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RANK OF DIVISORS ON HYPERELLIPTIC CURVES AND GRAPHS UNDER

SPECIALIZATION

SHU KAWAGUCHI AND KAZUHIKO YAMAKI

Abstract. Let (G,ω) be a hyperelliptic vertex-weighted graph of genus g ≥ 2. We give a charac-
terization of (G,ω) for which there exists a smooth projective curve X of genus g over a complete
discrete valuation field with reduction graph (G,ω) such that the ranks of any divisors are pre-
served under specialization. We explain, for a given vertex-weighted graph (G,ω) in general, how
the existence of such X relates the Riemann–Roch formulae for X and (G,ω), and also how the
existence of such X is related to a conjecture of Caporaso.

1. Introduction and statements of the main results

1.1. Introduction. The theory of divisors on smooth projective curves has been actively and
deeply studied since the nineteenth century (cf. [4, 5]). It has been found that, also on graphs,
there exists a good theory of divisors (including such notions as linear systems, linear equivalences,
canonical divisors, degrees, and ranks). A Riemann–Roch formula, one of the most important
formulae in the theory of divisors, was established by Baker and Norine on finite loopless graphs in
their foundational paper [7]. A Riemann–Roch formula on tropical curves was independently proved
by Gathmann and Kerber [19] and Mikhalkin and Zharkov [26]. Further, a Riemann–Roch formula
on vertex-weighted graphs was proved by Amini and Caporaso [3], and on metrized complexes by
Amini and Baker [1].

As Baker [6] revealed, the above parallelism between the theory of divisors on curves and that
on graphs is not just an analogy. Let K be a complete discrete valuation field with ring of integers
R and algebraically closed residue field k. Let X be a geometrically irreducible smooth projective
curve over K. An R-curve means an integral scheme of dimension 2 that is projective and flat over
Spec(R). A semi-stable model of X is an R-curve X whose generic fiber is isomorphic to X and
whose special fiber is a reduced scheme with at most nodes as singularities. For simplicity, suppose
that there exists a semi-stable model X of X over Spec(R). Let (G,ω) be the (vertex-weighted)
reduction graph of X , where G is the dual graph of the special fiber of X with natural vertex-
weight function ω on G (see §2 for details). Let Γ be the metric graph associated to G, where each
edge of G is assigned length 1. To a point P ∈ X(K), one can naturally assign a vertex v of G.
This assignment is called the specialization map, and extends to τ : X(K)→ ΓQ, where K is a fixed
algebraic closure of K and ΓQ is the set of points on Γ whose distance from every vertex of G is
rational. Let τ∗ : Div(XK)→ Div(ΓQ) be the induced map on divisors, and let rX (resp. rΓ, r(Γ,ω))
denotes the rank of divisors on X (resp. Γ, (Γ, ω)) (see §2 for details). In [6], Baker showed that

rΓ(τ∗(D̃)) ≥ rX(D̃) for any D̃ ∈ Div(XK), a result now called Baker’s Specialization Lemma (see
[1, 3] for generalizations of the specialization lemma). This interplay between curves and graphs
has yielded several applications to the classical algebraic geometry such as a tropical proof of the
famous Brill–Noether theorem [16] (see also [10, 24]).

In the specialization lemma, it is often that rΓ(τ∗(D̃)) is larger than rX(D̃) (see e.g. Example 7.7).
In this paper, we study when the ranks of divisors are preserved under the specialization map (see
Proposition 1.4 for our original motivation). By a finite graph, we mean an unweighted, finite
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2 SHU KAWAGUCHI AND KAZUHIKO YAMAKI

connected multigraph, where loops are allowed. A vertex-weighted graph (G,ω) is the pair of a
finite graph G and a function ω : V (G)→ Z≥0, where V (G) denotes the set of vertices of G.

Question 1.1. Let (G,ω) be a vertex-weighted graph, and let Γ be the metric graph associated
to G. Under what condition on (G,ω), does there exist a regular, generically smooth, semi-stable
R-curve X with reduction graph (G,ω) satisfying the following condition?

(C) Let X be the generic fiber of X , and τ : X(K) → ΓQ the specialization map. Then,

for any D ∈ Div(ΓQ), there exists a divisor D̃ ∈ Div(XK) such that D = τ∗(D̃) and

r(Γ,ω)(D) = rX(D̃).

The purpose of this paper is to answer Question 1.1 for hyperelliptic graphs. Here, a vertex-
weighted graph (G,ω) is hyperelliptic if the genus of (G,ω) is at least 2 and there exists a divisor
D on Γ such that deg(D) = 2 and r(Γ,ω)(D) = 1 (see Definition 3.9). An edge e of G is called a
bridge if the deletion of e makes G disconnected. Let G1 and G2 denote the connected components
of G ∖ {e}, which are respectively equipped with the vertex-weight functions ω1 and ω2 given by
the restriction of ω. A bridge is called a positive-type bridge if each of (G1, ω1) and (G2, ω2) has
genus at least 1.

With the notation in Question 1.1, we also consider the following condition (C’), which implies
(C) (see Lemma 7.2).

(C’) For any D ∈ Div(ΓQ), there exist a divisor E =
∑k

i=1 ni[vi] ∈ Div(ΓQ) that is linearly

equivalent to D and a divisor Ẽ =
∑k

i=1 niPi ∈ Div(XK) such that τ(Pi) = vi for any

1 ≤ i ≤ k and r(Γ,ω)(E) = rX(Ẽ).

Our main result is as follows.

Theorem 1.2. Let K be a complete discrete valuation field with ring of integers R and algebraically
closed residue field k. Assume that char(k) ̸= 2. Let (G,ω) be a hyperelliptic vertex-weighted graph.
Then the following are equivalent.

(i) For every vertex v of G, there are at most (2ω(v) + 2) positive-type bridges emanating
from v.

(ii) There exists a regular, generically smooth, semi-stable R-curve X with reduction graph
(G,ω) which satisfies the condition (C).

(iii) There exists a regular, generically smooth, semi-stable R-curve X with reduction graph
(G,ω) which satisfies the condition (C’).

In fact, we will see that the condition (i) is equivalent to the existence of a regular, generically
smooth, semi-stable R-curve X with reduction graph (G,ω) such that XK is hyperelliptic (see
Theorem 1.12), and that any such R-curve X satisfies the conditions (C) and (C’).

As a corollary, we have the following vertex-weightless version. A semi-stable R-curve X is said
to be strongly semi-stable if every component of the special fiber is smooth, and totally degenerate if
every component of the special fiber is a rational curve. Let (G,ω) be the vertex-weighted reduction
graph of an R-curve X . Note that, if X is strongly semi-stable, then G is loopless, and if X is
totally degenerate, then ω = 0.

Corollary 1.3. Let K, R and k be as in Theorem 1.2. Let G = (G,0) be a loopless hyperelliptic
graph. Then the following are equivalent.

(i) For every vertex of G, there are at most 2 positive-type bridges emanating from it.
(ii) There exists a regular, generically smooth, strongly semi-stable, totally degenerate R-curve

X with reduction graph G which satisfies the condition (C) (with rΓ in place of r(Γ,ω)).
(iii) There exists a regular, generically smooth, strongly semi-stable, totally degenerate R-curve

X with reduction graph G which satisfies the condition (C’) (with rΓ in place of r(Γ,ω)).

We have come to consider Question 1.1 in our desire to understand relationship between the
Riemann–Roch formula on graphs and that on curves. Indeed, we have the following Proposi-
tion 1.4. (Since the Riemann–Roch formula on vertex-weighted graphs is a corollary of that on
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vertex-weightless graphs, we give the vertex-weightless version.) Recall that the Riemann–Roch
formula on a metric graph asserts that

(1.1) rΓ(D)− rΓ(KΓ −D) = deg(D) + 1− g(Γ)

for any D ∈ Div(Γ) (cf. [7, 19, 26]), where the canonical divisor of a compact connected metric
graph Γ is defined to be KΓ :=

∑
v∈Γ(val(v)− 2)[v] (cf. [30]).

Proposition 1.4. Let G be a finite graph and Γ the metric graph associated to G. Assume that
there exist a complete discrete valuation field K with ring of integers R, and a regular, generically
smooth, strongly semi-stable, totally degenerate R-curve X with reduction graph G which satis-
fies the condition (C). Then the Riemann–Roch formula on Γ is deduced from the Riemann–Roch
formula on XK, where X is the generic fiber of X .

Let G be a loopless hyperelliptic graph. Let G be the hyperelliptic graph that is obtained by
contracting all the bridges of G. Then Corollary 1.3, Proposition 1.4 and comparison of divisors
on G and G gives a proof of the Riemann–Roch formula on a loopless hyperelliptic graph G (see
Remark 7.6). It should be noted, however, that, as the original proof by Baker–Norine, this proof
uses the theory of reduced divisors (in the proof of Theorem 1.2).

Let (G,ω) be a vertex-weighted graph, and Γ the metric graph associated to G. Question 1.1 is
also of interest from the viewpoint of the Brill-Noether theory: For fixed integers d, r ≥ 0, we put
W r

d (ΓQ, ω) := {D ∈ Div(ΓQ) | deg(D) = d, r(Γ,ω)(D) ≥ r}; If the condition (C) is satisfied with an
R-curve X with generic fiber X, then we will have τ∗(W

r
d (XK)) = W r

d (ΓQ, ω).

Caporaso has kindly informed us that the condition (C) is related to her conjecture [12, Conjec-

ture 1]. Let (G,ω) be a vertex-weighted graph, and let D ∈ Div(G). The algebraic rank ralg,k(G,ω)(D)

of D is defined by

ralg,k(G,ω)(D) := max
X0

r(X0, D),

r(X0, D) := min
E

rmax(X0, E),

rmax(X0, E) := max
E0

(
h0(X0,E0)− 1

)
,

where X0 runs over all connected reduced projective nodal curves defined over k with dual graph
(G,ω), E runs over all divisors on G that are linearly equivalent to D in Div(G), and E0 runs over
all Cartier divisors on X0 such that deg (E0|Cv) = E(v) for any v ∈ V (G). (Here Cv denotes the
irreducible component of X0 corresponding to v.) In [12, Conjecture 1], Caporaso has conjectured
that

(1.2) ralg,k(G,ω)(D) = r(Γ,ω)(D)

and showed that (1.2) holds in the following four cases: (1) g(Γ, ω) ≤ 1; (2) deg(D) ≤ 0 or
deg(D) ≥ 2g(Γ, ω) − 2; (3) G has exactly one vertex; and (4) g(Γ, ω) ≤ 2 and (G,ω) is stable.
Caporaso has informed us about her very recent and unpublished work with M. Melo proving one

direction of the conjecture, i.e., ralg,k(G,ω)(D) ≤ r(Γ,ω)(D). (See also Remark 8.4.)

To make the relation between (C) and (1.2) precise, we consider a variant of the condition (C),
which is concerned with the existence of a lifting as a divisor over K (not just as a divisor over K) of a
divisor D on G (not just on ΓQ). Let the notation be as in Question 1.1. Let ρ∗ : Div(X)→ Div(G)
be the specialization map (see (8.1)).

(F) For any D ∈ Div(G), there exists a divisor D̃ ∈ Div(X) such that D = ρ∗(D̃) and

r(Γ,ω)(D) = rX(D̃).

The following proposition, which is due to Caporaso, shows that the condition (F) leads to the
other direction in her conjecture.
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Proposition 1.5. Let K, R and k be as in Theorem 1.2. Let (G,ω) be a vertex-weighted graph,
and let Γ be the metric graph associated to G. Let X be a regular, generically smooth, semi-stable
R-curve with generic fiber X and reduction graph (G,ω). Assume that X satisfies the condition
(F). Then, for any divisor D ∈ Div(G), we have

ralg,k(G,ω)(D) ≥ r(Γ,ω)(D).

For a hyperelliptic vertex-weighted graph (G,ω), we can show the following (see Theorem 8.2
for a stronger result, which considers a variant of the condition (C’)).

Theorem 1.6. Let K, R and k be as in Theorem 1.2. Let (G,ω) be a hyperelliptic graph such
that for every vertex v of G, there are at most (2ω(v) + 2) positive-type bridges emanating from
v. Then, there exists a regular, generically smooth, semi-stable R-curve X with reduction graph
(G,ω) which satisfies the condition (F).

Thus we obtain the following corollary.

Corollary 1.7. Let k be an algebraically closed field with char(k) ̸= 2. Let (G,ω) be a hyperelliptic
graph such that for every vertex v of G, there are at most (2ω(v)+2) positive-type bridges emanating

from v. Then, for any D ∈ Div(G), we have ralg,k(G,ω)(D) ≥ r(Γ,ω)(D).

1.2. Remarks. A number of remarks are in order.

Remark 1.8. In this paper, we consider vertex-weighted graphs (i.e., not only vertex-weightless
finite graphs), for vertex-weighted graphs appear naturally in tropical geometry and Berkovich
spaces. (Indeed, a vertex-weighted metric graph is seen as a Berkovich skeleton of an algebraic
variety over K. For the interplay between Berkovich spaces and tropical varieties over K, see, for
example, [2, 9, 20, 27].)

Remark 1.9. Theorem 1.2 treats vertex-weighted hyperelliptic graphs of genus at least 2. We also
show that, for any vertex-weighted graph of genus 0 or 1, there exists a regular, generically smooth,
semi-stable R-curve X with reduction graph (G,ω) that satisfies the condition (C) and (C’) (see
Proposition 7.5).

Remark 1.10. The condition (C’) is in general not equivalent to the following condition:

(C”) For any D =
∑k

i=1 ni[vi] ∈ Div(ΓQ), there exists Pi ∈ X(K) with τ(Pi) = vi for each

1 ≤ i ≤ k such that r(Γ,ω)(D) = rX(
∑k

i=1 niPi).

See Example 7.9, where we give a hyperelliptic graph G and a model X that satisfy the conditions
(C) and (C’), but does not satisfy the condition (C”). This example is interesting in two senses.

First, for the divisor D in Example 7.9, by the condition (C), there exists D̃ ∈ Div(XK) with

τ∗(D̃) = D and r(Γ,ω)(D) = rX(D̃). This example shows, however, that D̃ is not simply of the

form
∑k

i=1 niPi with τ(Pi) = vi. Secondly, by the condition (C’), if we replace D by a divisor

E =
∑ℓ

j=1mj [wj ] with E ∼ D, then we can indeed lift E in X as a simple form Ẽ =
∑ℓ

j=1mjQj

with τ(Qj) = wj preserving the ranks r(Γ,ω)(E) = rX(Ẽ).

Remark 1.11. In a very recent paper [2], Amini, Baker, Brugallé and Rabinoff studied lifting
of harmonic morphisms of metrized complexes, among others, to morphisms of algebraic curves
(see also Theorem 1.12 below). In [2, §10.11], they discussed lifting divisors of given rank, giving
several examples for which various specialization lemmas do not attain the equality. Question 1.1
will be interesting from this perspective, and Theorem 1.2 gives a clean picture for the case of
hyperelliptic graphs. We also remark that Cools, Draisma, Payne and Robeva considered a certain
graph G◦ of g loops to give a tropical proof of the Brill–Noether theorem and that their conjecture
[16, Conjecture 1.5] concerns lifting of divisors that preserves the ranks between G◦ and a regular,
generically smooth, strongly semi-stable, totally degenerate R-curve with reduction graph G◦.
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1.3. Strategy of the proof and other results. We now explain our strategy to prove Theo-
rem 1.2. Our starting point is the following theorem.

Theorem 1.12 (cf. [11, Theorem 4.8] and [2, Theorem 1.10]). Let K, R and k be as in Theorem 1.2,
and let (G,ω) be a vertex-weighted hyperelliptic graph. Then the condition (i) in Theorem 1.2 is
equivalent to the existence of a regular, generically smooth, semi-stable R-curve X with reduction
graph (G,ω) such that the generic fiber XK is hyperelliptic.

Caporaso [11, Theorem 4.8] proved that the condition (i) in Theorem 1.2 is equivalent to the
existence of a hyperelliptic semi-stable curve X0 over k. Based on [11, Theorem 4.8], we will give a
proof of Theorem 1.12 using equivariant deformation. We remark that there is another approach to
Theorem 1.12. Amini, Baker, Brugallé and Rabinoff [2, Theorem 1.10] recently showed a skeleton-
theoretic version of Theorem 1.12 as a corollary of their deep studies of canonical gluing and star
analytic spaces over an algebraically closed field with a non-Archimedean valuation (during the
preparation of this paper). With an argument of “descent” to the case of a discrete valuation field,
it may be possible that one derives Theorem 1.12 from [2, Theorem 1.10].

Theorem 1.12 shows that (ii) implies (i) in Theorem 1.2. Since (C’) implies (C) (see Lemma 7.2),
the condition (iii) implies (ii) in Theorem 1.2. The main part of the proof of Theorem 1.2 is to
show that (i) implies (iii).

For a metric graph Γ and v0 ∈ Γ, a divisor D ∈ Div(Γ) is said to be v0-reduced if D is effective
away from v0 and satisfies several nice properties (see Definition 2.3). This notion was introduced
by Baker and Norine [7], and is a powerful tool in computing the ranks of divisors. With the notion
of moderators (see [7, Theorem 3.3], [26, Section 7], [22, Corollary 2.3]), we have the following
properties of reduced divisors.

Theorem 1.13. Let Γ be a compact connected metric graph of genus g ≥ 2. We fix a point v0 ∈ Γ.
Let D ∈ Div(Γ) be a v0-reduced divisor on Γ, and let D(v0) denote the coefficient of D at v0. Then,
if deg(D)−D(v0) ≤ g− 1, then there exists w ∈ Γ∖ {v0} such that D+ [w] is a v0-reduced divisor.

