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We investigate properties of the net baryon number fluctuations near chiral crossover in a hot
and dense medium of strongly interacting quarks. The chirally invariant quark–antiquark inter-
actions are modeled by an effective quark–meson Lagrangian. To preserve remnants of criticality
in the O(4) universality class, we apply the functional renormalization group method to describe
thermodynamics near chiral crossover. Our studies are focused on the influence of the momen-
tum cuts on the critical behavior of different cumulants of the net quark number fluctuations.
We use the momentum scale dependence of the flow equation to examine how the suppression
of the momentum modes in the infrared and ultraviolet regimes modifies generic properties of
fluctuations expected in the O(4) universality class. We show that the pion mass mπ is a natural
soft momentum scale at which cumulants are saturated at their critical values, whereas for scales
larger than 2mπ the characteristic O(4) structure of the higher-order cumulants gets lost. These
results indicate that when measuring fluctuations of the net baryon number in heavy ion colli-
sions to search for a partial restoration of chiral symmetry or critical point, special care must be
taken when introducing kinematical cuts on the fluctuation measurements.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Subject Index A40, D28, D31

1. Introduction

Exploring possible evidence of partial restoration of chiral symmetry in a medium created in heavy
ion collisions is one of the most important and challenging problems [1–3]. Experimental studies
along this line have been carried out by measuring fluctuations of conserved charges, in particular
of the net baryon number [4,5] and the electric charge [6].

Fluctuations of conserved charges are particularly interesting probes of critical phenomena and
the phase diagram in QCD. The charge currents couple to the soft “sigma” modes, thus correlations
and fluctuations of charge densities are directly affected by the chiral symmetry restoration at finite
temperature and net baryon number density [7–12].

For massless two-flavor quarks, the QCD phase transition was conjectured to be of the second order,
and belonging to the O(4) universality class [13]. Current lattice QCD (LQCD) simulations at phys-
ical quark masses show that at vanishing and small baryon density the transition from a hadron gas
to a quark gluon plasma is crossover [14]. In addition, LQCD also indicates that the chiral crossover
appears in the critical region of the second-order transition belonging to the O(2)/O(4) universality
class [15,16]. Consequently, observables which are sensitive to criticality related with a spontaneous
breaking of a chiral symmetry should, in these fluctuations of net baryon number and electric charge,
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exhibit characteristic properties governed by the universal part of the free energy density [9,10].
The magnetic equation of state and cumulants of net charges at physical quark masses have been stud-
ied in first-principle lattice QCD calculations [17–20], as well as in effective chiral models [21–32].
Their properties, which are obtained beyond mean-field level, have been shown to be consistent with
general expectations originating from the O(4) scaling.

The above results have opened new opportunities to verify the QCD phase boundary experimentally
by measuring fluctuations of conserved charges [10,16,18,28,33–35], and their probability distri-
butions [36–39]. This is particularly the case since the chiral pseudocritical line appears near the
phenomenological freezeout line [10]. Consequently, the hadron resonance gas (HRG) partition func-
tion constitutes the regular part of a free energy density of QCD in a hadronic phase, thus, also, a
reference for the non-critical behavior of net charge fluctuations and their probability distribution at
the phase boundary [10,33,37,39].

Cumulants of net baryon number fluctuations, quantified by the net protons, have recently been
explored in heavy ion collisions by the STAR Collaboration [4,5]. The data show deviations from the
HRG reference that are qualitatively consistent with theoretical expectations based on the O(4) chiral
critical dynamics [39]. However, the role of different approximations and uncertainties associated
with the event-by-event measurements of fluctuations remains to be clarified [40–44].

In particular, STAR measurements of the Beam Energy Scan program at the Relativistic
Heavy Ion Collider were carried out at midrapidity and within the transverse momentum range
0.4 < pT < 0.8 GeV/c.

