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Abstract: Recently, the Java Virtual Machine (JVM) has become widely used as a common execution platform for
various applications. There is often the need to manipulate bytecodes at class-load time, particularly in application
domains that demand dynamic modification of program behaviors. Whereas several bytecode manipulation tools for
Java exist for implementing such behaviors, JVM is also the platform for various modern programming languages,
and there is no need to write bytecode manipulation programs exclusively in Java. In this paper, we propose a novel
bytecode manipulation library for Clojure, a Lisp dialect running on JVM. Our library is as expressive and flexible as
ASM, the de facto standard bytecode manipulation tool in Java, while enabling more concise representation of typical
manipulation cases. Our library works at class-load time as a series of rewrites of (parts of) the tree representing the
target class file, basically in a similar way to Lisp’s macro system. However, our library differs from Lisp’s macro
system in the following significant respects. First, instead of matching a single name against the first item of the target
form (tree), our library matches a tree pattern against the target tree itself during macro expansion so that users can de-
fine rewriting rules for raw class files that cannot contain any special tags (names) for pattern matching. Furthermore,
along with matching tree patterns, our library can extract any information from the static context easily and thus allows
users to avoid cumbersome manual management of such information.

Keywords: bytecode, tree transformation, macro

1. Introduction

The Java Virtual Machine (JVM) is designed such that pro-
grammers can freely manipulate Java bytecode at class loading
time. Utilizing this fact, we can accomplish profiling, debugging,
testing, security checking, and so on by dynamically analyzing
the class files the JVM loads for execution.

In recent years, along with the popularization of several high-
level programming languages running on the JVM such as Scala,
Clojure, and Groovy as well as language implementations tar-
geting the JVM such as JRuby, Rhino, and Jython, various ap-
plications that use the JVM as the execution platform have been
developed. If we use a dynamic analysis tool that targets class
files, we can profile, for instance, the runtime behavior of Scala
programs as well as that of Java programs with a single tool.

To manipule class files, there are several Java bytecode ma-
nipulation libraries (mainly in Java) that make it easy to write
various kinds of manipulations by abstracting the internal struc-
ture of class files. Major Java bytecode manipulation tools are
classified into two categories. The first category contains tools
that allow us to express low-level manipulations using the visi-
tor pattern of the syntax tree representing the class file structure.
Representative of this category is ASM [18], the de facto stan-
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dard bytecode manipulation library. The second category con-
tains tools based on aspect-oriented programming (AOP), which
enable us to weave code fragments into specific parts of the byte-
code. The readability of the code written in the former tool is
relatively low, since, with the visitor pattern, a manipulation of
the syntax tree that depends on multiple nodes is divided into
multiple methods. Furthermore, because we must manage static
context information manually, even a simple analysis or manip-
ulation may cause a rather complicated implementation, depend-
ing on the structure of its target subtree. As for the latter cate-
gory, there is a wide range of developments and studies, from a
tool that directly uses Aspect] [1] to the one that uses a Domain-
Specific Language (DSL) that supports many advanced features
to improve its flexibility [14]. However, at the time of writing
this paper, there is no tool that has a flexibility comparable to the
former tools, and so it seems that their applicability is limited.
On the other hand, as mentioned previously, because the JVM
is widely used as a common platform for various high-level pro-
gramming languages, there is no need to write bytecode manip-
ulations in Java or in any object-oriented paradigms. Therefore,
in this paper, we propose BcMacro, a bytecode manipulation li-
brary for Clojure. In order to have both flexibility that is compa-
rable to ASM and readability that is achieved by concise notation,
BcMacro derives its core concept from the idea of Lisp macros.
The rewriting of syntax trees with a macro is a more declarative
means of meta-programming than a collection of node manipu-
lations along with the traversal of a visitor. Furthermore, from a
practical aspect, we consider that the gradual development of ma-
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nipulation code, enabled by Lisp’s dynamic and interactive eval-
uation environment, can improve its productivity, especially for
software equipped with complex and low-level bytecode manipu-
lations. Incidentally, although BcMacro is a library used in Clo-
jure programs, the class files that are BcMacro’s manipulation
targets may be compiled from source programs in any language,
such as Java or Scala.

BcMacro’s macro expansion (subtree rewrite) mechanism is
largely different from Lisp macros, whose main purpose is to
extend Lisp’s syntax, in the following points. First, to specify
rewritings of raw bytecode, instead of looking at the first element
of each form, BcMacro’s macro expansion matches a part of the
syntax tree with a tree pattern. The syntax of BcMacro’ tree pat-
tern is flexible enough to extract an arbitrary bytecode fragment
from the tree. Moreover, BcMacro’s tree pattern can contain the
static context of the rewrite target; with this feature, we can eas-
ily extract any static context information along with the pattern
matching. This removes the burden of manually managing the
static context information that is imposed if we write with the
visitor pattern.

The main difference between BcMacro and other tree manip-
ulation libraries (whose target data are often XML documents) is
that BcMacro is implemented as an extension to Clojure. Syntax
trees are represented using Clojure’s primitive data types. Tree
patterns are also written in a syntax that is compatible with Clo-
jure’s primitive literal notations. Therefore, we can analyze or
manipulate syntax trees in an intuitive way using BcMacro, co-
operating seamlessly with arbitrary Clojure code. Moreover, Bc-
Macro’s tree patterns are first-class Clojure objects. Therefore,
capabilities such as dynamic pattern composition from multiple
patterns are possible; this is also one of the sources of BcMacro’s
flexibility.

BcMacro’s functionality that uses tree patterns to rewrite sub-
trees is a generic manipulation mechanism and so, in principle,
can be applicable to general tree structures other than those in
Java bytecode. However, in this paper, we primarily intend to
design a practical tool by assuming concrete use cases that are
widely known; therefore, we chose typical Java bytecode as a
concrete rewrite target. Particularly, in the design of tree pat-
terns, we concentrate on realizing concise and straightforward
notations, paying less attention to more theoretical aspects.

The organization of the remainder of this paper is as follows.
First, we overview the related tools and studies in Section 2. Next,
we explain the design of the proposed BcMacro system in Sec-
tion 3. In Section 4, we present several example BcMacro pro-
grams illustrating practical Java bytecode transformations. Next,
in Section 5, we describe the implementation of BcMacro using
tree automata techniques [4]. Finally, we conclude the study in
Section 6.

2. Related Work

Various tools that analyze or manipulate Java bytecode have
been developed. However, most of them deal with class files in
the same way as the Document Object Model (DOM) of HTML
or XML documents. They generate trees that reflect the structure
of the class file format. ASM [18], which is the de facto standard
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tool, provides two data models, the Core and Tree application
programming interfaces (APIs). With the Core API, the user can
write a program that processes the stream of nodes of the tree that
appear in the same order as depth-first traversal while the Tree
API allows the user program to manipulate the tree. Although the
Tree API is more relevant to the BcMacro data model than the
Core API, a program that uses this API is still likely to be com-
plicated when a complicated process depending on multiple con-
texts must be written. This is because the program must explicitly
traverse the tree to collect context information. In contrast, with
BcMacro, the user can write such a complicated process in a sim-
ple program thanks to BcMacro’s declarative tree pattern that can
be expanded or shrunk to an arbitrary range.