Let Γ be a hyperelliptic metric graph. We fix v0 ∈ Γ satisfying (3.1). We set, for an effective
divisor D ∈ Div(Γ), pΓ(D) = max{r ∈ Z≥0 | |D − 2r[v0]| ̸= ∅}. We similarly define p(Γ,ω)(D)
on a hyperelliptic vertex-weighted graph (Γ, ω) (See Sect. 3.3). Using Theorem 1.13, we compute
r(Γ,ω)(D) in terms of p(Γ,ω)(D), which is a key ingredient of the proof of Theorem 1.2.

Theorem 1.14. Let (G,ω) be a hyperelliptic vertex-weighted graph of genus g, and Γ the metric
graph associated to G. Then, for any effective divisor D on Γ, we have

r(Γ,ω)(D) =

{
p(Γ,ω)(D) (if deg(D)− p(Γ,ω)(D) ≤ g),

deg(D)− g (if deg(D)− p(Γ,ω)(D) ≥ g + 1).

There is a corresponding formula in the classical setting of ranks of divisors on hyperelliptic
curves (see Proposition 7.4). We deduce (iii) from (i) in Theorem 1.2, combining Theorem 1.12,
Theorem 1.14 and Proposition 7.4.

The organization of this paper is as follows. In Sect. 2, we briefly recall the theory of divisors
on metric graphs. In Sect. 3, we consider hyperelliptic graphs. In Sect. 4, we consider hyperelliptic
semi-stable curves and prove Theorem 1.12 using equivariant deformation. In Sect. 5, we prove
Theorem 1.13. In Sect. 6, we study ranks of divisors on a hyperelliptic graph, and prove Theo-
rem 1.14. In Sect. 7, we prove Theorem 1.2 and Proposition 1.4. We also consider Question 1.1 for
vertex-weighted graphs of genus 0 or 1. In Sect. 8, we consider variants of the condition (C) and
(C’), and show Proposition 1.5, Theorem 1.6 and Corollary 1.7. In the appendix, we put together
some results on the deformation theory which are needed in Sect. 4.

Acknowledgments. The authors express their deep gratitude to Professor Lucia Caporaso for
invaluable comments on the previous version of this paper, sharing her insight regarding relationship
between Question 1.1 and her conjecture, and letting them know the paper [11]. The authors express
their deep gratitude to Professors Omid Amini and Matthew Baker for invaluable comments on the
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previous version of this paper. The authors express their deep gratitude to the referees for carefully
reading the paper, giving many invaluable comments and simplifying the proofs of Theorem 1.13,
Theorem 1.14 and Proposition 7.4.

2. Preliminaries

In this section, we briefly recall the theory of divisors on a compact metric graph, Baker’s
Specialization Lemma, and the notion of reduced divisors on a metric graph, which we use later.
We also recall some properties of a vertex-weighted graph and a contraction of metric graphs.

2.1. Theory of divisors on a metric graph. We briefly recall the theory of divisors on metric
graphs. We refer the reader to [7, 19, 22, 26] for details and further references.

Throughout this paper, a finite graph means an unweighted, finite connected multigraph. Notice
that we allow the existence of loops. For a finite graph G, let V (G) denotes the set of vertices, and
E(G) the set of edges. The genus of G is defined to be g(G) = |E(G)| − |V (G)|+1. For v ∈ V (G),
the valence val(v) of V is the number of edges emanating from v. Recall from the introduction that
e ∈ E(G) is called a bridge if the deletion of e makes G disconnected. A vertex v of G is a leaf end
if val(v) = 1. A leaf edge is an edge of G that has a leaf end. In particular, a leaf edge is a bridge.

An edge-weighted graph (G, ℓ) is the pair of a finite graph G and a function (called a length
function) ℓ : E(G) → R>0. In other words, an edge-weighted graph means a finite graph having
each edge assigned a positive length. A compact connected metric graph Γ is the underlying metric
space of an edge-weighted graph (G, ℓ). We say that (G, ℓ) is a model of Γ. There are many possible
models for Γ. However, if Γ is not a circle, we can canonically construct a model (G◦, ℓ) of Γ as
follows (cf. [14]). The set of vertices is given by V (G◦) := {v ∈ Γ | val(v) ̸= 2}, where the valence
val(v) is the number of connected components of Uv ∖ {v} with Uv being any small neighborhood
of v in Γ. The set of edges E(G◦) corresponds to the set of connected components of Γ ∖ V (G◦).
Since each connected component of Γ∖V (G◦) is an open interval, its length determines the length
function ℓ. The model (G◦, ℓ) is called the canonical model of Γ.

Let Γ be a compact connected metric graph. By a cut-vertex of Γ, we mean a point v of Γ such
that Γ∖ {v} is disconnected. By an edge of Γ, we mean an edge of the underlying graph G◦ of the
canonical model (G◦, ℓ). Similarly, by a bridge (reps. a leaf edge) of Γ, we mean a bridge (reps. a
leaf edge) of G◦. Let e be an edge of Γ that is not a loop. We regard e as a closed subset of Γ, i.e.,

including the endpoints v1, v2 of e. We set
◦
e = e∖ {v1, v2}.

The genus g(Γ) of a compact connected metric graph Γ is defined to be its first Betti number,
which equals g(G) of any model (G, ℓ) of Γ. An element of the free abelian group Div(Γ) generated
by points of Γ is called a divisor on Γ. For D =

∑
v∈Γ nv[v] ∈ Div(Γ), its degree is defined by

deg(D) =
∑

v∈Γ nv. We write the coefficient nv at [v] for D(v). A divisor D =
∑

v∈Γ nv[v] ∈ Div(Γ)
is said to be effective if D(v) ≥ 0 for any v ∈ Γ. If D is effective, we write D ≥ 0.

A rational function on Γ is a piecewise linear function on Γ with integer slopes. We denote by
Rat(Γ) the set of rational functions on Γ. For f ∈ Rat(Γ) and a point v in Γ, the sum of the
outgoing slopes of f at v is denoted by ordv(f). This sum is 0 except for all but finitely many
points of Γ, and thus

div(f) :=
∑
v∈Γ

ordv(f)[v]

is a divisor on Γ. The set of principal divisors on Γ is defined to be Prin(Γ) := {div(f) | f ∈ Rat(Γ)}.
Then Prin(Γ) is a subgroup of Div(Γ). Two divisorsD,E ∈ Div(Γ) are said to be linearly equivalent,
and we write D ∼ E, if D−E ∈ Prin(Γ). For D ∈ Div(Γ), the complete linear system |D| is defined
by

|D| = {E ∈ Div(Γ) | E ≥ 0, E ∼ D}.
Let G be a finite graph. We say that Γ is the metric graph associated to G if Γ is the underlying

metric space of (G,1), where 1 denotes the length function which assigns to each edge of G length 1.
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If this is the case, let ΓQ denote the set of points on Γ whose distance from every vertex of G is
rational, and let Div(ΓQ) denote the free abelian group generated by the elements of ΓQ.

Definition 2.1 (Rank of a divisor, cf. [7]). Let Γ be a compact connected metric graph. Let
D ∈ Div(Γ). If |D| = ∅, then we set rΓ(D) := −1. If |D| ̸= ∅, we set

rΓ(D) := max

{
s ∈ Z

∣∣∣∣∣ For any effective divisor E with deg(E) = s,

we have |D − E| ̸= ∅

}
.

We compare divisors on a compact connected metric graph Γ and those on the metric graph
obtained by contracting a bridge of Γ. Let Γ be a compact connected metric graph. Suppose that
Γ has a bridge e, and let Γ1 be the graph obtained by contracting e. Let ϖ1 : Γ → Γ1 be the
retraction map.

Lemma 2.2 ([14, Lemma 3.11]). Let Γ,Γ1 and ϖ1 be as above. Let D ∈ Div(Γ) and D1 ∈ Div(Γ1).

(1) We have D ∈ Prin(Γ) if and only if ϖ1∗(D) ∈ Prin(Γ1).
(2) We have rΓ(D) = rΓ1(ϖ1∗(D)).
(3) Suppose that the contracted bridge e is a leaf edge, so that we have the natural embedding

ȷ1 : Γ1 ↪→ Γ. Then we have D ∼ ȷ1∗(ϖ1∗(D)) on Div(Γ).
(4) Under the assumption of (3), we have rΓ(ȷ1∗(D1)) = rΓ1(D1).

Proof. (1) See [14, Lemma 3.11]. (2) This follows from (1) by the argument in [8, Corollar-
ies 5.10, 5.11]. (3) Since ϖ1∗(D − ȷ1∗(ϖ1∗(D))) = 0, the assertion follows from (1). (4) Since
ϖ1∗(ȷ1∗(D1)) = D1, the assertion follows from (2). 2

2.2. Reduced divisors on a metric graph. We briefly recall the notion of reduced divisors
on a graph, which is a powerful tool in computing the ranks of divisors. Reduced divisors were
introduced in [7] to prove the Riemann–Roch formula on a finite graph.

Let Γ be a compact connected metric graph. For any closed subset A of Γ and v ∈ Γ, the
out-degree of v from A, denoted by outdegΓA(v), is defined to be the maximum number of internally
disjoint segments of Γ ∖ A with an open end v. Note that if v ∈ A ∖ ∂A, then outdegΓA(v) = 0.

For D ∈ Div(Γ), a point v ∈ ∂A is saturated for D with respect to A if D(v) ≥ outdegΓA(v), and
non-saturated otherwise.

Definition 2.3 (v0-reduced divisor). We fix a point v0 ∈ Γ. A divisor D ∈ Div(Γ) is called a v0-
reduced divisor if D is non-negative on Γ∖ {v0}, and every compact subset A of Γ∖ {v0} contains
a non-saturated point v ∈ ∂A for D with respect to A.

We remark that we may require that a compact subset A of Γ∖ {v0} be connected in the above
definition.

We put together useful properties of v0-reduced divisors in the following theorem.

Theorem 2.4 ([6, 7, 22]). Let D ∈ Div(Γ) and v0 ∈ Γ.

(1) There exists a unique v0-reduced divisor Dv0 that is linearly equivalent to D.
(2) The divisor D is linearly equivalent to an effective divisor if and only if Dv0 is effective.
(3) Suppose that Γ is the metric graph associated to a finite graph G and that v0 ∈ ΓQ. Then,

if D ∈ Div(ΓQ), then Dv0 ∈ Div(ΓQ).

For a given divisor D ∈ Div(Γ), Luo [25] gives a criterion that D is a v0-reduced divisor based
on Dhar’s algorithm. Here we give a slightly modified version of [25, Algorithm 2.5].

Theorem 2.5 (cf. [25]). Let v0 ∈ Γ. Let D be an effective divisor on Γ such that D(v0) = 0. Then
D is v0-reduced if and only if there exists a sequence

(2.1) a = (a1, a2, . . . , ak)

with the following properties:

(i) The points a1, a2, . . . , ak are mutually distinct points of Γ∖ {v0}.
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(ii) We have Supp(D) ⊆ {a1, a2, . . . , ak}.
(iii) For 1 ≤ i ≤ k, let Ui be the connected component of Γ∖ {ai, ai+1, . . . , ak} that contains v0,

and put Ai := Γ∖ Ui. Then ai ∈ ∂Ai and ai is a non-saturated point for D with respect to
Ai.

Proof. Because Theorem 2.5 is slightly different from [25], we give a brief proof. Suppose
that D is v0-reduced. We construct a sequence a inductively. If (a1, . . . , ai−1) is chosen, we put
Si−1 := Supp(D) ∖ {a1, . . . , ai−1}. (For the first stage, we let S0 := Supp(D).) Let V be the
connected component of Γ ∖ Si−1 which contains v0, and put B := Γ ∖ V. Since D is v0-reduced,
there exists a non-saturated point b ∈ ∂B for D with respect to B. Then b ∈ Si−1. We define
ai := b. Then a = (a1, a2, . . . , ak) satisfies (i)(ii) and (iii). We remark that in this construction we
have Supp(D) = {a1, a2, . . . , ak}, which is stronger than (ii).

On the other hand, suppose that there exists a sequence a satisfying (i), (ii) and (iii). Let S be
any subset of Supp(D). Let U be the connected component of Γ ∖ S which contains v0, and put
A := Γ∖ U . We take an i with S ⊆ {ai, ai+1, . . . , ak} and S ̸⊆ {ai+1, ai+2, . . . , ak}. Then ai ∈ ∂A,
and we have D(ai) < outdegΓAi

(ai) ≤ outdegΓA(ai). Thus ai is a non-saturated point. Then [25,
Lemma 2.4] tells us that D is v0-reduced. 2

2.3. Specialization lemma. In this subsection, following [6], we briefly recall the relationship
between linear systems on curves and those on graphs, and Baker’s Specialization Lemma.

Let K be a complete discrete valuation field with ring of integers R and algebraically closed
residue field k. Let X be a geometrically irreducible smooth projective curve over K. We assume
that X has a semi-stable model over R, i.e., there exists a regular R-curve X whose generic fiber is
isomorphic to X and whose special fiber X0 is a reduced scheme with at most nodes (i.e., ordinary
double points) as singularities.

The dual graph G associated to X0 is defined as follows. Let X1, . . . , Xr be the irreducible
components of X0. Then G has vertices v1, . . . , vr which correspond to X1, . . . , Xr, respectively.
Two vertices vi, vj (i ̸= j) of G are connected by aij edges if #Xi ∩Xj = aij . A vertex vi has bi
loops if #Sing(Xi) = bi. We call the dual graph of X0 the reduction graph of the R-curve X .

Let Γ be the metric graph associated to G, where each edge of G is assigned length 1. Let
P ∈ X(K). By the valuative criterion of properness, P gives the section ∆P over R, which meets
an irreducible component of the special fiber in the smooth locus. Let v ∈ G be the vertex
corresponding to this component. We denote by τ : X(K) → Γ the map which assigns P to v.
Suppose that K′ is a finite extension field of K with ring of integers R′. Let e(K′/K) denote the
ramification index of K′/K. Let X ′ be the minimal resolution of X ×Spec(R) Spec(R

′). Then the
generic fiber of X ′ is X ×Spec(K) Spec(K′). Let G′ be the dual graph of the special fiber of X ′.
Let Γ′ be a metric graph whose underlying graph is G′, where each edge of G′ is assigned length
1/e(K′/K). Then Γ′ is naturally isometric to Γ. We can extend τ to a map (again denoted by τ
by slight abuse of notation)

(2.2) τ : X(K)→ Γ,

which is called the specialization map (cf. [15]). Let

(2.3) τ∗ : Div(XK)→ Div(Γ)

be the induced group homomorphism.

Proposition 2.6 ([6]). (1) One has Image(τ) = ΓQ and Image(τ∗) = Div(ΓQ).
(2) The map τ∗ respects the linear equivalence.

(3) For any D̃ ∈ Div(XK), deg τ∗(D̃) = deg D̃.

Proof. For (1), see [6, Remark 2.3]. For (2), we refer to [6, Lemma 2.1]. The statement (3) is
obvious from the definition of τ . We note that, in [6], each component of the special fiber X0 is
assumed to be smooth, but the arguments in [6] also hold when a component of X0 has a node. 2
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We state Baker’s Specialization Lemma [6]. Again, the arguments in [6] hold when a component
of X0 has a node. (This is because the rank of a divisor is measured by rΓ, not by rG.)

Theorem 2.7 (Baker’s Specialization Lemma [6]). For any D̃ ∈ Div(XK), one has rΓ(τ∗(D̃)) ≥
rX(D̃).

2.4. Vertex-weighted graph. In this subsection, following [3], we briefly recall some properties
of vertex-weighted graphs.

A vertex-weighted graph (G,ω) is the pair of a finite graph G and a function (called a vertex-
weight function) ω : V (G) → Z≥0. The genus of (G,ω) is defined to be g(G,ω) = g(G) +∑

v∈V (G) ω(v). For each vertex v ∈ V (G), we add ω(v) loops to G at the vertex v to make a

new finite graph Gω. The graph Gω is called the virtual weightless finite graph associated to a
vertex-weighted graph (G,ω). The attached loops are called virtual loops.

Let (G,ω) be a vertex-weighted graph, and e a bridge of G. Let G1, G2 denote the connected
components of G ∖ {e}, which are equipped with the vertex-weight functions ω1, ω2 given by the
restriction of ω. We say that e is a positive-type bridge if each of (G1, ω1) and (G2, ω2) has genus
at least 1.

A vertex-weighted metric graph (Γ, ω) is the pair of a compact connected metric graph Γ and a
function ω : Γ→ Z≥0 such that ω(v) = 0 except for all but finitely many points v in Γ. The genus
of (Γ, ω) is defined to be g(Γ, ω) = g(Γ) +

∑
v∈Γ ω(v). For each point v ∈ Γ with ω(v) > 0, we

add ω(v) length-one-loops to the point v to make a new metric graph Γω. We call Γω the virtual
weightless metric graph associated to (Γ, ω). We note that, in [3], Amini and Caporaso also define
the virtual weightless metric graph Γω

ϵ , where each attached loop is assigned length ϵ > 0. In this
paper, we only use the case of ϵ = 1 (i.e., Γω = Γω

1 ).
To a vertex-weighted graph (G,ω), one can naturally associate a vertex-weighted metric graph

(Γ, ω). Indeed, we define Γ to be the metric graph associated to G, where each edge of G is assigned
length 1. We extend ω : V (G)→ Z≥0 to ω : Γ→ Z≥0 by assigning ω(v) = 0 for any v ∈ Γ∖ V (G).
Then Γω is the metric graph associated to Gω (i.e., each edge of Gω is assigned length 1), and we
have g(Gω) = g(G,ω) = g(Γω) = g(Γ, ω).

