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We introduce a concept of a minimal sufficient positive-operator valued measure
(POVM), which is the least redundant POVM among the POVMs that have the
equivalent information about the measured quantum system. Assuming the system
Hilbert space to be separable, we show that for a given POVM, a sufficient statistic
called a Lehmann-Scheffé-Bahadur statistic induces a minimal sufficient POVM. We
also show that every POVM has an equivalent minimal sufficient POVM and that such
a minimal sufficient POVM is unique up to relabeling neglecting null sets. We apply
these results to discrete POVMs and information conservation conditions proposed
by the author. C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4934235]

I. INTRODUCTION

A measurement outcome statistic of a general quantum measurement process is described by a
positive-operator valued measure1,2 (POVM). Such a description of quantum measurements enables
us to formulate both projective and non-projective measurements. However, for the price of such a
generality, some POVMs contain redundant information irrelevant to the system and, due to such
redundancies, for a given POVM, there exist infinitely many POVMs that bring us the equivalent
information about the system.

To clarify this point, let us consider the following example of a pair of discrete POVMs A and B:

A = {A0, A1},
O ≤ A0 ≤ I, A1 = I − A0,

B = {B00,B01,B10,B11},
Bi0 = λAi, Bi1 = (1 − λ)Ai.

Here, λ ∈ (0,1) and Ai and Bi j are bounded operators on a Hilbert space H corresponding to
the measured quantum system and O and I are zero and identity operators, respectively. The
measurement corresponding to the POVM B can be realized, for example, as follows: perform the
measurement A, whose measurement outcome is i ∈ {0,1}, and generate a binary random variable
j, which gives 0 with a probability λ and 1 with a probability 1 − λ, and the measurement outcome
of B is given by a pair (i, j). Apparently, B = {Bi j} contains redundant information, which is in this
case the classical random variable j, and A and B give the equivalent information about the system.

Then, it is natural to ask whether we can reduce such redundancies for a given POVM and how
far such reductions proceed. In this paper, to formulate and answer this question, we introduce a
concept of a minimal sufficient POVM which corresponds to the least redundant POVM among the
POVMs that give the same information about the system. The main finding of this paper (Theo-
rem 5) is that for any POVM on a separable Hilbert space, there exists a minimal sufficient POVM
that has the equivalent information about the system and that such a minimal sufficient POVM is
unique up to almost isomorphism, which is the relabeling neglecting null sets.

a)Electronic mail: kuramochi.yui.22c@st.kyoto-u.ac.jp
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The concept of the minimal sufficient POVM has two origins: a minimal sufficient statistics3,4

in mathematical statistics and a fuzzy equivalence relation5–8 known in quantum measurement the-
ory. Two POVMs are fuzzy equivalent if one of them can be realized by a classical post-processing
of the other. The concept of the fuzzy equivalence relation is used in the definition of the minimal
sufficient POVM. The minimal sufficiency condition for the POVM can be regarded as a gener-
alization of the minimal sufficient statistics in the sense that we consider a more general class of
post-processing which includes taking statistics.

This paper is organized as follows. In Sec. II, we show some preliminary results on mathemat-
ical statistics and quantum measurement theory which will be used in Sec. III. In Sec. III, we define
two definitions of the minimal sufficient POVM corresponding to two kinds of fuzzy equivalence
relations and introduce a sufficient statistic called a Lehmann-Scheffé-Bahadur (LSB) statistic for
a given POVM. It is shown in Theorem 4 that the LSB statistic is a minimal sufficient statistic
for the given POVM and a POVM induced by the LSB statistic is a minimal sufficient POVM.
After introducing a concept of almost isomorphism between POVMs, we show in Theorem 5 that
a POVM has an equivalent minimal sufficient POVM and that such a minimal sufficient POVM is
unique up to almost isomorphism. In Sec. IV, we consider discrete POVMs and prove that for a
given discrete POVM, there is a unique equivalent minimal sufficient POVM that is discrete and
has no zero elements. In Sec. V, we apply the main results to information conservation conditions
proposed by the author.9,10

II. PRELIMINARIES

In this section, we introduce some preliminary concepts and results on mathematical statistics
and quantum measurement theory.

A. Sufficient and minimal sufficient statistics

Let (Ω,B) be a measurable space. A family of probability measures P with the outcome space
(Ω,B) is called a statistical model on (Ω,B).

Let P be a statistical model on (Ω,B) and let λ be a probability measure on (Ω,B). P is said
to be dominated by λ, denoted by P ≪ λ, if every element P ∈ P is absolutely continuous with
respect to λ. A statistical model P is said to be dominated if there exists a probability measure
that dominates P . A dominated statistical model P has a countable subset {Pi}i≥1 ⊂ P such that
λ B


i≥1 ciPi dominates P if ci > 0 and


i≥1 ci = 1 hold.11 Such λ is called a pivotal measure for

P .
Let P = {Pθ}θ∈Θ be a statistical model on an outcome space (Ω,B) and let (ΩT ,BT) be a

measurable space. A B/BT-measurable map T : Ω → ΩT is called a statistic. The set of B/BT-
measurable maps (statistics) is denoted by M((Ω,B) → (ΩT ,BT)). T is said to be sufficient with
respect to the statistical model P if for every E ∈ B, there exists a BT-measurable function
P(E |·) : ΩT → [0,∞) such that Pθ(E |t) = P(E |t)PT

θ -a.e. for each Pθ ∈ P, where Pθ(E |t) is the
conditional probability of Pθ for given T = t and PT

θ (·) B Pθ(T−1(·)).
Let P and Q be probability measures with an outcome space (Ω,B). Suppose f : [0,∞) → R be

a strictly convex function such that f (1) = 0. Taking a σ-finite measure µ dominating P and Q, we
write Radon-Nikodým derivatives as p(x) := dP/dµ(x) and q(x) B dQ/dµ(x). An f -divergence12,13

between P and Q is defined by

D f (P,Q) B

Ω

f
(

p(x)
q(x)

)
q(x)dµ(x),

where the integral on the RHS is independent of the choice of µ and the following conventions are
adopted:

f ∗(0) B lim
t→∞

f (t)
t

,

0 · f
( p

0

)
= p f ∗(0), 0 · f ∗(0) = 0.
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For later use, we fix an f such that D f (P,Q) < ∞ for each P and Q. An example of such an f is
given by f (t) = (√t − 1)2, and the corresponding f -divergence is the Hellinger distance,

H(P,Q) =

Ω

(
p(x) − 

q(x))2
dµ(x) ≤ 2.