The criticality related to the chiral symmetry restoration is dominantly governed by soft momentum
modes. One expects that particles produced with low momenta carry information on such soft mome-
tum modes in an interacting medium. Although there is no direct one-to-one connection between the
momentum scale in the interacting medium and the momentum of emitted particles, nevertheless,
one expects that imposing cuts on the latter also restricts access to the soft modes. Consequently, cuts
imposed on particle momenta can implicitly influence properties of cumulants of conserved charges
near the phase boundary.

The main objective of this paper is to study how the momentum cuts can modify critical prop-
erties of different cumulants of the net baryon number in the O(4) universality class. Our studies
are carried out within the quark–meson (QM) model. In order to correctly account for the O(4)

scaling properties of different physical observables near the chiral transition we apply the functional
renormalization group (FRG) method [45–47].

We use the momentum scale dependence of the FRG flow equation [48–51] to examine how
the suppression of the momentum modes in the infrared and ultraviolet regimes modifies generic
properties of the net baryon number fluctuations in the O(4) universality class.

We show that the pion mass mπ is a natural soft momentum scale at which cumulants are satu-
rated at their critical values, whereas for scales larger than 2mπ the characteristic O(4) structure of
the higher-order cumulants gets lost. We also show that the restriction of momentum modes in the
ultraviolet regime can also deflect the O(4) structure of the net baryon number fluctuations.

Our results indicate that when measuring fluctuations of the net baryon number in heavy ion colli-
sions to search for partial restoration of the chiral symmetry or critical point, the detailed dependence
of the results on kinematical cuts has to be examined.

This paper is organized as follows: In the next section, we introduce the quark–meson model and
its critical properties. In Sect. 3, we present results on momentum scale dependence of different
cumulants and their ratios. Section 4 is devoted to the concluding remarks.
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2. Quark–meson model and fluctuations

We employ the two-flavor quark–meson model to explore the momentum scale dependence of the net
quark number flucutations at finite temperature and density. The quark–meson model is an effective
realization of low-energy properties of QCD in which chiral symmetry breaking is described by
the O(4) meson multiplet φ = (σ, �π) coupled to quark fields q with Yukawa coupling constant g.
The QM model Lagrangian reads

L = q̄[iγμ∂μ − g(σ + iγ5�τ · �π)]q + 1
2(∂μσ)2 + 1

2(∂μ �π)2 − U (σ, �π), (1)

where U (σ, �π) denotes the mesonic potential

U (σ, �π) = 1

2
m2φ2 + λ

4
φ4 − hσ. (2)

The O(4) chiral symmetry is spontaneously broken to O(3) yielding 〈σ 〉 �= 0 when m2 < 0. The
explicit symmetry-breaking term −hσ with h = fπm2

π gives the nonzero pion mass.

2.1. Flow equation for quark–meson model at finite temperature and density

The FRG approach provides an efficient method to evaluate the effective potential, which accounts
for quantum fluctuations [45–47,52].

We introduce a scale-dependent effective action 	k[φ, q], which becomes the classical action S at
the ultraviolet cutoff scale 
, and the full quantum effective action 	[φ, q] in the k → 0 limit:

	
 = S, 	k→0 = 	. (3)

The evolution of 	k[φ, q] with the renormalization scale k is given by the following flow
equation: [45]

∂k	k[φ, q] = −Tr

[
∂k Rk F (p)

(
Rk F (p) + 	

(2,0)
k

)−1
]

+ 1
2Tr

[
∂k Rk B(p)

(
Rk B(p) + 	

(0,2)
k

)−1
]

,

(4)

where ∂k ≡ ∂/∂k, and the trace runs over the internal momentum p, as well as spinor, color, and
flavor indices. Rk,B(p) is an arbitrary cutoff function which suppresses propagations of the bosonic

modes with p < k, originating from inserting a mass-like term, 1
2

∫ d D p
(2π)D Rk,B(p)φ(p)φ(−p), into

the action. The fermionic counterpart Rk,F (p) is introduced in a similar fashion. The 	
(a,b)
k in Eq. (4)

denotes the a-times fermionic and b-times bosonic functional derivatives of 	k[φ, q].
Owing to the scale-dependent two-point functions, the flow equation (4) has the one-loop structure

with an insertion of ∂k Rk,B(F)(p) which has a strong peak at p = k. At finite temperature, following
the standard imaginary time formalism, the integral over the loop momentum p is replaced by a
Matsubara sum.