Let (Γ, ω) be a vertex-weighted metric graph. We have the natural embeddings ȷ : Γ→ Γω and
ȷ : ΓQ → Γω

Q. Let D ∈ Div(Γ). Via ȷ, we have ȷ∗(D) ∈ Div(Γω). The rank r(Γ,ω)(D) of D for (Γ, ω)
is defined by

(2.4) r(Γ,ω)(D) := rΓω(ȷ∗(D)).

Remark 2.8. Vertex-weighted graphs are generalization of finite graphs. Indeed, let G be a finite
graph with associated metric graph Γ. Let 0 : V (G)→ Z≥0 be the zero function. Then (G,0) is a
vertex-weighted graph, and we have r(Γ,0)(D) = rΓ(D) for any D ∈ Div(Γ). We will often identify
a finite graph G with the vertex-weighted graph (G,0) equipped with the zero function 0.

Vertex-weighted graphs naturally appear as the reduction graphs of R-curves, as we now explain.
Let K be a complete discrete valuation field with ring of integers R and algebraically closed residue
field k as in §2.3. Let X be a geometrically irreducible smooth projective curve over K, and X
a semi-stable model of X over R. Let X0 be the special fiber of X . Recall from §2.3 that we
have the dual graph G of X0. Let v be a vertex of G, and let Cv be the corresponding irreducible
component of X0. We define ω(v) to be the geometric genus of Cv. Then ω : V (G) → Z≥0 is a
vertex-weight function, and we obtain a vertex-weighted graph (G,ω). We call (G,ω) the (vertex-
weighted) reduction graph of X . Compared with G, the vertex-weighted graph (G,ω) captures
more information of X , encoding the genera of irreducible components of the special fiber.

We remark that Amini and Caporaso [3] obtained the Riemann–Roch formula and the special-
ization lemma for vertex-weighted graphs.

In the rest of this subsection, we show some properties of divisors on vertex-weighted metric
graphs. Let (Γ, ω) be a vertex-weighted metric graph. Let Γω be the virtual weightless metric
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graph associated to (Γ, ω). Let ȷ : Γ → Γω be the natural embedding. Let ȷ∗ : Div(Γ) → Div(Γω)
be the induced injective map.

Lemma 2.9. We keep the notation above. Let D ∈ Div(Γ).

(1) If E ∈ Div(Γ) satisfies D ∼ E on Γ, then ȷ∗(D) ∼ ȷ∗(E) on Γω.
(2) Fix a point v0 ∈ Γ. Then D is a v0-reduced divisor on Γ if and only if ȷ∗(D) is a v0-reduced

divisor on Γω.
(3) rΓ(D) ≥ 0 if and only if r(Γ,ω)(D) ≥ 0.
(4) Let e be a leaf edge of Γ with leaf end v such that ω(v) = 0. Let Γ1 be the metric graph

obtained by contracting e in Γ, and ω1 the restriction of ω to Γ1. Let ϖ1 : Γ → Γ1 be the
retraction map. Then r(Γ,ω)(D) = r(Γ1,ω1)(ϖ1∗(D)).

Proof. (1) Let f be a rational function on Γ such that D − E = div(f). For a virtual loop

C ⊂ Γω that is added at a vertex v ∈ Γ with positive weight, we set f̃(w) = f(v) for any w ∈ C.

Then we obtain a rational function f̃ on Γω. Since ȷ∗(D)− ȷ∗(E) = div(f̃), we have ȷ∗(D) ∼ ȷ∗(E)
on Γω.

(2) By induction on the number of loops added to Γ, we may assume that Γ′ is the one-point

sum of Γ and a loop ℓ. We put v := Γ ∩ ℓ and
◦
ℓ := ℓ∖ {v}.

First we show the “only if” part. Suppose that A′ is a closed subset of Γ′ with v0 ̸∈ A′. If

∂A′ ∩
◦
ℓ is non-empty, then any point a′ ∈ ∂A′ ∩

◦
ℓ is non-saturated for ȷ∗(D) with respect to A′. If

∂A′∩
◦
ℓ = ∅, then we set A := A′∖

◦
ℓ. We regard A as a closed subset of Γ. Since D is v0-reduced, we

have a non-saturated point a ∈ ∂A for D with respect to A. Then a is in ∂A′ and is non-saturated
for ȷ∗(D) with respect to A′. Thus ȷ∗(D) is v0-reduced on Γ′.

Next we show the “if”’ part. Suppose that A is a closed subset of Γ with v0 ̸∈ A. If v ∈ A, then

we put A′ := A∪
◦
ℓ. Then A′ is a closed subset of Γ′ with v0 ̸∈ A′. Since ȷ∗(D) is v0-reduced, there

exists a non-saturated point a′ ∈ ∂A′ for ȷ∗(D) with respect to A′. Since a′ ̸∈
◦
ℓ, we find that a′

is in ∂A ⊂ Γ and is non-saturated for D with respect to A. If v ∈ Γ ∖ A, then we regard A as a
closed subset of Γ′. Since ȷ∗(D) is v0-reduced, there exists a non-saturated point a ∈ ∂A in Γ′ that
is non-saturated for ȷ∗(D) with respect to A. We find that a ∈ ∂A in Γ and that a is non-saturated
for D with respect to A. Thus D is v0-reduced on Γ.

(3) The “only if” part is obvious. Indeed, if there exists an effective divisor D′ on Γ with
D ∼ D′, then, by (1), ȷ∗(D

′) is an effective divisor on Γω with ȷ∗(D) ∼ ȷ∗(D
′). Hence r(Γ,ω)(D) :=

rΓω(ȷ∗(D)) ≥ 0. We show the “if” part. Let v0 be a point on Γ, and let E be the v0-reduced
divisor linearly equivalent to D on Γ. By (2), ȷ∗(E) is a v0-reduced divisor on Γω, and by (1),
ȷ∗(E) ∼ ȷ∗(D) on Γω. Since r(Γ,ω)(D) ≥ 0, Theorem 2.4 tells us that ȷ∗(E) is effective, and thus E
is also effective.

(4) The retraction map ϖ1 extends to the retraction map ϖω
1 : Γω → Γω

1 , where e (⊂ Γ ⊂ Γω) is
contracted. Let ȷ1 : Γ1 ↪→ Γω

1 be the natural embedding. Then Lemma 2.2 implies that

r(Γ,ω)(D) = rΓω(ȷ∗(D)) = rΓω
1
(ϖω

1∗(ȷ∗(D))) = rΓω1
1

(ȷ1∗(ϖ1∗(D))) = r(Γ1,ω1)(ϖ1∗(D)),

which completes the proof. 2

3. Hyperelliptic graphs

In this section, we put together some properties of hyperelliptic metric graphs and hyperelliptic
vertex-weighted graphs. We also define a quantity pΓ(D) (resp. p(Γ,ω)(D)) for a divisor D on a
hyperelliptic metric graph Γ (resp. a hyperelliptic vertex-weighted metric graph (Γ, ω)), which will
play an important role in this paper.
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3.1. Hyperelliptic metric graphs. We recall some properties of hyperelliptic metric graphs. We
refer the reader to [8] and [14] for details.

We recall the definition of hyperelliptic metric graphs.

Definition 3.1 (Hyperelliptic metric graph, cf. [8, § 5.1] and [14, Definition 2.3]). A compact
connected metric graph Γ is said to be hyperelliptic if the genus of Γ is at least 2 and there exists
a divisor on Γ of degree 2 and rank 1.

Definition 3.2 (Hyperelliptic finite graph, cf. [8, § 5.1] and [14, Definition 2.3]). Let G be a finite
graph, and let Γ be the metric graph associated to G. A graph G is said to be hyperelliptic if Γ is
hyperelliptic.

Originally, in [8], Baker and Norine define the notion of hyperelliptic graphs for loopless finite
graphs G by the existence of a divisor of degree 2 and rank 1. This condition is equivalent to the
metric graph Γ associated to G being hyperelliptic. However, for a finite graph G with a loop,
this equivalence does not hold. In this paper, we adopt the above definition of hyperelliptic finite
graphs, for we consider finite graphs with loops in general.

Let ⟨ι⟩ be the group of order 2 with generator ι. We say that ⟨ι⟩ acts non-trivially on Γ if there
exists an injective group homomorphism ⟨ι⟩ → Isom(Γ), where Isom(Γ) is the group of isometries
of Γ. Let Γ/⟨ι⟩ denotes the metric graph defined as the topological quotient with quotient metric.
(Notice that our Γ/⟨ι⟩ is a little different from the one given in [14, §2.2], where certain leaf edges
are removed from Γ/⟨ι⟩ for the compatibility with the loopless quotient graph G/⟨ι⟩ defined in [8,
§5.2].)

Definition 3.3 (Hyperelliptic involution). Let Γ be a compact connected metric graph of genus
at least 2. A hyperelliptic involution of Γ is an ⟨ι⟩-action on Γ such that Γ/⟨ι⟩ is a tree.

First we study the action of involution on bridges.

Lemma 3.4. Let Γ be a compact connected metric graph of genus at least 2 without points of
valence 1. Assume that Γ has a hyperelliptic involution ι. Let e be an edge of Γ with endpoints v1
and v2. Assume that e is not a loop. Then e is a bridge if and only if ι(e) = e and ι(vi) = vi for
i = 1, 2.

Proof. Recall that an edge of Γ means an edge of the canonical model of Γ, which is regarded
as a closed subset of Γ (i.e., including the endpoints). For a bridge e of Γ with endpoints v1 and

v2, we set
◦
e = e∖ {v1, v2} as before.

We first show the “if” part. Let e be an edge of Γ such that ι(e) = e and ι(vi) = vi for i = 1, 2.

Since ⟨ι⟩-action on e is trivial and Γ/⟨ι⟩ is a tree, the metric graph Γ∖ ◦
e is not connected. Thus e

is a bridge.
Next we show the “only if” part. Let e be a bridge with endpoints v1 and v2. Then one has

Γ∖ ◦
e = Γ1⨿Γ2 (disjoint union), where Γ1 and Γ2 are the connected components such that v1 ∈ Γ1

and v2 ∈ Γ2. Since Γ does not have points of valence 1, each Γi is not a point and has at most one
point of valence 1. In particular, Γi is not a tree.

Let us show that ι(e) = e. To argue by contradiction, suppose that ι(e) ̸= e. Then, without loss
of generality, we may assume that ι(e) ⊆ Γ2. Then ι(e) ∩ Γ1 = ∅. It follows that e ∩ ι(Γ1) = ∅.
Since ι(Γ1) is connected and e ∩ ι(Γ1) = ∅, we have either ι(Γ1) ⊆ Γ1 or ι(Γ1) ⊆ Γ2. The
former does not occur. Indeed, if ι(Γ1) ⊆ Γ1, then ι(Γ1) = Γ1 (we apply ι), which leads to
∅ = e∩ ι(Γ1) = e∩Γ1 = {v1} ̸= ∅, a contradiction. Thus we have ι(Γ1) ⊆ Γ2, so that ι(Γ1)∩Γ1 = ∅.
Since Γ/⟨ι⟩ is a tree, Γ1 is a tree. This is a contradiction. We conclude that ι(e) = e.

It remains to show that ι(v1) = v1 and ι(v2) = v2. It suffices to show ι(v1) = v1, which amounts
to ι(Γ1) = Γ1. If ι(Γ1) ̸= Γ1, then the above argument implies that Γ1 is a tree, which is a
contradiction as before. This completes the proof. 2

The following theorem relates hyperelliptic metric graphs and hyperelliptic involutions.
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Theorem 3.5 ([8, Proposition 5.5 and Theorem 5.12], [14, Corollary 3.9 and Theorem 3.13]). Let
Γ be a compact connected metric graph with genus at least 2 without points of valence 1. Then the
following are equivalent:

(i) Γ is hyperelliptic;
(ii) Γ has a hyperelliptic involution.

Further, a hyperelliptic involution is unique.

Proof. By Lemma 2.2 and Lemma 3.4, we may assume that Γ is bridgeless. For the bridgeless
case, see [8, Proposition 5.5 and Theorem 5.12] and [14, Corollary 3.9 and Theorem 3.13]. 2

Remark 3.6. The uniqueness of hyperelliptic involution for hyperelliptic graphs is shown in [14,
Corollary 3.9]. The proof there is based on [14, Proposition 3.8], and the proof of [14, Proposi-
tion 3.8] uses the Riemann–Roch formula on metric graphs. (The idea of the proof is the same as
that of [8, Proposition 5.5].) Since we would like to give a proof of the Riemann–Roch formula on a
loopless hyperelliptic graph by applying Theorem 1.2 and Proposition 1.4, and since Theorem 3.5
will be used in the proof of Theorem 1.2, we remark here that one can give a proof of the uniqueness
of hyperelliptic involution free from the Riemann–Roch formula.

The idea is as follows (we leave the details to the interested readers). Suppose that ι, ι′ are
involutions on Γ. If Γ has a bridge e, then any point on e is fixed by ι and ι′ by Lemma 3.4. Thus
contracting e, we may assume that Γ is bridgeless. Then one can find a point v ∈ Γ such that
ι(v) = ι′(v). Now let x ∈ Γ be an arbitrary point. Since Γ/⟨ι⟩ and Γ/⟨ι′⟩ are trees and since any
two points in a tree are linearly equivalent to each other, we have [ι(v)] + [v] ∼ [ι(x)] + [x] and
[ι′(v)] + [v] ∼ [ι′(x)] + [x]. It follows from [ι(v)] + [v] = [ι′(v)] + [v] that [ι(x)] + [x] ∼ [ι′(x)] + [x]
and thus [ι(x)] ∼ [ι′(x)]. Since Γ is bridgeless, we then have ι(x) = ι′(x). We obtain ι = ι′.

The following lemmas show the compatibility of the notion of being hyperelliptic under a con-
traction.

Lemma 3.7. Let Γ be a compact connected metric graph. Suppose that Γ has a bridge, and let Γ1 be
the graph obtained by contracting a bridge. Then Γ is hyperelliptic if and only if Γ1 is hyperelliptic.

Proof. This follows from Lemma 2.2 and the definition of a hyperelliptic metric graph. 2

Let Γ be a hyperelliptic metric graph. Let Γ′ be the metric graph obtained by contracting all
the leaf edges of Γ. By Lemma 3.7, Γ′ is a hyperelliptic metric graph. By Theorem 3.5, Γ′ has the
hyperelliptic involution ι′ : Γ′ → Γ′. We denote by ϖ : Γ → Γ′ the retraction map, which induces
ϖ∗ : Div(Γ) → Div(Γ′). We have the natural embedding Γ′ ↪→ Γ, and we regard Γ′ as a subgraph
of Γ.

Lemma 3.8. Let Γ′ be as above, and let v, w ∈ Γ′. Then [v] + [ι(v)] ∼ [w] + [ι(w)] as divisors on
Γ′. Further, [v] + [ι(v)] ∼ [w] + [ι(w)] as divisors on Γ.

Proof. Let Γ be the metric graph contracting all the bridges of Γ′ and let ϖ′ : Γ′ → Γ be the
retraction map. By Lemma 3.7, Γ is a hyperelliptic metric graph. By Lemma 3.4, the action ι′ on Γ′

descends to an action ι on Γ, which gives the hyperelliptic involution of Γ. Since ϖ′(v)+ ι(ϖ′(v)) ∼
ϖ′(w) + ι(ϖ′(w)) as divisors on Γ by [14, Theorem 3.2 and its proof] (see also [8, Corollary 5.14]),
we have [v] + [ι(v)] ∼ [w] + [ι(w)] as divisors on Γ′ by Lemma 2.2(3). The second assertion follows
from Lemma 2.2(1). 2

3.2. Hyperelliptic vertex-weighted graphs. We recall some properties of hyperelliptic vertex-
weighted graphs studied by Caporaso [11]. We also introduce hyperelliptic vertex-weighted metric
graphs and see some of their properties. Since our focus on this paper is to prove Theorem 1.2, we
restrict our attention to the necessary properties, which will be used later.

Definition 3.9 (Hyperelliptic vertex-weighted metric graph). Let (Γ, ω) be a vertex-weighted
metric graph. We say that (Γ, ω) is hyperelliptic if the genus of (Γ, ω) is at least 2 and there exists
a divisor D on Γ such that deg(D) = 2 and r(Γ,ω)(D) = 1.
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Definition 3.10 (Hyperelliptic vertex-weighted graph, cf. [11] and Definition 3.2). Let (G,ω) be a
vertex-weighted graph, and Γ the metric graph associated to G. We say that (G,ω) is hyperelliptic
if (Γ, ω) is hyperelliptic.

Let (G,ω) be a vertex-weighted graph, and Γ the metric graph associated to G. Let Γω be the
virtual weightless metric graph associated to (Γ, ω). Recall that we have the natural embedding
ȷ : Γ→ Γω and that we denote by ȷ∗ : Div(Γ)→ Div(Γω) the induced injective map.

The following proposition is a metric graph version of [11, Lemma 4.1].

Proposition 3.11. With the above notation, (Γ, ω) is hyperelliptic if and only if Γω is hyperelliptic.

Proof. The “only if” part is obvious. Indeed, suppose that (Γ, ω) is hyperelliptic, and we take
a divisor D on Γ with deg(D) = 2 and r(Γ,ω)(D) = 1. Since r(Γ,ω)(D) = 1 means by definition
rΓω(ȷ∗(D)) = 1, we see that ȷ∗(D) ∈ Div(Γω) is a divisor with deg ȷ∗(D) = 2 and rΓω(ȷ∗(D)) = 1.
Thus Γω is hyperelliptic.