The following theorem gives necessary and sufficient conditions for the sufficiency of a statistic.

Theorem 1. Let P = {Pθ}θ∈Θ be a statistical model on a measurable space (Ω,B) dominated
by a pivotal probability measure λ, and let T : Ω → ΩT be a B/BT-measurable statistic and
PT
θ (·) B Pθ(T−1(·)). Then, the following conditions are equivalent:

(i) T is sufficient;
(ii) for every Pθ ∈ P, there exists a BT-measurable real valued function gθ(·) such that

dPθ

dλ
(x) = gθ(T(x)) λ-a.e.;

(iii) for every Pθ ∈ P,

dPθ

dλ
(x) = dPT

θ

dλT
(T(x)) λ-a.e.,

where λT(·) B λ(T−1(·));
(iv) D f (Pθ1,Pθ2) = D f (PT

θ1
,PT

θ2
)(∀Pθ1,∀Pθ2 ∈ P).

Proof. The equivalence (i)⇔(ii)⇔(iv) is well-known.4,11,13,14 The implication (iii)⇒(ii) is
obvious. Let us show (ii)⇒(iii). For each F ∈ BT , we have

PT
θ (F)=


Ω

χF(T(x))dPθ

dλ
(x)dλ(x)

=


Ω

χF(T(x))gθ(T(x))dλ(x)

=


ΩT

χF(t)gθ(t)dλT(t),

where χF(·) is the indicator function for F. This implies that gθ(t) = dPT
θ /dλT(t)λT-a.e. and we

obtain (iii). �

Let P be a statistical model on (Ω,B). A statistic T ∈ M((Ω,B) → (ΩT ,BT)) is said to be
minimal sufficient if T is sufficient and for each sufficient statistic S ∈ M((Ω,B) → (ΩS,BS)), there
exists a map f ∈ M((ΩS,BS) → (ΩT ,BT)) such that T(x) = f (S(x))P-a.e. A minimal sufficient
statistic can be interpreted to capture the information about the statistical model P in the least
redundant manner.

The following theorem gives a sufficient condition for the existence of a minimal sufficient
statistic.

Theorem 2 (Lehmann and Scheffé3 and Bahadur4). Let P = {Pθ}θ∈Θ be a statistical model
on an outcome space (Ω,B). Suppose that there exists a countable subset {Pθi}i≥1 ⊂ P dense in P
with respect to the following metric:

d(P,Q) B sup
E∈B

|P(E) −Q(E)|. (1)

Then, a statistic T ∈ M((Ω,B) → (R∞,B(R∞))) defined by

T(x) B
(

dPθi

dλ
(x)

)
i≥1
∈ R∞

is a minimal sufficient statistic. Here, (R∞,B(R∞)) is the countable product space of the real line
(R,B(R)) and λ B


i≥1 ciPθi with ci > 0 and


i≥1 ci = 1.
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B. Positive-operator valued measure

Throughout this paper, we fix a separable (i.e., dimH ≤ ℵ0) Hilbert space H and denote the
set of bounded operators onH by L(H ). A positive trace class operator ρ with unit trace is called a
state onH , and the set of states onH is denoted by S(H ).

Let (Ω,B) be a measurable space. A POVM A is a mapping A : B → L(H ) such that

(i) A(E) ≥ O for each E ∈ B;
(ii) A(Ω) = I;

(iii) for each countable disjoint family {Ei} ⊂ B, A(i Ei) = 
i A(Ei),where the RHS is conver-

gent in the sense of the weak operator topology.

Here, O and I are the zero and identity operators, respectively. The triple (Ω,B, A) is also called a
POVM.

Let (Ω,B, A) be a POVM. For each ρ ∈ S(H ), we define a probability measure PA
ρ (·) with the

outcome space (Ω,B) by PA
ρ (E) B tr[ρA(E)] for each E ∈ B. Then, A induces a natural statistical

model PA B {PA
ρ }ρ∈S(H ), which is the set of possible outcome distributions when we perform the

measurement A.
From the separability of H , there exists a sequence {ρi}i≥1 in S(H ) dense with respect to the

trace norm topology. Taking arbitrary {ci}i≥1 such that ci > 0 and


i≥1 ci = 1, e.g., ci = 2−i, we
define a state ρ∗ B


i≥1 ciρi. Throughout this paper, we fix such {ρi}i≥1 and ρ∗.

From the definition of ρ∗,PA
ρ∗ =


i≥1 ciPA

ρi
and the following proposition immediately follows.

Proposition 1. Let (Ω,B, A) be a POVM. Then, PA ≪ PA
ρ∗, i.e., PA

ρ∗ is a pivotal measure for
PA.

Due to the above proposition, the notions of A-a.e., PA-a.e., and PA
ρ∗-a.e. coincide, and thus, we

will use them interchangeably.

C. Fuzzy preorder and equivalence relations among POVMs

Let (Ω1,B1) and (Ω2,B2) be measurable spaces. A mapping κ(·|·) : B1 ×Ω2 → [0,1] is called a
regular Markov kernel if

(i) κ(E |·) is B2-measurable for each E ∈ B1;
(ii) κ(·|y) is a probability measure for each y ∈ Ω2.

Let (Ω1,B1) be a measurable space and let (Ω2,B2, A2) be a POVM. An A2-weak Markov
kernel is a mapping κ(·|·) : B1 ×Ω2 → R such that

(i) κ(E |·) is B2-measurable for each E ∈ B1;
(ii) 0 ≤ κ(E |y) ≤ 1A2-a.e. for each E ∈ B1;

(iii) κ(Ω1|y) = 1A2-a.e. and κ(∅|y) = 0A2-a.e.;
(iv) κ(∪iEi |y) = 

i κ(Ei |y)A2-a.e. for each countable and disjoint {Ei} ⊂ B1.

By using the concepts of the regular and weak Markov kernels, we introduce fuzzy preorder
and equivalence relations as follows.6–8

Definition 1. Let (ΩA,BA, A) and (ΩB,BB,B) be POVMs.