To solve the flow equation, we employ the following optimized regulator functions: [53]

Ropt
k,B(p) =

(
k2 − p2

)
θ

(
k2 − p2

)
(5)

Ropt
k,F (p) =

(
p + iμγ 0

)⎛
⎝

√
(p0 + iμ)2 + k2

(p0 + iμ)2 + p
− 1

⎞
⎠ θ

(
k2 − p2

)
. (6)

In the integration over the internal momentum p, the cutoff function Rk,B(F)(p) in a full propaga-
tor plays the role of a mass below p < k, and its derivative ∂k Rk(p) implements an integration of
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momentum shell, as in an original Wilsonian idea. By integrating the flow equation, Eq. (4), from
k = 
 to k 	 0, one gets the full effective action, which includes quantum fluctuations.

The use of spatial momenta in the regulator functions in Eqs. (5) and (6) allows summation over all
Matsubara modes. Thus we deal with the 3D system in thermal equilibrium entirely during the scale
evolution. In principle, one can employ a Euclidean-invariant form of the regulators by replacing p2

with p2. However, such a procedure naturally also includes the cutoff in the Matsubara modes which
induces various difficulties and the dimensional reduction can be achieved only in T/k 
 1 [53,54].
Since our main objective is to investigate the influences of the three-momentum cut on O(4) behavior
of fluctuations of the conserved charges, we have not introduced the cut in the Matsubara modes. In
this way we avoid the modifications of the thermal medium properties, in particular its Boltzmann
momentum distribution.

The flow equation (4) for the scale-dependent effective action includes the two-point function.
Formally one can obtain the flow equation for the scale-dependent two-point function by taking the
functional derivatives with respect to the fields. As the FRG flow includes higher-order correlation
functions, the flow equation exhibits an infinite hierarchy, which one needs to truncate to solve it.

The evolution of the k-scale dependent quantities, the so-called RG trajectory, depends on the
choice of the regulator Rk and how to truncate the hierarchy, by construction.

To investigate critical phenomena, which are governed by soft modes, it is convenient to assume that
the field φ(x) varies slowly. Then one can put an ansatz for the scale-dependent effective action based
on the derivative expansion. To leading order, and ignoring field renormalization, the ansatz reads

	k[φ, q] =
∫

d Dx

[
q̄[iγμ∂μ − g(σ + iγ5�τ · �π)]q + Uk(φ(x)) + 1

2
(∂μφ(x))2

]
, (7)

which is called the local potential approximation. This approximation, together with the optimized
cutoff function, has been shown to produce the O(4) criticality in the QM model [48]. Thus we
expect that different regulators and truncation schemes result only in small quantitative difference.

Putting this ansatz and the regulator functions (5) into the flow equation (4), one obtains a
differential equation for the effective potential Uk in a closed form. Introducing a field vari-
able ρ ≡ φ2/2 = (σ 2 + �π2)/2, the flow equation for the scale-dependent thermodynamic potential
density 
k = T 	k/V is given by

∂k
k(ρ; T, μ) = k4

12π2

[
3

Eπ

{1 + 2nB(Eπ)} + 1

Eσ

{1 + 2nB(Eσ )}

− 2νq

Eq

{
1 − nF

(
Eq + μ

) − nF
(
Eq − μ

)}]
. (8)

The first, second, and third terms stand for π , σ , and quark contributions, as seen from
the corresponding thermal distribution functions nB and nF with the quasiparticle energies

Ea =
√

k2 + m2
a,k , where a = π , σ , or q. νq = 2N f Nc denotes the quark degeneracy.