We show the “if” part. Suppose that Γω is hyperelliptic. If ω is trivial, then there is nothing to
prove, so that we assume that there exists a point v1 ∈ Γ with ω(v1) > 0. We put D := 2[v1] ∈
Div(Γ). We are going to show that r(Γ,ω)(D) = 1.

Let Γω be the metric graph obtained from Γω by contracting all the bridges, and letϖω : Γω → Γω

be the retraction map. By Lemma 3.7 and Theorem 3.5, Γω is a hyperelliptic metric graph, and let
ιω be the hyperelliptic involution of Γω. By Lemma 3.8, the divisor D′ := [ϖω(v1)]+[ιω(ϖω(v1))] ∈
Div(Γω) has rank 1. Since we have added loops at v1, the vertex v1 is a cut-vertex of Γω. Then
ϖω(v1) is a cut-vertex of Γω. We then have ιω(ϖω(v1)) = ϖω(v1) by [14, Lemma 3.9], so that
ϖω

∗ (ȷ∗(D)) = 2[ϖω(v1)] = D′. It follows that rΓω(ϖω
∗ (ȷ∗(D))) = 1, and thus rΓω(ȷ∗(D)) = 1 by

Lemma 2.2. We obtain r(Γ,ω)(D) = rΓω(ȷ∗(D)) = 1. 2

The next proposition is a metric graph version of [11, Lemma 4.4], and gives a vertex-weighted
version of Theorem 3.5.

Proposition 3.12. Let (G,ω) be a vertex-weighted graph of genus at least 2. Assume that any
leaf end v of G satisfies ω(v) > 0. Let Γ be the metric graph associated to G, and Γω the virtual
weightless metric graph of (Γ, ω). Then the following are equivalent:

(i) (Γ, ω) is hyperelliptic;
(ii) Γω has a unique hyperelliptic involution.

Further, the hyperelliptic involution preserves Γ, where Γ is seen as a subgraph of Γω via the natural
embedding Γ ↪→ Γω.

Proof. By the assumption on (G,ω), Γω has no points of valence 1. Thus the condition (ii) is
equivalent to Γω being hyperelliptic, which is equivalent to the condition (i) (see Theorem 3.5 and
Proposition 3.11).

Let ιω denote the hyperelliptic involution of Γω. Let C be a virtual loop which is added at a
vertex v ∈ V (G) with ω(v) > 0. To show that ιω(Γ) = Γ, it suffices to show that ιω(C) = C. Since
v is a cut-vertex of Γω and any cut-vertex is ιω-fixed by [14, Lemma 3.10], we have ιω(v) = v. Then
ιω(C) is a loop containing v. If ιω(C) ̸= C, then Γω/⟨ιω⟩ has a loop corresponding to C, which is
impossible. Thus ιω(C) = C and ιω(Γ) = Γ. 2

Definition 3.13 (Hyperelliptic involution on a hyperelliptic vertex-weighted graph). Let (G,ω)
be a hyperelliptic vertex-weighted graph such that any leaf end v of G satisfies ω(v) > 0, and let Γ
be the metric graph associated to G. Let ι : Γ→ Γ be the involution defined by the restriction of
the hyperelliptic involution of Γω to Γ (cf. Proposition 3.12). We call ι the hyperelliptic involution
of (Γ, ω).

Since Γ/⟨ι⟩ is a subtree of Γω/⟨ιω⟩, the above definition agrees with Definition 3.3.
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3.3. Quantities pΓ(D) and p(Γ,ω)(D). We introduce a quantity pΓ(D) for a divisor D on a hyper-
elliptic metric graph Γ. We also introduce p(Γ,ω)(D) for a divisor D on hyperelliptic vertex-weighted
metric graph (Γ, ω). The quantities pΓ(D) and p(Γ,ω)(D) will play important roles in this paper.

Let Γ be a hyperelliptic metric graph. Let Γ′ be the metric graph obtained by contracting all the
leaf edges of Γ. We denote by ϖ : Γ→ Γ′ the retraction map, which induces ϖ∗ : Div(Γ)→ Div(Γ′).

Since Γ′ is hyperelliptic by Lemma 3.7, Γ′ has a unique hyperelliptic involution ι′ by Theorem 3.5.
We fix a point v0 ∈ Γ′ with

(3.1) ι′(v0) = v0

We note that such v0 always exists (see Lemma 3.14 below). We regard v0 as an element of Γ via
the natural embedding Γ′ ↪→ Γ. For an effective divisor D on Γ, we set

(3.2) pΓ(D) = max{r ∈ Z≥0 | |D − 2r[v0]| ̸= ∅}.

We put together several results that will be used later.

Lemma 3.14. Let Γ,Γ′ and ϖ be as above.

(1) There exists v0 ∈ Γ′ with ι′(v0) = v0.
(2) The quantity pΓ(D) defined in (3.2) is independent of the choice of v0 ∈ Γ′ with ι′(v0) = v0.
(3) Let D be an effective divisor D on Γ, and let Dv0 be the v0-reduced divisor linearly equivalent

to D. Then pΓ(D) =
⌊
Dv0 (v0)

2

⌋
.

(4) For any effective divisor D on Γ, we have pΓ(D) = pΓ′(ϖ∗(D)).

Proof. (1) Recall that ⟨ι′⟩ acts non-trivially on Γ′ and that T ′ := Γ′/⟨ι′⟩ is a tree. Let π : Γ′ → T ′

be the quotient map. Take a leaf end π(v0) ∈ T ′. If π−1(π(v0)) consists of two points, then these two
points should be leaf ends of Γ′, but that contradicts the assumption on Γ′. Thus π−1(π(v0)) = {v0},
which shows that ι′(v0) = v0.

(2) For w ∈ Γ′, Lemma 3.8 tells us that 2[v0] ∼ [w] + [ι′(w)] in Div(Γ). Thus

(3.3) pΓ(D) = max{r ∈ Z≥0 | |D − r ([w] + [ι(w)])| ̸= ∅}.

Suppose that ṽ0 ∈ Γ′ is another point with ι′(ṽ0) = ṽ0. Then, setting w = ṽ0 in (3.3), we obtain
the assertion.

(3) We set s =
⌊
Dv0 (v0)

2

⌋
. Then Dv0 − 2s[v0] is a v0-reduced effective divisor, so that pΓ(D) ≥ s.

On the other hand, Dv0 − 2(s+1)[v0] is a v0-reduced divisor with negative coefficient at v0. Hence
|Dv0 − 2(s+ 1)[v0]| = ∅, so that pΓ(D) < s+ 1. We conclude pΓ(D) = s.

(4) We note that D − 2r[v0] ∼ ϖ∗(D) − 2r[v0] in Div(Γ) by Lemma 2.2(2), from which the
assertion follows. 2

Now let (Γ, ω) be a hyperelliptic vertex-weighted metric graph. Let Γω be the virtual weightless
metric graph of (Γ, ω). By Proposition 3.11, Γω is a hyperelliptic metric graph. Let ȷ : Γ ↪→ Γω be
the natural embedding. For an effective divisor D ∈ Div(Γ), we set

(3.4) p(Γ,ω)(D) := pΓω(ȷ∗(D)).

4. Hyperelliptic semi-stable curves

In this section, we study hyperelliptic semi-stable curves, and show Theorem 1.12 via the equi-
variant deformation based on [11, Theorem 4.8]. As we write in the introduction, there is another
approach to Theorem 1.12 due to Amini–Baker–Brugallé–Rabinoff [2, Theorem 1.10].

4.1. Hyperelliptic semi-stable curves. Let Ω be an algebraically closed field with char(Ω) ̸= 2.
Let O be an Ω-algebra. We call O a node if there is an isomorphism O ∼= Ω[[x, y]]/(xy) as an
Ω-algebra. Let X0 be an algebraic scheme of dimension 1 over Ω and let c ∈ X0 be a closed point.

We call c a node if the complete local ring ÔX0,c is a node in the above sense. A semi-stable curve
is a connected reduced proper curve over Ω which has at most nodes as singularities. A stable
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curve over Ω is a semi-stable curve with ample dualizing sheaf. Recall that ⟨ι⟩ denotes the group
of order 2.

Definition 4.1 (Hyperelliptic curve). A semi-stable (resp. stable) curve X0 over Ω with an ⟨ι⟩-
action on X0 is called a hyperelliptic semi-stable (resp. stable) curve if

(i) for any irreducible component C of X0 with ι(C) = C, the ⟨ι⟩-action restricted to C is
nontrivial (i.e., not the identity), and

(ii) X0/⟨ι⟩ is a semi-stable curve of arithmetic genus 0.

Definition 4.2 (Hyperelliptic S-curve). (1) Let X → S be a proper and flat morphism over
a scheme S. We say that X is a semi-stable S-curve (resp. a stable S-curve) if, for any
geometric point s of S, the geometric fiber Xs is a semi-stable curve (resp. a stable curve).

(2) A semi-stable (resp. stable) S-curve X equipped with an ⟨ι⟩-action on X /S is called a
hyperelliptic semi-stable (resp. stable) S-curve if any geometric fiber of Xs equipped with
the restriction of the ⟨ι⟩-action is a hyperelliptic semi-stable curve.

As in the introduction, let K be a complete discrete valuation field with ring of integers R and
algebraically closed residue field k such that char(k) ̸= 2.

Proposition 4.3. Let X be a semi-stable R-curve whose generic fiber is a smooth hyperelliptic
curve X. Assume that there exists an ⟨ι⟩-action on X /Spec(R) such that the restriction of ι to
the generic fiber is the hyperelliptic involution on X. Then X equipped with the ⟨ι⟩-action is a
hyperelliptic semi-stable R-curve.

Proof. Let X0 denote the the special fiber of X → Spec(R). Let C be an irreducible component
of X0 such that with ι(C) = C. We show that the ⟨ι⟩-action on C is nontrivial. Let q : X → Y
be the quotient by ι. Then, q∗OX is a coherent OY -module of rank 2. Let η be the generic point
of C. Then we have

dim q−1(q(η)) = dimκ(q(η)) q∗(OX )⊗ κ(q(η)) ≥ 2,

where κ(q(η)) is the residue field at q(η).
On the other hand, since char(k) ̸= 2, the order 2 of the action is invertible in R. Hence the

restriction of q to the special fiber coincides with the quotient X0 → X0/⟨ι⟩. Since η ∈ C and
dim q−1(q(η)) ≥ 2, the ⟨ι⟩-action on C is not trivial.

It follows from [28, Proposition 1.6] that Y → Spec(R) is semi-stable. Since Y → Spec(R) is
flat and since the arithmetic genus of the generic fiber of Y → Spec(R) is 0, the arithmetic genus
is of the special fiber X0/⟨ι⟩ is also 0. We obtain that X0/⟨ι⟩ is a semi-stable curve of genus 0. 2

4.2. Equivariant specialization. In this subsection, we prove Theorem 1.12. Let K, R and k be
as in Theorem 1.2.

Let (G,ω) be a vertex-weighted graph, and let Γ be the metric graph associated to G. Let
(Gω◦, ℓ) be the model of Γ with the set of vertices

V (Gω◦) = {v ∈ V (G) | w(v) > 0 or val(v) ̸= 2}.
We define the vertex-weight function ω : V (Gω◦)→ Z≥0 by the restriction to vertex-weight function
ω : V (G)→ Z≥0 to V (Gω◦). We call (Gω◦, ℓ, ω) the vertex-weighted canonical model of (Γ, ω), and
call (Gω◦, ω) the underlying vertex-weighted graph of the canonical model of (Γ, ω).

The following characterization is proved by Caporaso [11].

Theorem 4.4 ([11, Theorem 4.8]). Let (G,ω) be a hyperelliptic vertex-weighted graph of genus g.
Assume that any leaf end of v of G satisfies ω(v) > 0. Let Γ be the metric graph associated to
G, and (Gω◦, ω) the underlying vertex-weighted graph of the canonical model of (Γ, ω). Then the
following are equivalent.

(1) For any v ∈ V (Gω◦), there are at most (2ω(v) + 2) positive-type bridges emanating from v.
(2) There exists a hyperelliptic stable curve X0 of genus g such that

(i) the (vertex-weighted) dual graph of X0 is (Gω◦, ω), and
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(ii) the ⟨ι⟩-action on X0 is compatible with the hyperelliptic involution on (Γ, ω) in the
following sense: For any v ∈ V (Gω◦), we have ι(Cv) = Cι(v), where Cv denotes the
irreducible component of X0 corresponding to v; For any e ∈ E(Gω◦), we have ι(pe) =
pι(e), where pe is the node of X0 corresponding to e.

Based on Theorem 4.4, we use the equivariant deformation to show the existence of a regular
model X .

Theorem 4.5. Let (G,ω) be a hyperelliptic vertex-weighted graph of genus g(G,ω) ≥ 2 such that,
for every vertex v of G, there are at most (2ω(v) + 2) positive-type bridges emanating from v.
Assume that any leaf end v of G satisfies ω(v) > 0. Let Γ be the metric graph associated to
G. Then there exists a regular, generically smooth, semi-stable R-curve X with reduction graph
(G,ω) such that the generic fiber X of X is hyperelliptic. Further, for the specialization map
τ : X(K)→ ΓQ, we have τ ◦ ιX = ι ◦ τ , where ιX is the hyperelliptic involution of X, and ι is the
hyperelliptic involution of Γ.

Proof. Let (Gω◦, ℓ, ω) be the vertex-weighted canonical model of (Γ, ω). We take a hyperelliptic
stable curve X0 as in Theorem 4.4. Let p1, . . . , pr be the ⟨ι⟩-fixed nodes of X0 and let pr+1, . . . , pr+s

be the nodes such that pr+1, . . . , ps, ι(pr+1), . . . , ι(pr+s) are the distinct non-⟨ι⟩-fixed nodes.

For 1 ≤ i ≤ r + s, let Defpi denote the deformation functor for the node ÔX0,pi (see §A.2

for details). Let Φgl
ι : Def(X0,ι) →

∏r
i=1Defpi ×

∏r+s
i=r+1Defpi be the ⟨ι⟩-equivariant global-local

morphism, which assigns, to any ⟨ι⟩-equivariant deformation of X0, the deformation of the node at
pi for 1 ≤ i ≤ r + s (see §A.3 for details).

Let π be a uniformizer of R. For a functor F , we set F̂ (R) := lim←−n
F (R/πn). For 1 ≤ i ≤ r + s,

let di be an element in D̂efpi(R) that has a representative of form

ÔX0,pi ←−−−− R[[x, y]]/(xy − πℓi)x x
k ←−−−− R,

where ℓi is the length of the edge of Gω◦ corresponding to pi.

We set d := (di) ∈
(∏r

i=1 D̂efpi ×
∏r+s

i=r+1 D̂efpi

)
(R). By Corollary A.7, we find an ⟨ι⟩-equivariant

diagram

X0 −−−−→ X̄y y
Spec(k) −−−−→ Spf(R)

whose isomorphism class in ̂Def(X0,ι)(R) is a lift of d by Φ̂gl
ι (R). This diagram of formal curves

is algebraizable (cf. Remark A.3), and we write for the algebrization X̄ → Spec(R). Let X →
Spec(R) be the minimal resolution of X̄ → Spec(R). Then X → SpecR has the vertex-weighted
reduction graph (G,ω).

It remains to show that the specialization map τ : X(K) → ΓQ is compatible with the hyper-
elliptic involutions. To see that, let K′ be a finite extension of K and R′ be the ring of integer of
K′. Let e(K′/K) denote the ramification index of K′/K. Let X̄ ′ → Spec(R′) be the base-change of
X̄ → Spec(R) to Spec(R′) and let X ′ be the minimal resolution of X̄ ′. Then the vertex-weighted
dual graph of the special fiber X̄ ′ → Spec(R′) equals (Gω◦, ω). The vertex-weighted dual graph
(G′, ω′) of the special fiber of X ′ → Spec(R′), where each edge is assigned length 1/e(K′/K), is
a model of (Γ, ω). The ⟨ι⟩-action on X̄ ′ lifts to that on X ′, which we denote by ιX ′ . Let v′

be a vertex of G′ and let C ′
v′ be the corresponding irreducible components in the special fiber of

X ′ → Spec(R′). Let e be an edge of Gω◦ with v′ ∈ e and pe the corresponding node of X0. From
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the construction of the hyperelliptic involution on X0 in Theorem 4.4, we have ιX(pe) = pι(e) and
ιX ′(C ′

v′) = C ′
ι(v′).

Let P ∈ X(K) be a point and take a finite extension K′ such that P ∈ X(K′). Then the
corresponding section of X ′ → Spec(R′) intersects with a unique irreducible component C ′

v′ for
some v′ ∈ V (G′). We have τ(P ) = v′ by definition. Since the section corresponding to ιX(P )
intersects with ιX ′(C ′

v′) and since ιX ′(C ′
v′) = C ′

ι(v′) as noted above, we obtain τ(ιX(P )) = ι(v′).
2

We are ready to prove Theorem 1.12.

Corollary (= Theorem 1.12). Let (G,ω) be a hyperelliptic vertex-weighted graph such that every
vertex v of G has at most (2ω(v) + 2) positive-type bridges emanating from v. Then there exists
a regular, generically smooth, semi-stable R-curve X with reduction graph (G,ω) such that the
generic fiber X of X is hyperelliptic.

