ided by Kyoto Univer

Kyoto University Research Info		NOTO IN JUNA	KYOTO UNIVERSITY
Title	Association between hand-grip strength symptoms: Locomotive Syndrome and Aizu Cohort Study (LOHAS).	and de Health	epressive Outcomes in
Author(s)	Fukumori, Norio; Yamamoto, Yosuke; Yamazaki, Shin; Onishi, Yoshihiro; Sek Koji; Konno, Shin-ichi; Kikuchi, Shin-i ichi	kiguchi	, Miho; Otani,
Citation	Age and ageing (2015), 44(4): 592-598		
Issue Date	2015-07		
URL	http://hdl.handle.net/2433/202613		
Right	This is a pre-copyedited, author-product accepted for publication in 'Age and Ag review. The version of record [Age Age 598. doi: 10.1093/ageing/afv013] is ava http://ageing.oxfordjournals.org/content file will be made open to the public on 2 accordance with publisher's 'Terms and Archiving'.	eing' fo eing (20 ailable o t/44/4/5 21 Febi	ollowing peer 015) 44 (4): 592- online at: 592; The full-text ruary 2016 in
Туре	Journal Article		
Textversion	author		

- 1 Association between hand-grip strength and depressive symptoms; Locomotive Syndrome and
- 2 Health Outcomes in the Aizu Cohort Study (LOHAS)
- 3 Norio Fukumori MD^{1,2,8}, Yosuke Yamamoto MD PhD^{1,3,8}, Misa Takegami RN PhD⁴, Shin Yamazaki PhD¹,
- 4 Yoshihiro Onishi PhC PhD⁵, Miho Sekiguchi MD PhD⁶, Koji Otani MD PhD⁶, Shin-ichi Konno MD PhD⁶,
- 5 Shin-ichi Kikuchi MD PhD⁶, Shunichi Fukuhara MD FACP PhD^{1,7,}
- 6 1. Department of Healthcare Epidemiology, School of Public Health in the Graduate School of Medicine,
- 7 Kyoto University, Kyoto, Japan
- 8 2. Community Medical Support Institute, Faculty of Medicine, Saga University, Saga, Japan
- 9 3. Institute for Advancement of Clinical and Translational Science, Kyoto University Hospital, Kyoto, Japan
- 10 4. Department of Preventive Medicine and Epidemiologic Informatics, National Cerebral and Cardiovascular
- 11 Center, Suita, Japan
- 12 5. Institute for Health Outcomes and Process Evaluation Research (iHope International), Kyoto, Japan
- 13 6. Department of Orthopedic Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
- 14 7. Center for Innovation in Clinical Research, Fukushima Medical University, Fukushima, Japan
- 15 8. Fukumori and Yamamoto contributed equally to this article
- 16 **Running title:** Low hand-grip strength associates with depression
- 17 Key words: hand-grip strength; depressive symptoms; mental health; muscular weakness; older patients;
- 18 population-based study
- 19

20 Key points:

- 21 1. The aim of this study is to evaluate the relationship between baseline hand-grip strength and subsequent risk
- 22 of depressive symptoms at one year follow up.
- 23 2. Lower hand-grip strength was associated with depressive symptoms in both cross-sectional and longitudinal
- 24 analysis.
- 25 3. The relationship between lower hand-grip strength and depressive symptoms was robust with adjustment
- 26 for potential confounders.
- 27 Correspondence to: Prof. Shunichi Fukuhara
- 28 Department of Healthcare Epidemiology, School of Public Health in the Graduate School of Medicine, Kyoto
- 29 University
- 30 Yoshida konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
- 31 Email: fukuhara.shunichi.6m@kyoto-u.acjp
- 32 TEL: +81-(0)75-753-4646
- 33 FAX: +81-(0)75-753-4644
- 34
- 35
- 36
- 37
- 38
- 39

40	ADSTRACT
41	Background
42	No study has examined the longitudinal association between hand-grip strength and mental health, such as
43	depressive symptoms.
44	Objective
45	We investigated the relationship between baseline hand-grip strength and the risk of depressive symptoms.
46	Design
47	A prospective cohort study
48	Setting & Subjects
49	A prospective cohort study with a one-year follow-up was conducted using 4314 subjects from
50	community-dwelling individuals aged 40-79 years old in 2 Japanese municipalities, based on the Locomotive
51	Syndrome and Health Outcomes in Aizu Cohort Study (LOHAS, 2008-2010).
52	Method
53	We assessed baseline hand-grip strength standardized using national representative data classified by age and
54	gender, and depressive symptoms at baseline and after the follow-up using the five-item version of the Mental
55	Health Inventory (MHI-5).
56	Results

ADOTDAOT

58 was 29.8 kg. Multivariable random-effect logistic regression analysis revealed that subjects with lower hand-grip

The 4314 subjects had a mean age of 66.3 years, 58.5% were women, and mean unadjusted hand-grip strength