AOP based tools help analyze the dynamic behavior of Java
programs [1], [14], [19], [20]. These tools provide high-level no-
tation based on the join point model, which allows us to avoid
describing low-level bytecode manipulation. Nevertheless, they
are not flexible enough. For example, the set of join points are
typically given a priori. DiSL [14] proposed the open join point
model that allows the user to extract some information from the
context at an arbitrary code point. However, such information
is limited by the Java interface representing the context in ad-
vance. Moreover, though the special-purpose API allows a sim-
pler description than low-level tools such as ASM, DiSL requires
imperative description using the API for context manipulations.
This is in sharp contrast to our pattern language, which provides
a declarative interface for extracting context information.

With respect to tree manipulation, BcMacro shares many ideas
with XML document tools and research. The main difference
from these tools is that, in BcMacro, tree patterns are first-class
objects of Clojure. Therefore, we can rely on various program-
ming techniques in Clojure to describe the rewriting code of tree
patterns. In the rest of this section, we discuss techniques for
XML processing, focusing on additional differences.

Some tree patterns that expand the XML schema (represent-
ing the type of the XML document) to extract subtree by al-
lowing us to use bound variables in the schema have been pro-
posed [6], [7], [11]. In particular, a functional language for XML
processing, XDuce [7], which has tree patterns as a built-in lan-
guage facility, is similar to Clojure with BcMacro. However,
there are some differences in the details of expressiveness. With
XDuce in particular, we can express various horizontal patterns
such as a sequence of child nodes sharing a common parent while
vertical patterns such as an ancestor and descendant are limited.
In contrast, BcMacro does not provide a generic regular expres-
sion, but it allows us to describe both horizontal and vertical pat-
terns flexibly. This flexibility helps extract information from a
context that is distant from the rewriting target.

XPath [3] enables us to extract arbitrary nodes by specifying a
path from a starting node to the target node that may be an arbi-
trary distance from the starting node. In XPath, the path is repre-
sented as a sequence of explicit movements. XPath is operational
in comparison with node extraction, i.e., binding a variable to the
node, using tree patterns. Furthermore, it is difficult to extract
various kinds of nodes spread over a tree by a single path because
a single path can only uniformly extract nodes that match condi-
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tions represented by the path.

Kutsia [13] proposed a pattern matching technique for XML
data whose expressiveness is the same as BcMacro. Particu-
larly, Kutsia’s context and sequence variables correspond to Bc-
Macro’s sequence abbreviation patterns and nest abbreviation
patterns that can express sequences of siblings and ancestors of
arbitrary length. However, its matching algorithm differs from
BcMacro in two respects. First, BcMacro’s algorithm searches
for the root of the subtree that is the substitution target while Kut-
sia matches from the root of the tree in a top-down left-to-right
manner. Second, BcMacro finds a single match based on sev-
eral rules while Kutsia enumerates all matches. The reason why
BcMacro’s matching is target-centric is that we believe that it is
practical to match the nearest candidate to the target. Because
BcMacro may traverse over the tree in every direction to choose
the most preferable match, BcMacro uses a more complicated al-
gorithm. Nevertheless, both algorithms are the same in essence.
Another difference is that Kutsia assumes that children of a par-
ticular node are ordered because it deals with XML documents.
Although an extension to deal with unordered children is also
presented in the paper, it is more efficient to deal with a BcMacro
map node as a primitive data type in Clojure.

Note that the XML processing technologies Xduce[7] and
XPath [3] have a strong connection to a different tree automata
technique. As we mention in Section 5, BcMacro is implemented
based on a combination of these two kinds of automata. Thus,
BcMacro does not propose a theoretically more powerful tree
automaton. Nevertheless, BcMacro provides high usability as a
domain specific language because of its seamless interoperability
with Clojure.

For the purpose of program transformation, many studies on
higher order patterns (those that allows us to bind variables to
higher order functions) have also been performed [5], [10], [22].
For example, the BcMacro pattern [... x], which matches a
sequence of any length and binds a variable x to the last element
of the sequence (we explain the details later), can be described

as ¢ [x] in a higher order pattern*'.

For instance, the pattern
matches a sequence [1 2 3], resulting in a binding of c to a
function

(fn [xs] (cons 1 (cons 2 xs)))
that creates a context around the given subtree.

Huet and Lang [10] realized a translation of programs that con-
tain multiple argument functions as their terms by a higher order
pattern matching where a function to be bound is limited up to
second order. Its matching algorithm is the same as that of Kut-
sia. It is a simple top-down left-to-right recursive search from
the root for all matches. Moor and Sittampalam [5] enabled more
complicated program transformations by allowing more higher
order functions to be matched. For example, a combination of
pattern matching functions (see below) of BcMacro can be ex-
pressed as a higher order pattern that takes a second order pattern
as an argument. Yokoyama et al. [22] identified a condition of
patterns that gives a unique solution and proposed a determinis-
tic algorithm based on the condition rather than enumerating all

*I' Here, we regard a vector of Closure in the same light as a list of cons

and nil for simplicity.
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solutions. This is in sharp contrast to BcMacro, which returns a
unique match based on built-in rules. Note that Hu et al. [8] im-
plemented Yicho, which is an implementation of the higher order
pattern of Yokoyama et al. in Template Haskell.

Mohnen [16] expanded the pattern matching of Haskell to a
higher order pattern matching, which has virtually the same
functionality as the second order pattern matching of Huet and
Lang[10], to deal with contexts. Unlike studies on program
transformation, where the target of matching is program code,
Mohnen’s target is a tree constructed by an algebraic data type
(ADT). (BcMacro shares this intended use.) Mohnen hence lim-
ited higher order functions to those that only apply constructors
in their bodies so that variables can bind to only ADT data struc-
tures. The matching algorithm is a top-down left-to-right search
and returns the first solution. Mohnen and BcMacro differ in that
they have different designs, and they differ in the search order,
resulting in different solutions. They are similar in that they are
embedded in general programming languages. However, Mohnen
expanded the pattern matching of Haskell and does not provide
any functionality to deal with patterns as a first class object, such
as a function object, in the host language. Furthermore, Mohnen
only supports up to second order patterns. This makes it difficult
to write complicated programs such as combinations of patterns.

Most of these studies on higher order patterns assume statically
typed languages. This is in sharp contrast to BcMacro, which is
built on the dynamically typed language Clojure. For example,
the reason why the variable c in the previous example ¢ [x] is
bound to the function creating a flat list is that c is limited by
type to functions that take a list of elements of a uniform type
and return a list of the same type. If we applied the same higher
order pattern to Clojure, which allows heterogeneous lists, for ex-
ample, a matching to the value [1 2 [3]] would succeed with a
binding of c to

(fn [xs] (cons 1 (cons 2 (cons xs nil))))

We also believe that the domain specific pattern notation of
BcMacro, which does not use types not explicitly appearing in
the patterns, is more intuitive and friendly to users than function
application terms. Nonetheless, the functionality of higher order
patterns that extract contexts as functions is interesting. It could
be worth considering for bytecode manipulations.

3. Design

We first present an overall picture of the BcMacro system, the
proposed bytecode manipulation library for Clojure, by describ-
ing its general usage.

Users express various manipulations to the abstract syntax
tree (AST), which is the internal representation of a class file
(Section 3.1), by writing (typically multiple) macro definitions.
Macro definitions of BcMacro (Section 3.3) specify the rewriting
of a part of the target AST in essentially the same style as Lisp’s
macro definitions. That is, each definition contains a part that
identifies its rewrite target (called the target subtree) and the Clo-
jure code that constructs the tree put in place of the target subtree
(called the expansion tree).

In a Lisp macro definition, its rewrite target is specified by its
macro call form that includes names bound to its arguments. On
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the other hand, in a BcMacro macro definition, its rewrite tar-
get is specified by a tree pattern (Section 3.2) that represents the
shape of the target subtree.

