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Abstract

S-wave impedance is one of the most effective parameters used to study the

ground motion amplification of soil deposits. We propose a new approach to

measure the S-wave impedance of the uppermost material in surface ground

layers. First, a circular disk is set on the ground surface, and it is vertically

loaded by sinusoidal wave excitation. When the time series of the loading ve-

locity is synchronized with the reaction force, the ratio of the reaction force to

the loading velocity is proportional to the S-wave impedance. We then estimate

the proportionality coefficient from numerical experiments and check its accu-

racy. The measurement error is estimated to be within 1% for the homogeneous

half-space case. We also discuss the applicability of this new approach and its

limitations on the bases of numerical experiments for inhomogeneous media: a

two-layered medium and a one-dimensional (1-D) random medium. The pro-

posed approach is effective for both cases if we select the appropriate circular

disk size.
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1. Introduction

Evaluating the risk of on earthquake disasters is one of the important issues

in geotechnical engineering. In one example, the liquefaction potential for a

future great earthquake has been assessed by each local goverment in Japan.

The potential is conventionally estimated from the value of FL, which is the

factor of safety corresponding to liquefaction defined by R/L, where R is the

dynamic shear strength, and L is the maximum shear stress. The FL values

at actual liquefaction sites have been well discussed for the 2011 off the Pa-

cific coast of Tohoku earthquake (e.g., Unjoh et al., 2012; Yasuda et al., 2012;

Towhata et al., 2014). In order to estimate the relative potential of liquefaction

via the FL values, the maximum shear stress L acting on the soil column is

required. L is originally calculated from the acceleration on the ground surface

(Seed and Idriss, 1971), and now other ground motion indexes are also applied.

Thus, it is an essential procedure to quantify the ground motion ampli-

fication. In addition, the amplification due to the soil ground deposits di-

rectly caused severe damage to geotechnical structures during the 2011 off the

Pacific coast of Tohoku earthquake (e.g., Mori et al., 2012; Hata et al., 2014;

Sugano et al., 2014). Therefore, the amplification has been well considered,

even in geotechnical engineering.

Several approaches have been proposed to quantify the amplification. Some

of them have already been introduced into real-time systems that can estimate

the impact of earthquake disasters (Wald et al., 2010). These approaches are

based on simple factors that classify the ground (Bouzorgnia and Bertero, 2004)

via the averaged shear wave velocity, surface geology, geotechnical data, etc. Re-

cently, Vs30, the averaged shear wave velocity to a 30m depth, has been widely

adopted for site classifications (Borcherdt, 1994). Geomorphologic classifica-

tions (Wakamatsu and Matsuoka, 2006) and topographic data (Wald and Allen,

2007; Allen and Wald, 2009; Thompson et al., 2014) are used to evaluate Vs30

at sites where detailed velocity profiles are not available.

Some researchers, however, argue that Vs30 is not a significant parameter to
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model the site amplification (Castellaro et al., 2008; Lee and Trifunac, 2010).

However, the ratio of the S-wave impedance, that is, the product of S-wave

velocity and density, was originally proposed to be the index to quantify the

amplification. Joyner et al. (1981) pointed out that the amplification may be

explained by the square root of the impedance ratio of rock to soil sites. Their

idea has, unfortunately, not been readily accepted because they neglect the

energy losses due to reflection at the material interface, which is essential to

observe the resonance frequency of the surface ground. In recent research, the

S-wave impedance was revived by Goto et al. (2011) in their analysis of the

normalized energy density (NED). The NED is a single value model of the site

amplification, but it integrates the frequency contents of the transfer function

for the surface layer. The NED and average of the amplification are strongly

correlated, which has been proven mathematically and numerically. In applica-

tions, the total damping in the surface ground can be directly estimated from

the loss of the NED (Goto et al., 2013). In order to evaluate the NED at a par-

ticular site, the S-wave impedance of the uppermost surface layer is an essential

physical parameter to obtain, and it has to be measured by in situ field tests.

The S-wave impedance of the surface layer is also an important factor that

is used to model soil-structure interactions. As reviewed by Kausel (2010), a

large amount of research has focused on these types of interactions, which have

been reported since the end of the 19th century. Gazetas (1991) summarized

the approximate formulas of the dynamic stiffness and dashpot coefficient for

various types of foundations. In his chart, the dashpot coefficient, which physi-

cally represents the radiation damping, is a function of the material impedance

of the surface ground (Gazetas and Dobry, 1984; Gazetas and Tassoulas, 1987).