The scale-dependent effective masses of mesons are related to the effective potential with the
explicit breaking term being removed, 
̄k = 
k + h

√
ρk :

m2
π,k = 
′

k (9)

m2
σ,k = 
̄′

k + 2ρk
̄
′′
k , (10)
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where 
̄′
k = ∂
̄k/∂ρ. The dynamical quark mass is directly related to the order parameter

mq,k = gσk, (11)

where the Yukawa coupling g = 3.2 is fixed to get mq,0 = 300 MeV at T = 0.
The flow equation (8) is solved numerically with a Taylor expansion method [48] in which the

scale-dependent potential is expanded around its minimum ρk , up to the third order in ρ, as


̄k(ρ) =
3∑

n=0

an,k

n!
(ρ − ρk)

n. (12)

The coefficients an.k and the minimum ρk follow the following flow equations:

dka0,k = h√
2ρk

dkρk + ∂k
k,

dkρk = − 1

c/(2ρk)3/2 + a2,k
∂k


′
k,

dka2,k = a3,kdkρk + ∂k

′′
k ,

dka3,k = ∂k

′′′
k ,

(13)

where dk ≡ d/dk, and a1,k is eliminated by making use of the scale-independent relation h ≡
a1,k

√
2ρk . The initial condition at an ultraviolet cutoff scale 
 = 1.0 GeV is chosen so as to sat-

isfy the requirement (3), and to reproduce the vacuum physics. Therefore, we set a3,
 = 0, whereas
a2,
 and ρ
 are fixed such as to reproduce σk=0(T = μ = 0) = fπ = 93 MeV and mσ = 640 MeV
with mπ = 135 MeV. While a0,
 gives a constant shift in thermodynamic potential density, the lack
of contributions from degrees of freedom above the ultraviolet cutoff scale causes an unphysical
behavior in thermodynamic quantities at high temperature [25,55]. Thus, we include such contri-
bution by integrating the flow equation from k = ∞ to k = 
 for non-interacting massless quarks
and gluons:

∂k



k (T, μ) = k3

12π2

{
2
(
N 2

c − 1
)
[1 + 2nB(k)] − νq [1 − nF (k + μ) − nF (k − μ)]

}
. (14)

The pressure of the system is then obtained as p(T, μ) = −
k→0.

3. Momentum scale and criticality

3.1. Order parameter and meson masses

In the chiral limit, and at moderate values of quark chemical potential, the QM model is well known
to exhibit the second-order phase transition in the O(4) universality class which terminates at the
critical end point, and then follows as the first-order transition. For a physical pion mass the O(4)

phase transition is washed out and becomes a smooth crossover. Nevertheless, due to the smallness of
the light quark masses the crossover is constituted as the pseudocritical line along which the physical
observables follow the scaling properties of the O(4) universality class.

In the QM model, the order parameter of the chiral phase transition is the expectation value of
the σ -field. In Fig. 1, we show the melting of the order parameter with temperature obtained by
solving the flow equation (13). The chiral symmetry is spontaneously broken in a vacuum and is
partially restored in a medium at some pseudocritical temperature T = Tpc. The values of Tpc for
different quark chemical potentials can be identified as a peak position of the susceptibility of the
order parameter or as the minimum of the sigma mass.

5/14
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Fig. 1. The order parameter, sigma mass, and pion mass as functions of temperature, calculated in the
quark–meson model within the functional renormalization group approach.
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Fig. 2. The momentum scale dependence of the order parameter, sigma mass, and pion mass in the
quark–meson model obtained from the renormalization group flow equation. The left-hand figure corresponds
to T = 0 and the right-hand figure to T = Tpc, where Tpc is the pseudocritical temperature.

Figure 1 also shows the temperature dependence of the sigma and pion mass. The sigma mass
is decreasing with temperature, whereas the pion mass is increasing towards Tpc, where it is
approximately degenerate with the sigma mass. In the chiral limit the chiral condensate vanishes
at the critical point where the sigma and the pion masses coincide.