In Lisp, if the source code contains a macro definition, macro
expansions based on this definition are done automatically at
compile-time. On the other hand, in BcMacro, from each macro
definition, a special Clojure function called a macro expansion
function is generated; it is manually accessible to users. In typi-
cal BcMacro use cases, however, macro expansion functions are
automatically and repeatedly applied to the AST of a class file at
class loading time until no more expansion is possible. After that,
the processed AST is executed, passing through the normal JVM
verifier, and so on. For other cases, BcMacro provides the means
to manually apply a set of macro expansion functions explicitly
specified by the user to a specific part of the AST (Section 3.4).

Moreover, in BcMacro, we can generate a function (called a
pattern matching function) that executes pattern matching only
(i.e., without rewriting the target) from a macro definition (Sec-
tion 3.5). We can express complicated patterns by composing
multiple pattern matching functions, and thus can handle pro-
cesses that are difficult to describe in a simple macro expansion
function.

3.1 Data Model

Unlike tools based on object-oriented languages such as ASM,
BcMacro represents the AST of a class file using only the data
types primitively supported by Clojure, the host language of Bc-
Macro (Fig. 1).

First, integers and strings in a class file appear at the AST’s
leaves as objects of Clojure’s corresponding primitive types.
Next, BcMacro uses only vectors and maps to represent interme-
diate nodes of the AST; it specifically does not use lists or other
types of sequences for this purpose. The reason for this restric-
tion is that the class file format is defined only in terms of arrays
and records in the JVM specification [15], and Clojure’s primi-
tive vectors and maps, respectively, are enough to represent such
kinds of JVM data.

The square brackets in the figure represent a vector intermedi-
ate node and, between the vector and each of its elements (i.e.,
its child nodes), there is an edge labelled with the corresponding
index. The curly brackets in the figure represent a map interme-
diate node and, between the map and each of its elements (i.e., its
child nodes), there is an edge labelled with the corresponding key.
Note that the name of each key in the AST completely coincides
with the name of the corresponding field in the JVM specifica-
tion, and so there is no need to remember tool-specific naming
conventions.

Unlike XML, which is widely used for processing tree struc-
tures, there is no ordering among the children of a map node in
BcMacro’s data model *2. Therefore, each key of the map nodes
is represented, not as a single node having its associated value as
its own child, but as a label of the edge connected to its associ-
ated value. Employing such a data model is the major reason for

*2 Of course, there is some ordering among them in the class file represen-
tation. However, since permutating them does not affect the meaning of

the program, we can regard their ordering as insignificant.
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51 [ ] [,]

Fig.1 AST of Java bytecoe.

BcMacro to use the original pattern expressions described in the
next section instead of the standard regular expressions for the se-
quence of children, as in the XML patterns or schema described
in Section 2.

Moreover, because there is no ordering among siblings, our im-
plementation of BcMacro (described in Section 5) cannot trans-
form ASTSs, which are unordered multi-branch trees, into (or-
dered) binary trees with the first-child/next-sibling references
commonly used in XML processing.

3.2 Tree Patterns

In this section, we explain tree patterns, the notation used in
BcMacro for specifying an arbitrary subtree of the AST. As de-
scribed briefly in Section 1, each tree pattern consists of the part
corresponding to its target subtree (target pattern) and the part
corresponding to the static context (in the remainder of the pa-
per, simply referred to as the context) enclosing the target subtree
(context pattern). The entire tree pattern successfully matches
the target subtree if and only if the following two submatchings
succeed:

(1) Its target pattern matches the target subtree in a top-down
manner.

(2) Its context pattern matches the context in a bottom-up man-
ner.

(The exact meanings of “top-down” and “bottom-up” are ex-

plained in Sections 3.2.1 and 3.2.2, respectively.)

Each target pattern and context pattern has its own set of vari-
ations and notations, and hence we explain them separately in
order. The complete BNF grammar of the tree pattern syntax is
shown in Fig. 2, where Key, Var, Form, and Val in the grammar
represent Clojure keywords, variables, forms, and literal values,
respectively.

3.2.1 Target Pattern

There are six kinds of target patterns: variable, constant, un-
quote, vector, sequence, and map patterns. Each pattern has its
own concise notation. In what follows, we explain their mean-
ings using some simple examples.

Variable pattern: A variable pattern is represented by a Clo-
jure symbol and matches an arbitrary subtree. Variables in the
pattern of a macro definition can be accessed from the macro
body. For example, if a macro expansion function is defined
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Context = Target
| VecContext
| MapContext
| #nest Context

VecContext 1= [ SeqLContext Context SeqRContext
Asopt 1
SeqLContext = €
| .
| SeqLContext Elem
| SeqLContext Elem . . .
SeqRContext 1= €
| e
| Elem SeqRContext
| ... Elem SeqRContext
MapContext  ::= { KVSeq,, Context Key KVSeq,
Asopr ¥
Target = C Seq Asopr )
| @ SeqAsop )
Seq = Elem
| Elem Seq
| & Pat
Elem == Val
| Map
| Pat
| “Form
| #when Form
Pat = Var
| Vec
Vec = [ SeqAs,y 1
Map == { KVSeqAs,y }
KVSeq 1= KV
| KV KVSeq
KV == Elem Key
As = ras Var

Fig. 2 Grammar of tree pattern.

as in the following code *3 (dup [1 2 31) is evaluated as
[[1 23] [12 3]
(defbcmacro dup (x) [x x])

Furthermore, a variable in a pattern can be accessed from
within the same pattern that contains that variable. However, the
extent of such accesses are limited only after the accessed vari-
able matches some subtree. More specifically, in vector patterns
and map patterns, which contain subpatterns for their child ele-
ments, the ordering of tree traversal for pattern matching is de-
fined strictly; therefore, it is possible to access a variable only if
there is a before/after relation between the matching of the vari-
able and its access.

Incidentally, as in patterns of Clojure, ML, Haskell, and so on,
multiple occurrences of a variable pattern of the same name in a
single tree pattern are not allowed.

Constant pattern: Any Clojure constant literal can be used in a
tree pattern. It matches a node whose value is equal to that literal.
For example, the following macro:

(defbcmacro three (3) ...)

matches the tree consisting solely of an integer 3.

Unquote pattern: Sometimes we want to use Clojure’s features
in a tree pattern, such as accessing Clojure variables from inside
the pattern. In such cases, we can write “f in the pattern. Here,
f denotes an arbitrary Clojure form and, if it evaluates to a value
that is allowed to occur in the pattern, such as a numeral value and
a string, the value is embedded there. For example, the previous

*3 The exact specification of defbcmacro, which defines a macro expan-

sion function, and the exact meaning of calling a macro expansion func-
tion is explained in Section 3.3 and Section refsubsec:expansion, respec-
tively.
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macro three can also be defined as follows:
(def two 2)
(defbcmacro three ("(inc two)) ...)

Furthermore, if f evaluates to a pattern matching function or
macro expansion function, the involved patterns are composed.
We explain the details of pattern composition in Section 3.5.

If f evaluates to some value other than the above, it is an error.
Vector pattern: Pattern [py p;
length n if each subpattern p; matches the vector element at the

. pu-1] matches a vector of

corresponding index i. For example, with the following macro:
(defbcmacro zero-and-two ([x _y __1)
[x yD
a vector of length four is transformed to a vector containing only
the first and the third elements.

Furthermore, as in Clojure’s destructuring, we can match the
pattern pof [ ... & p] with a vector that contains tail elements
of the target vector, starting from a certain position.