Because the impedance corresponds to the S-wave velocity or Lysmer’s ana-

log wave velocity, depending on the response directions, the S-wave impedance

is a key parameter to model the dashpot coefficient of the foundations (e.g.,

Wolf and Somaini, 1986; Wolf, 1997; Gerolymos and Gazetas, 2006).

The S-wave impedance at the actual site has been estimated from the prod-

uct of the measured S-wave velocity and density. The S-wave velocity profile
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is measured by various types of elastic wave explorations (Boore, 2006) such as

PS logging, refraction surveys, reflection surveys (e.g., Allen, 1980; Yokokura,

1995), surface wave surveys (Park et al., 1999), and microtremor array observa-

tions (e.g., Aki, 1957, 1965; Okada, 2003; Goto et al., 2009). The density profile

is measured from undisturbed soil samples or by density logging (e.g., Jia et al.,

2013). Although each technique has been well established, measurement er-

rors and uncertainties still remain (e.g., Liu et al., 2000; Boore and Thompson,

2007). This may cause error propagation during estimation of the S-wave

impedance. Thus, it is better to measure the S-wave impedance directly without

the product.

Recently, direct estimation techniques of the material impedance for the

subsurface structure have been developed in the field of exploration geophysics

(Connolly, 1999; Whitcombe, 2002; Lu and McMechan, 2004). These techniques

focus on the angle-dependent reflections from the material interface, and the

dependence is estimated from the variation. These approaches are attractive,

but they require several seismic records with a variety of angles. Because the

body waves tend to travel vertically through the surface layers, a sufficient

variation in the angles may not be available.

In this study, we propose a new technique to measure the S-wave impedance

on the uppermost surface layer. We focus on the dynamic response of a rigid

circular disk, which is placed on a target ground surface. The relations of

the S-wave impedance and the ratio of the reaction force to the velocity at

a synchronized frequency are described, and we then propose a procedure to

estimate the S-wave impedance. Lastly, we present the results from two types

of numerical experiments and verify the proposed technicque.

2. Robertson’s solution

2.1. Analytical solution for the dynamic response of a circular disk

A rigid circular disk is placed on the free surface of a homogeneous half-space

medium, and it is vertically loaded by sinusoidal wave excitation. Let a be the
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disk radius. The cylindrical coordinate system is adopted, as shown in Fig. 1.

Robertson (1966) analytically solved the dynamic response of the circular disk

under the following boundary conditions:

uz(r, 0, ω) = u(ω) for r ≤ a, (1)

σzz(r, 0, ω) = 0 for a < r, (2)

σrz(r, 0, ω) = 0 for 0 ≤ r, (3)

where ur and uz and σrr, σrz, and σzz are the displacement and stress compo-

nents, respectively. u(ω) denotes a forced displacement applied vertically to the

disk, and its angular frequency is ω.

The reaction force acting vertically on the disk Pz(ω) was represented as

follows:

Pz(ω)

πa2
=

4µu(ω)

πa(1− ν)
(p1(ω)− ip2(ω)), (4)

where µ and ν are the shear modulus and Poisson ratio of the medium, respec-

tively. i is the imaginary unit. p1(ω) and p2(ω) are real functions, which are

represented by the series of aω/β:

p1(ω) =1 +
1

3π2
(2πI2 − 3I21 )

(
aω

β

)2

+
1

60π4
(60I41 − 40π3I4 + 28π2I1I3 + 33π2I22 − 120πI21I2)

(
aω

β

)4

+ · · · ,

(5)

p2(ω) =
1

π
I1

(
aω

β

)
− 1

3π3
(π2I3 − 4πI1I2 + 3I31 )

(
aω

β

)3

+ · · · , (6)

where β is the S-wave velocity. In is a real coefficient that only depends on ν. By

substituting ω = 0, p2(ω) vanishes, and the reaction force is proportional to the

displacement. In this case, Eq. (4) is identical to the static solution (Boussinesq,

1885; Lamb, 1902).