Proof. Successively contracting the leaf edges with a leaf end v of G such that ω(v) = 0,
we obtain a vertex-weighted hyperelliptic graph (G,ω). Then we apply Theorem 4.5 to obtain a
desired regular, generically smooth, semi-stable R-curve for (G,ω). Taking successive blowing-ups,
we obtain a desired R-curve for (G,ω). 2

5. Reduced divisors on a (hyperelliptic) graph

In this section, we prove Theorem 1.13 using the notion of moderators (see [7, Theorem 3.3], [26,
Section 7], [22, Corollary 2.3]). The proof of Theorem 1.13 is due to the referees and is significantly
simplified from the original version.

We begin by recalling the definition of moderators and some of their properties. Let Γ be a
compact connected metric graph of genus g ≥ 2. Let G be a model of Γ without loops. We
give an orientation on G, so that each edge e of G has head vertex h(e) and tail vertex t(e). An
orientation on G is said to be cyclic if there exist edges e1, . . . , ek of G such that h(ei) = t(ei+1)
for i = 1, . . . , k − 1 and h(ek) = t(e1). An orientation on G is acyclic if it is not cyclic.

Definition 5.1 ([26, Definition 7.8]). A divisor K+ ∈ Div(Γ) is called a moderator if there exist a
model G of Γ without loops and an acyclic orientation on G such that

K+ =
∑

v∈V (G)

(val+(v)− 1)[v],

where val+(v) denotes the number of outgoing edges from v with respect to the orientation.

Proposition 5.2 ([7, Theorem 3.3], [26, Section 7], [22, Corollary 2.3]). Let Γ be a compact
connected metric graph of genus g ≥ 2.

(1) Any moderator K+ on Γ has degree g − 1.
(2) Let D ∈ Div(Γ) be a v0-reduced divisor on Γ with D(v0) < 0. Then there exists a v0-reduced

moderator K+ such that D ≤ K+ and K+(v0) = −1.
Proof. See [7, Sect. 3.2], [26, Proposition 7.9] and [22, Sect. 2.1] for (1).
The assertion (2) is proved in [7, Theorem 3.3] and [26, Section 7], [22, Corollary 2.3]. Because

the formulation is slightly different, we recall how to construct K+.
We set D′ := D − D(v0)[v0]. Then D′ is an effective v0-reduced divisor. We take a sequence

a = (a1, a2, . . . , ak) with Supp(D′) = {a1, a2, . . . , ak} as in (the proof of) Theorem 2.5. We put
a0 := v0. We give an ordering on {v0} ∪ Supp(D′) by defining a0 < a1 < a2 < · · · < ak.

Let G◦ be the canonical model of Γ. We make a new finite graph G′
◦ by adding the middle points

of all loops of G◦ (if exist), so that G′
◦ is a loopless finite graph. Let V (G′

◦) be the set of vertices
of G′

◦. We set

V := {v ∈ V (G′
◦) | val(v) ≥ 2, v ̸= v0, v ̸∈ Supp(D′)},

W := {v ∈ V (G′
◦) | val(v) = 1, v ̸= v0}.
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Note that, since D′ is v0-reduced, we have W ∩ Supp(D′) = ∅.
We are going to give an ordering on {v0} ∪ Supp(D′) ∪ V ∪W (disjoint union). For 1 ≤ i ≤ k,

let Ui be the connected component of Γ ∖ {ai, ai+1, . . . , ak} that contains v0. We write U1 ∩ V =
{b11, b12, . . . , b1j1}. We give an ordering b11 < b12 < · · · < b1j1 so that b1α is contained in the
connected component of U1 ∖ {b1α+1, . . . , b1j1} that contains v0 for any α = 1, . . . , j1 − 1. Then
we define a0 < b11 < b12 < · · · < b1j1 < a1. Suppose now that an ordering ai−2 < bi−1 1 < · · · <
bi−1 ji−1 < ai−1 is defined. Inductively, we write Ui ∩

(
V ∖ {b11, b12, . . . , bi−1 ji−1−1, bi−1 ji−1}

)
=

{bi1, bi2, . . . , bi ji}. We give an ordering bi1 < bi2 < · · · < bi ji so that biα is contained in the connected
component of Ui ∖ {bi α+1, . . . , bi ji} that contains v0 for any α = 1, . . . , ji − 1. Then we define
ai−1 < bi1 < bi2 < · · · < bi ji < ai. At the stage k + 1, we write V ∖ {b11, b12, . . . , bk jk−1, bk jk} =
{bk+11, bk+12, . . . , bk+1 jk+1

}, and we give an ordering bk+11 < bk+12 < · · · < bk+1 jk+1
so that bk+1α

is contained in the connected component of Γ ∖ {bk+1α+1, . . . , bk+1 jk+1
} that contains v0 for any

α = 1, . . . , jk+1 − 1. Then we define ak < bk+11 < bk+12 < · · · < bk+1 jk+1
. Finally we write

W = {c1, . . . , cℓ} and define bk+1 jk+1
< c1 < · · · < cℓ. In conclusion, we have given an ordering on

{v0} ∪ Supp(D′) ∪ V ∪W .
Let G be the model of Γ whose vertices are given by {v0} ∪ Supp(D′) ∪ V ∪W . For each edge

of e of G, we define the head vertex h(e) of e and the tail vertex of t(e) of e so that h(e) is smaller
than t(e) with respect to the above ordering on V (G). This gives an acyclic orientation on G.
Let K+ ∈ Div(Γ) be the moderator with respect to this orientation. Then K+ is v0-reduced (cf.
Theorem 2.5). Further, by the construction, K+(v0) = −1 and D(w) ≤ K+(w) for any w ̸= v0 ∈ Γ.
By the assumption of D, we have D(v0) ≤ −1 = K+(v0). We conclude that D ≤ K+ on Γ. Thus
K+ has all the desired properties. 2

Theorem (= Theorem 1.13). Let Γ be a compact connected metric graph of genus g ≥ 2. We fix
a point v0 ∈ Γ. Let D ∈ Div(Γ) be a v0-reduced divisor on Γ. Then, if deg(D) −D(v0) ≤ g − 1,
then there exists w ∈ Γ∖ {v0} such that D + [w] is a v0-reduced divisor.

Proof. We set D′′ := D − (D(v0) + 1)[v0] ∈ Div(Γ). Since D′′ is v0-reduced and D′′(v0) = −1,
Proposition 5.2 tells us that there exists a v0-reduced moderator K+ such that

D′′ ≤ K+

and K+(v0) = −1. Since deg (D′′) ≤ g − 2 and deg(K+) = g − 1, there exists w ∈ Γ such that
D′′ + [w] ≤ K+. Since D′′(v0) = K+(v0) = −1, We have w ̸= v0.

Since D′′ + [w] ≤ K+ and K+ is v0-reduced, D
′′ + [w] is v0-reduced. It follows that D + [w] =

D′′ + [w] + (D(v0) + 1)[v0] is v0-reduced, which completes the proof of Theorem 1.13. 2

We have the following corollaries of Theorem 1.13, which will be needed to prove Theorem 1.14.

Corollary 5.3. Let Γ be a hyperelliptic metric graph of genus g. Let v0 be an element of Γ satisfying
(3.1). Let D a v0-reduced divisor on Γ. Assume that pΓ(D) = 0 and deg(D) ≤ g − 1. Then there
exists a divisor E on Γ such that

D ≤ E, deg(E) = g, pΓ(E) = 0.

Proof. Since pΓ(D) = 0, we have D(v0) ≤ 1.

Case 1. Assume that D(v0) = 0. Using Theorem 1.13 repeatedly, there exist wdeg(D)+1, . . .,
wg ∈ Γ ∖ {v0} such that E := D + [wdeg(D)+1] + · · · + [wg] is v0-reduced. If pΓ(E) ≥ 1, then
E − 2[v0] is linearly equivalent to an effective divisor. However, since E − 2[v0] is v0-reduced and
the coefficient at v0 is −2, this is impossible. Thus we get pΓ(E) = 0.

Case 2. Assume that D(v0) = 1. We put D′ = D − [v0]. Then D′ is v0-reduced, and
using Theorem 1.13 repeatedly, there exist wdeg(D′)+1, . . ., wg−1 ∈ Γ ∖ {v0} such that E′ :=
D′ + [wdeg(D′)+1] + · · · + [wg−1] is v0-reduced. Put E = E′ + [v0]. Then E is v0-reduced, D ≤ E
and deg(E) = g. Further, we obtain pΓ(E) = 0 by the same argument as in Case 1. 2
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Corollary 5.4. Let Γ be a hyperelliptic metric graph of genus g. Let D be an effective divisor on
Γ. Assume that pΓ(D) = 0 and deg(D) = g. Then rΓ(D) = 0.

Proof. Recall that we have fixed a point v0 on Γ satisfying (3.1). Let D0 be the v0-reduced
divisor on Γ which is linearly equivalent to D. Then D0 is effective. Since pΓ(D) = 0, we have
D0(v0) ≤ 1. We may and do replace D0 with D.

Case 1. Assume that D(v0) = 0. In this case, D − [v0] is also v0-reduced and is not effective,
so that D − [v0] is not linearly equivalent to an effective divisor. Thus rΓ(D − [v0]) = −1. Hence
rΓ(D) ≤ 0. Since D is effective, we have rΓ(D) = 0.

Case 2. Assume that D(v0) = 1. We set D′ = D − [v0]. Then D′ is effective and v0-reduced.
Since pΓ(D) = 0, we have pΓ(D

′) = 0.
By Theorem 1.13, there exists w ∈ Γ ∖ {v0} such that D′ + [w] is v0-reduced. To argue by

contradiction, we assume that rΓ(D) ̸= 0. Since rΓ(D) ≥ 1, D − [ι(w)] is linearly equivalent to an
effective divisor D′′. By Theorem 2.4(2), we may assume that D′′ is v0-reduced. Then D′′ + [v0] is
v0-reduced. We have

D′′ + [v0] ∼ D − [ι(w)] + [v0] ∼ (D′ + [v0])− [ι(w)] + [v0]

∼ D′ + 2[v0]− [ι(w)] ∼ D′ + ([w] + [ι(w)])− [ι(w)] ∼ D′ + [w].

Since w is taken so that D′ + [w] is v0-reduced, the uniqueness of v0-reduced divisors (Theo-
rem 2.4(1)) implies that D′′ + [v0] = D′ + [w] in Div(Γ). However, the coefficient of D′′ + [v0] at v0
is at least 1, while that of D′ + [w] is 0. This is a contradiction, and we obtain rΓ(D) = 0. 2

6. Rank of divisors on a hyperelliptic graph

In this section, we prove Theorem 1.14. We first state Riemann’s inequality on graphs. This
inequality is a weaker form of the Riemann–Roch theorem on graphs, and can be deduced from
Baker’s Specialization Lemma and Riemann’s inequality on curves.

Proposition 6.1. Let G be a finite graph of genus g and Γ the metric graph associated to G. Let
D be a divisor on Γ. Then we have rΓ(D) ≥ deg(D)− g.

We prove Theorem 1.14, using Corollary 5.3, Corollary 5.4 and Proposition 6.1. Recall that
r(Γ,ω)(D) and p(Γ,ω)(D) are respectively defined in (2.4) and (3.4).

Theorem (= Theorem 1.14). Let (G,ω) be a hyperelliptic vertex-weighted graph, and Γ the metric
graph associated to G. Set g = g(Γ, ω). Let D be an effective divisor on Γ. Then

r(Γ,ω)(D) =

{
p(Γ,ω)(D) (if deg(D)− p(Γ,ω)(D) ≤ g),

deg(D)− g (if deg(D)− p(Γ,ω)(D) ≥ g + 1).

Proof. Step 1. Let Gω be the virtual weightless graph associated to (G,ω), and let Γω be the
virtual weightless metric graph associated to (G,ω). Note that Γω is the metric graph associated
to Gω. By Proposition 3.11, Γω is a hyperelliptic graph. Let ȷ : Γ ↪→ Γω be the natural embedding.
Since g(Γ, ω) = g(Γω), r(Γ,ω)(D) = rΓω(ȷ∗(D)) and p(Γ,ω)(D) = pΓω(ȷ∗(D)) by definition, it suffices
to prove the theorem for the weightless graphs, i.e., for Gω and Γω.

Step 2. By Step 1, we replace Gω by G, and Γω by Γ. Let Γ be the metric graph obtained by
contracting all the leaf edges of Γ, and ϖ : Γ → Γ the retraction map. Since rΓ(D) = rΓ(ϖ∗(D))
by Lemma 2.2(2) and pΓ(D) = pΓ(ϖ∗(D)) by Lemma 3.14(3) for any divisor D on Γ, we may
and do assume that Γ has no points of valence 1. Let ι be the hyperelliptic involution of Γ (cf.
Theorem 3.5). We fix v0 ∈ Γ with ι(v0) = v0 (cf. Lemma 3.14).

Let D be an effective divisor on Γ. Let D0 be the v0-reduced divisor linearly equivalent to D.

We set r =
⌊
D0(v0)

2

⌋
and s = deg(D)− 2r. Then D0 is written as

D0 = 2r[v0] + [w1] + · · ·+ [ws]
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for some w1, . . . , ws ∈ Γ. By Lemma 3.14(3), we have pΓ(D) = r.
If ι(wi) = wj for some i ̸= j, then [wi] + [wj ] ∼ 2[v0] by Lemma 3.8, and D0 ∼ 2(r + 1)[v0] +∑s
k=1,k ̸=i,j [wk]. This contradicts pΓ(D) = r. Thus ι(wi) ̸= wj for any i ̸= j. Also, pΓ([w1] + · · ·+

[ws]) = 0 by Lemma 3.14(3).

Case 1. Assume that deg(D) − pΓ(D) ≤ g. Note that s ≤ r + s = deg(D) − r ≤ g. Since
[w1] + · · ·+ [ws] is v0-reduced and pΓ([w1] + · · ·+ [ws]) = 0, Corollary 5.3 tells us that there exist
ws+1, . . . , wg ∈ Γ with pΓ([w1] + · · · + [ws] + [ws+1] + · · · + [wg]) = 0. By Corollary 5.4, we have
rΓ([w1] + · · ·+ [ws] + [ws+1] + · · ·+ [wg]) = 0. Thus rΓ([w1] + · · ·+ [ws] + [ws+1] + · · ·+ [ws+r]) = 0.
Since 2[v0] ∼ [v] + [ι(v)] for any v ∈ Γ by Lemma 3.8, we have

D ∼ 2r[v0] + [w1] + · · ·+ [ws]

∼ [w1] + · · ·+ [ws] + [ws+1] + · · ·+ [ws+r] + [ι(ws+1)] + · · ·+ [ι(ws+r)].

Since rΓ(E) ≤ rΓ(E − [v]) + 1 for any divisor E and v ∈ Γ, we have

(6.1) rΓ(D) ≤ rΓ([w1] + · · ·+ [ws] + [ws+1] + · · ·+ [ws+r]) + r = r.

On the other hand, for any u1, . . . , ur ∈ Γ, we have

D − ([u1] + · · ·+ [ur]) ∼ 2r[v0]− ([u1] + · · ·+ [ur]) + [w1] + · · ·+ [ws]

∼ [ι(u1)] + · · ·+ [ι(ur)] + [w1] + · · ·+ [ws]

by Lemma 3.8. This shows rΓ(D) ≥ r. Thus we conclude that rΓ(D) = r, which is the desired
estimate when deg(D)− pΓ(D) ≤ g.

Case 2. Assume that deg(D)− pΓ(D) ≥ g + 1.

Subcase 2-1. Assume that s ≤ g. Since [w1]+· · ·+[ws] is v0-reduced and pΓ([w1]+· · ·+[ws]) =
0, Corollary 5.3 tells us that there exist ws+1, . . . , wg ∈ Γ with pΓ([w1] + · · ·+ [ws] + [ws+1] + · · ·+
[wg]) = 0. By Corollary 5.4, we have rΓ([w1] + · · ·+ [ws] + [ws+1] + · · ·+ [wg]) = 0. Recalling that
2[v0] ∼ [v] + [ι(v)] for any v ∈ Γ by Lemma 3.8, we have

D ∼ 2r[v0] + [w1] + · · ·+ [ws]

∼ 2(r + s− g)[v0] + [w1] + · · ·+ [ws] + [ws+1] + · · ·+ [wg] + [ι(ws+1)] + · · ·+ [ι(wg)].

As in (6.1), since r + s = deg(D)− pΓ(D) ≥ g + 1, we have

rΓ(D) ≤ rΓ([w1] + · · ·+ [ws] + [ws+1] + · · ·+ [wg]) + 2r + s− g

= 2r + s− g = deg(D)− g.

Since the other direction rΓ(D) ≥ deg(D)−g is Riemann’s inequality (Proposition 6.1), we conclude
that rΓ(D) = deg(D)− g.

Subcase 2-2. Assume that s ≥ g + 1. Since pΓ([w1] + · · ·+ [ws]) = 0, we have pΓ([w1] + · · ·+
[wg]) = 0. By Corollary 5.4, we have rΓ([w1] + · · ·+ [wg]) = 0. As in (6.1), we have

rΓ(D) ≤ rΓ([w1] + · · ·+ [wg]) + 2r + s− g = 2r + s− g = deg(D)− g.

As in Subcase 2-1, we have the other direction rΓ(D) ≥ deg(D)− g by Riemann’s inequality. Thus
rΓ(D) = deg(D)− g, which completes the proof of Theorem 1.14. 2

7. Proofs of Theorem 1.2 and Proposition 1.4

In this section, we prove Theorem 1.2 and Proposition 1.4 and give several examples. We also
consider Question 1.1 for a vertex-weighted graph of genus 0 or 1.

We begin by proving Theorem 1.2.