(i) If there exists a regular Markov kernel κ(·|·) : BA ×ΩB → [0,1] such that

A(E) =

ΩB

κ(E |y)dB(y) (E ∈ BA), (2)

then we say that A is regularly fuzzier than B, denoted by A≼r B.
(ii) If there exists a B-weak Markov kernel κ(·|·) : BA ×ΩB → R such that condition (2) holds,

then we say that A is weakly fuzzier than B, denoted by A≼w B.
(iii) If A≼r B and B ≼r A, then A and B are said to be regularly fuzzy equivalent, denoted by

A≃r B.
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(iv) If A≼w B and B ≼w A, then A and B are said to be weakly fuzzy equivalent, denoted by
A≃w B.

Intuitively, the relations A≼r B and A≼w B mean that the measurement of A can be realized by
a classical post-processing of the measurement of B. Apparently, A≼r B (respectively, A≃r B) im-
plies A≼w B (respectively, A≃w B). It is known6,7,15 that the regular and weak relations ≃r and ≃w
(respectively, ≼r and ≼w) are equivalence relations (respectively, preorder relations). Apparently,
the regular relation A≃r B implies the weak relation A≃w B, while the converse does not neces-
sarily hold. See the Appendix for an explicit example of POVMs that are weakly fuzzy equivalent
but not regularly fuzzy equivalent.

A standard Borel space16 is a measurable space Borel isomorphic to a complete separable
metric space. We call a POVM with a standard Borel outcome space a standard Borel POVM. By
further assuming the standard Borel properties of POVMs, the weak relations imply the correspond-
ing regular relations as in the following proposition.

Proposition 2 (Remark 4.1 of Ref. 8). Let A and B be POVMs.

1. If A is standard Borel, A≼w B ⇔ A≼r B.
2. If A and B are standard Borel, A≃w B ⇔ A≃r B.

In the formulation of the minimal sufficient POVM, we will use the regular and weak fuzzy
equivalence relations.

D. Sufficient statistics for POVM

In this subsection, we consider the sufficiency condition of a statistic for a POVM. We also
show Lemma 2 which will be used in Sec. III.

Let (ΩA,BA, A) be a POVM and let T ∈ M((ΩA,BA) → (ΩT ,BT)) be a statistic. We define a
POVM AT with the outcome space (ΩT ,BT) by AT(·) B A(T−1(·)). Since AT(·) can be written as

AT(F) =

ΩA

χF(T(x))dA(x) (E ∈ BT),
we have AT ≼r A.T is said to be a sufficient statistic for A if T is sufficient for the statistical model
PA = {PA

ρ }ρ∈S(H ).
The following lemma, the monotonicity of the f -divergence, states that the f -divergence is

monotonically decreasing by the classical post-processing.

Lemma 1 (Theorem 7.1 of Ref. 8). Let A and B be POVMs.

(i) A≼w B implies D f (PA
ρ ,P

A
σ) ≤ D f (PB

ρ ,P
B
σ)(∀ρ,∀σ ∈ S(H )).

(ii) A≃w B implies D f (PA
ρ ,P

A
σ) = D f (PB

ρ ,P
B
σ)(∀ρ,∀σ ∈ S(H )).

The next theorem characterizes the sufficiency of a statistic for a POVM.

Theorem 3. Let (ΩA,BA, A) be a POVM and let T ∈ M((ΩA,BA) → (ΩT ,BT)) be a statistic.
Then, the following conditions are equivalent:

(i) T is sufficient for A;
(ii) for each ρ ∈ S(H ), there exists a BT-measurable map gρ(·) such that

dPA
ρ

dPA
ρ∗

(x) = gρ(T(x)) A-a.e.;

(iii) for each ρ ∈ S(H ),
dPA

ρ

dPA
ρ∗

(x) = dPAT
ρ

dPAT
ρ∗

(T(x)) A-a.e.;

(iv) for each ρ,σ ∈ S(H ), D f (PA
ρ ,P

A
σ) = D f (PAT

ρ ,PAT
σ );
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(v) A≃w AT .

Furthermore, if A is a standard Borel POVM the above conditions are equivalent to

(vi) A≃r AT .

Proof. From Theorem 1 and Lemma 1, the equivalence (i)⇔(ii)⇔(iii)⇔(iv) immediately follows.
Let us show (i)⇒(v). AT ≼r A is evident from the definition of AT . Since T is sufficient, there

exists a conditional probability P(E |·), which is BT-measurable for each E ∈ BA, such that

PA
ρ (E) =


ΩT

P(E |t) dPAT
ρ (t).

Since P(·|·) satisfies the conditions for the AT-weak Markov kernel from the definition of the
conditional probability, we obtain A≼w AT , and thus, (v) holds.

(v)⇒(iv) follows from Lemma 1.
Let us assume A is a standard Borel POVM. If we assume (v), from Proposition 2, we

have A≼r AT . Since AT ≼r A by definition, we have proved (v)⇒(vi). The converse (vi)⇒(v) is
evident. �

The following lemma assures the existence of a POVM corresponding to the joint distribution for
a given POVM and a regular Markov kernel.

Lemma 2. Let (Ω1,B1) be a measurable space and let (Ω2,B2, A2) be a POVM. Let κ(·|·) : B1 ×
Ω2 → [0,1] be a regular Markov kernel. Then, the following assertions hold.

1. There exists a unique POVM A12 with the product outcome space (Ω1 ×Ω2,B1 ×B2) such that

A12(E1 × E2) =

E2

κ(E1|y)dA2(y) (E1 ∈ B1, E2 ∈ B2). (3)

2. The canonical projection

π2 : Ω1 ×Ω2 ∋ (x, y) → y ∈ Ω2

is a sufficient statistic for A12.
3. A2 = (A12)π2≃r A12.
4. For each ρ ∈ S(H ),

dPA12
ρ

dPA12
ρ∗

(x, y) = dPA2
ρ

dPA2
ρ∗

(y) A12-a.e.

Proof. 1. Let us consider the following mapping:

κ̃(F |y) B κ(F |y |y), (F ∈ B1 ×B2, y ∈ Ω2),
F |y B {x ∈ Ω1|(x, y) ∈ F}.