2.2. Implication and limitation of Robertson’s solution

For a small angular frequency, the series in Eqs. (5)–(6) can be approximated

by a small number of terms. Let p̃1(ω) and p̃2(ω) be the low-order approxima-
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tions of p1(ω) and p2(ω) so that

p̃1(ω) = 1 +
1

3π2
(2πI2 − 3I21 )

(
aω

β

)2

, (7)

p̃2(ω) =
1

π
I1

(
aω

β

)
. (8)

As ω increases, p̃1(ω) monotonically decreases because 2πI2 < 3I21 , and

p̃2(ω) monotonically increases. Therefore, the root of p̃1(ω) = 0, ω̃, exists. By

substituting ω̃ into Eq. (4), the reaction force is represented as follows:

Pz(ω̃)

πa2
=

4µu(ω̃)

πa(1− ν)
(p̃1(ω̃)− ip̃2(ω̃))

=
4µu(ω̃)

πa(1− ν)

(
− iI1

π

aω̃

β

)
=
4I1ρβu̇(ω̃)

π2(1− ν)
= I0ρβu̇(ω̃), (9)

where ρ is the density. u̇(ω̃) is the disk velocity that is defined by u̇(ω̃) ≡

−iω̃u(ω̃). I0 is a real coefficient that only depends on ν.

Equation (9) suggests that the reaction force is proportional to the disk ve-

locity when the reaction force is synchronized with the disk velocity. The S-wave

impedance ρβ explicitly appears in the proportional coefficient. This relation

implies that it is possible to measure the S-wave impedance by using the ratio

of the reaction force and the disk velocity at the synchronized frequency.

However, Robertson’s solution and the above approximation involve several

queries that need to be generalized for the measurement of the S-wave impedance

for the actual ground.

2.2.1. Dependency on the Poisson ratio

The coefficient I0 depends on ν, which is also a material parameter. If we

want to obtain accurate values of I0, ν for the target material is required.

2.2.2. Stress-free condition beneath the disk

Equation (9) is based on Robertson’s solution, which is solved under the

boundary condition in Eqs. (1)–(3). The stress-free condition beneath the disk
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(Eq. (3)) requires frictionless slip between the disk and the surface of the medium.

This may not be a realistic condition for the actual system.

2.2.3. Low-order approximation of the series

Although the S-wave impedance explicitly appears in the proportional co-

efficient in Eq. (9), the derivation is based on the low-order approximations of

the series (Eqs. (5)–(6)) by assuming a small angular frequency. However, the

observed reaction force involves all terms of the series. It is required to check

for the existence of the synchronized frequency, and the relation between the

reaction force and the disk velocity is obtained by considering the contribution

from the high-order terms of the series.

2.2.4. Heterogeneity of the surface ground

Robertson’s solution is for a homogeneous half-space medium. However, the

actual surface ground consists of more complicated structures such as layered

structures with fluctuating material parameters.

3. Numerical simulation of the dynamic response in a homogeneous

half-space medium

Instead of Robertson’s solution, we numerically simulate the dynamic re-

sponse of the rigid circular disk in a homogeneous half-space medium and discuss

the relation between the reaction force and the disk velocity.

3.1. Simulation method

The equations of motion for the cylindrical coordinate system with axial

symmetry and the constitutive models for linear elasticity are applied. These

include

ρür =
∂σrr

∂r
+

σrr

r
+

∂σrz

∂z
− σθθ

r
, (10)

ρüz =
∂σrz

∂r
+

σrz

r
+

∂σzz

∂z
, (11)
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σrr = (λ+ 2µ)
∂ur

∂r
+ λ

ur

r
+ λ

∂uz

∂z
, (12)

σθθ = λ
∂ur

∂r
+ (λ+ 2µ)

ur

r
+ λ

∂uz

∂z
, (13)

σzz = λ
∂ur

∂r
+ λ

ur

r
+ (λ+ 2µ)

∂uz

∂z
, (14)

σrz = µ

(
∂ur

∂z
+

∂uz

∂r

)
. (15)

In the numerical simulation, we constrain the radial displacement beneath

the disk. The boundary conditions for the z-component are the same as those

with Robertson’s solution (Eqs. (1)–(2)), whereas we apply the following condi-

tion for the r-component:

ur(r, 0, ω) = 0 for r ≤ a, (16)

σrz(r, 0, ω) = 0 for a < r. (17)

The finite element method is adopted to solve the above boundary value

problem. We adopt a rectangular four-node isoparametric element. Beneath

the disk (r ≤ a), 50 square elements are allocated in the horizontal direction.