The results shown in Fig. 1 were obtained within the FRG approach, where all momentum modes
up to k = 0 were integrated out, thus the thermal and quantum fluctuations have been included within
the local potential approximation. However, the results of the RG flow equations for the evolution
of different physical observables with the infrared cutoff k �= 0 can also be used to study the chiral
symmetry breaking.

In the left-hand panel of Fig. 2, we show the momentum scale dependence of the order parameter,
pion mass, and the sigma mass at T = 0. At large momentum scale, k ∼ 
, the chiral symmetry
is approximately valid, which is reflected in Fig. 2 by the small value of the order parameter and
almost degenerate pion and sigma masses. When decreasing the scale below the ultraviolet cutoff 
,
there is a rapid growth in the order parameter toward its vacuum value. There is also a corresponding
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increase in the sigma mass after reaching a minimum at k ∼ kch , where kch 	 900 MeV constitutes
the momentum scale for an approximate chiral symmetry breaking.

The pion mass is seen in the left-hand panel of Fig. 2 to decrease monotonically with decreasing
momentum scale. On the other hand, the sigma mass is a non-monotonic function of k, as it reaches
a maximum at k 	 400 MeV and then decreases towards the vacuum value. This property of sigma
mass is consistent with previous findings in Ref. [56], and can be attributed to differences between
the constituent quark and pion masses. A decrease of mσ below k < 400 MeV is due to presence of
the light pion.

At finite temperature, the scale dependence of the order parameter, sigma mass, and pion mass is
qualitatively similar to the T = 0 case. In the right-hand panel of Fig. 2 we show the scale dependence
of these observables at T = Tpc, where the chiral symmetry is partially restored. At large momenta
k ∼ 
 the temperature effect is negligible. At lower scales, however, the thermal and meson fluctu-
ations prevent the order parameter from growing to its vacuum value. The sigma mass and the order
parameter reach their maximum at k ∼ 600 MeV, and then decrease towards values at the pseudo-
critical temperature. The pion exhibits a broad minimum at a similar scale, k ∼ 600 MeV, and then
slightly increases towards k = 0.

Thus it is clear that the RG flow equations for the evolution with the infrared cutoff give a picture
of how the chiral criticality developed in a medium with the momentum scale. Clearly, to reproduce
the expected O(4) scaling of physical observables at the chiral crossover one needs the scale evolu-
tion towards k = 0. Any restriction on momentum scale in a medium modifies thermodynamically
relevant information on universal properties.

To describe the consequences of momentum scale cuts on the critical properties of relevant observ-
ables at the chiral crossover, we introduce the scale-dependent ratios of such quantities calculated at
the scale k and at k = 0. Figure 3 shows ratios for the order parameter, pion mass, and sigma mass at
vanishing quark chemical potential and for two different vacuum pion masses. It is very transparent
from Fig. 3 that at Tpc the natural momentum scale where these observables saturate at their critical
values is the pion mass. This is seen by comparing the mπ = 135 MeV and mπ = 67.5 MeV cases.
One expects that such a scale should be governed by the softest mode in a system.1

Thus, if the momentum scale reaches k 	 mπ , all these observables decouple from the RG flow.
One can also conclude that introducing any momentum cut in a system at k ≤ mπ will not modify
relevant O(4) properties near chiral crossover.

3.2. The net quark number fluctuations and momentum cuts

The sensitivity to the O(4) criticality increases if the higher-order fluctuations of the order parameter
or conserved charges are considered at the chiral crossover. Of particular phenomenological interest
are nth-order cumulants of the net quark number χn , which have been successfully quantified through
the measurement of net proton number in heavy ion collisions by the STAR Collaboration [4,5].
Theoretically, the χn are obtained as derivatives of thermodynamic pressure with respect to the quark
chemical potential,

χn(T, μ) ≡ ∂n[p(T, μ)/T 4]

∂(μ/T )n
. (15)

1 In actual studies this is a quark mass mq . However, this is not an observable and the critical behavior, i.e.
divergent fluctuations of conserved charges, is due to the mesonic sector since the light quark mass effect is
already reflected in the mean field approximation.
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Fig. 3. As in the right-hand panel of Fig. 2, but the quantities here are normalized to their values at k = 0 and
the momentum scale is also normalized by the vacuum pion mass. The left-hand figure is calculated for the
vacuum pion mass mvac

π = 135 MeV, and the right-hand figure for mvac
π = 67.5 MeV.