Pattern matching a vector pattern is performed by traversing
the target tree in a top-down manner, that is, in a depth-first and
left-to-right order. This ordering is one of the precedence rules
of BcMacro, defined to ensure a single match solution, that is,
resolving the possibility of several solutions to occur in a pattern
matching (i.e., the ambiguity of the pattern). According to this or-
dering, the before/after relation between any pair of subpatterns is
fixed. Therefore, in a subpattern, we can refer to variables bound
in other subpatterns before it. For instance, the pattern [x “x]
matches a vector of length two whose elements are the same.
Sequence pattern: We sometimes want to replace a subsequence
of a vector with some other sequence instead of replacing the en-
tire vector. In such cases, we can express the replacement tar-
get simply as a sequence of patterns. The sequence of patterns
matches the target if the first pattern of the sequence matches the
target subtree and the remaining patterns match the right siblings
(subtrees) in the correct order. For example, the macro:

(defbcmacro from-one (1 2 3) ...)
matches element 1 of the tree [0 1 2 3 4].
Map pattern:
map that contains key/value pairs, each of which matches
key/pattern pair [p; k;] of pattern (i = 0,...,n — 1). For
example,

Pattern {po ko ... ps-1 k,—1} matches a

{51 :major-version x :minor-version}
matches any map containing the value 51 associated with key
:major-version and also containing some value associated
with key :minor-version. Note that the map can contain other
values associated with other keys.

Unlike vector patterns, because there is no ordering among
key/value pairs of a map, there is no before/after relation of tree
traversal for map patterns.

BcMacro also has two extra target patterns that can be included
only in vector patterns or map patterns, the as and guard patterns.

An as pattern is written as [... :as x] or {... :as x},
and the variable x is bound to the entire target subtree matching
the pattern.

A guard pattern is written as #when pred and can be embed-
ded in an arbitrary element position of a vector or map (for maps,
only in a value position). A pattern containing a guard pattern as
its component can match only if pred evaluates to true (in Clojure,
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every value other than nil or false is regarded as true).

Note that the timing of the evaluation of pred differs between
vector patterns and map patterns. For a vector pattern, its guard
pattern is evaluated according to the precedence rule defined for
normal element subpatterns; that is, its before/after relation is de-
termined based on the position at which it is embedded in the
vector. For a map pattern, although there is no traversal order-
ing among its key/value pairs, as mentioned previously, its guard
pattern is evaluated after the entire traversal of the corresponding
map is complete so that we can refer to variables bound elsewhere
in the map pattern to write the predicate pred.

Effective usages of the as and guard patterns are illustrated in
Section 4.

3.2.2 Context Pattern

A context pattern is used to express the parent node or ancestor
node (that is a vector or map) of a target subtree. Its notation is
essentially the same as that of the vector or map patterns of the
target pattern in the previous section. For example, the macro:

(defbcmacro sum [0 (x y z) 4] (+ x y z))
expands [0 1 2 3 4] into [®@ 6 4]. Here, the target pattern
inside the context pattern is enclosed by a pair of parentheses,
which acts as a boundary between the static context and replace-
ment target **. ITn BcMacro, each macro expansion replaces only
one part of the tree, and there is exactly one target pattern en-
closed with parentheses in the whole tree pattern.

When replacing a target subtree with a new tree, we sometimes
want to splice it, like the unquote-splicing of Lisp macros. In such
cases, parentheses are prefixed with @. For example, the macro:
(defbcmacro ->roman [0 @(1 2 3) 4] ’[I II III])
expands [®@ 1 2 3 4], not into [® [I II III] 4], but into
[0 I IT IIT 4].

Tree traversal of a context pattern is performed in a bottom-
up and breadth-first manner, contrary to that of a target pattern.
Moreover, if the context pattern is a vector, the traversal is per-
formed starting at the target pattern, first by matching each of
the left-sibling subpatterns with the corresponding vector element
right-to-left, then by matching each of the right-sibling subpat-
terns with the corresponding vector element left-to-right. For ex-
ample, in the following context pattern:

{x :foo
[b a (t) c] :bar
y :baz}

a, b, and c are matched in that order, and then x and y are
matched. Note that there is no before/after relation between the
matchings of x and y.

In addition to the above patterns, we can write the following
two extra patterns in context patterns.
Sequence abbreviation pattern: By placing a token ... at an
arbitrary position in a vector pattern, we can skip any number of
elements (including zero). The skip is done according to vector’s
traversal order until an element that matches the subsequent pat-
tern of ... (if any) is found. For example, with the pattern:

[y ... {_ :foo} ... () ...]

after matching the target pattern (t), the rightmost element of the

*4 The fact that all patterns in the previous section are enclosed with paren-

theses means that their context patterns are empty.
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left siblings that matches {_ :foo} is searched for. The variable
. to the right of the
target pattern, which has no subsequent pattern in the vector pat-

y is then bound to the first element. The . .

tern, means that the matched vector can have any number (and
shape) of elements as right siblings of the target subtree.
Nest abbreviation pattern: By prefixing an arbitrary subpattern
(target or context pattern) of a context pattern with #nest, we can
specify that the prefixed subpattern is not necessarily an immedi-
ate child, but can be a descendant at an arbitrary depth.
{ #nest[1 (x) y] :foo}
matches not only {:foo [1 2 3]} but also
{:foo [100 {:bar [1 2 3]} 200]}.

Just as multiple sequence abbreviation patterns can appear in

For example, the pattern

a single vector pattern, multiple nest abbreviation patterns can be
nested.
Using these abbreviation patterns, we can express the tree pat-
tern in Fig. 1 concisely as:
{ 51 :major-version
[& cs]
[#nest{(c) :code} ...]

:constant-pool
:methods

3
Because each abbreviated part of the figure (---) is straightfor-
wardly mapped to a ... or #nest pattern, we find that the intu-
itive shape of the tree structure is naturally expressed in the above
tree pattern.

3.3 Macro Definition

In addition to defbcmacro, which was used in the previous
sections, BcMacro provides some other ways to define macros.
(1) (bcmacro pattern body)

(2) (defbcmacro name pattern body)
(3) (letbcmacro [(name pattern mbody)*] Ibody)

In BcMacro, (1) is used for generating an anonymous macro
expansion function, (2) is used to define a global macro, and (3)
is used to define (possibly multiple) local macro. We can write
any Clojure code for the macro body (body or mbody) and, when
macro expansion is executed on a tree, the target subtree matched
with pattern is replaced with the evaluation result of the body.
The detailed usage of macros, defined in the above three ways, is
explained in the next section.

3.4 Macro Expansion

Macro expansion functions, defined (or generated anony-
mously) by the methods of the previous section, can be used for
macro expansion by calling them as ordinary Clojure functions.
Every expansion function accepts as its sole argument the loca-
tion of the replacement target in the tree (the concrete represen-
tation of this location is described in Section 5.3). If its pattern
matches the subtree at the argument location, it replaces the sub-
tree and then returns the same location as its result. Otherwise, it
throws an exception.

The above method of macro expansion is inconvenient because
we must specify the location of a target subtree explicitly. There-
fore, BcMacro provides two functions that, as Lisp macros, auto-
matically search for a subtree (subtrees) matching the pattern of
the defined macros and replacing it (them).
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e (bcexpand-1 tree): traverses tree in depth-first order,
macro-expands the first matching subtree, and returns the en-
tire tree. If no subtree matches the defined macros, it returns
tree without any change.

e (bcexpand-all free): traverses tree in depth-first order,

macro-expands all matching subtrees, and returns the entire

tree. If no subtree matches the defined macros, it returns tree
without any change.