The edge size of the elements is completely uniform in the vertical direction,

whereas it is uniform within twice the size of the disk radius and gradually

enlarged by a scale factor of 1.015 until the end of the entire domain. We set

the size of the entire domain so that the reflection waves from the artificial

boundary will not return to the disk, and then, we apply 300× 300 elements

to represent the entire domain, which is 27.4a× 12.0a. One-dimensional (1-D)

nonreflecting boundary conditions are also allocated at the artificial boundaries

to minimize the effect of the reflection waves, specifically, on the side and bottom

edges of the domain, as shown in Fig. 2.

The centered difference scheme is adopted to solve the differential equation

associated with time. The time step ∆t is set to be ∆xminC/αmax, where ∆xmin

is the minimum size of an element edge, αmax is the maximum value of the

P-wave velocity, and C is a coefficient that represents the Courant–Friedrichs–

Lewy (CFL) condition. In this case, ∆xmin is equal to a/50 = 0.02m. If we

select C = 0.5 to satsify the CFL condition, the time steps are 0.01 divided by
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the P-wave velocity.

To model the dynamic load on the rigid disk, the forced displacement (u(ω), 0)

is explicitly applied to the nodes located in r ≤ a on the top edge. The reaction

force is calculated by summing the nodal forces to keep the forced displacement

beneath the disk.

At the beginning of excitation, the amplitude linearly increases to 0.01m

after two cycles of oscillation and remains constant for 15 cycles. The cross

correlation between the disk velocity and the reaction force is calculated during

the elapsed time of the 2–15 cycles,

g(t) =

∫ 15/fp

2/fp

u̇(τ)Pz(τ + t)dτ, (18)

where fp is excitation frequency. Let tmax be the time shift to obtain the

maxmum value of g(t) within −0.5fp < t < 0.5fp. Then, the phase difference is

estimated from 360 tmaxfp.

3.2. Results

The physical parameters of a homogeneous half-space medium, the S-wave

velocity, the density, and the Poisson ratio are listed in Table 1. We simulated

all of the combination cases (140 cases). The disk radius is a =1.0m. The

excitation frequencies are in the range from β/20a to β/2aHz with an interval of

β/40aHz, e.g., 25 to 250Hz with an interval of 12.5Hz for the β =500m/s cases.

The range is determined from the results of a few sample simulations to obtain

a significant relation with the phase difference, as described later. Because the

maximum frequency is insufficient to find the synchronized frequency for the

ν = 0.40 and 0.41, it is enlarged to β/aHz.

Figure 3 shows the time series of the averaged reaction pressure and disk

velocity for β = 200m/s, ρ = 1500 kg/m3, and ν = 0.45 simulated for the

excitation frequencies of 20Hz and 75Hz. The averaged reaction pressure is

defined by Pz/πa
2. A large phase difference between the averaged reaction

pressure and the disk velocity was observed for the 20Hz case, whereas the

phase difference was almost zero for the 75Hz case. This implies that the phase
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difference depends on the excitation frequency. Note that the numerical results

for the half-space case are controlled by the normalized frequency, aω/β. The

frequency range is scaled to be lower if a larger disk size is adopted.

Figure 4 shows the phase differences between the averaged reaction pressure

and the disk velocity for each excitation frequency. We also add a phase dif-

ference of 90◦ at 0Hz because the static load must be propotional to the disk

displacement that is at a phase difference of 90◦ from the velocity. The phase

differences monotonically decrease and cross the zero axis. The frequency cross-

ing the zero axis was estimated as 83.8Hz, and this is named the synchronized

frequency hereinafter. Figure 4 also shows the amplitude ratio of the averaged

reaction pressure to the disk velocity. We focus on the ratio at the synchronized

frequency, which is named the measured ratio hereinafter, because Eq. (9) im-

plies that the ratio is proportional to the S-wave impedance at the synchronized

frequency. In this case, the measured ratio is 6.84× 105 kg/sm2.

The coefficients I0 and I1 in Eq. (9) are functions of the Poisson ratio. The

values for this case are 1.859 and 2.523, respectively. If the result satisfies Eq. (9),

the measured ratio divided by I0 must be equal to the S-wave impedance of the

medium, which is equal to 3.00× 105 kg/sm2. However, this value is 22% larger

than the true value. The overestimation is caused by the limitation of Eq. (9),

as mentioned in Section 2.2. One piece of evidence is the value of aω̃/β, which

was calculated to be 2.63. It does not satisfy the assumption that the higher-

order terms in Eqs. (5)–(6) can be neglected. This means that the measured

ratio is not ensured to be proportional to the S-wave impedance. Therefore, we

had to check the relation between the measured ratio and the material S-wave

impedance.