In the vicinity of the chiral crossover, and due to remnants of the O(4) criticality, the χn receive
contributions from the regular and the singular part of the free energy density. Consequently, near
Tpc one can decompose χn = χ s

n + χr
n correspondingly. Owing to the O(4) scaling, the χ s

n show a
strong dependence on the explicit symmetry-breaking term h, the quark mass

χ s
n ∼

⎧⎨
⎩

−h(2−α−n/2)/βδ f (n/2)
f (T, μ) for μ = 0

− (
μ
T

)n
h(2−α−n)/βδ f (n)

f (T, μ) for μ > 0,
(16)

where due to quark–antiquark symmetry at μ = 0 the first equation holds only for even n. The α, β,
and δ are critical exponents in the O(4) universality class, and f (n) is the nth-order derivative of the
O(4) universal scaling function with respect to the scaling variable [28,57].

As α = −0.2131(34) is negative in the O(4) universality class [57], the second- and the fourth-
order cumulants of the net quark number fluctuations are finite in the chiral limit at the chiral
transition temperature. From Eq. (16), it is clear that at μ = 0 the first divergent moment is obtained
for n = 6, whereas at μ > 0 for n = 3.

At fixed h, the T and μ dependence of χ s
n is entirely governed by derivatives of the O(4) universal

scaling function. The characteristic feature of the sixth-order cumulant at μ = 0 is that at physical
pion mass it can be negative near Tpc [28]. This makes χ6 an ideal observable of partial restoration
of chiral symmetry in heavy ion collisions at RHIC and LHC if the chemical freezeout appears near
the chiral crossover [10,28].

Figure 4 shows the ratio R6,2 = χ6/χ2 near Tpc at μ = 0 calculated in the QM model. Since χ2

is governed only by the regular part, the observed strong variation of R6,2 and its negative structure
are entirely due to remnant of the O(4) criticality in the sixth-order cumulant. Thus, the expected
generic structure of the O(4) scaling function in χ6 is well reproduced in the QM model within the
FRG approach [28,37] if the RG flow terminates at k = 0. Introducing the infrared momentum cutoff
k > 0 can clearly deflect criticality near Tpc.

In Fig. 4, we show the R6,2 by applying different infrared momentum cuts in units of the vacuum
pion mass. The scale-dependent net quark number fluctuations were calculated numerically as deriva-
tives of the scale-dependent thermodynamic potential density (8). With increasing momentum scale,
the suppression of R6,2 near Tpc due to O(4) criticality is weakened. For sufficiently large momen-
tum scale the characteristic negative structure of this fluctuation ratio disappears, indicating that the
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Fig. 4. The momentum scale dependence of the sixth- to second-order cumulant ratio in the quark–me-
son model calculated within the functional renormalization group method at finite temperature near the
pseudocritical temperature Tpc. The momentum scales are expressed in units of a physical pion mass
mvac

π = 135 MeV.

singular part contribution to χ6 is suppressed. For k > 5mπ , R6,2 shows a smooth change from unity
in the chirally broken phase to the value expected in the ideal massless quark gas. This indicates
that below Tpc and for large k the structure of χ6 is governed by the Skellam distribution, and that
a smooth decrease of R6,2 with T is due to decreasing quark mass with temperature and quantum
statistics effects. However, if the momentum scale is smaller than 2mπ , then a generic O(4) structure
of R6,2 is preserved near Tpc. For k > 2mπ then R6,2 is no longer negative in the chirally broken
phase just below Tpc.