When we use bcexpand-all, we must be careful to en-
sure that its expansion process does not loop infinitely. For in-
stance, after several macro expansion processes, a pattern may
match a part of its own expansion subtree, depending on its
shape. Therefore, in BcMacro, we can suppress macro ex-
pansion of an arbitrary node by adding specific metadata to it.
More specifically, if we construct the expansion subtree tree by
(with-aside [mfun®] tree), tree is removed from the set of
target nodes of the macro expansion functions mfun™.

Furthermore, aside from controlling the number of expansions,
BcMacro provides the means to limit the set of macros used for
a macro expansion. First, if we call bcexpand-{1,all} with
a single argument, the set of used macros is limited to those
bound by vars of the current namespace (*ns*), that is, in Clo-
jure’s top-level environment. Therefore, common modularization
techniques using Clojure’s namespaces can also be applied to Bc-
Macro programs.

Moreover, we can limit the set of used macro ex-
pansion functions by explicitly passing it as an ad-
ditional ~ argument to  bcexpand-{1,all}, as in
(bcexpand-{1,all} [mfun*] tree).
ture in combination with letbcmacro, which localizes macro

By using this fea-

definitions, we can further improve the modularity of Bc-
Macro programs and obtain more flexible control over macro
expansions.

3.5 Composition of Patterns

In previous sections, we use a tree pattern only for generating
a macro expansion function, for instance, as an argument to the
function bcmacro. BcMacro also provides the function (bp pat-
tern), which generates a pattern matching function, i.e., a Clojure
function that performs pattern matching of pattern only.

A pattern matching function accepts a target subtree as an ar-
gument and returns a truth value. If its pattern matching succeeds,
it returns true; otherwise, it returns false.

We typically use a pattern matching function by embedding it
into another pattern using the unquote pattern explained in Sec-
tion 3.2.1. More specifically, as for an unquote pattern of the form
“f, if f evaluates to a Clojure function, BcMacro regards it as a
pattern matching function and attempts to match it with the sub-
tree (and its context) located at the position corresponding to the
unquote pattern.

For example, if we want to dynamically change replacement
targets according to situations, the embedding of a pattern can be
conveniently used in combination with Clojure’s function com-
position facility as follows:
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(def patl (bp ...))
(def pat2 (bp ...))

(defn dyn-cond [t]
(cond
<situationl> (patl t)
<situation2> (pat2 t)
relse (and (patl t) (pat2 t))))

(bcmacro [("dyn-cond) ...] ...)

As another example, if we want to define several macros, all
of which have a common context pattern, by defining the context
pattern separately using bp, we can improve the code’s reusabil-
ity.

Furthermore, in BcMacro, macro expansion functions gener-
ated by, for instance, bcmacro in Section 3.3 can also be embed-
ded in patterns. More specifically, as for an unquote pattern of
the form “f, if f evaluates to a macro expansion function *3, Bc-
Macro attempts a macro expansion; that is, BcMacro attempts to
match f with the subtree (and its context) located at the position
corresponding to the unquote pattern and furthermore replaces it
with the expansion subtree. Note that an exception thrown from
within the macro expansion function is propagated to the pattern
matching of the enclosing pattern.

The form f of pattern “f can be a call to a Clojure’s higher-
order function, which accepts a pattern matching function (or a
macro expansion function) as its argument and returns another
pattern matching function (or another macro expansion function).
Such a use of the unquote pattern provides a functionality simi-
lar to Lisp macros at pattern level. More precisely, a Lisp macro
does the following:

After replacing each macro call in a program with the
corresponding macro-expanded code, the entire pro-
gram is executed.

Meanwhile, BcMacro’s unquote pattern does the following:
After replacing each “f in a pattern with the pattern
matching function (or the macro expansion function)
that f returns, the entire pattern is used for pattern
matching.

The above contrast highlights the similarity between them.

For example, the condition “the target subtree does not match
this pattern” can be embedded in a pattern as follows:

(defn pat-not [pat] (fn [t] (not (pat t))))

(bcmacro [(x) “(pat-not (bp 1)) ...]1 ...)

This pattern binds x to the first element of a vector whose second

element is not 1.

As another example, we can define the #when pattern presented
in Section 3.2.1 as a Clojure macro:

(defmacro pat-when [pred]

‘(fn [t] ((becmacro () “pred) t)))
(bcmacro
[(x) "(pat-when (> x 0)) ...] ...)
where, although bcmacro in pat-when evaluates predicate pred

*>In order to distinguish macro expansion functions from normal func-

tions, BcMacro attaches the metadata {:bcmacro true} to each macro
expansion functions.
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as its expansion subtree, the tree is actually used as the return
value of the pattern matching function generated by the enclosing
fn; that is, it is used as a truth value representing the success or
failure of the pattern match.

4. Manipulation of JVM Class Files

In the previous section, we explained the usage of the Bc-
Macro library with some simple examples that are irrelevant to
Java bytecode. In this section, we first show more practical ex-
amples by rewriting typical examples of Java bytecode manipu-
lation described in the ASM paper [12] into BcMacro programs.
Though these examples seem to be written under the assump-
tion that the target bytecode is mainly generated by the Java com-
piler, we may suppose that bytecodes generated from programs in
other languages that use features equivalent to Java have similar
structures. Incidentally, because the Java programs in Ref. [12]
frequently call methods defined elsewhere, a simple line-by-line
comparison between ASM and BcMacro is impossible.

Secondly, we extract the implementation code related to byte-
code translation from Ref.[21], which studies the extension of
JVM with tail call optimization, and show that these translations
can be easily written in BcMacro.

4.1 Simple Transformations
Addition of an Interface

Adding an interface to a class’s implementing interfaces is
achieved by the following code.

(defn constant-utf8 [v]

{:kind :cp-info
:tag 1
:value v})

(defn constant-class [idx]
{:kind :cp-info
itag 7
:name-index idx})

(defn add-classs-info [cp c]
(-> (conj cp (constant-utf8 c))
(conj (constant-class (count cp)))))

(defn add-interface [cfile iface]
(letbcmacro
[(addi ({cpc :constant-pool-count
cp :constant-pool
ifc :interfaces-count
if :interfaces

:as cf})
(let [cp’ (add-class-info cp iface)]
(assoc cf

:constant-pool-count (+ cpc 2)
:constant-pool cp’
:interfaces-count (inc ifc)

:interfaces (conj if (+ cpc 1)))))]
(bcexpand-1 [addi] cfile)))

The function add-interface takes as its arguments cfile, the
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AST representing a class file, and iface, the name (string) of an
added interface. It binds cf to the map representing the whole
class file using an as pattern, and also extracts only necessary
fields with a map pattern. When it matches to a class file, it adds
iface at the tail of cp, a field representing the constant pool,
and also modifies other fields related to the constant pool and the
interfaces (cpc, ifc, and if) appropriately. While constructing
a new map changed by these additions/modifications, it updates
only the affected fields by calling assoc with cf.

In the above process, the addition of an interface at the tail of
cp is done by the auxiliary function add-class-info, which re-
lies only on vector manipulation of pure Clojure. Furthermore,
the function constant-utf8 and constant-class are simple
auxiliary functions for constructing maps of the appropriate form,
each representing an element of the constant pool.

In this example, we must simultaneously change multiple fields
of the map that represents a class file, and that is why we enclose
the entire map in parentheses as the rewrite target. Moreover, be-
cause we know that it is sufficient to rewrite a class file only once,
we use bcexpand-1.

We can also write the addition of a field or method to a class in
a similar way.