We define a new coefficient Ĩ0 by the ratio of the measured ratio to the

material S-wave impedance. Figure 5 shows the values of Ĩ0 for all simulated

cases. As a reference, I0 for ν = 0.50 for Robertson’s solution is also plotted

in the figure. The results indicate that the coefficient, except for the case of

ν = 0.40, is independent of the S-wave velocity, Poisson ratio, and density. I0

originally depends on the Poisson ratio, whereas the dependence disappears in
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the results from the numerical experiments.

In order to discuss the reason why the Poisson ratio dependency disappears

for Ĩ0, we perform additional numerical simulations. The simulations allow fric-

tionless sliding between the disk and the ground surface, which is the same

boundary conditions with Robertson’s solution. Figure 6 shows the results ob-

tained from the simulations for ν = 0.45, 0.48, and 0.49, which are plotted with

I0 from Robertson (1966). If the low-order approximation (Section 2.2.3) is

available, the results agree with I0. However, the ratios of the measured ratio

to the material S-wave impedance are larger than I0. The values of aω̃/β are

in the range of 3.10–3.13, 2.56–2.58, and 2.46–2.49 for ν = 0.45, 0.48, and 0.49,

respectively, which do not satisfy the low-order assumption. This implies that

the discrepancy between the obtained results and I0 is explainable by rejection

of the low-order approximation. On the other hand, the Poisson ratio depen-

dency still remains for the frictionless cases because the results for ν = 0.49 are

larger than the others. We interpret that the reason for this is the difference of

the constraint beneath the disk because the constraint of horizontal sliding may

restrict the Poisson effect.

The results in Fig. 5 also indicate that the measured ratio is proportional to

the S-wave impedance, and its proportionality coefficient can be represented by a

unique constant Ĩ0. The average value of Ĩ0 among the results for ν = 0.45, 0.48,

and 0.49 is 2.2788. We checked the applicability of Ĩ0 = 2.2788 for the other

cases. Figure 7 shows a comparison between the estimated S-wave impedance

from the measured ratio divided by Ĩ0 = 2.2788 and the material true values.

The estimated S-wave impedances are almost equal to the true ones, except

for ν = 0.40. The standard deviation of the estimation error for ν ≥ 0.41 is

0.99%, which is quite small to measure the S-wave impedance. As mentioned

in Section 2.2, the original coefficient I0 depends on the Poisson ratio. However,

the results indicate we can apply Ĩ0 = 2.2788 independent of the Poisson ratio

if the material is in the range ν ≥ 0.41. This is an efficient property of the

proposed technique because the detailed values of the Poisson ratio are not

required.
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Figure 8 shows the phase differences for each excitation frequency for various

Poissons ratios of ν = 0.45, 0.40, 0.35, and 0.30. The values for ν = 0.30 and

0.35 decrease with a small oscillation, but they do not cross the zero axis. This

means that the synchronized frequency can not be defined for ν = 0.30 and

0.35. Additionally, for ν = 0.40, the proposed value Ĩ0 = 2.2788 causes larger

errors than in the other cases. This implies that the proposed approach is only

ensured for the ν ≥ 0.41 cases.

The Poisson ratio of the soil skeleton is approximately in the range of 0.2–0.3

(Kokusho, 1980; Lade and Nelson, 1987; Nakagawa et al., 1997), whereas moist

soil will give larger values. Yang and Sato (2000) describe the relation between

the Poisson ratio and the degree of saturation, and almost saturated ground

exhibits a higher Poisson ratio regardless of the other parameters. On the basis

of the relation between the wave velocities and the Poisson ratio,

α

β
=

√
2(1− ν)

1− 2ν
, (19)

ν ≥ 0.41 means that the P-wave velocity is larger than 2.56β, e.g., ≥ 256m/s

for a 100m/s S-wave velocity, ≥ 1024m/s for 400m/s, and so forth, which are

almost satisfactory for a natural soil deposit. Therefore, the range of application

is reasonable for our motivation to measure the S-wave impedance.