The change of R6,2 with the infrared cutoff at the chiral crossover temperature Tpc is very clear
when considering the ratio of R6,2 calculated at momentum scale k and that at k = 0. The corre-
sponding results are shown in Fig. 5 for different vacuum pion masses. The pion mass fixes the scale
where R6,2 saturates at its critical value. Similarly to Fig. 2, if the infrared momentum scale reaches
the softest mode which is approximately quantified by the pion mass, then the sixth-order cumulant
decouples from the RG flow. Figure 5 also indicates that for k < 2mπ R6,2 is weakly changing with
infrared cutoff. Only for scales larger than 2mπ R6,2 at Tpc is positive, and the characteristic negative
fluctuation due to O(4) criticality is lost. At smaller pion mass mπ 	 65 MeV, R6,2 calculated up to
k = 0 is positive at Tpc.2 This implies that the normalized ratio shown in the right-hand panel of
Fig. 5 increases with k for k > 2mπ .

In Fig. 5, the scale dependence of R4,2 is also shown. Since at vanishing chemical potential both
χ4 and χ2 are noncritical at Tpc, R4,2 is governed entirely by the regular part of the free energy.
Consequently, R4,2 is almost scale independent, as seen in this figure.

At finite chemical potential, already the third- and higher-order cumulants diverge at the chiral
phase transition in the chiral limit. Consequently, for finite pion mass all χn with n ≥ 3 are influ-
enced by the O(4) criticality, thus should also be sensitive to the momentum scale at which they are
calculated. In Fig. 6, we show ratios Rn,m = χn/χm calculated at momentum scale k and at k = 0

2 The smaller the pion mass is, the sharper the crossover transition becomes. Thus R6,2 also exhibits a sharper
change around Tpc. The temperature where R6,2 < 0 shifts to higher values, since in the chiral limit R6,2 > 0
at T < Tc, and is positively or negatively divergent if T → Tc from below or above, respectively.
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Fig. 5. The net quark number cumulants ratio Rk
n,m = χn/χm at the pseudocritical point Tpc, calculated within

the FRG method at the soft momentum scale k, and normalized to their value at the scale k = 0. The left-hand
figure is calculated for the vacuum pion mass mvac

π = 135 MeV, and the right-hand figure for mvac
π = 67.5 MeV.
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Fig. 6. As in the left-hand panel of Fig. 5, but the calculations are done at the pseudocritical temperature
T = 125 MeV for large finite quark chemical potential, μpc = 300 MeV.

for different orders of the cumulant. These normalized ratios are evaluated at the chiral crossover
point where the chemical potential is μpc = 300 MeV and Tpc = 125 MeV. Similarly, as at μ = 0,
all Rn,m shown in Fig. 6 saturate at their pseudocritical values if the momentum scale k reaches the
pion mass. For scales mπ < k < 1.5mπ , deviations of R3,1, R4,2, and R6,2 from their critical values
are small. R5,1, however, exhibits much stronger scale dependence. Comparing the flow of R6,2 at
finite and vanishing μ, one concludes that at μ �= 0 there is a stronger sensitivity of this cumulant
ratio to the soft momentum scale.

So far, effects of infrared momentum cut on the fluctuation observables have been discussed.
Although the criticality associated with partial restoration of chiral symmetry is governed by soft
momentum modes, thus is related to the infrared cutoff, the ultraviolet cutoff also influences the
fluctuations of the conserved charges.

The left-hand panel of Fig. 7 displays the temperature dependence of the cumulant ratios R4,2 and
R6,2 with and without the ultraviolet cutoff kmax = 0.8 GeV. The calculation was done by setting
the initial momentum scale to kmax without changing the vacuum physics, such that the flow of the
observables follows the same trajectory. The behavior of R4,2 was already discussed in Ref. [25].
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Fig. 7. Temperature dependence of the net quark number cumulant ratio Rn,m = χn/χm . In the left-hand figure
Rn,m calculated in the quark–meson model in the FRG flow within the full momentum range is compared
with the corresponding result with the ultraviolet momentum cut kmax = 0.8 GeV. In the right-hand figure
the full FRG result for Rn,m is compared with the corresponding result obtained in the momentum interval
0.4 GeV < k < 0.8 GeV.
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Fig. 8. As in the right-hand panel of Fig. 7, but the calculations are done at fixed chemical potential
μ = 300 MeV.

