0.863, p = 0.025), a finding supported on 15 

multivariate analysis (HR 0.188, 95% CI 0.032–0.805, p = 0.023) (Table 3). Figure 3B shows 16 

Kaplan–Meier curves of the influence of LPC(16:0/OH) expression on PSA recurrence after radical 17 

prostatectomy. The 16 patients with low LPC(16:0/OH) expression (signal intensity < 2126.4) were 18 

at significantly higher risk of PSA recurrence than the 15 patients with high LPC(16:0/OH) 19 

expression (signal intensity > 2126.4; p=0.027, log rank test).  20 

21 
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 1 

Discussion 2 

 3 

This study showed that HR-MALDI-IMS had several methodological advantages compared 4 

with conventional lipidomic methods on cancer tissue 25. Early stage prostate cancer is often 5 

multifocal, with tumor tissue surrounded by benign prostate epithelium and stroma, and no apparent 6 

tumor mass. Therefore, lower-resolution IMS was unable to precisely distinguish prostate cancer 7 

specific regions from benign epithelium 31-37. High-resolution IMS may overcome this limitation and 8 

may be useful for analyzing heterogeneous tissues, such as prostate cancers.   9 

Lipids are a diverse classes of molecules with critical functions in cellular energy storage, 10 

structure, and signaling. This study found that the levels of expression of SM(d18:1/16:0) and 11 

LPC(16:0/OH) were lower in prostate cancer tissue than in normal epithelium. Eicosanoids, the 12 

metabolic product of arachidonic acid, were thought to trigger the loss of SM via the activation of 13 

sphingomyelinase 38. The arachidonic acid pathway has been shown to play a role in the 14 

development and progression of prostate cancer, consistent with our findings. In patients with 15 

thyroid papillary and colon cancer, however, the expression of SM(d18:1/16:0) on MALDI-IMS was 16 

higher in tumor and stromal regions than in normal regions 18, 39. Because those studies used 17 

conventional resolution IMS, without clearly separating cancer specific and stromal regions, those 18 

results could not be directly compared with ours. However, the patterns of expression of 19 

SM(d18:1/16:0) may differ among tumor types.  20 

LPC is a precursor of lysophosphatidic acid (LPA), a biogenic lipid involved in prostate 21 

cancer initiation and progression 10-12. LPC is changed to LPA by an enzyme such as 22 
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lysophospholipase D (lysoPLD). To date, however, the expression of LPC had not been analyzed in 1 

prostate cancer tissue. We found that the expression of LPC(16:0/OH) was markedly lower in 2 

prostate cancer tissue than in normal epithelium, suggesting that the reduced expression of 3 

LPC(16:0/OH) in cancer tissue may predict PSA recurrence after radical prostatectomy. The demand 4 

for LPA in cancer tissue may trigger the loss of LPC(16:0/OH) from tissue via the activation of 5 

lysoPLD. LysoPLD expression has been reported much higher in prostate cancer tissue than in 6 

benign epithelium, with lysoPLD expression significantly correlated with probability of PSA 7 

recurrence after surgery 40. Further research is needed to elucidate the association between LPA and 8 

LPC in prostate cancer.   9 

The expression and fatty acid composition of LPC are also affected by de novo synthesis and 10 

remodeling pathway (Lands’ pathway) 41, 42, with the diversity of fatty acids in LPC thought to be 11 

mainly affected by Lands’ pathway. In the latter, LPC is produced by the hydrolysis of 12 

phosphatidylcholine (PC) by an enzyme such as phospholipase A2 (PLA2), and PC is produced by 13 

adduct of a fatty acid to LPC with lysophosphatidylcholine acyltransferases (LPCATs). The 14 

LPC(16:0/OH)/PC(16:0/18:1) ratio has been reported lower in hepatocellular carcinoma tissue, via 15 

the activation of LPCAT1, a key enzyme in the LPC remodeling pathway 43. Moreover, increased 16 

expression of LPCAT1 correlated with the progression of prostate cancer 44-46, suggesting that 17 

increased expression of LPCAT1 may also reduce the expression of LPC(16:0/OH) in prostate 18 

cancer tissue. However, the expression of PC(16:0/18:1)(m/z760.5, 782.5, 798.5 and 954.6) was not 19 

significantly changed in our study. Therefore, the reduction in expression of LPC(16:0/OH) in 20 