The main scope of this study is not to discuss the dynamic behaviors of

the disk under actual earthquake ground motions but to measure the S-wave

impedance of the soil material as one of the techniques of geophysical explo-

rations. The excitation frequencies are not limited in the range of important

frequencies for ground motions, e.g., 0.1–10.0Hz. In fact, a simple pulse, mainly

containing higher frequency components, is generally used in PS loggings and

reflection surveys, whereas the material properties, the P and S-wave veloci-

ties, obtained from the surveys, are widely applied to geotechnical engineering

applications.
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4. Measurement procedure for the S-wave impedance

On the basis of the properties of the relation between the disk velocity and

the reaction force acting on the rigid circular disk, we propose a simple procedure

to measure the S-wave impedance of the uppermost layer of the surface ground.

Step 1. A rigid circular disk is vertically loaded at variable frequencies, and

the reaction force and disk velocity are measured.

We set a rigid circular disk on the ground surface and vertically load it by

sinusoidal wave excitation with a variety of frequencies (see Fig. 1). The reaction

force acting on the disk and the disk velocity are measured for each frequency.

Step 2. The synchronized frequency between the reaction force and the disk

velocity is determined.

The time series of the measured reaction force is compared to the one for the

disk velocity (see Fig. 3), and their phase difference is caluculated. The exci-

tation frequency with zero phase difference is then determined and set to the

synchronized frequency (see the top panel of Fig. 4).

Step 3. The ratio of the averaged reaction pressure to the disk velocity at the

synchronized frequency is calculated.

The amplitude of the averaged reaction pressure, which is defined by Pz/πa
2,

is divided by the amplitude of the disk velocity at the synchronized frequency.

The value is set to the measured ratio (see the bottom panel of Fig. 4).

Step 4. The ratio is divided by Ĩ0 = 2.2788, and then, the S-wave impedance

is obtained.

As shown in Fig. 5, the measured ratio divided by the material S-wave impedance

is constant independent of the material properties, and it is modeled with the

value of Ĩ0 = 2.2788. Therefore, the measured ratio is divided by 2.2788, and

we can then obtain the S-wave impedance of the uppermost surface layer at the

target site.

If horizontal loadings to the circular disk are required in the procedure, we

must ensure strong coupling to the contact surface to prevent slippage between

13



the disk and the ground surface. The procedure used here, fortunately, requires

only vertical loadings to estimate the S-wave impedance. This allowed us to

realize the loading system without having to implement special treatments to

the contact surface.

The proposed procedure was verified in a homogeneous half-space medium,

even though the natural ground surface cannot be assumed to be a homogeneous

half-space. Therefore, in order to clarify the effects of the material interfaces

and inhomogeneity, we demonstrate the measured procedure for more general

media through two numerical experiments.

5. Numerical experiment 1: two-layered medium

We first clarify the effect of the material interfaces by performing numer-

ical experiments on a two-layered medium, which consists of a single surface

layer overlying a homogeneous half-space basement. The physical parameters

of both the surface layer and basement are presented in Table 2. We evaluated

three cases with variable surface layer thicknesses of 0.5m, 1.0m, and 2.0m and

the half-space case as a reference. The Poisson ratios of the surface layer and

basement were 0.493 and 0.43, respectively, which are in the applicable range

of Ĩ0 = 2.2788.

For the half-space medium, the results were independent of the disk radius.

However, for the two-layered medium, a relation between the disk radius and the

surface layer thickness was apparent. We performed numerical experiments by

applying seven disk radii for each case: 0.1m, 0.2m, 0.5m, 1.0m, 2.0m, 5.0m,

and 10.0m. In order to ensure 50 elements beneath each disk size, the size of the

elements was modified in each simulation of the disk radius. We then applied

the proposed procedure described in the previous section to estimate the S-wave

impedance. We omit the case for a disk radius of 0.1m and a thickness of 2.0m

because the thickness exceeds the vertical dimension of the entire domain. For

the other cases, the relative element sizes to the wavelength is ensured to be

sufficiently small, e.g., 25 elements represent the wavelength at the synchronized

14



frequency for a disk radius of 10m and a thickness of 0.5m.

Figure 9 shows the S-wave impedances estimated from the various disk radii.

The black solid lines indicate the true S-wave impedances in the surface layer

and basement. For small disk radii, namely, 0.1–0.2m, the estimated S-wave

impedances agreed well with the S-wave impedances of the surface layer. How-

ever, the values were underestimated at a radius of approximately 1m, and they

increased to the S-wave impedance of the basement as the radius increased.