Replacement of Field Access

The field access instruction getfield has an index into the
constant pool as its operand, and the constant pool entry at that
index is the name (and the type) of the target field. The replace-
ment of the operand old with the field new is achieved as follows.
In this code, we assume that new is the valid index of some field.
If new indicates a non-existent field, we may instead add it to the
constant pool in the same way as the addition of an interface.

(defn replace-field-access

[cfile old new]
(letbcmacro
[(replfa [_ :getfield (Told)]
(with-aside [replfa] new))]
(bcexpand-all [replfa] cfile)))
The function replace-field-access replaces every occur-
rence of getfield whose operand is old with a getfield
whose operand is new. In this example, since each occurrence
of such a getfield is the replacement target of the macro, we
use bcexpand-all along with with-aside.

Note that we can write the above code by resorting only
to the knowledge of the AST representation of the replace-
ment target, that is, each bytecode instruction has the form
With the help of Bc-
Macro’s powerful pattern matching facility, we can avoid writ-

[(address) (opcode) (operand;)...].

ing code that does not directly correspond to the intent of
replace-field-access.

We can also write the replacement of a method invocation in a
similar way.
Addition of Code at Method Entry

The following code adds the sequence of instructions code at
the beginning of the method body of each method in a class file.

(defn insert-begin [cfile code]

(letbcmacro
[(ib {[@(c) ...] :code}
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(with-aside [ib] (conj code c)))]
(bcexpand-all [ib] cfile)))
Here, we specify only the part of interest (the head of the instruc-
tion sequence) in the pattern while abbreviating the other part
using the ... pattern. Furthermore, we can express the insertion
of code in a simple manner using the @ prefix.

However, in the above code, if there is a jump instruction in
the instructions that matches the . . . pattern, its target address be-
comes inconsistent, separated from the right address by the length
of code. An improved macro that handles this situation can be
defined as follows. (We omit the definition of adjust-offset
for the simplicity. It is implemented with a simple use of map.)

(defn insert-begin-2 [cfile code]

(letbcmacro
[(ib {(cs) :code}
(with-aside [ib]
(concat code (adjust-offset
cs (count code)))))]
(bcexpand-all [ib] cfile)))
Addition of Code at Method Exit

In a similar way to the addition at the method entry, we can add
an arbitrary sequence of code just before each return instruction.

(defn insert-exit [cfile code]

(letbcmacro
[(Gb {[... @([_ :return :as r]) ...] :code}
(with-aside [ib] (conj code r)))]
(bcexpand-all [ib] cfile)))
With the help of the . . . pattern and the vector pattern containing
:return, we can specify the insert position of code in a simple
manner.

Furthremore, in this example, if we want to adjust the target
address of the jump instructions, we can apply the same process
as insert-begin-2 only to the second ... pattern.
Replacement of Method Body

In order to replace the body of the method named mname with
code, we first consider the following naive macro definition.

(defn replace-method-wrong

[cfile mname code]
(letbcmacro
[(replm {cp :constant-pool
#nest{
:method-info :kind
index :name-index
#when (= (:value (cp index))
mname)
#nest{(c) :code}
:attributes}
:methods}
code)]
(bcexpand-1 [replm] cfile)))
In the class file, the name of each method is included in the con-
stant pool (of type vector) as a string, and its method body, which
is included in the :methods field, only contains the index of the
corresponding constant pool entry. Therefore, in the predicate
form of the #when guard that is used to search for a method dec-
laration whose method name is mname, the code compares the
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name extracted from the vector cp, using the index bound to the
pattern variable index, with mname.

In this way, BcMacro’s #nest pattern is useful for describ-
ing a process that needs multiple data that are placed in loca-
tions distant from each other in the tree. Furthermore, because
each method declaration has a complex structure, it uses another
#nest pattern to extract the bytecode instructions of the method
body.

However, as described in the previous section, variable bind-
ings in context patterns occur in the inner-first order, and the
variable cp in the #when predicate form is actually still unbound
when it is evaluated. To solve this problem, we can separate the
process into two macro definitions as follows.

(defn replace-method-aux

[cp methods mname code]
(letbcmacro
[(replm {:method-info :kind
index :name-index
#when (= (:value (cp index))
mname)
#nest{(c) :code}
:attributes}
code)]
(bcexpand-1 [replm] methods)))

(defn replace-method [cfile mname code]
(letbcmacro
[(get-cp {cp :constant-pool
(ms) :methods}
(replace-method-aux
cp ms mname code))]
(bcexpand-1 [get-cp] cfile)))
This code first extracts the constant pool using the macro in
the function replace-method, and then calls the function
replace-method-aux, which contains the macro for replacing
the method body with the extracted constant pool as an additional
argument. Because BcMacro’s functionality is embedded in Clo-
jure, seamless cooperation between BcMacro macro definitions
and raw Clojure code is possible. That is why, as the above ex-
ample illustrates, we can change the tree manipulation process
flexibly by slightly modifying the coding style of the raw Clojure
code.

4.2 Tail Call Optimization

In this section, among the proposed implementation methods
of Ref. [21], we re-implement only the part that is directly related
to Java bytecode translation.

First, to explain the fundamental approach, we consider the
following simple macro that detects and replaces a tail call in-

struction.
(defbcmacro tcl
[...
[addr (:invokestatic) idx]
[ :ireturn 1
..
:tailinvokestatic)

724



Journal of Information Processing Vol.23 No.5 716-729 (Sep. 2015)

In the above pattern, an occurrence of the invokestatic instruc-
tion followed by ireturn is regarded as a tail call, and in that
case, the opcode of that occurrence is replaced with the special-
purpose instruction tailinvokestatic. Note that we assume
that the return type of the method called by this invokestatic
instruction is int.
Next, we present an implementation that considers the exis-
tence of exception handlers.
(defbcmacro tc2
{L[...
[addr (:invokestatic) idx]
[_ rireturn ]
] :code
ext :exception-table
}
(loop [es ext]
(if (seq es)
(let [[[start end _ _] & es’] es]
(if (and (<= start addr)
(< addr end))
rinvokestatic
(recur es’)))
:tailinvokestatic)))
For each exception handler, the start and end addresses of the
bytecode between which the handler is active are stored in the
exception table ext. By comparing addr, the address of the
invokestatic instruction, with these addresses, we can check
that the exception handler is active for this invokestatic in-
struction. If it is active, this instruction is not a tail call and thus
not replaced.
Finally, we present an implementation that considers the return
type of the method called by invokestatic instructions.
(defbcmacro tc3
{ cp :constant-pool
#nest { [...
[addr (:invokestatic) idx]
[— rireturn ]
.] :code } :methods }
(let [[cname-idx signature-idx] (cp idx)
[name type] (cp signature-idx)]
(if (.endsWith type "I'")
:tailinvokestatic
:invokestatic)))
We can reach the signature information of the method called by an
invokestatic instruction by dereferencing indirect references
(indices) into the constant pool several times, starting from the
index operand idx of the invokestatic instruction. We can
obtain the return type of the method by simply looking at the last
character of the method signature of type string. These operations
can be easily done with the raw Clojure code of the macro body.
As the examples of this section illustrate, in the BcMacro sys-
tem, users can choose either of two coding styles: one in which a
rewrite operation is entirely defined in a single macro definition,
or another in which we first narrow down rewrite targets using
a rough pattern and then perform more involved data manipu-
lations such as the extraction of node information and checking
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of more refined conditions for node properties in normal Clojure
code. On the other hand, with visitor patterns, for instance, users
do not have such a choice and are forced to write the operation as
a collection of separated visit methods for tree nodes.