Then, κ̃(·|y) is a probability measure for each y ∈ Ω2. To show the measurability of κ̃(F |·) for
each F ∈ B1 ×B2, let us define a class

Dκ̃ B {F ∈ B1 ×B2| κ̃(F |·) is B2–measurable}.
Then, Dκ̃ is a Dynkin class, i.e., Dκ̃ contains Ω1 ×Ω2 and is closed under proper differences and
countable disjoint unions. Since

κ̃(E1 × E2|y) = κ(E1|y)χE2(y) (E1 ∈ B1,E2 ∈ B2), (4)

Dκ̃ contains the family of cylinder sets C B {E1 × E2 | E1 ∈ B1,E2 ∈ B2}, which is a multipli-
cative class. Then, the Dynkin class theorem assures that Dκ̃ = B1 ×B2, i.e., κ̃(·|·) is a regular
Markov kernel. Let us define a POVM A12 by

A12(F) B

Ω2

κ̃(F |y)dA2(y), (F ∈ B1 ×B2). (5)
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Then from Eq. (4), A12 satisfies desired condition (3). The uniqueness of A12 immediately follows
from the Dynkin class theorem.

2. Let us denote the conditional probability of PA12
ρ for given π2 = y by PA12

ρ (F |y)(F ∈ B1 ×B2).
Then for each E1 ∈ B1 and E2,E ′2 ∈ B2, we have

PA12
ρ (E1 × (E2 ∩ E ′2))=


E′2

κ(E1|y)χE2(y)dPA2
ρ (y)

=


E′2

PA12
ρ (E1 × E2|y)dPA2

ρ (y).

Thus, we have

PA12
ρ (E1 × E2|y) = κ(E1|y)χE2(y) PA2

ρ -a.e.

and

PA12
ρ∗ (E1 × E2|y) = κ(E1|y)χE2(y) A2-a.e.

Therefore, we obtain

PA12
ρ (E1 × E2|y) = PA12

ρ∗ (E1 × E2|y) PA2
ρ -a.e.

To show that PA12
ρ (F |y) can be taken independent of ρ, we define a class

Dρ B {F ∈ B1 ×B2 | PA12
ρ (F |y) = PA12

ρ∗ (F |y) PA2
ρ -a.e.}.

Then, Dρ is a Dynkin class that contains the family of cylinder sets C. Therefore, the Dynkin
class theorem assures that PA12

ρ (F |y) = PA12
ρ∗ (F |y)PA2

ρ -a.e. for each F ∈ B1 ×B2. This implies
that π2 is a sufficient statistic.
The assertion 3 is evident from Eq. (5) and A2 = (A12)π2 ≼r A12.
The assertion 4 immediately follows from assertion 3 and Theorem 3. �

III. MINIMAL SUFFICIENT POVM

In this section, we define a minimal sufficient POVM and show the existence and uniqueness of
a minimal sufficient POVM equivalent to a given POVM.

Definition 2. Let (ΩA,BA, A) be a POVM.

1. (ΩA,BA, A) is said to be ≃r-minimal sufficient if for any POVM (ΩB,BB,B) regularly fuzzy
equivalent to A, there exists a measurable map f ∈ M((ΩB,BB) → (ΩA,BA)) such that Bf = A.

2. (ΩA,BA, A) is said to be ≃w-minimal sufficient if for any POVM (ΩB,BB,B) weakly fuzzy equiv-
alent to A, there exists a measurable map f ∈ M((ΩB,BB) → (ΩA,BA)) such that Bf = A.

Since ≃w is a relation less restrictive than ≃r , any ≃w-minimal sufficient POVM is a ≃r-minimal
sufficient POVM by definition.

We remark that the measurable map f in Definition 2 is a sufficient statistic for the statistical
model PB due to Theorem 3 and Bf = A≃w B.

The minimal sufficiency of a POVM can be interpreted as a generalization of the minimal suffi-
ciency of a statistic in the sense that we consider a more general class of classical post-processings
which includes taking statistics. Intuitively, a minimal sufficient POVM A is the least redundant POVM
among POVMs fuzzy equivalent to A.

A. Lehmann-Scheffé-Bahadur statistic

Let (ΩA,BA, A) be a POVM. Corresponding to Theorem 2, we define a statistic T ∈ M((ΩA,
BA) → (R∞,B(R∞))) by

T(x) B *
,

dPA
ρi

dPA
ρ∗

(x)+
-i≥1

∈ R∞. (6)
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By taking authors’ names of Refs. 3 and 4, we call statistic (6) a LSB statistic for A.
The following theorem is the first main result of this paper.

Theorem 4. Let (ΩA,BA, A) be an arbitrary POVM and let T be the LSB statistic given by (6).
Then, the following assertions hold.

1. T is a minimal sufficient statistic for PA.
2. AT is a ≃w-minimal sufficient POVM and therefore a ≃r-minimal sufficient POVM.

Proof. 1. From Theorem 2, it is sufficient to show that {PA
ρi
}i≥1 is dense in PA with respect to

the metric d(·, ·) given by (1). For each ρ,σ ∈ S(H ) and each E ∈ BA, we have

|PA
ρ (E) − PA

σ(E)| = |tr[(ρ − σ)A(E)]|
≤ ∥ρ − σ∥tr∥A(E)∥ ≤ ∥ρ − σ∥tr,

where ∥ · ∥ and ∥ · ∥tr are the operator and trace norms, respectively. Thus, we obtain

d(PA
ρ ,P

A
σ) ≤ ∥ρ − σ∥tr. (7)

Since {ρi}i≥1 is dense inS(H )with respect to the trace norm, inequality (7) implies that {PA
ρi
}i≥1

is dense with respect to d(·, ·) in PA, and we have shown the minimal sufficiency of T .
2. From Theorem 3 and the sufficiency of T , we have

dPA
ρi

dPA
ρ∗

(x) = dPAT
ρi

dPAT
ρ∗

(T(x)) A-a.e.

for each i ≥ 1. From definition of the LSB statistic (6), this implies

T(x) = *
,

dPAT
ρi

dPAT
ρ∗

(T(x))+
-i≥1

A-a.e.

or

t = *
,

dPAT
ρi

dPAT
ρ∗

(t)+
-i≥1

AT-a.e. (8)

To show the ≃w-minimal sufficiency of AT , let (ΩB,BB,B) be an arbitrary POVM weakly fuzzy
equivalent to AT . Since the outcome space (R∞,B(R∞)) for AT is a standard Borel space, there
exists a regular Markov kernel κ(·|·) : B(R∞) ×ΩB → [0,1] such that

AT(F) =

ΩB

κ(F |y)dB(y) (9)

for each F ∈ B(R∞). We define a POVM (R∞ ×ΩB,B(R∞) ×BB,C) by

C(E) B

ΩB

κ(E |y |y)dB(y) (E ∈ B(R∞) ×BB).