Lemma 7.1. The condition (ii) implies the condition (i) in Theorem 1.2.
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Proof. Let (G,ω) be a hyperelliptic vertex-weighted graph and Γ the metric graph associated to
G. By definition, there exists a divisorD ∈ Div(Γ) such that deg(D) = 2 and r(Γ,ω)(D) = 1. In view
of [19, Proposition 3.1], D is taken in Div(ΓQ). Assuming (ii), we take a regular, generically smooth,

semi-stable R-curve X with reduction graph (G,ω) and D̃ ∈ Div(XK) such that D = τ∗(D̃) and

r(Γ,ω)(D) = rX(D̃). (Here X is the generic fiber of X and τ is the specialization map.) It follows
that X is a hyperelliptic curve. Then Theorem 1.12 tells us that (G,ω) satisfies the condition
(i). 2

We show that the condition (C’) implies the condition (C) in the introduction.

Lemma 7.2. Let (G,ω) be a vertex-weighted graph, and Γ the metric graph associated to G. Assume
that there exists a regular, generically smooth, semi-stable R-curve X with reduction graph (G,ω)
satisfying the condition (C’). Then X satisfies the condition (C).

Proof. Let D ∈ Div(ΓQ). From the condition (C’), we infer that there exist divisors E ∈
Div(ΓQ) and Ẽ ∈ Div(XK) such that D ∼ E, τ∗(Ẽ) = E and r(Γ,ω)(E) = rX(Ẽ). By [6, Corol-
lary A.9] for metric graphs, the restriction of the specialization map τ∗|Prin(XK)

: Prin(XK) →
Prin(ΓQ) is surjective, where Prin(ΓQ) := Div(ΓQ)∩Prin(Γ). Since D−E ∈ Prin(ΓQ), there exists

a principal divisor Ñ such that τ∗(Ñ) = D − E. We set D̃ = Ẽ + Ñ ∈ Div(XK). Then D̃ satisfies

D = τ∗(D̃) and r(Γ,ω)(D) = rX(D̃). 2

By Lemma 7.2, (iii) implies (ii) in Theorem 1.2. Thus it suffices to show that (i) implies (iii) in
Theorem 1.2, which amounts to the following.

Theorem 7.3. Let (G,ω) be a hyperelliptic vertex-weighted graph such that, for every vertex v of G,
there are at most (2ω(v) + 2) positive-type bridges emanating from v. Let K be a complete discrete
valuation field with ring of integers R and algebraically closed residue field k with char(k) ̸= 2.
Then there exists a regular, generically smooth, semi-stable R-curve X with generic fiber X and
reduction graph (G,ω) which satisfies the following condition: Let Γ be the metric graph associated

to G; For any D ∈ Div(ΓQ), there exist a divisor E =
∑k

i=1 ni[vi] ∈ Div(ΓQ) that is linearly

equivalent to D and a divisor Ẽ =
∑k

i=1 niPi ∈ Div(XK) such that τ(Pi) = vi for any 1 ≤ i ≤ k

and r(Γ,ω)(E) = rX(Ẽ).

Before proving Theorem 7.3, we give a formula for the ranks of divisors on hyperelliptic curves
which corresponds to Theorem 1.14.

Proposition 7.4. Let F be a field and F an algebraic closure of F . Let X be a connected smooth
hyperelliptic curve of genus g ≥ 2 defined over F , and let ιX be the hyperelliptic involution of X.
Let D be an effective divisor on XF . We express D as

D = P1 + · · ·+ Pr + ιX(P1) + · · ·+ ιX(Pr) +Q1 + · · ·+Qs,

where P1, . . . , Pr, Q1, . . . , Qs ∈ X(F ) and ιX(Qi) ̸= Qj for any i ̸= j with 1 ≤ i, j ≤ s. Then we
have

rX(D) =

{
r (if deg(D)− r ≤ g),

deg(D)− g (if deg(D)− r ≥ g + 1).

Proof. We may and do assume that F = F . Let KX be a canonical divisor of X, and let
f : X → Pg−1 be the canonical map defined by the complete linear system |KX |. We set C = f(X),
and letH ∈ Div(C) be a hyperplane section. Then the pull-back f∗ : |H| → |KX | is an isomorphism
between linear systems. Since X is hyperelliptic, we have deg(H) = g − 1.

We put E := f(P1) + · · · + f(Pr) + f(Q1) + · · · + f(Qs) ∈ Div(C). Then deg(H − E) =
g− 1− deg(D) + r. We remark that the restriction of the pull-back map f∗ gives the isomorphism

f∗||H−E| : |H − E| ∼→ |KX −D|. Indeed, since f : X → C is the quotient map of the hyperelliptic

involution ιX and since ιX(Qi) ̸= Qj for any i ̸= j with 1 ≤ i, j ≤ s, we have, for any H ′ ∈ |H|,
f∗(H ′) ≥ D if and only if H ′ ≥ E.
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Case 1. Suppose that deg(D) − r ≤ g − 1. Then deg(H − E) ≥ 0. Since C ∼= P1, it follows
that

dim(|H − E|) = deg(H − E) = g − 1− deg(D) + r.

Via the above identification |H −E| ∼= |KX −D|, we obtain dim(|KX −D|) = g− 1− deg(D) + r.
Then the Riemann–Roch theorem tells us that

rX(D) = dim(|KX −D|) + 1− g + deg(D) = r,

which gives the desired equality for deg(D)− r ≤ g − 1.

Case 2. Suppose that deg(D)−r ≥ g. Then deg(H−E) < 0, and hence |KX−D| ∼= |H−E| = ∅.
It follows from the Riemann–Roch theorem that rX(D) = deg(D)−g. This gives the desired equality
for deg(D)− r ≥ g. (We note that, if deg(D)− r = g, then rX(D) = deg(D)− g = r.)

This completes the proof. 2

Proof of Theorem 7.3. Let g ≥ 2 denote the genus of (G,ω). If e is a leaf edge with leaf end
v with ω(v) = 0, then we contract e. Let G′ be the graph obtained by successively contracting all
such leaf edges. Then G′ is a finite graph such that any leaf edge of G′ (if exists) has an leaf end
v with ω(v) > 0. We note that G′ is seen as a subgraph of G. Let (G′, ω′) be the vertex-weighted
graph, where the vertex-weight function is given by the restriction of ω to V (G′).

Let Γ′ be the metric graph associated to G′. By Proposition 3.12, Γ′ has the hyperelliptic
involution ι′ : Γ′ → Γ′ (see Definition 3.13). We remark that Γ′ is naturally seen as a subset of Γ.

We take a regular, generically smooth, semi-stable R-curve X ′ as in Theorem 4.5. In particular,
the generic fiber X of X ′ is a hyperelliptic curve, and the dual graph of the special fiber equals
(G′, ω′). Further, we have τ ′ ◦ ιX = ι′ ◦ τ ′ for the specialization map τ ′ : X(K) → Γ′ and the
hyperelliptic involution ιX : X → X. We take a Weierstrass point P ′

0 ∈ X(K), i.e., a point
satisfying ιX(P ′

0) = P ′
0, and put v′0 = τ ′(P ′

0) ∈ Γ′
Q. Then we have ι′(v′0) = v′0.

As we have seen in the proof of Theorem 1.12 (Corollary of Theorem 4.5), by successively blowing
up at closed points on the special fiber, we obtain a regular, generically smooth, semi-stable R-curve
X such that the dual graph of the special fiber equals (G,ω). We are going to show that X has
the desired properties.

Let τ : X(K) → ΓQ be the specialization map defined by X . Let ȷ : Γ′ ↪→ Γ be the natural
embedding and ϖ : Γ→ Γ′ the natural retraction. Then we have τ ′ = ϖ ◦ τ .

Case 1. Suppose that r(Γ,ω)(D) = −1. We put E := D, and write E =
∑k

i=1 ni[vi] ∈ Div(ΓQ).

Take any Pi ∈ X(K) with τ(Pi) = vi for 1 ≤ i ≤ k (cf. Proposition 2.6(1)), and we set Ẽ =∑k
i=1 niPi ∈ Div(XK). We need to show that rX(Ẽ) = −1. To argue by contradiction, suppose

that rX(Ẽ) ≥ 0. Then there exists an effective divisor F̃ ∈ Div(XK) with Ẽ ∼ F̃ . Then τ∗(F̃ )

is an effective divisor on Γ and, by Proposition 2.6, D = τ∗(Ẽ) ∼ τ∗(F̃ ). This contradicts our
assumption that r(Γ,ω)(E) = −1 by Lemma 2.9. We obtain the assertion when r(Γ,ω)(D) = −1.

Case 2. Suppose that r(Γ,ω)(D) ≥ 0. By Lemma 2.9, we have rΓ(D) ≥ 0. We set D′ =
ϖ∗(D) ∈ Div(Γ′

Q). Let E
′ ∈ Div(Γ′

Q) be the v′0-reduced divisor that is linearly equivalent to D′ on

Γ′. By Lemma 2.9 and Theorem 2.4, E′ is an effective divisor.

We set r =
⌊
E′(v′0)

2

⌋
and s = deg(E′)− 2r, then E′ is written as

E′ = 2r[v′0] + [w′
1] + · · ·+ [w′

s]

for some w′
1, . . . , w

′
s ∈ Γ′

Q such that ι′(w′
i) ̸= w′

j for i ̸= j.

We claim that r = p(Γ′,ω′)(E
′). Indeed, let Γ′ω′

be the virtual weightless metric graph associated

to (Γ′, ω′) with hyperelliptic involution ι′ω
′
, and let ȷ′ω

′
: Γ′ ↪→ Γ′ω′

be the natural embedding. By

Lemma 2.9(2), ȷ′ω
′

∗ (E′) = 2r[v′0]+ [w′
1]+ · · ·+[w′

s] is a v0-reduced divisor on Γ′ω′
, and ι′ω

′
(w′

i) ̸= w′
j

for i ̸= j (cf. Definition 3.13). By Lemma 3.14(3), we have r = pΓ′ω′

(
ȷ′ω

′
∗ (E′)

)
. By definition, the

right-hand side equals p(Γ′,ω′)(E
′), and thus r = p(Γ′,ω′)(E

′).
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By Proposition 2.6(1), we take Q1, . . . , Qs ∈ X(K) such that τ ′(Qi) = w′
i for i = 1, . . . , s. Since

τ ′ ◦ ιX = ι′ ◦ τ ′, we have ιX(Qi) ̸= Qj for i ̸= j. We set Ẽ = 2rP0 + Q1 + · · · + Qs ∈ Div(XK).

Finally, we set E = τ∗(Ẽ) = 2r[τ(P0)] + [τ(Q1)] + · · ·+ [τ(Qs)] ∈ Div(ΓQ).

We show that E and Ẽ have desired properties. Indeed, since ϖ∗(E) = ϖ∗(τ∗(Ẽ)) = τ ′∗(Ẽ) =
E′ ∼ D′ = ϖ∗(D) on Γ′, we have E ∼ D on Γ by Lemma 2.2. By Theorem 1.14 and Proposition 7.4,
we then have

r(Γ′,ω′)(E
′) = rX(Ẽ) =

{
r (if deg(D)− r ≤ g),

deg(D)− g (if deg(D)− r ≥ g + 1).

By Lemma 2.9, we have r(Γ,ω)(D) = r(Γ′,ω′)(D
′) = r(Γ′,ω′)(E

′). Thus we obtain the assertion. 2

Next we consider a vertex-weighted graph of genus 0 or 1.

Proposition 7.5. Let K be a complete discrete valuation field with ring of integers R and alge-
braically closed residue field k with char(k) ̸= 2. Let (G,ω) be a vertex-weighted graph of genus
0 or 1, and Γ the metric graph associated to G. Then there exists a regular, generically smooth,
semi-stable R-curve X with generic fiber X and reduction graph G which satisfies the condition
(C’) in Theorem 1.2.

Proof. Case 1. Suppose that g(G,ω) = 0. This means that ω = 0, and G is a tree. There
exists a regular, generically smooth, strongly semi-stable, totally degenerate R-curve X with re-
duction graph G. Let X denote the generic fiber of X . Then XK

∼= P1
K.

Let v0 be any vertex of G. Let D be a divisor on ΓQ. Since G is a tree, D is linearly equivalent
to (degD)[v0]. It follows that rΓ(D) = deg(D) if deg(D) ≥ 0 and that rΓ(D) = −1 if deg(D) < 0.

Let D̃ be any divisor on XK such that τ∗(D̃) = D. Then deg(D̃) = deg(D) (cf. Proposition 2.6(3)).

Since XK
∼= P1

K, we have rX(D̃) = deg(D) if deg(D) ≥ 0, and rX(D̃) = −1 if deg(D) < 0. Thus we

get rΓ(D) = rX(D̃)

Case 2. Suppose that g(G,ω) = 1. In this case, ω = 0, or we have ω(v1) = 1 for some vertex
v1 of G and ω(v) = 0 for any other vertex v.

Subcase 2-1. Suppose that ω = 0. Then g(Γ) = 1. Let D be a divisor on ΓQ. As in the Case
1 of the proof of Theorem 7.3, we may assume that D is linearly equivalent to an effective divisor.
Also, since the assertion is obvious if D = 0, we may assume that deg(D) ≥ 1.

We note that if deg(D) ≥ 2, then rΓ(D) ≥ 1. Indeed, let v be any point in Γ, and Dv the
v-reduced divisor that is linearly equivalent to D. Since g(G) = 1, the v-reduced divisor Dv is of
form a[v] + b[w], where a ∈ Z and b ∈ {0, 1}. Since deg(Dv) ≥ 2, it follows that a ≥ 1 and thus
Dv − [v] is effective. Since v is arbitrary, it follows that rΓ(D) ≥ 1.

Repeating the above procedure, we obtain rΓ(D) ≥ deg(D)−1. We claim that rΓ(D) = deg(D)−
1. Indeed, if this is not the case, we will then have deg(D)[w1] ∼ deg(D)[w2] for any w1, w2 ∈ Γ,
and thus g(Γ) = 0, which contradicts g(Γ) = 1.

Let ℓ be the total length of the metric graph obtained by contracting all leaf edges of Γ. Notice
that there exists an R-curve X ′ whose generic fiber X is a smooth connected curve of genus 1
and the special fiber is a geometrically irreducible rational curve with one node with multiplicity ℓ.
(For example, one takes X ′ = Proj

(
R[x, y, z]/(y2z − x3 − xz2 − πℓz3)

)
, where π is a uniformizer

of R.) Then taking successive blow-ups on the special fiber, we have a regular, generically smooth,
semi-stable R-curve X such that the reduction graph is G = (G,0).

Let E be an effective divisor linearly equivalent to D. We write E =
∑k

i=1 nvi [vi] where nvi ≥ 0

for all i. We take Ẽ =
∑k

i=1 nviPi such that τ(Pi) = vi for 1 ≤ i ≤ k. Since Ẽ is effective

and deg(Ẽ) > 0, by the Riemann–Roch formula on X, we have rX(Ẽ) = deg(Ẽ) − 1. Hence

rΓ(E) = rX(Ẽ).

Subcase 2-2. Suppose that there exists one vertex v1 of G with ω(v1) = 1 and ω(v) = 0 for
the other vertices. Let Γω be the virtual weightless metric graph of (G,ω). Then g(Γω) = 1.
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As in the Case 1 of the proof of Theorem 7.3, we may assume that D is linearly equivalent to
an effective divisor. Also we may assume that D ̸= 0, so that deg(D) ≥ 1. Let E be an effective
divisor linearly equivalent to D. Then the computation in the above subcase gives r(Γ,ω)(E) =
rΓω(E) = deg(E)− 1. Let X ′ be a regular R-curve whose generic fiber X and the special fiber are
both smooth connected curves of genus 1. Then taking successive blow-ups on the special fiber, we
have a regular, generically smooth, semi-stable R-curve X of X such that the reduction graph is

(G,ω). Then the argument in the above subcase shows that there exists Ẽ ∈ Div(XK) such that

τ∗(Ẽ) = E and r(Γ,ω)(E) = rX(Ẽ). 2

Next we prove Proposition 1.4.

Proposition (= Proposition 1.4). Let G be a finite graph and Γ the metric graph associated to
G. Assume that there exist a complete discrete valuation field K with ring of integers R, and a
regular, generically smooth, strongly semi-stable, totally degenerate R-curve X with the reduction
graph G = (G,0) satisfying the condition (C) in Question 1.1. Then the Riemann–Roch formula
on Γ is deduced from the Riemann–Roch formula on XK.

Proof. We take any D ∈ Div(ΓQ). By the condition (C), there exists D̃ ∈ Div(XK) such that

rΓ(D) = rX(D̃) and τ∗(D̃) = D.
By the Riemann–Roch formula on X, we have

rX(D̃)− rX(KX − D̃) = 1− g(X) + deg(D̃).

Since X is strongly semi-stable and totally degenerate, we have g(X) = g(Γ). We have deg(D̃) =
degD (cf. Proposition 2.6(3)). Further, by [6, Lemma 4.19], we have τ(KX) ∼ KΓ. Then

rΓ(D)− rX(KX − D̃) = 1− g(Γ) + deg(D).

We put D̃ = {F̃ ∈ Div(XK) | τ∗(F̃ ) ∼ D}. By the Riemann–Roch formula on X, we have

max
F̃∈D̃
{rX(KX − F̃ )} = −1 + g(X)− deg(D̃) + max

F̃∈D̃
{rX(F̃ )}.