prostate cancer tissue may be mainly due to the activity of lysoPLD rather than LPCAT1, at least in 21 

our clinical samples. Our study was preliminary and included a relatively limited number of samples. 22 
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Further studies are needed to determine whether changes in LPC(16:0/OH) expression and the 1 

activities of lysoPLD, PLA2 and LPCAT are correlated, and whether LPC(16:0/OH) is directly 2 

related to prostate cancer development.   3 

Preoperative PSA, Gleason score, pathological stage and surgical margin are commonly 4 

indicators of risk of recurrence after treatment. Even in high risk patients, they have different 5 

prognostic value, indicating the need for markers to identify very high risk patients, for whom 6 

standard radical treatment has poor outcome and who would be suitable for clinical trials of more 7 

aggressive treatments, such as extended lymph node dissection or preoperative chemotherapy 47. Our 8 

multivariate analysis showed that the reduced expression of LPC(16:0/OH) was a better predictor of 9 

PSA recurrence than other common indicators, including preoperative PSA, Gleason score, 10 

pathological stage and surgical margin.  11 

The major limitations of our study included the small number of patients, with most having 12 

localized and well or moderately differentiated cancers. The expression of LPC(16:0/OH) should be 13 

verified in a larger cohort, including normal controls and patients with more aggressive disease. 14 

Moreover, the relationships between the expression of LPC(16:0/OH) and cancer specific survival 15 

remain to be determined.   16 

17 
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 1 

Conclusions 2 

HR-MALDI-IMS is a powerful tool to identify biomarkers in prostate cancer. The decreased 3 

expression of LPC(16:0/OH) is a potential biomarker of prostate cancer aggressiveness. Elucidation 4 

of mechanisms and verification of our findings in a larger patient cohort are needed.  5 

 6 
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 1 

Figure Legends   2 

Figure 1.   3 

Direct tissue mass spectrometric analysis of human prostate tissue (Patient 1).   4 

Matrix coated tissue was assessed by positive ion mode HR-MALDI-IMS in the mass range of m/z 5 

490–1000.   6 

A, Hematoxylin and eosin (H&E) stained human prostate tissue specimen containing defined areas 7 

of benign epithelium (blue) and prostate cancer (red). The scale bar represents 200 μm.   8 

B, D and E, Regions of interest and resulting averaged mass of benign epithelium, cancer tissue and 9 

stroma containing region (B; green), benign epithelium specific region (D; blue), and prostate cancer 10 

specific region (E; red). The x- and y-axes shows m/z and signal intensity normalized to total ion 11 

current, respectively.   12 

C, Mass spectrometry image showing the distribution of 13 common molecules.   13 

 14 

Figure 2.   15 

Visualization of molecular distribution of 5 molecules lowly expressed in cancer tissue. 16 

H&E stained and mass spectrometry images of samples from 6 patients. H&E stained images show 17 

defined areas of benign epithelium (blue) and prostate cancer (red). The scale bar represents 200 μm. 18 

Mass spectrometry images show the representative distribution of [lysophosphatidylcholine 19 

(LPC)(16:0/OH)+H]+, [LPC(16:0/OH)+Na]+, [LPC(16:0/OH)+K]+, [LPC(16:0/OH)+matrix+H]+, 20 

and [sphingomyelin (SM)(d18:1/16:0)+H]+, which were expressed to a lower extent in cancer than in 21 

benign epithelium.   22 
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 1 

Figure 3.  2 

Statistical analyses of the expression of LPC(16:0/OH) in cancer tissue. 3 

A, The relationship between the signal intensity of [LPC(16:0/OH)+H]+ and the signal intensities of 4 

[LPC(16:0/OH)+Na]+, [LPC(16:0/OH)+K]+, and [LPC(16:0/OH)+matrix+H]+.   5 

B, Kaplan–Meier curves show the relationship between LPC(16:0/OH) expression and PSA 6 

recurrence free survival. The median level of expression of LPC(16:0/OH) in cancer tissue (signal 7 

intensity: 2126.4) served as cut off for high vs low expression.   8 

 9 









 

 

Table1. Clinical and pathological characteristics of the 31 patients resected for prostate cancer. 