Then from Lemma 2, we have C ≃r B = CπB
and

dPC
ρi

dPC
ρ∗

(t, y) = dPB
ρi

dPB
ρ∗

(y) C-a.e., (10)

for each i ≥ 1, where πB : R∞ ×ΩB → ΩB is the canonical projection. On the other hand, from
Eq. (9), we have CπAT

= AT ≃w B ≃r C, where πAT
: R∞ ×ΩB → R∞ is the canonical projection,
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and Theorem 3 assures that

dPC
ρi

dPC
ρ∗

(t, y) = dPAT
ρi

dPAT
ρ∗

(t) C-a.e. (11)

for each i ≥ 1. From Eqs. (8), (10) and (11), we obtain

t = *
,

dPB
ρi

dPB
ρ∗

(y)+
-i≥1

=: f (y) C-a.e., (12)

where f ∈ M((ΩB,BB) → (R∞,B(R∞))). Then for each E ∈ B(R∞), we have

Bf (E) = B( f −1(E))
= C(R∞ × f −1(E))
=


R∞×ΩB

χE( f (y))dC(t, y)

=


R∞×ΩB

χE(t)dC(t, y) (13)

= AT(E),
where we have used Eq. (12) in deriving equality (13). Thus, we obtain Bf = AT , and we have
shown the ≃w-minimal sufficiency of AT . �

B. Uniqueness up to almost isomorphism

In order to formulate the uniqueness of the minimal sufficient POVM, we introduce a concept of
almost isomorphism as follows.

Definition 3. Let (Ωi,Bi, Ai)(i = 1,2) be POVMs.

(i) A B1/B2-bimeasurable bijection f : Ω1 → Ω2 is called a strict isomorphism if (A1) f = A2. If
there exists such a strict isomorphism, (Ω1,B1, A1)and (Ω2,B2, A2)are said to be strictly isomor-
phic, denoted by (Ω1,B1, A1) ≈ (Ω2,B2, A2).

(ii) (Ω1,B1, A1) and (Ω2,B2, A2) are said to be almost isomorphic, written as (Ω1,B1, A1) ∼
(Ω2,B2, A2), if there exist measurable subsets Ω̃i ∈ Bi(i = 1,2) such that Ai(Ω̃i) = I and the
restrictions (Ω̃i,Ω̃i ∩Bi, Ai |Ω̃i) (i = 1,2) are strictly isomorphic. Here, Ω̃i ∩Bi B {Ω̃i ∩ E | E
∈ Bi} and Ai |Ω̃i is the restriction of Ai to Ω̃i ∩Bi. We call a measurable subset Ω̃i with Ai(Ω̃i)
= I a full measure set.

The above definition is a straightforward generalization of the corresponding concepts known
in classical measures.17,18 The relations ≈ and ∼ are equivalence relations, which can be proved in
a similar manner as for the classical measure (e.g., Sec. 2.4 of Ref. 17). Intuitively, these concepts
correspond to the relabeling of the measurement outcomes.

The following proposition gives the relationship between these isomorphisms and the fuzzy equiv-
alence relation.

Proposition 3. Let (ΩA,BA, A) and (ΩB,BB,B) be POVMs. Then, the following implications
hold.

(ΩA,BA, A) ≈ (ΩB,BB,B)⇒ (ΩA,BA, A) ∼ (ΩB,BB,B)
⇒ A≃r B.

Proof. The first implication is evident from the definitions of the strict and almost isomorphisms.
Let us assume (ΩA,BA, A) ∼ (ΩB,BB,B) and show A≃r B. Let Ω̃A ∈ BA and Ω̃B ∈ BB be full mea-
sure sets such that (Ω̃A,Ω̃A ∩BA, A|Ω̃A

) ≈ (Ω̃B,Ω̃B ∩BB,B|Ω̃B
). We first show A≃r A|Ω̃A

. Since the
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identity map

ι : Ω̃A ∋ x → x ∈ ΩA

is Ω̃A ∩BA/BA-measurable, we have A = (A|Ω̃A
)ι ≼r A|Ω̃A

.We fix a point x0 ∈ Ω̃A and define a mapp-
ing ι̃ : ΩA → Ω̃A by

ι̃(x) B



x (x ∈ Ω̃A)
x0 (x ∈ ΩA \ Ω̃A) . (14)

Then, for each E ∈ Ω̃A ∩BA, we have

ι̃−1(E) =



E ∪ (ΩA \ Ω̃A) (x0 ∈ E)
E (x0 < E) .

Hence, ι̃ is BA/Ω̃A ∩BA-measurable and A|Ω̃A
= Aι̃ ≼r A. Thus, we have shown A≃r A|Ω̃A

.

Similarly we can prove B ≃r B|Ω̃B
. Since the equivalence A|Ω̃A

≃r B|Ω̃B
immediately follows from

the definition of the strict isomorphism, we obtain A≃r A|Ω̃A
≃r B|Ω̃B

≃r B. �

We next show that the minimal sufficiency condition for a POVM is invariant under almost isomor-
phism.

Proposition 4. Let (ΩA,BA, A) be a ≃w-minimal sufficient (respectively, ≃r-minimal sufficient)
POVM and let (ΩB,BB,B) be a POVM almost isomorphic to (ΩA,BA, A). Then, B is also≃w-minimal
sufficient (respectively, ≃r-minimal sufficient).

Proof. We prove the assertion for the ≃w-minimal sufficient POVM; the proof for ≃r-minimal
sufficiency can be obtained by replacing ≃w to ≃r in the following proof.