The absence of the high momentum contribution implies that χ2 and χ4 turn to decrease above Tpc,
leading to suppression at high temperature. As seen in Fig. 7, R6.2 follows the same trend.

Results employing both infrared and ultraviolet cutoffs, 0.4 GeV < k < 0.8 GeV, are shown in the
right-hand panel of Fig. 7. The effects of infrared and ultraviolet cutoffs on R4,2, applied separately,
were shown in Figs. 5 and 7 (left) to be small. Consequently, R4,2 is seen in Fig. 7 (right) to also
be weakly sensitive if the momentum scales are constrained in both limits simultaneously. However,
the structure of R6,2 is strongly changed. Its characteristic temperature dependence due to the O(4)

criticality, represented by R6,2 which is negative around Tpc and approaches zero at high tempera-
ture, is lost. Instead, R6,2 exhibits strong suppression to larger negative values, due to the ultraviolet
momentum cutoff.

The effects of momentum cuts are even stronger at finite chemical potential. Figure 8 shows R4,2

as a function of temperature at μ = 300 MeV where Tpc = 125 MeV. Contrary to the case of μ = 0,
the cutoff changes the sign of R4.2 near the chiral crossover. While the negative structure of R4.2 at
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Tpc = 125 MeV signals the remnant of the O(4) criticality, the infrared cutoff k > 2.2mπ implies a
change of the sign of R4.2.

Figures 7 and 8 make it clear that imposing cutoffs in the momentum scale modifies the character-
istic property of the cumulants ratio which is specific to the chiral crossover at finite and vanishing
chemical potential near the O(4) pseudocritical points.

4. Concluding remarks

We have studied the momentum scale dependence of the net baryon number fluctuations near chi-
ral crossover, which appear in the critical region of the second-order phase transition in the O(4)

universality class. Our calculations were done in the quark–meson model within the functional renor-
malization group (FRG) approach at finite and vanishing chemical potential. We have applied the
momentum scale dependence of the FRG flow equation to quantify how the suppression of the
momentum modes in the infrared and ultraviolet regimes modifies generic properties of the net
baryon number fluctuations ratio expected from remnants of the O(4) criticality.

We have shown that the pion mass mπ is a natural infrared soft momentum scale at which cumu-
lants are saturated at their critical values, whereas for scales larger than 2mπ the characteristic O(4)

structure of the higher-order cumulants get lost.
In the ultraviolet regime, the momentum cutoff implies suppression of different cumulant

ratios Rn,m . This suppression is small for Rn,m which are insensitive to the chiral criticality. How-
ever, it is essential for ratios which are directly linked to the singular part of the free energy density,
that is responsible for remnants of the O(4) criticality in physical observables.

The above properties of different net baryon number cumulant ratios in a model with the O(4)

chiral critical behavior are in contrast to models with the Skellam probability distribution of the
net baryon number, which is used as a reference for noncritical behavior. Imposing any momentum
cutoffs in such models with the Skellam function changes the values of different cumulants but pre-
serves their ratios. These results indicate that when measuring fluctuations of the net baryon number
in heavy ion collisions to search for a restoration of a chiral symmetry or critical point, special care
has to be made when introducing kinematical cuts on the fluctuation measurements. While there
is no direct relation between the kinematical cuts imposed on measured particle momenta and the
momentum scale cut in the flow equation (8), one expects that the low pT particles are more affected
by the soft modes in a medium. One also finds explicitly that the scale momentum k in the flow
equation (8) reduces to the particle momentum in the case of a free gas of quarks and mesons.
In turn, this also implies that one should observe modifications of the higher-order cumulant ratios
against the variation of the momentum cutoff, if they are influenced by the chiral critical behavior or
its remnant.
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