5. Implementation

As mentioned in the comparison with XML technologies in
Section 2, a BcMacro tree pattern is implemented by translating
it into Clojure code that behaves as a combination of two kinds
of tree automata (more precisely, it also includes some BcMacro-
specific extensions). Macro expansion functions perform pattern
matching by executing the translated Clojure code against ASTs
that are taken as their arguments.

Actually, translation of tree patterns into Clojure code is imple-
mented as a two-level translation phase mediated by an interme-
diate language that models the tree automata in a straightforward
manner. First, in Section 5.1, we describe the specification of the
intermediate language. Next, in Sections 5.2 and 5.3, we explain
translation from tree patterns to intermediate code fragments and
translation from intermediate code fragments to Clojure code, re-
spectively. Furthermore, in Section 5.4, we explain the imple-
mentation of macro expansion functions such as bcexpand-all.

5.1 TA-based Intermediate Language

The tree-automata (TA) based intermediate language used in-
ternally in BcMacro is based on a behavior model that combines
features of both tree-walking automata *® used for the implemen-
tation of XPath [2], and the marking tree automaton, used for im-
plementation of XML patterns [17].

A tree-walking automaton repeatedly operates two actions: it
checks whether a certain constraint (such as “Its label name is
....7 or “Itis the root of the entire tree.”) is satisfied by the current
tree node (called the current location), and one-step movements
from the current location to its parent/child node or adjacent sib-
lings. It begins to operate with its initial node as the current lo-
cation and with its initial state as the current state. It repeats the
tests and movements specified in its set of transition rules until
it enters one of its final states or gets stuck. The node at which
it enters a final state is defined as the extracted node of the au-
tomaton. It is known that each path expression of XPath exactly
corresponds to a set of transition rules.

Because the syntactical structure of each tree pattern of Bc-
Macro is recursive, it seems that there is no natural correspon-
dence between a tree pattern and the sequence of sequential op-
erations of a tree-walking automaton. However, we can cre-
ate a correspondence between them by decomposing the whole
tree pattern into primitive patterns and sequentially executing the
set of sequential operations corresponding to these primitive pat-
terns. That is, while matching a tree pattern with some subtree of
a tree, we can construct a tree automaton whose initial location is
the root of the subtree and whose transition rules encode the ac-
tions such that the tree automaton walks through a part of the tree
while testing whether each subpattern (included in the target pat-
tern or the context pattern) can be matched with the appropriate

*6 Although the paper calls it the caterpillar automaton, it is essentially a

tree-walking automaton.
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Table 1 Intermediate language instructions.

Instruction form Explanation

~

:some-right s)

~

:nest s)

(:var x) marks the current location with x (i.e., binds a variable x to the subtree rooted at the current location).

(:left) moves to the left sibling.

(:right) moves to the right sibling.

(:vec-down) tests whether the current node is a vector and, in that case, moves to the leftmost child.

(:vec-up) tests whether the current node is an element of some vector and, in that case, moves to the parent.

(:map-down key) tests whether the current node is a map and, in that case, moves to the child corresponding to key.

(:map-up) tests whether the current node is an element of some map and, in that case, moves to the parent.

(:reset) moves the current location to the initial node (i.e., the root of the target subtree).

(:val v) tests whether the subtree rooted at the current location is equivalent to the constant v using Clojure’s equal function.
(:unquote exp) tests whether the subtree rooted at the current locaion is equivalent to the result value of exp using Clojure’s equal function.
(:guard exp) tests whether the result value of exp is true in the environment including : var bindings so far.

(:no-left?) in the assumption that the current node is an element of some vector, tests whether its left sibling does not exist.
(:no-right?) in the assumption that the current node is an element of some vector, tests whether its right sibling does not exist.
(:some-left s) in the assumption that the current node is an element of some vector, tests whether there is another element matching

the instruction sequence s in the set of its left siblings.

in the assumption that the current node is an element of some vector, tests whether there is another element matching
the instruction sequence s in the set of its right siblings.

tests whether there is a node matching the instruction sequence s while walking toward the root of the entire tree.

~

:remove-and-left)
:merge-rights)

~

executes the zipper function merge-rights.

executes the zipper function remove-and-left.

node.

A marking tree automaton walks through the tree in the same
way as an ordinary top-down/bottom-up tree automaton, and ad-
ditionally may mark arbitrary nodes, each with an element of the
set of variables as needed. When the automaton terminates, each
variable marked at some node in the tree is bound to the subtree
rooted at this node. In BcMacro, this marking functionality is
used for implementing bindings of variable patterns and as pat-
terns.

The set of BcMacro’s intermediate language instructions,
whose design is based on the above tree automata, is listed in
Table 1.

The set of tests that can be applied to the node of the current
location is limited to those that are sufficient to realize the tree
patterns. Each of these tests is implemented as a Clojure function
that tests a particular property of vectors and/or maps.

Instructions :some-left, :some-right, and :nest are used
for implementing abbreviation patterns of context patterns. They
could also be implemented using regular expression paths of the
path expressions proposed in Ref.[2] (not included in the stan-
dard XPath) in principle. However, for simplicity of implemen-
tation, we implemented these instructions directly as Clojure re-
cursive functions.

The zipper functions executed in the last two instructions are
explained in Section 5.3 and their usage is described in Sec-
tion 5.2.

5.2 Translation from Tree Pattern to Intermediate Code
We describe the translation from various kinds of tree patterns
to sequences of intermediate language instructions by showing
some typical examples.
For example, the pattern ([1 2 x y & r]) is translated to
the following sequence of instructions:
[(:vec-down) (:val 1) (:right) (:val 2)
(:right) (:var x) (:right) (:var y)
(:right) (:merge-rights) (:var r)
(:remove-and-left) (:remove-and-left)
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(:remove-and-left) (:remove-and-left)

(:vec-up)]
This code first moves to the leftmost element of a vector by
(:vec-down) and then tests whether the element is equal to 1 by
(:val 1). Next, it moves to the right neighbor and performs a
similar test. A variable pattern, such as x, is bound by (:var x).
Because a sequence of elements after & must be bound to the
variable r as a single vector, it executes (:merge-rights) just
before the instruction (:var r). After traversing the elements of
the vector from left to right in this way, it finally returns to its start
position by executing (:remove-and-reft) and (:vec-up).

The pattern {t :tag, (mj) :major, [m n] :minor},

which contains a context pattern, is translated to a combination
of the following sequence of instructions:

[C:var mj)]

which performs pattern matching with the target subtree, and the
following sequence of instructions:

[(:map-key :major) (:map-up) (:map-down :tag)
(:var t) (:map-up) (:map-down :minor)
(:vec-down) (:var m) (:right) (:var n)
(:remove-and-left) (:vec-up) (:map-up)]

which performs pattern matching with the context. As described
in Section 3, pattern matching of a context pattern is done in
breadth-first and bottom-up, and its instruction sequence is ar-
ranged as above.

5.3 Translation from Intermediate Code to Clojure Code

A sequence of intermediate language instructions is further
translated to the Clojure code fragments whose behavior directly
corresponds to the intuitive explanations of Table 1. In order to
realize one-step walks towards arbitrary directions (parent, child,
and left/right siblings), the translated Clojure code uses the zipper
functions [9] at runtime. A zipper is a data structure that we use to
focus on a particular tree node at every moment. Using it, we can
efficiently perform various tree manipulations (such as insertion,
deletion, and replacement of subtrees) around the node of focus
in functional programming style. Furthermore, we can efficiently
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Table 2 Zipper functions.