Let Ω̃A ∈ BA and Ω̃B ∈ BB be full measure sets such that (Ω̃A,Ω̃A ∩BA, A|Ω̃A
) ≈ (Ω̃B,Ω̃B ∩

BB,B|Ω̃B
)by a strict isomorphism f : Ω̃A → Ω̃B.To show the≃w-minimal sufficiency of B, we take an

arbitrary POVM (ΩC,BC,C)weakly fuzzy equivalent to B.Then from Proposition 3, C is also weakly
fuzzy equivalent to A and there exists a mapping g ∈ M((ΩC,BC) → (ΩA,BA)) such that Cg = A. By
fixing a point x0 ∈ Ω̃A, we define a mapping ι̃ : ΩA → Ω̃Aby Eq. (14). Then, ι̃ is a measurable map such
that A|Ω̃A

= Aι̃. Let us denote by f̃ the isomorphism f regarded as a map from Ω̃A to ΩB. Then, f̃ is
Ω̃A ∩BA/BB-measurable and (A|Ω̃A

) f̃ = B.Thus, we have B = (A|Ω̃A
) f̃ = (Aι̃) f̃ =

�(Cg)ι̃� f̃ = C f̃ ◦ι̃◦g ,
and B is ≃w-minimal sufficient. �

Now we prove the following theorem which is the second main result of this paper.

Theorem 5. 1. Let (ΩA,BA, A) be an arbitrary POVM. Then, there exists a ≃w-minimal suffi-
cient POVM Ã weakly fuzzy equivalent to A. Furthermore, such Ã is unique up to almost isomor-
phism.

2. Let (ΩA,BA, A) be a standard Borel POVM. Then, there exists a ≃r-minimal sufficient POVM Ã
regularly fuzzy equivalent to A. Furthermore, such Ã is unique up to almost isomorphism.

Proof. 1. Let T : ΩA → R∞ be the LSB statistic given by (6) and define Ã B AT . Then, from
Theorems 3 and 4, Ã is a ≃w-minimal sufficient POVM weakly fuzzy equivalent to A. From the
same discussion in Theorem 4, Ã satisfies the following condition:

t = *
,

dP Ã
ρi

dP Ã
ρ∗

(t)+
-i≥1

Ã-a.e. (15)

To prove the uniqueness up to almost isomorphism, take another ≃w-minimal sufficient POVM
(ΩB,BB,B) weakly fuzzy equivalent to A. Since B ≃w A≃w Ã, there exist mappings f ∈
M((R∞,B(R∞)) → (ΩB,BB)) and g ∈ M((ΩB,BB) → (R∞,B(R∞))) such that Ãf = B and Bg =

Ã. Then, we have Ãg◦ f = Ã, and from Theorem 3, g ◦ f : R∞ → R∞ is a sufficient statistic for Ã
and we have
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dP Ã
ρi

dP Ã
ρ∗

(t) = dP Ã
ρi

dP Ã
ρ∗

(g ◦ f (t)) Ã-a.e. (16)

for each i ≥ 1. From Eqs. (15) and (16), we obtain

t = *
,

dP Ã
ρi

dP Ã
ρ∗

(t)+
-i≥1

= *
,

dP Ã
ρi

dP Ã
ρ∗

(g ◦ f (t))+
-i≥1

= g ◦ f (t) Ã-a.s.

Thus, there exists a full measure set Ω̃Ã ∈ B(R∞) such that (g ◦ f )|Ω̃Ã
is an identity map on Ω̃Ã.

Then, Ω̃B B f (Ω̃Ã) = g−1(Ω̃Ã) ∈ BB is a full measure set and f |Ω̃Ã
is a strict isomorphism be-

tween (Ω̃Ã,Ω̃Ã ∩B(R∞), Ã|Ω̃Ã
) and (Ω̃B,Ω̃B ∩BB,B|Ω̃B

). Therefore, Ã and B are almost isomor-
phic.

2. As shown in 1, the POVM Ã induced by the LSB statistic for A is ≃w-minimal sufficient POVM,
and therefore ≃r-minimal sufficient POVM, weakly fuzzy equivalent to A. Since A and Ã are
standard Borel POVMs, they are regularly fuzzy equivalent. The uniqueness up to almost isomor-
phism can be shown in a similar manner. �

IV. MINIMAL SUFFICIENCY FOR DISCRETE POVM

In this section, we consider the minimal sufficient condition for discrete POVMs.
A measurable space (Ω,B) is said to be discrete if Ω is a countable set and B is the power set

P(Ω) ofΩ. A POVM A is said to be discrete if the outcome space of A is a discrete space. A discrete
POVM (ΩA,P(ΩA), A) induces a mapping A : ΩA → L(H ) defined by A(x) B A({x}) ≥ O with a
completeness condition 

x∈ΩA

A(x) = I . (17)

On the other hand, a positive-operator valued mapping A : ΩA → L(H ) with completeness condi-
tion (17) induces a discrete POVM by

A(E) B

x∈E

A(x)

for each E ∈ P(ΩA). Thus, throughout this section, we identify a positive-operator valued mapping
A : ΩA → L(H ) satisfying the completeness condition with a discrete POVM. We write pA

ρ (x) B
tr[ρA(x)] for each ρ ∈ S(H ).

A discrete POVM A : ΩA → L(H ) is said to be non-vanishing if A(x) , 0 for all x ∈ ΩA. Any
discrete POVM is almost isomorphic to a non-vanishing POVM.

Since a discrete space is a standard Borel space, the weak relations ≼w and ≃w coincide with the
regular relations ≼r and ≃r , respectively. Thus, for discrete POVMs, fuzzy preorder and equivalence
relations are denoted as ≼ and ≃, respectively.

For discrete POVMs A : ΩA → L(H ) and B : ΩB → L(H ) the relations ≈, ∼, and ≼ are simpli-
fied as follows. A ≈ B if and only if there exists a bijection f : ΩA → ΩB such that Af = B, where
Af (y) = 

x∈ΩA
δy, f (x)A(x).A ∼ B if and only if there exist full-measure subsets Ω̃A ⊂ ΩA and Ω̃B ⊂

ΩB such that the restrictions A|Ω̃A
and B|Ω̃B

are non-vanishing and strictly isomorphic. A ≼ B if and
only if there exists a matrix {κ(x |y)}(x, y)∈ΩA×ΩB

such that

κ(x |y) ≥ 0,

x∈ΩA

κ(x |y) = 1, (18)

A(x) =

y∈ΩB

κ(x |y)B(y).