Since the right-hand side attains the maximum when F̃ = D̃ by Baker’s Specialization Lemma

and our choice of D̃, so does the left-hand side. By the condition (C) and Baker’s Specialization

Lemma, the left-hand side equals rΓ(KΓ−D). Hence we get rX(KX − D̃) = rΓ(KΓ−D), and thus

rΓ(D)− rΓ(KΓ −D) = 1− g(Γ) + deg(D)

The last equality is nothing but the Riemann–Roch formula on ΓQ. Finally, by the approximation
result by Gathmann–Kerber [19, Proposition 1.3], the Riemann–Roch formula on Γ is deduced from
that on ΓQ. 2

Remark 7.6. Let G be a loopless hyperelliptic graph. Let G be the finite graph obtained by
contracting all the bridges of G. Let Γ and Γ be the metric graphs associated to G and G,
respectively. By Theorem 1.2 and Proposition 1.4, the Riemann–Roch formula on Γ is deduced
from the Riemann–Roch formula on a suitable hyperelliptic curve. Since the rank of divisors is
preserved under contracting bridges by [6, Corollary 5.11] and [14, Lemma 3.11] (cf. Lemma 2.2),
the Riemann–Roch formula on Γ is deduced. Since rG(D) = rΓ(D) for D ∈ Div(G) by [22], the
Riemann–Roch formula on G is also deduced.

We give some examples of ranks of divisors on metric graphs.

Example 7.7. Let G be the following graph of genus g ≥ 3, where each vertex is given by a white
circle or a black circle. Let Γ be the metric graph associated to G. Let D = [v1] + [v2]. It is easy



RANK OF DIVISORS UNDER SPECIALIZATION 25

to see rΓ(D) = 1.
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We take a complete valuation field K with ring of integers R such that there exists a regular,
generically smooth, strongly semi-stable, totally degenerate R-curve X such that the generic fiber
X is non-hyperelliptic and the dual graph of the special fiber equals G. There exists such X , see,
e.g., [6, Example 3.6].

Let D̃ be a divisor on XK such that τ∗(D̃) = D. Then deg(D̃) = 2. Since X is assumed to

be non-hyperelliptic, we have rX(D̃) ̸= 1. It follows that the condition (C) in Question 1.1 is not
satisfied for this choice of X . (Indeed, we have to choose a model X such that X is hyperelliptic
to make the condition (C) satisfied.)

Example 7.8. Let G be the following three petal graph of genus 3, where each vertex is given by
a white circle or a black circle. Let Γ be the metric graph associated to G. Let D = 2[v0]. It is
easy to see rΓ(D) = 1. Thus Γ is a hyperelliptic graph.
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Let K be a complete valuation field with ring of integers R and algebraically residue field k such
that char(k) ̸= 2. Let X be a regular, generically smooth, strongly semi-stable, totally degenerate
R-curve with the reduction graph G. Let X be the generic fiber of X .

Since the vertex v0 has three positive-type bridges e1, e2, e3, the graph G = (G,0) does not
satisfy the condition (i) in Theorem 1.2. Then Theorem 1.12 tells us that X is not hyperelliptic.
The argument in Example 7.7 (which agrees with Theorem 1.2) shows that there exists no divisor

D̃ on XK with rX(D̃) = 1 such that τ∗(D̃) = D.

Example 7.9. This example shows that we need to replace D with a divisor E linearly equivalent
to D to satisfy the condition (C’) in Theorem 1.2 (see Remark 1.10).

Let G be the following hyperelliptic graph of genus 4, where each vertex is given by a white circle
or a black circle. Let Γ be the metric graph associated to G. The involution ι of Γ is given by the
reflection relative to the horizontal line through w2.

Let D = 3[v1] + [v2]. We take a function f on Γ so that f(v1) = 1, f(w) = 0 for any w ∈
V (G) ∖ {v1} and f is linear on each edge. Then D + (f) = [v2] + [w1] + [w2] + [w3]. Since
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[v2] + [w1] ∼ [w] + [ι(w)] for any w ∈ Γ by Lemma 3.8, we have rΓ(D) ≥ 1. In fact, it is easy to see
from Theorem 1.14 that rΓ(D) = 1.

d d d d d
d t d

t d d
v2

v1w1

w2

w3

The graph G has no bridges. Let K be a complete valuation field with ring integer R and
algebraically closed residue field k such that char(k) ̸= 2. By Theorem 1.12, we have a regular,
generically smooth, strongly semi-stable, totally degenerate R-curve X with reduction graph G =
(G,0) such that the generic fiber X is hyperelliptic. Let ιX be the hyperelliptic involution on X.
As we have shown, this model X satisfies the condition (C’) in the introduction.

Let P1, P2 ∈ X(K) be any points with τ(P1) = v1 and τ(P2) = v2. Since τ ◦ ιX = ι ◦ τ and

ι(v1) ̸= v2, we have ιX(P1) ̸= P2. We set D̃ = 3P1 + P2. By Proposition 7.4, we have rX(D̃) = 0.

Hence rΓ(τ∗(D̃)) ̸= rX(D̃).

8. Rationality in lifting and a conjecture of Caporaso

In this section, we consider variants of the conditions (C) and (C’) in the introduction, and
discuss how they are related to the conjecture of Caporaso [12, Conjecture 1]. Finally, we show one
direction of the conjecture for a hyperelliptic vertex-weighted graph satisfying the condition (i) in
Theorem 1.2.

8.1. Terminology and properties of finite graphs. In what follows, we consider divisors and
linear equivalences on a finite graph G. Let us first fix the notation and terminology. The group of
divisors Div(G) on G is defined to be the free Z-module generated by the elements of V (G). Then
Div(G) =

⊕
v∈V (G) Z[v] is naturally seen as a Z-submodule of Div(Γ), where Γ is the metric graph

associated to G.
A rational function on G is a piecewise linear function on Γ, which is linear on edges and

with integer value at each vertex. The set of rational functions on G is denoted by Rat(G). Let
f ∈ Rat(G). Then f is naturally seen as an element of Rat(Γ), and div(f) ∈ Div(Γ) is in fact an
element of Div(G). The set of principal divisors is defined by Prin(G) := {div(f) | f ∈ Rat(G)}.
Two divisors D,E ∈ Div(G) are said to be linearly equivalent in Div(G), and we write D ∼G E, if
D−E ∈ Prin(G). Since Prin(G) = Prin(Γ) ∩Div(G), we have, for D,E ∈ Div(G), D ∼G E if and
only if D ∼ E.

We will use the following lemma. Recall that, by a hyperelliptic vertex-weighted graph (G,ω),
we mean that (Γ, ω) is hyperelliptic, where Γ the metric graph associated to G (cf. Definition 3.10).

Lemma 8.1. Let (G,ω) be a hyperelliptic vertex-weighted graph, and Γ the metric graph associated
to G. Then there exists a divisor D ∈ Div(G) with deg(D) = 2 and r(Γ,ω)(D) = 1.

Proof. If e is a leaf edge with a leaf end v with ω(v) = 0, then we contract e. Let G′ be the
finite graph that is obtained by contracting all such leaf edges, and give the vertex-weight function
ω′ by the restriction of ω to V (G′).

Let Γ′ be the metric graph associated to G′. By Proposition 3.12, Γ′ has the hyperelliptic
involution ι′ : Γ′ → Γ′ (see Definition 3.13). We note that there exists a point v ∈ Γ′ with ω(v) > 0



RANK OF DIVISORS UNDER SPECIALIZATION 27

or val(v) ̸= 2. Then v and ι′(v) are both vertices of G′. We set D := [v] + [ι′(v)], which is seen as
an element of Div(G). Then we have deg(D) = 2 and r(Γ,ω)(D) = 1. 2

8.2. Conditions (F) and (F’), and a conjecture of Caporaso. As before, let K be a complete
discrete valuation field with ring of integers R and algebraically closed residue field k such that
char(k) ̸= 2. Let (G,ω) be a vertex-weighted graph, and let Γ be the metric graph associated to G.
Let X be a regular, generically smooth, semi-stable R-curve with generic fiber X and reduction
graph (G,ω). For each vertex v of G, let Cv denote the irreducible component of the special fiber
X0 corresponding to v.

Since X is smooth (resp. X is regular), the group of Cartier divisors on X (resp. X ) is the
same as the group of Weil divisors. The Zariski closure of an effective divisor on X in X is a
Cartier divisor. Extending by linearity, one can associate to any divisor on X a Cartier divisor on
X , which is also called the Zariski closure of the divisor.

Let D̃ be a divisor on X and D̃ the Zariski closure of D̃. Let OX (D̃) be the locally-free sheaf

on X associated to D̃ . We set

ρ∗(D̃) :=
∑

v∈V (G)

deg
(
OX (D̃)|Cv

)
[v] ∈ Div(G).

We obtain the specialization map

(8.1) ρ∗ : Div(X)→ Div(G).

We note that, if D̃ ∈ Div(X(K)), i.e., D̃ =
∑k

i=1 niPi with Pi ∈ X(K), then ρ∗(D̃) = τ∗(D̃), where

τ∗ : Div(XK) → Div(Γ) is the specialization map (2.3) induced by τ : X(K) → Γ in (2.2) (see [6,
§2.3]).

Recall from the introduction that we consider the following condition (F), which is a variant of
the condition (C).

(F) For any D ∈ Div(G), there exists a divisor D̃ ∈ Div(X) such that D = ρ∗(D̃) and

r(Γ,ω)(D) = rX(D̃).

We remark that the condition (F) is concerned with the existence of a lifting as a divisor over K
(not just as a divisor over K) of a divisor D on G (not just on ΓQ). We also consider the following
condition (F’), which is a variant of the condition (C’) in the introduction.

(F’) For any D ∈ Div(G), there exist a divisor E =
∑k

i=1 ni[vi] ∈ Div(G) that is linearly
equivalent to D in Div(G), and Pi ∈ X(K) for 1 ≤ i ≤ k such that τ(Pi) = vi for any

1 ≤ i ≤ k and r(Γ,ω)(E) = rX

(∑k
i=1 niPi

)
.

Now we show Proposition 1.5, which is due to Caporaso.

Proposition (= Proposition 1.5). Let K, R and k be as above. Let (G,ω) be a vertex-weighted
graph, and let Γ be the metric graph associated to G. Let X be a regular, generically smooth,
semi-stable R-curve with generic fiber X and reduction graph (G,ω). Assume that X satisfies the
condition (F). Then, for any divisor D ∈ Div(G), we have

ralg,k(G,ω)(D) ≥ r(Γ,ω)(D).

Proof. Recall from the introduction that ralg,k(G,ω)(D) is defined by

ralg,k(G,ω)(D) := max
X0

r(X0, D),

r(X0, D) := min
E

rmax(X0, E),

rmax(X0, E) := max
E0

(
h0(X0,E0)− 1

)
,
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where X0 runs over all connected reduced projective nodal curves defined over k with dual graph
(G,ω), E runs over all divisors on G that are linearly equivalent to D in Div(G), and E0 runs over
all Cartier divisors on X0 such that deg (E0|Cv) = E(v) for any v ∈ V (G).

Now we take X0 as the special fiber of X . Let E be any divisor on G that is linearly equivalent

to D in Div(G). If the condition (F) is satisfied, then there exists Ẽ ∈ Div(X) such that ρ∗(Ẽ) = E

and r(Γ,ω)(E) = rX(Ẽ).

Let E be the Zariski closure of Ẽ in X , and we put E0 := E |X0 . By the definition of ρ∗(Ẽ), we
have deg (E0|Cv) = E(v). On the other hand, the upper-semicontinuity of the cohomology implies
that

h0(X0,E0)− 1 ≥ h0(X, Ẽ)− 1 = rX(Ẽ) = r(Γ,ω)(E) = r(Γ,ω)(D).

Thus, letting X0 be the special fiber of X , E any divisor on G that is linearly equivalent to

D in Div(G), and E0 the restriction of the Zariski closure of Ẽ to the special fiber, we obtain

ralg,k(G,ω)(D) ≥ r(Γ,ω)(D). 2

8.3. Conditions (F) and (F’) for hyperelliptic metric graphs. We prove the following the-
orem, which is in a way refinement of Theorem 1.2. Theorem 8.2 implies Theorem 1.6.

Theorem 8.2. Let K be a complete discrete valuation field with ring of integers R and algebraically
closed residue field k such that char(k) ̸= 2. Let (G,ω) be a hyperelliptic vertex-weighted graph.
Then the following are equivalent.

(i) For every vertex v of G, there are at most (2ω(v) + 2) positive-type bridges emanating
from v.

(ii) There exists a regular, generically smooth, semi-stable R-curve X with reduction graph
(G,ω) satisfying (F).

(iii) There exists a regular, generically smooth, semi-stable R-curve X with reduction graph
(G,ω) satisfying (F’).

Remark 8.3. In the proof of Theorem 1.2, we see that the condition (i) in Theorem 8.2 is equivalent
to the existence of a regular, generically smooth, semi-stable R-curve X with generic fiber X and
reduction graph (G,ω) such that X is hyperelliptic. Then any such R-curve X satisfies the
conditions (F) and (F’) (and also (C) and(C’)).

Proof. Let g denote the genus of (G,ω). Let Γ be the metric graph associated to G.

Step 1. We show that (iii) implies (ii). By [6, Corollary A.9], the specialization map ρ∗ :
Prin(X) → Prin(G) is surjective. (In [6], a loopless finite graph is considered, and the general
case is reduced to the case of a loopless finite graph.) Then arguing in exactly the same way as in
Lemma 7.2, we find that (iii) implies (ii).

Step 2. We show that (ii) implies (i). By Lemma 8.1, there exists a divisor D ∈ Div(G) such

that deg(D) = 2 and r(Γ,ω)(D) = 1. Then by the condition (F), there exists a divisor D̃ ∈ Div(X)

with deg(D̃) = 2 and rX(D̃) = 1. Thus X is a hyperelliptic curve, and by Theorem 1.12, the
condition (i) holds.

Step 3. We show that (i) implies (iii). This step is the main part of the proof of this theorem.
We take a regular, generically smooth, semi-stable R-curve X with reduction graph (G,ω) such

that the generic fiber X of X is hyperelliptic as in the proof of Theorem 7.3. We are going to show
that X satisfies (F’).

Let τ |X(K) : X(K)→ V (G) be the restriction of the specialization map τ : X(K)→ Γ to X(K).
Then τ |X(K) : X(K) → V (G) is surjective (see [6, Remark 2.3]). Note that τ(P ) = ρ∗(P ) for
P ∈ X(K), where P ∈ X(K) is regarded as an element of Div(X(K)) ⊂ Div(X) on the right-hand
side.

Let D be any divisor on G.
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Case 1. Suppose that r(Γ,ω)(D) = −1. We put E := D, and write E =
∑k

i=1 ni[vi] ∈ Div(G).
By the surjectivity of τ |X(K), we take Pi ∈ X(K) such that τ(Pi) = vi for 1 ≤ i ≤ k. Then we have

r(Γ,ω)(D) = rX

(∑k
i=1 niPi

)
by a similar argument of the proof of Theorem 7.3 (Case 1).

Case 2. Suppose that r(Γ,ω)(D) ≥ 0. We follow the notation in the proof of Theorem 7.3. In
particular, (G′, ω′) is the vertex-weighted graph obtained by contracting all the leaf edges of G with
leaf ends of weight zero, Γ′ is the metric graph associated to G′, and ι′ : Γ′ → Γ′ is the hyperelliptic
involution (cf. Definition 3.13). Let ϖ : Γ → Γ′ be the retraction map, and ȷ : Γ′ ↪→ Γ be the
natural embedding. By slight abuse of notation, we also write ϖ : G→ G′ and ȷ : G′ → G for the
induced maps on finite graphs. We regard G′ as a subgraph of G.

We take any v ∈ V (G′) such that ι′(v) ∈ V (G′) (cf. the proof of Lemma 8.1). By the surjectivity
of τ |X(K), we take P ∈ X(K) with τ(P ) = v. We set P ′ := ιX(P ) ∈ X(K) and v′ := τ(P ′) ∈ Div(G).
Then we have ϖ(v′) = ι′(v), so that v′ ∼G ι′(v).

We set r = p(Γ,ω)(D), and put

F := D − r
(
[v] + [v′]

)
∈ Div(G).

Then F ∼G D − r ([v] + [ι′(v)]).
Let Γω be the virtual weightless metric graph associated to (Γ, ω) and ȷω : Γ ↪→ Γω the natural

embedding. Regarding F as a divisor on Γ, we have

r(Γ,ω)(F ) := rΓω(ȷω∗ (F )) = rΓω

(
ȷω∗ (D)− r

(
[v] + [v′]

))
≥ 0

by the definition of p(Γ,ω)(D). By Lemma 2.9(3), we have rΓ(F ) ≥ 0. By [19, Lemma 2.3], there
exists an effective divisor on G that is linearly equivalent to F . It follows that

F ∼G [u1] + · · ·+ [us]

for some u1, . . . , us ∈ V (G). By the surjectivity of τ |X(K), we take Qj ∈ X(K) with τ(Qj) = uj
for j = 1, . . . , s. We find that ιX(Qi) ̸= Qj for i ̸= j. Indeed, if ιX(Qi) = Qj , then [ui] + [uj ] ∼G

[ϖ(ui)] + [ϖ(uj)] ∼G [v] + [ι′(v)]. Then |F − ([v] + [ι′(v)])| = |D − (r + 1)([v] + [ι′(v)])| ̸= ∅, which
contradicts r = p(Γ,ω)(D) (cf. (3.3)).

We set E := r ([v] + [v′]) + [u1] + · · · + [us] ∈ Div(G) and Ẽ := r(P + P ′) + Q1 + · · · + Qs ∈
Div(X(K)). Then τ∗(Ẽ) = E. Further, E is linearly equivalent to D, so that we have

r(Γ,ω)(E) =

{
r (if deg(D)− r ≤ g),

deg(D)− g (if deg(D)− r ≥ g + 1)

by Theorem 1.13. On the other hand, by Proposition 7.4, we have

rX(Ẽ) =

{
r (if deg(D)− r ≤ g),

deg(D)− g (if deg(D)− r ≥ g + 1).