 

Category Subcategory Total   

Number of patients   31     
Mean ± SD age, yr   64.7 ± 7.4 
Mean ± SD preoperative PSA, ng/mL   8.85 ± 4.68 
Mean ± SD prostate weight, g   38.6 ± 12.0 
Gleason scores, n (%)         
  6 11 (35)   
  7 14 (45)   
  8 5 (16)   
  9 1 (3)   
Pathological stage, n (%)         
  pT2a 2 (6)   
  pT2c 21 (68)   
  pT3a 6 (19)   
  pT3b 2 (6)   
Surgical margins, n (%)         
  Negative 17 (55)   
  Positive 14 (45)   
PSA recurrence, n (%)         
  + 15 (48)   
  - 16 (52)   

 

Abbreviations: SD, standard deviation. PSA, prostate specific antigen. 



 

 

Table 2. Averaged signal intensities of common 13 molecules. 

 

  m/z   Benign epithelium, n=31   Cancer, n=31   p* 

      Mean   SD     Mean   SD   Value 

A m/z496.3   4979.2    2351.8      2394.8    1503.4    <0.001 
B m/z518.3   1270.2    770.4      535.0    343.4    <0.001 
C m/z534.3   1039.2    689.0      441.5    389.8    <0.001 
D m/z690.4   2611.6    1567.1      1354.9    954.5    <0.001 
E m/z703.5   918.8    463.2      656.7    268.0    0.025  
F m/z758.5   809.7    300.6      876.0    503.7    0.961  
G m/z760.5   2372.6    990.3      2843.6    1474.8    0.123  
H m/z782.5   1542.6    824.9      1420.0    747.1    0.751  
I m/z786.6   596.9    231.9      660.8    365.4    0.598  
J m/z798.5   1167.4    597.1      1022.8    461.7    0.531  
K m/z952.6   849.6    370.2      910.1    554.3    0.961  
L m/z954.6   2665.8    1032.4      3209.7    1756.6    0.301  
M m/z980.6   670.1    252.9      732.9    419.9    0.559  

 

Abbreviations: SD, standard deviation. *Mann-Whitney U test 



 

 

Table 3. Univariate and multivariate Cox regression analyses of pathologic parameters and phospholipid expression associated with PSA 

recurrence after radical prostatectomy. 

 

      
PSA 
recurrence   

PSA 
recurrence   Univariate     Multivariate   

Category※   (-)     (+)     HR (95% CI) p value   HR (95% CI) p value 

Number of patients   16     15                   
Age, n(%)                             
  ≦65yr   8 (50)   8 (53)   0.931 (0.326-2.596) 0.891    0.598  (0.183-1.975) 0.391 
  >65yr   8 (50)   7 (47)                 
Preoperative PSA level, n(%)                             
  Low   9 (56)   7 (47)   1.335 (0.479-3.813) 0.576    1.415  (0.340-5.735) 0.624 
  High   7 (44)   8 (53)                 
Gleason scores, n (%)                             
  ≦7   13 (81)   12 (80)   0.864 (0.196-2.739) 0.820    0.281  (0.045-1.385) 0.123 
  >7   3 (19)   3 (20)                 
Pathological stage, n (%)                             
  pT2   11 (69)   12 (80)   0.686 (0.156-2.166) 0.546    0.473  (0.082-2.018) 0.324 
  pT3   5 (31)   3 (20)                 
Surgical margin, n (%)                             
  Negative   10 (63)   7 (47)   1.701 (0.607-4.879) 0.308    2.209  (0.544-8.741) 0.262 
  Positive   6 (38)   8 (53)                 
Level of expression of                             



 

 

LPC(16:0/OH), n(%) 
  Low   5 (31)   11 (73)   0.294 (0.081-0.864) 0.025    0.188  (0.032-0.805) 0.023 
  High   11 (69)   4 (27)                 
Level of expression of 
SM(d18:1/16:0), n(%)                             
  Low   6 (38)   10 (67)   0.393 (0.122-1.116) 0.080    0.793  (0.181-3.887) 0.762 
  High   10 (63)   5 (33)                 

 
Abbreviations: PSA, prostate specific antigen. LPC, lysophosphatidylcholine. SM, sphingmyelin. HR, hazard ratio. CI, confidential interval. 
※Median age (65 years old), median preoperative PSA level (7.3 ng/mL), and median levels of expression in cancer tissue of LPC(16:0/OH) (signal 

intensity: 2126.4) and SM(d18:1/16:0) (signal intensity: 2641.5) were used as cut off. 
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