A matrix κ(·|·) satisfying condition (18) is called a Markov matrix.
The following proposition characterizes the sufficiency condition of a statistic for a discrete

POVM.
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Proposition 5. Let A : ΩA → L(H ) be a discrete POVM and let T : ΩA → ΩT be a mapping to
a measurable space (ΩT ,BT). We assume that BT contains each single point set {t}(t ∈ ΩT). Then,
the following conditions are equivalent:

(i) T is sufficient for A;
(ii) there exist functions h(·) : ΩA ∋ x → h(x) ∈ [0,∞) and g·(·) : S(H ) ×ΩT ∋ (ρ, t) → gρ(t) ∈

[0,∞) such that

pA
ρ (x) = h(x)gρ(T(x)), (ρ ∈ S(H ), x ∈ ΩA);

(iii) there exist functions h(·) : ΩA ∋ x → h(x) ∈ [0,∞) and G(·) : ΩT ∋ t → G(t) ∈ L+(H ) such
that

A(x) = h(x)G(T(x)), (x ∈ ΩA),
where L+(H ) B {a ∈ L(H )|a ≥ O};

(iv) A ≃ AT .

Proof. The equivalence (i)⇔(ii)⇔(iv) is evident from Theorem 3. The implication (iii)⇒(ii)
immediately follows by putting gρ(t) B tr[ρG(t)]. Let us assume (ii) and show (iii). If t ∈ ΩT satisfies
that

∃x ∈ ΩA such that T(x) = t and h(x) , 0, (19)

then we have

gρ(t) = pA
ρ (x)/h(x). (20)

Since the RHS of Eq. (20) is affine and positive with respect to ρ ∈ S(H ), according to Refs. 2 and
19, there exists G(t) ∈ L+(H ) such that gρ(t) = tr[ρG(t)] for any ρ ∈ S(H ). For t ∈ ΩT that does not
satisfy condition (19), we define G(t) = O. Then, we have

tr[ρA(x)] = pA
ρ (x) = tr[ρh(x)G(T(x))]

for each ρ ∈ S(H ) and x ∈ ΩA,which implies condition (iii). �

Corresponding to Theorem 5, we have the following theorem as to the existence and uniqueness
of a minimal sufficient POVM.

Theorem 6. Let A : ΩA → L(H )be a discrete POVM. Then, there exists a discrete non-vanishing
≃w-minimal sufficient POVM Ā fuzzy equivalent to A. Furthermore, such Ā is unique up to strict
isomorphism.

Proof. Since A is almost isomorphic to a non-vanishing POVM, without loss of generality, we
can assume that A is non-vanishing. We define an equivalence relation on ΩA by

x ∼A x ′ :⇔ ∃c > 0, A(x) = cA(x ′)
and define a mapping S : ΩA → ΩA /∼A =: ΩS by S(x) B [x], where [x] is the equivalence class to
which x belongs. Then, from the definition of ∼A, we can write

A(x) = h(x)G(S(x))
for each x ∈ ΩA, where h(x) > 0 and O , G(s) ∈ L+(H )(s ∈ ΩS), which implies S is sufficient for
A. Therefore, if we define Ā B AS, Ā ≃ A and Ā is a non-vanishing discrete POVM.

From Theorem 5 and its proof, the LSB statistic T : ΩS → R∞ defined by Eq. (6) induces a ≃w-
minimal sufficient POVM (R∞,B(R∞), ĀT) fuzzy equivalent to Ā. Since T is sufficient for Ā, from
Proposition 5, we can write

Ā(s) = h′(s)G′(T(s)),
where h′(s) > 0 and O , G′(t) ∈ L+(H ) (t ∈ R∞). From the construction of S, this implies that T is
injective, and T is a strict isomorphism between (ΩS,P(ΩS), Ā) and (T(ΩS),T(ΩS) ∩B(R∞),
(ĀS)|T (ΩS)). Note that T(ΩS) ∈ B(R∞) since T(ΩS) is a countable set. Thus, from Proposition 4, Ā is
a ≃w-minimal sufficient POVM.
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To show the uniqueness, let B : ΩB → L(H ) be an arbitrary ≃w-minimal sufficient and non-
vanishing discrete POVM equivalent to A. Since Ā ≃ B,there exists a mapping f : ΩS → ΩB such that
Af = B. If f is not surjective, there exists an element y ∈ ΩB \ f (ΩS) and we have B(y) = Af (y) =

x : f (x)=y A(x) = O, which contradicts the non-vanishing property of B. Thus, f is surjective. Since
f is sufficient for Ā, by a similar discussion for T , we can show that f is injective. Therefore, f is a
strict isomorphism between Ā and B, which completes the proof. �

A discrete POVM A : ΩA → L(H ) is said to be pairwise linearly independent5 if any pair {A(x),
A(x ′)}(x , x ′) is linearly independent. A pairwise linearly independent POVM is non-vanishing by
definition. The following theorem states that the minimal sufficiency and the pairwise linearly inde-
pendence are almost equivalent.

Theorem 7. Let A : ΩA → L(H ) be a discrete POVM. Then, the following conditions are equiv-
alent:

(i) A is pairwise linearly independent;
(ii) A is non-vanishing and ≃w-minimal sufficient;

(iii) A is non-vanishing and ≃r-minimal sufficient.

Proof. We first show (i)⇒(ii). Assume that A is a pairwise linearly independent POVM. Then if
we consider the mapping S in the proof of Theorem 6, S is an injection and the POVM Ā induced by
S is strictly isomorphic to A. Since Ā is ≃w-minimal sufficient, A is also ≃w-minimal sufficient. Thus,
we have shown (i)⇒(ii).

(ii)⇒(iii) is obvious.
If A is non-vanishing and≃r-minimal sufficient, then Ā induced by the statistic S is strictly isomor-

phic to A by the uniqueness of the minimal sufficient POVM. Since Ā is pairwise linearly independent,
A is also pairwise linearly independent. �

In Ref. 5, it is shown that for each discrete POVM A, there exists a pairwise linearly independent
POVM fuzzy equivalent to A and such a POVM is unique up to strict isomorphism. This assertion is
a direct corollary of our Theorems 6 and 7.