Hence we obtain r(Γ,ω)(E) = rX(Ẽ), and X satisfies the condition (F’). 2

Corollary (= Corollary 1.7). Let k be an algebraically closed field with char(k) ̸= 2. Let (G,ω) be
a hyperelliptic graph such that for every vertex v of G, there are at most (2ω(v) + 2) positive-type

bridges emanating from v. Then, for any D ∈ Div(G), we have ralg,k(G,ω)(D) ≥ r(Γ,ω)(D).

Proof. We set R := k[[t]] and K := k((t)), where t is an indeterminate. Then K is a complete
discrete valuation field with ring of integers R and residue field k. It suffices to apply Proposition 1.5
and Theorem 8.2. 2

Remark 8.4 (Note added in revision). The proof of the other direction of the estimate ralg,k(G,ω)(D) ≤
r(Γ,ω)(D) for any graphG now appears as a preprint by Caporaso, Len and Melo [13]. In the preprint

[23], building on Corollary 1.7, we show that ralg,k(G,ω)(D) ≥ r(Γ,ω)(D) holds for any hyperelliptic graph
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(without the positive-type bridge condition) and for any genus 3 graph. Thus for these graphs, we

have the equality ralg,k(G,ω)(D) = r(Γ,ω)(D). In [13], Caporaso, Len and Melo give many other graphs

for which the equality holds, but they also show that there exist graphs for which the equality fails.
It will be an interesting question to characterize graphs for which the equality holds.

Appendix. Deformation theory

Let ⟨ι⟩ denote the group of order 2 with generator ι. To prove Theorem 1.12 in §3, we use the
⟨ι⟩-equivariant deformation theory. Since we cannot find a suitable reference in the form we use
in §3 (i.e., over the ring of Witt vectors of a field k of any characteristic ̸= 2), we put together
necessary results in this appendix. Note that one can find, among other things, the ⟨ι⟩-equivariant
deformation theory over k of characteristic ̸= 2 (i.e, not over the ring of Witt vectors) in Ekedahl
[18]. Unlike the previous sections, proofs of the results in this appendix are only sketched. Our
basic references are [17, 18, 21, 29].

We fix the notation and terminology. Let k be a field. We assume that char(k) ̸= 2. We put

Λ :=

{
k if char(k) = 0,

the ring of Witt vectors over k if char(k) > 0.

Let A be the category of Artin local Λ-algebras with residue field k. Let R be a complete local
Λ-algebra with residue field k. Let hR : A → (Sets) be the functor given by hR(A) = Hom(R,A)
for A ∈ Ob(A ). A functor F : A → (Sets) is pro-represented by R if F is isomorphic to hR.

Let Â be the category of complete local Λ-algebras with residue field k. One can extend any

functor F : A → (Sets) to F̂ : Â → (Sets) by defining F̂ (R) := lim←−F (R/mi), where R ∈ Ob(Â )
with maximal ideal m. If F is pro-represented by R, then there is an isomorphism ξ : hR → F , and

we can think of ξ as an element of F̂ (R). In this case, the pair (R, ξ) is called the universal family
of F .

Let F and G be functors from A to (Sets). A morphism G→ F is said to be smooth if for every
surjective homomorphism B → A of local Artin Λ-algebras, the map G(B)→ G(A)×F (A) F (B) is
surjective. If G→ F is smooth, then for every A ∈ Ob(A ), the map G(A)→ F (A) is surjective.

It is useful to introduce a weaker notion of the pro-representability. Let F : A → (Sets) be a

functor. A pair (R, ξ) with R ∈ Â and ξ ∈ F̂ (R) is a pro-representable hull of F if hR → F is
smooth and if the associated map hR(k[ϵ]/(ϵ

2)) → F (k[ϵ]/(ϵ2)) is bijective. In this case, the pair
(R, ξ) is also called a miniversal family of F .

A.1. Equivariant deformation of curves. In this subsection, we describe the ⟨ι⟩-equivariant
deformation theory of curves.

Let X0 be a stable curve of genus g over k. Let A be an Artin local Λ-algebra with residue field k.
A deformation ofX0 to A is a stable curve X → Spec(A) with an identification X×Spec(A)Spec(k) =
X0. Two deformations X → Spec(A) and X ′ → Spec(A) are said to be isomorphic if there exists
an isomorphism X → X ′ over A which restricts to the identity on the special fiber X0.

The deformation functor for X0 is a functor

DefX0 : A → (Sets)

that assigns to any A ∈ Ob(A ) the set of isomorphism classes of deformations of X0 to A.
Suppose now that X0 is a hyperelliptic stable curve of genus g over k (cf. Definition 4.1). For an

Artin local Λ-algebra A with residue field k, an ⟨ι⟩-equivariant deformation of X0 to A is the pair
of a stable curve X → Spec(A) with an identification X ×Spec(A) Spec(k) = X0 and an ⟨ι⟩-action on
X whose restriction to the special fiber X0 is the given ⟨ι⟩-action. Two equivariant deformations
X → Spec(A) and X ′ → Spec(A) of X0 are said to be isomorphic if there is an ⟨ι⟩-equivariant
isomorphism X ′ → X over A whose restriction to the special fiber X0 is the identity.

The equivariant deformation functor for X0 is a functor

Def(X0,ι) : A → (Sets)
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which assigns to A ∈ Ob(A ) the set of isomorphism classes of equivariant deformations of X0 to A.
The deformation functor DefX0 has a natural ⟨ι⟩-action induced by the ⟨ι⟩-action on X0. We

define DefιX0
to be the subfunctor of DefX0 consisting of the ⟨ι⟩-invariant elements of DefX0 . We

define a canonical morphism Def(X0,ι) → DefX0 by forgetting the ⟨ι⟩-action, which factors through
DefιX0

.

Lemma A.1. The canonical morphism Def(X0,ι) → DefιX0
is an isomorphism.

Proof. One can obtain the assertion by using [17, Theorem 1.11]. 2

Proposition A.2. The functor Def(X0,ι) is pro-represented by a formal power series over Λ.

Proof. The deformation functor DefX0 is pro-represented by Spf Λ[[t1, . . . , t3g−3]] by [17, p.79].
Since Def(X0,ι) = DefιX0

by Lemma A.1, Def(X0,ι) can be pro-represented by the formal subscheme
of Spf Λ[[t1, . . . , t3g−3]] consisting of the ⟨ι⟩-invariants. Since the order 2 of ι is invertible in Λ, one
can take a suitable coordinate system such that the ⟨ι⟩-action is expressed as

ι∗(t1) = t1, . . . , ι
∗(ts) = ts, ι

∗(ts+1) = −ts+1, . . . , ι
∗(t3g−3) = −t3g−3

for some 0 ≤ s ≤ 3g − 3. It follows that Def(X0,ι) is a formal power series over Λ. 2

Remark A.3. Since the universal deformation C → Spf Λ[[t1, . . . , t3g−3]] is algebraizable ([17,
p.82]), the universal ⟨ι⟩-equivariant deformation of X0 is algebraizable.

A.2. Deformation of nodes with ⟨ι⟩-actions. In this subsection, we consider the deformation
theory of nodes with ⟨ι⟩-actions.

We begin by recalling the deformation theory of nodes. Let O ∼= k[[x, y]]/(xy) be a node over k.
Let A be an Artin local Λ-algebra with residue field k. A deformation of O to A is a co-cartesian
diagram of local homomorphisms

(A.1)

O ←−−−− Bx x
k ←−−−− A

of A-algebras, where B is a flat local A-algebra. Two deformations A → B and A → B′ are said
to be isomorphic if there exists an A-algebra isomorphism B → B′ which makes the co-cartesian
diagrams for B and B′ commutative.

Let A be the category of Artin local Λ-algebras with residue field k as in §A.1. The deformation
functor for O is the functor

DefO : A → (Sets)

that assigns to any A ∈ Ob(A ) the set of isomorphism classes of deformations of O to A.
The deformation functor DefO has a pro-representable hull. To be precise, by [17, p.81],

O = k[[x, y]]/(xy) ←−−−− Λ[[x, y, t]]/(xy − t)x x
k ←−−−− Λ[[t]]

(A.2)

is a pro-representable hull (i.e., a miniversal family) of DefO.
Suppose now thatO is equipped with an ⟨ι⟩-action. Then we have an ⟨ι⟩-action ι∗ : DefO → DefO

as follows. For A ∈ Ob(A ), take any η ∈ DefO(A) with a representative

O α←−−−− Bx x
k ←−−−− A.
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Then the diagram

O ι◦α←−−−− Bx x
k ←−−−− A.

is also a deformation of O to A. We define ι∗(η) is to be the isomorphism class of the above
diagram. We have ι2∗ = id.

Typical examples of nodes with ⟨ι⟩-actions arise from hyperelliptic stable curves. Let X0 be a
hyperelliptic stable curve over k with hyperelliptic involution ιX0 . Recall from the definition of
a hyperelliptic stable curve (cf. Definition 4.1) that for any irreducible component C of X0 with

ι(C) = C, the ⟨ι⟩-action restricted to C is nontrivial. Let c be an ιX0-fixed node. Then O := ÔX0,c

is a node equipped with the ⟨ι⟩-action given by ιX0 . The following lemma concretely describes the
⟨ι⟩-action on O.

Lemma A.4. Let O be a node equipped with the ⟨ι⟩-action as above (i.e., arising from a hyperelliptic
stable curve). Then there exists a k-algebra isomorphism O ∼= k[[x, y]]/(xy) for which the ⟨ι⟩-action
on k[[x, y]]/(xy) is given by either one of the following:

ι(x) = y, ι(y) = x,(A.3)

ι(x) = −x, ι(y) = −y.(A.4)

We remark that the above actions are “admissible” in the sense of Ekedahl [18, Definition 1.2].
In what follows, let O be a node with an ⟨ι⟩-action as in Lemma A.4, and we identify O with

k[[x, y]]/(xy) via the above isomorphism.

Lemma A.5. Let O = k[[x, y]]/(xy) be the node over k with the ⟨ι⟩-action given by either (A.3)
or (A.4). Let ι∗ : DefO → DefO be the induced ⟨ι⟩-action. Then ι∗ = id.

Proof. Let A be an Artin local Λ-algebra with residue field k. Take any element of DefO(A)
with a representative

O = k[[x, y]]/(xy)
α←−−−− Bx x

k ←−−−− A.

Note that O is equipped with the ⟨ι⟩-action given by either (A.3) or (A.4). To show that the
⟨ι⟩-action on DefO(A) is trivial, it is enough to define an A-involution on ιB : B → B such that
α ◦ ιB = ι ◦ α.

We put an ⟨ι⟩-action on Λ[[x, y, t]]/(xy − t) over Λ[[t]] as follows. If the ⟨ι⟩-action on O is
given by (A.3), then we let ι : Λ[[x, y, t]]/(xy − t) → Λ[[x, y, t]]/(xy − t) be the Λ[[t]]-algebra
involution given by ι(x) = y and ι(y) = x. If the ⟨ι⟩-action on O is given by (A.4), then we let
ι : Λ[[x, y, t]]/(xy− t)→ Λ[[x, y, t]]/(xy− t) be the Λ[[t]]-algebra involution given by ι(x) = −x and
ι(y) = −y.

Since (A.2) is a pro-representable hull of DefO, we have the following commutative diagram

O = k[[x, y]]/(xy)
α←−−−− B ←−−−− Λ[[x, y, t]]/(xy − t)x x x

k ←−−−− A ←−−−− Λ[[t]],

where each square is co-cartesian. Then the ⟨ι⟩-action on Λ[[x, y, t]]/(xy− t) induces the A-algebra
involution ιB on B by co-cartesian product, which satisfies α ◦ ιB = ι ◦ α. Thus we obtain the
assertion. 2
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A.3. Global-local morphism. Let X0 be a stable curve of genus g over k, and let p1, . . . pt be all
the nodes of X0. We assume that any node is defined over k. To ease notation, we denote by Defpi
the deformation functor DefÔX0,pi

for ÔX0,pi .

The global-local morphism is a morphism

Φgl : DefX0 →
t∏

i=1

Defpi

that assigns to any deformation X → Spec(A) of X0 the deformation A → ÔX ,pi of each node

ÔX0,pi (cf. [17, p.81]). The morphism Φgl is smooth by [17, Prop.(1.5)].
We consider an ⟨ι⟩-equivariant version of the global-local morphism. Assume that X0 a hyper-

elliptic stable curve over k with hyperelliptic involution ι = ιX0 . Let p1, . . . , pr be the nodes of
X0 fixed by ι, and let pr+1, . . . , pr+s be nodes such that pr+1, . . . , pr+s, ι(pr+1), . . . , ι(pr+s) are the
distinct nodes that are not fixed by ι. The ⟨ι⟩-equivariant global-local morphism is a morphism

Φgl
ι : Def(X0,ι) →

r∏
i=1

Defpi ×
r+s∏

i=r+1

Defpi

that assigns, to any ⟨ι⟩-equivariant deformation X → Spec(A) of X0, the deformation A →
ÔX ,pi of the node ÔX0,pi for 1 ≤ i ≤ r + s. Note that the target of Φgl

ι is
∏r+s

i=1 Defpi =∏r
i=1Defpi ×

∏r+s
i=r+1Defpi , and not

∏r
i=1Defpi ×

∏r+s
i=r+1Defpi ×

∏r+s
i=r+1Defι(pi).

The following proposition shows that the ⟨ι⟩-equivariant global-local morphism Φgl
ι is smooth,

as in the case of the usual global-local morphism Φgl.

Proposition A.6. The morphism Φgl
ι is smooth.

Proof. By Proposition A.2, Def(X0,ι) is pro-represented by a formal power series over Λ. By

(A.2), the pro-representable hull of
∏r

i=1Defpi ×
∏r+s

i=r+1Defpi is a formal power series over Λ. Then

by [17, the proof of Prop.(1.5)], it suffices to show that Φgl
ι (k[ϵ]/(ϵ2)) is surjective.

To do that, we regard Φgl
ι as the restriction of Φgl to the subfunctors consisting of the ⟨ι⟩-

invariants as we now explain. First, by Lemma A.1, Def(X0,ι) is regarded as the subfunctor consist-

ing of the ⟨ι⟩-invariants of DefX0 . Next, we focus on the targets of Φgl
ι and Φgl. We consider the

⟨ι⟩-action on
∏r

i=1Defpi ×
∏r+s

i=r+1

(
Defpi ×Defι(pi)

)
given by η 7→ ι∗(η) for η ∈ Defpi for 1 ≤ i ≤ r

and (η, η′) 7→ (ι∗(η
′), ι∗(η)) for (η, η

′) ∈ Defpi ×Defι(pi) for r + 1 ≤ i ≤ r + s. Let

Ψ :

r∏
i=1

Defpi ×
r+s∏

i=r+1

Defpi →
r∏

i=1

Defpi ×
r+s∏

i=r+1

(
Defpi ×Defι(pi)

)
be the morphism defined by the product of the identity morphisms Defpi → Defpi for 1 ≤ i ≤ r,
and the graph embeddings Defpi ∋ η 7→ (η, ι∗(η)) ∈ Defpi ×Defι(pi) of ι∗ for r + 1 ≤ i ≤ r +
s. For 1 ≤ i ≤ r, the ⟨ι⟩-action on Defpi is trivial by Lemma A.5. For r + 1 ≤ i ≤ r + s,
the morphism Defpi → Defpi ×Defι(pi) is an isomorphism onto the subfunctor of Defpi ×Defι(pi)
consisting of the ⟨ι⟩-invariants. Thus

∏r
i=1Defpi ×

∏r+s
i=r+1Defpi is regarded via Ψ as the subfunctor

of
∏r

i=1Defpi ×
∏r+s

i=r+1

(
Defpi ×Defι(pi)

)
consisting of the ⟨ι⟩-invariants.

Through these identifications, Φgl
ι (k[ϵ]/(ϵ2)) is regarded as the restriction of Φgl(k[ϵ]/(ϵ2)) to the

⟨ι⟩-invariants. By [17, Prop.(1.5)], Φgl(k[ϵ]/(ϵ2)) is surjective. Since 2 is invertible in k, the induced

map between ⟨ι⟩-invariants is also surjective, so that Φgl
ι (k[ϵ]/(ϵ2)) is surjective. 2

Corollary A.7. For any R ∈ Â , Φ̂gl
ι (R) is surjective.

Proof. The assertion follows from Proposition A.6 and [29, Remark 2.4]. 2
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[22] J. Hladký, D. Král’ and S. Norine, Rank of divisors on tropical curves, J. Combin. Theory Ser. A 120 (2013),

1521–1538.
[23] S.Kawaguchi, K.Yamaki, Algebraic rank on hyperelliptic graphs and graphs of genus 3, preprint, arXiv:1401.3935,

2014.
[24] C. M. Lim, S. Payne and N. Potashnik, A note on Brill–Noether theory and rank determining sets for metric

graphs, Int. Math. Res. Not. 2012 (2012), 5484–5504.
[25] Y. Luo, Rank-determining sets of metric graphs, J. Combin. Theory Ser. A 118 (2011), 1775–1793.
[26] G.Mikhalkin and I. Zharkov, Tropical curves, their Jacobians and theta functions, Curves and abelian varieties,

203–230, Contemp. Math., 465, Amer. Math. Soc., Providence, RI, 2008.
[27] S. Payne, Analytification is the limit of all tropicalizations, Math. Res. Lett. 16 (2009), 543–556.
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