Function form Explanation

(lefts loc)
(rights loc)
(key loc)

in the assumption that loc is an element of some vector, returns the sequence of its left siblings.
in the assumption that loc is an element of some vector, returns the sequence of its right siblings.
in the assumption that loc is an element of some map, returns the key that is associated with the element.

(left loc)
(right loc)
(down loc)

(down loc key)
(up loc)

in the assumption that [oc is an element of some vector, returns the location of its left sibling.

If the left sibling does not exist, it returns nil.

in the assumption that loc is an element of some vector, returns the location of its right sibling.

If the right sibling does not exist, it returns nil.

in the assumption that loc is a vector, returns the leftmost element. If the vector is empty, it returns nil.
in the assumption that [oc is a map, returns the location of the element that is associated with key.
returns the location of the parent node of loc. If loc is the root of the entire tree, it returns nil.

(replace loc node)
(replace-splicing loc node)

(merge-rights loc)

(remove-and-left loc)

replaces the subtree rooted at loc with node and returns the location of node.

in the assumption that loc is an element of some vector, replaces the subtree rooted at loc with a vector node by
splicing it. It returns the location of the leftmost element of node.

generates a new vector consisting of the subtree rooted at /oc and its right siblings, and replaces the subtree rooted
at loc with the vector. It returns the same location as the argument.

removes the subtree rooted at loc and returns the location of its left sibling (or nil if it does not exist).

(->zip node)
(node loc)
(root loc)
(next loc)
(end? loc)

returns the subtree rooted at loc.

Otherwise, it returns false.

takes node, the root node of some tree, turns the tree into a zipper, and returns the location of the root node.

repeatedly calls up, starting from loc to the root, and returns (the root node of) the entire tree.
returns the next location of loc in the order of the depth-first traversal of the entire tree.
returns true if loc is the last location in the order of the depth-first traversal of the entire tree.

move the node of focus towards arbitrary directions.

In fact, Clojure supports zipper functions as a part of the stan-
dard library. For the purpose of implementing BcMacro, the
functionality of the standard library for vector nodes is sufficient.
On the other hand, for map nodes, the standard library creates the
corresponding zipper structures by first transforming each map
into a vector of two-element key/value vectors; such a transfor-
mation makes it difficult for BcMacro to treat map’s elements as
unordered sets, as described in Section 3.1. Therefore, in our im-
plementation, we use our original zipper library, which has modi-
fied zipper structures for maps as well as several optimized func-
tions for our purposes.

The list of BcMacro zipper functions is shown in Table 2.

Using zipper functions, for instance, we can translate the in-
termediate language instruction (:var x), which binds x in the
original pattern with the subtree rooted at the current location, to
the following Clojure code:

(let [loc (->zip tree-root)

x (node loc)
.

D
where Clojure’s 1et expression is equivalent to other Lisp’s let*
expression.

As another example, the intermediate instruction (:val v),
which matches the current node with constant v, is translated to
the following Clojure code:

(let [loc (->zip tree-root)

_ (when-not (= (node loc) v)
(throw (MatchException. "...")))
.

D
where, if the matching fails, a dedicated exception is thrown. (For
catching this exception, refer to bcapply in the next section.)

The other intermediate language instructions can be translated
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to Clojure code using zipper functions in the same straightfor-
ward way. Instructions replace and replace-splicing are
used for replacing matching subtrees, merge-rights is used for
processing a vector’s & patterns, as described in the previous
section, lefts and rights are used for realizing intermediate
language instructions no-left? and no-right?, and next and
end? are functions for traversing the entire tree and are used for
auto macro expansions in the next section.

Finally, we explain the Clojure macro bcmacro, which gener-
ates a macro expansion function using the two-level translations
of the last two sections. The definition of bcmacro is as follows.

(defmacro bcmacro [pat & body]

(let [[tgt cxt] (compile-pat pat [])
[is-at tgt] (if (at-target? tgt)
[true (second tgt)]
[false tgt])
tgt (compile-target tgt [1)]
“(fn [loc#]
(let ["@(emit-code tgt)
“@(emit-code cxt)
t# (do "@body)]
("(if is-at
"replace-splicing
"replace)
loc# t#)))))
When the Clojure system compiles a source program that calls
bcmacro, it generates a pair of the intermediate instructions tgt
and cxt using the function compile-pat, which performs the
translation of Section 5.2, and then generates Clojure code frag-
ments using the function emit-code, which performs the trans-
lation of Section 5.3.

The Clojure macro bp is implemented in the almost same way
as bcmacro except that it does not include the code for replac-
ing the matching subtree and the whole code is enclosed with an
exception handler so that, if matching fails, it returns nil instead.
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5.4 Macro Expansion
The functions bcexpand-{1,all}, used directly by users
for auto macro expansions, are implemented with the following
lower-level functions bcfind and bcapply, which process a par-
ticular location of each zipper structure:
(defn bcapply [macros loc]
(loop [[m & mnext :as ms] macros
result nil]
(or
result
(when ms
(recur
mnext
(try (m loc)
(catch Exception e nil))))))

(defn bcfind [macros loc]
(loop [loc loc]
(if (end? loc)
nil
(or (bcapply macros loc)
(recur (next loc))))))
The function bcapply applies macro expansion functions in the
sequence macros to location loc in order, and returns the result
of the first-matching one. If nothing in macros matches, it returns
nil. Function bcfind walks the entire tree in depth-first order,
starting from location loc, while applying bcapply to each node
in that order. Function bcfind returns the first non-nil result
of bcapply (the location of the matching macro function’s ex-
pansion result). If no macro expansion succeeds even after the
traversal of the entire tree, it returns nil.
Using the above functions, bcexpand-{1,all} can be imple-
mented as follows.
(defn bcexpand-1 [macros form]
(if-let [rslt (bcfind macros (->zip form))]
(root rslt)
form))

(defn bcexpand-all [macros form]
(loop [loc (->zip form)]
(if-let [rslt (bcfind macros loc)]
(recur rslt)
(root loc))))

6. Conclusion

In this paper, we propose BcMacro, a tool for writing the anal-
ysis and manipulation of JVM class files conveniently in Clojure.
BcMacro is based on the data model that treats the entire class
file as a syntax tree. Its manipulation unit is a macro definition
that consists of a tree pattern specifying its rewrite target and a
pure Clojure expression used for constructing a new subtree that
is placed instead of the rewrite target.

The advantages of BcMacro are as follows:

e One tree pattern can extract multiple context data placed at

distant locations.

e With the help of Clojure’s macros, the syntax of BcMacro’s
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tree patterns is intuitive and straightforward for Clojure pro-
grammers.

e Aside from auto macro expansions, we can trigger a macro
expansion from Clojure code manually. We can also seam-
lessly incorporate the part of the code that is written declar-
atively with tree patterns with raw Clojure code.

For future work, we first want to identify manipulations that
are impossible with the current BcMacro by investigating many
real applications that manipulate Java bytecode.

Because BcMacro’s macro definitions and tree patterns are in-
dependent of the Java bytecode format, they can be used for other
binary data or general tree structures. Finding such applications
and extending BcMacro’s functionality according to their needs
are another direction for our future work.

Furthermore, BcMacro’s abstract syntax tree is constructed
only from vectors and maps, which are pervasive data types sup-
ported by most modern programming languages. Therefore, we
think that porting BcMacro to other languages or developing a
variant of BcMacro in other languages will be relatively easy.

We also would like to extend BcMacro with features that au-
tomatically control the consistency of the Java bytecode, such as
the preservation of mutual references in the constant pool and the
auto-update of the offset operand of each jump instruction.
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