V. INFORMATION CONSERVATION CONDITION

In this brief section, we consider information conservation conditions proposed by the author.9,10

Let (Ω1,B1) be a measurable space. A completely positive (CP) instrument20 I1
· (·) (in the

Heisenberg picture) with the outcome space (Ω1,B1) is a mapping

I1
· (·) : B1 × L(H ) ∋ (E1,a) → I1

E1
(a) ∈ L(H )

such that

(i) for each countable disjoint {E j} ⊂ B1 and each ρ ∈ S(H ) and a ∈ L(H ), tr[ρI1
∪ jE j

(a)] =
j tr[ρI1

E j
(a)];

(ii) IΩ1(I) = I;
(iii) I1

E(·) is a normal CP linear map for every E ∈ B1.

A CP instrument simultaneously describes the probability distribution of the outcome of a quantum
measurement process and the state change due to the measurement.

Let I1
· (·) be a CP instrument with a standard Borel outcome space (Ω1,B1) and let (Ω2,B2, A2)

be a standard Borel POVM. A composition2,10 I1 ∗ A2 is a unique POVM with the product outcome
space (Ω1 ×Ω2,B1 ×B2) such that

(I1 ∗ A2)(E1 × E2) = I1
E1
(A2(E2))

for each E1 ∈ B1 and E2 ∈ B2. The composition corresponds to the joint successive measurement
process of I1

· (·) followed by A2.
For a given CP instrument I1

· (·) with a standard Borel outcome space and a given standard
Borel POVM A2, we consider the following two conditions:
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1. There exists a sufficient statistic x̃ : Ω1 ×Ω2 → Ω2 such that (I1 ∗ A2)x̃ = A2;
2. I1 ∗ A2≃r A2.

In Ref. 9, the author derived condition 1 as a sufficient condition for a so called relative-entropy
conservation law. In Ref. 10, the author reformulated this condition in the form of 2 and called it an
information conservation condition, while condition 1 is a sufficient condition but not a necessary
one for condition 2. Noting that condition 2 is invariant under replacing A2 with another regularly
fuzzy equivalent standard Borel POVM,10 this discrepancy can be resolved by taking A2 an equiva-
lent ≃w-minimal sufficient POVM, which is always possible due to Theorem 5, and in this sense, the
two conditions are essentially equivalent.
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APPENDIX: INEQUIVALENCE OF ≃r AND ≃w
In this appendix, we construct a pair of POVMs that are weakly fuzzy equivalent but not

regularly fuzzy equivalent.
Let (ΩA,BA, A) be a POVM. The completion of (ΩA,BA, A) is a POVM (ΩA,B̄A, Ā) defined

by

NA B {N ⊂ ΩA | ∃N ′ ∈ BA s.t. N ⊂ N ′ and A(N ′) = O},
B̄A B {E ⊂ ΩA | ∃F ∈ BA s.t. E △ F ∈ NA},

Ā(E) B A(F), (E ∈ B̄A,F ∈ BA,E △ F ∈ NA).
Here, E△F B (E \ F) ∪ (F \ E) is the symmetric difference of sets. An element of NA is called an
A-null set.

Lemma 3. Let (ΩA,BA, A) be a POVM and let (ΩA,B̄A, Ā) be the completion of (ΩA,BA, A).
Then A≃w Ā.

Proof. Since A(E) = Ā(E) = 
ΩA

χE(x)d Ā(x) for each E ∈ BA, A≼r Ā holds. For each E ∈
B̄A, we take F ∈ BA such that E△F∈ N A and define κ(E |x) B χF(x). Then, κ(·|·) is an A-weak
Markov kernel such that Ā(E) = 

ΩA
κ(E |x)dA(x) for each E ∈ B̄A. Thus, we have Ā≼w A, and the

assertion holds. �

Let µ be the usual Lebesgue measure on a unit interval I B [0,1], i.e., µ is the unique measure
defined on the σ-algebra B(I) of I generated by open subsets of I such that µ([a,b]) = b − a
for each 0 ≤ a < b ≤ 1. As the system Hilbert space H , we consider the set of square-integrable
B(I)-measurable functions L2(I,B(I), µ) in which µ-a.e. equal functions are identified. We define a
projection-valued measure (PVM) (I,B(I), A) by

(A(E) f )(x) B χE(x) f (x)
for each E ∈ B(I) and f ∈ H . We denote the completion of (I,B(I), A) by (I,B̄(I), Ā). Since the
class of A-null sets and that of µ-null sets coincide, B̄(I) is the class of Lebesgue measurable
subsets of I . From Lemma 3, we have A≃w Ā.

Now we prove that Ā�r A, from which we immediately obtain the desired relation A;r Ā.
Suppose that Ā≼r A holds. Then, there exists a regular Markov kernel κ(·|·) : B̄(I) × I → [0,1]
such that

Ā(E) =

I

κ(E |x)dA(x)

for each E ∈ B̄(I). Thus, we have
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I

χE(x)dA(x) = A(E) = Ā(E) =

I

κ(E |x)dA(x) (A1)

for each E ∈ B(I). From Remark 5 of Ref. 6, Eq. (A1) implies that χE(x) = κ(E |x) for µ-a.e.
x ∈ I . Therefore, there exists a µ-null set N ∈ B(I) such that

κ([0,r]|x) = χ[0,r ](x) (∀r ∈ I ∩ Q,∀x ∈ I \ N), (A2)

where Q is the set of rational numbers. Noting that κ(·|x) is a probability measure for each
x ∈ I, Eq. (A2) indicates that κ(E |x) = χE(x) for each x ∈ I \ N and E ∈ B(I). Thus, we have
κ(I \ {x}|x) = 0 for each x ∈ I \ N and this implies that κ(E |x) = χE(x) for each x ∈ I \ N and
E ∈ B̄(I). If there exists a set E such that

E ⊂ I \ N, E ∈ B̄(I) \B(I), (A3)

then we have χE(x) = κ(E |x)χI\N(x), which contradicts the B(I)-nonmeasurability of χE(x).
Now we show the existence of E satisfying (A3). Since (I \ N, (I \ N) ∩B(I)) is a stan-

dard Borel space and the restriction of µ to I \ N is a continuous measure, from Theorem 17.41
of Ref. 21, there exists a (I \ N) ∩B(I)/B(I)-bimeasurable bijection f : I \ N → I such that
µ( f (E)) = µ(E) for every E ∈ (I \ N) ∩B(I). Since there exists a set Ẽ ∈ B̄(I) \B(I), E B
f −1(Ẽ) satisfies condition (A3), which completes the proof of the assertion.
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