Table 3 lists the synchronized frequencies for each case. The small disk size

generates a wave field that mainly consists of shorter wavelengths at the sync-

chronized frequency. In one example, the wavelength for a disk radius of 0.2m

and a thickness of 1.0m is 0.57m, which is half of the surface layer thickness.

The table also implies that a wavelength shorter than the layer thickness gives

almost the same synchronized frequencies as the half-space case. Therefore, the

effect from the layer boundary depends on the relative size of the disk to the

layer thickness.

To enhance the relative thickness to the disk radius, we plotted the estimated

values associated with a normalized disk radius, which was defined by the disk

radius divided by the surface layer thickness, in Fig. 10. This clearly shows that

all cases are on a common curve, and the minimum value appears when the

disk radius is equal to the surface layer thickness. This implies that the S-wave

impedances estimated from approximately 20% size of the disk radius relative

to the surface layer thickness must be correct. In general, we did not have much

information about the layer thickness at the target site, but several experiments

with a variety of disk radii will give a curve similar to that shown in Fig. 10,

and this will give an appropriate value of the S-wave impedance as a limiting

value for shorter disk sizes.

6. Numerical experiment 2: 1-D random medium

Natural materials that compose the ground surface usually have variable ma-

terial properties. We performed another numerical experiment for more complex
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layered structures in order to check the robustness of the proposed method.

The variations in velocities and densities were applied only to the depth di-

rection, and they were modeled by adding fluctuations to the average model.

Table 4 summarizes the parameters for the average model, which is based on

1-D profiles at the K-NET MYG006 seismic station maintained by the National

Research Institute for Earth Science and Disaster Prevention (NIED). Severe

residential damage around the K-NET MYG006 site was concentrated during

the 2011 off the Pacific coast of Tohoku earthquake (Goto and Morikawa, 2012).

The detailed soil profiles have been investigated from the very dense observa-

tions of strong ground motions (Goto et al., 2012), and the soft soil deposit is

estimated to a depth of approximately 15–30m. Although there are no signif-

icant reasons to adopt the profile at the K-NET MYG006 site in this study,

we choose a target site covered with the soft soil deposit because large site

amplification is expected.

We adopted the von Kármán autocorrelation function R(z) and applied it

to the fluctuations (Sato et al., 2012); the function is

R(z) =
ε221−κ

Γ(κ)

(z
a

)κ

Kκ

(z
a

)
, (20)

where Γ(κ) is the gamma function, and Kκ is the modified Bessel function of

the second kind of order κ. ε2 is the mean square fractional fluctuation. a is

the correlation distance. In the experiments, a and κ were set to 10m and 0.5,

respectively. Two cases of ε2, 0.02 and 0.1, were examined. Figures 11 and 12

show the S-wave velocity and density models for ε2 = 0.02 and 0.1, respectively.

We generated 10 samples and performed numerical experiments for each case.

A 0.2m disk radius was applied, and we then obtained simulation results

using the measurement procedure for the S-wave impedance. Figure 13 shows

the estimated S-wave impedance from the 1-D random medium. The horizontal

axis corresponds to the sample number of the random model. Because the S-

wave impedance of surface layer #1 contains fluctuations, the ranges of the

standard deviation and minimum–maximum values are also plotted in Fig. 13.

All estimated values were in the range of the minimum–maximum values of the
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model for ε2 = 0.02, and almost all of the cases were in the range of the standard

deviation. For the strong fluctuation case (ε2 = 0.1), the estimated value for

one of the samples (sample 4) was outside the range of the minimum–maximum

values. However, the estimates for over half of the cases were in the range of

the standard deviation. This implies that the proposed method gives accurate

estimates of the S-wave impedance of the uppermost surface layer, even when

the material includes some fluctuations.

7. Conclusion

In this study, we proposed a new approach to measure the S-wave impedance

in the uppermost surface layer. A rigid circular disk is set on a free surface,

and it vertically oscillates as it synchronizes with the reaction force and disk

velocity. The ratio of the averaged reaction pressure to the velocity is a product

of the S-wave impedance and a coefficient estimated as Ĩ0 = 2.2788. The S-wave

impedance estimated from the procedure is quite accurate in numerical experi-

ments for a homogeneous half-space medium. For the two-layered medium, the

estimated value is appropriate when a small disk radius is selected. For the 1-D

random medium, the proposed approach gives accurate estimates compared to

the variation itself.
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Table 1: Physical parameters of the homogeneous half-space medium. All ombinations (140

cases) are numerically simulated.

S-wave velocity [m/s] 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000

Density [kg/m3] 1500, 2000

Poisson ratio 0.40, 0.41, 0.43, 0.45, 0.47, 0.48, 0.49

Table 2: Physical parameters for the two-layered medium.

Surface layer Basement

S-wave velocity [m/s] 180 700

P-wave velocity [m/s] 1500 2000

Density [kg/m3] 1400 1600

Thickness [m] 0.5, 1.0, 2.0, ∞ –

Table 3: Synchronized frequencies for the two-layered medium. The symbol * indicates that

the corresponding wavelength is shorter than the layer thickness.

Disk radius [m]

Thickness [m] 0.1 0.2 0.5 1.0 2.0 5.0 10.0

0.5 *630Hz 225Hz 183Hz 180Hz 185Hz 95Hz 36Hz

1.0 *647Hz *315Hz 102Hz 92Hz 90Hz 97Hz 48Hz

2.0 – *323Hz *132Hz 51Hz 46Hz 46Hz 49Hz

∞ *645Hz *323Hz *129Hz *65Hz *32Hz *13Hz 6.5Hz

Table 4: Average model for the one-dimensional (1-D) random medium. Each physical pa-

rameter is based on 1-D profiles at the K-NET MYG006 seismic station maintained by the

National Research Institute for Earth Science and Disaster Prevention (NIED).

Surface layer #1 Surface layer #2 Basement

S-wave velocity [m/s] 70 130 400

P-wave velocity [m/s] 350 1420 1880

Density [kg/m3] 1425 1750 2110

Thickness [m] 2.0 15.0 –
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Figure 1: Schematic of a rigid circular disk vertically loaded by sinusoidal wave excitation.

The disk velocity u̇(ω) and the reaction force from the ground surface Pz(ω) are measured

values. r and z are the axes of the cylindrical coordinate system that are prallel to the disk

radius and depth directions, respectively.
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Figure 2: Finite element model of the cylindrical coordinate system with axial symmetry for

the numerical experiments. The rigid circular disk is modeled by the displacement boundary

condition.
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for β = 200m/s, ρ = 1500 kg/m3, and ν = 0.45.
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29



-10

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0  50  100  150  200  250  300  350  400

P
ha

se
 d

iff
er

en
ce

 [d
eg

]

Frequency [Hz]

Synchronized frequency

Static case ν = 0.45
0.40
0.35
0.30

Figure 8: Examples of phase differences depending on the excitation frequency for ν = 0.45,

0.40, 0.35, and 0.30 (β = 200m/s, ρ = 1500 kg/m3).

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0.1  1  10E
st

im
at

ed
 S

-w
av

e 
im

pe
da

nc
e 

[1
06  k

g/
sm

2 ]

Disk radius [m]

S-wave impedance of surface layer

S-wave impedance of basement

half-space
Thickness: 0.5m
Thickness: 1.0m
Thickness: 2.0m

Figure 9: Estimated S-wave impedance depending on the disk radius for the two-layered

medium. Black solid lines indicate the true S-wave impedances in the surface layer and

basement.

30



 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0.1  1  10E
st

im
at

ed
 S

-w
av

e 
im

pe
da

nc
e 

[1
06  k

g/
sm

2 ]

Disk radius / Thickness

S-wave impedance of surface layer

S-wave impedance of basement

Thickness: 0.5m
Thickness: 1.0m
Thickness: 2.0m

Figure 10: Estimated S-wave impedance for the two-layered medium plotted with a normalized

disk radius, which was defined by the disk radius divided by the surface layer thickness.

 0

 5

 10

 15

 20

 0  200  400  600

D
ep

th
 [m

]

S-wave velocity [m/s]

Average model
 0

 5

 10

 15

 20

 0  1000  2000  3000

D
ep

th
 [m

]

Density [kg/m3]

Figure 11: Ten random models for the S-wave velocity and density (ε2 = 0.02).
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Figure 13: Estimated S-wave impedances for each of the 10 sample models. Black and gray

ranges indicate the ranges of the standard deviation and minimum–maximum values for the

uppermost surface layers in the models (top: ε2 = 0.02, bottom: ε2 = 0.1).
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