59	strength (per 1SD decrease) had higher odds of having depressive symptoms at baseline [Adjusted odds ratio
60	(AOR) 1.15, 95% Confidence interval (CI) 1.06-1.24; P =0.001]. Further, lower hand-grip strength (per 1SD
61	decrease) was associated with the longitudinal development of depressive symptoms after one year (AOR 1.13,
62	95% CI 1.01-1.27; <i>P</i> =0.036).
63	Conclusion
64	Using a large population-based sample, our results suggest that lower hand-grip strength, standardized using
65	age and gender, is both cross-sectionally and longitudinally associated with depressive symptoms.
66	
67	
68 60	
69 70	
70	
72	
73	
74	
75	
76	
77	
78	
79 80	
80 81	
82	
83	
84	
85	
86	
87	
88	

89

INTRODUCTION

90	A considerable number of older patients suffer from a decline in physical function due to age-related muscular
91	weakness, the after effects of strokes, and degenerative neurological disorders such as Alzheimer disease [1, 2].
92	Previous studies reveal that patients with a decline in physical function are at great risk of falls, cardiovascular
93	disease, and other complications [3-6]. Moreover, a decline in physical function is reportedly associated with
94	mental health issues such as depression. For example, a recent study suggests a close relationship between
95	depressive symptoms and activity of daily living in older persons, suggesting that a decline in physical function
96	might predict the risk of having depressive symptoms [4].
97	However, the application of these findings in clinical settings requires the settling of two key issues: first, while a
98	previous study demonstrated a longitudinal relationship between depressive symptoms and physical decline
99	such as decrease in walking speed [5], the causal relationship between hand grip strength and depressive
100	symptoms has not been well investigated. Second, because the previous studies used discrete and complicated
101	definitions of physical function, such as the muscle strength of lower limbs and walking speed, interpretation
102	of the results is not easy for general healthcare providers, indicating the need for a more convenient method of
103	evaluating physical function in actual clinical settings.
104	Hand-grip strength, which is strongly correlated with systemic muscle strength, one of the promising candidate
105	for the brief evaluation of physical function. Moreover, hand-grip strength is also used to predict future
106	activities of daily life [7, 8]. While previous studies have suggested a cross-sectional association between
107	hand-grip strength and depressive symptoms [9, 10], the longitudinal relationship between lower hand-grip

108	strength and the development of depressive symptoms has not been evaluated. In addition, assessment of the
109	effect of hand-grip strength in the previous studies was done using models with insufficient adjustment,
110	without normal population-based standardized values classified by age and sex [4, 11-15].
111	Here, we investigated the relationship between the hand-grip strength, with adjustment using normal
112	population-based standardized values, and both baseline depressive symptoms and the longitudinal
113	development of depressive symptoms, using data from the Locomotive Syndrome and Health Outcome in
114	Aizu Cohort Study (LOHAS) [16].
115	
116	METHODS
117	Study Population
118	LOHAS (2008-2010) is a population-based cohort study conducted in two municipalities in Fukushima
110	
119	Prefecture, Japan [16]. The source population of LOHAS consisted of the general population of the region.
119 120	Prefecture, Japan [16]. The source population of LOHAS consisted of the general population of the region. Participations were limited to subjects aged 40-79 years who received annual health check-ups conducted by
120	Participations were limited to subjects aged 40-79 years who received annual health check-ups conducted by
120 121	Participations were limited to subjects aged 40-79 years who received annual health check-ups conducted by the local government in 2008-2010. The original aim of the study is to examine the relationship between
120 121 122	Participations were limited to subjects aged 40-79 years who received annual health check-ups conducted by the local government in 2008-2010. The original aim of the study is to examine the relationship between locomotive syndrome and metabolic syndrome. Locomotive syndrome is a concept which denotes the
120 121 122 123	Participations were limited to subjects aged 40-79 years who received annual health check-ups conducted by the local government in 2008-2010. The original aim of the study is to examine the relationship between locomotive syndrome and metabolic syndrome. Locomotive syndrome is a concept which denotes the vulnerable conditions in older patients due to functional decline in the locomotive organs [17]. All participants

127 previously described [16, 18].

128 Data Collection

129 The main variables evaluated were hand-grip strength and depressive symptoms. In LOHAS, hand-grip

- 130 strength was measured using a digital dynamometer (Takei Scientific Instruments Co., Ltd, Japan). Strength
- 131 was measured once for each hand in a monitored setting, with the forearm held parallel to the body in the
- 132 standing position. In the present study, hand-grip strength was evaluated using the mean value of the data of
- 133 both hands, unless only one of them was available. Then, to enable comparison of hand-grip strength
- 134 regardless of sex and age, standardized hand-grip strength with adjustment for sex and age was calculated,
- 135 using data from the Survey on Physical Strength and Physical Exercise Capability, which provided the
- 136 national-representative mean and standard deviation of hand-grip strength classified by sex and age. In the
- 137 main analysis, scores less than or equal to 50 and those more than 50 were defined as lower and higher
- 138 hand-grip strength, respectively [19].
- 139 Depressive symptoms were assessed using the five-item version of the Mental Health Inventory (MHI-5), a
- 140 5-item questionnaire about depression which has been validated against the 20-item Zung Self-rating
- 141 Depression Scale (ZSDS) and is considered highly reliable among the general population and patients with
- 142 various psychiatric disorders[20]. In the MHI-5, a score of 60 or less suggests moderate or severe depression,
- 143 which in our study is defined as having depressive symptoms.
- 144

145 Statistical Analysis

146	In the cross-sectional analysis, the relationship between standardized hand-grip strength, treated as a
147	continuous variable, and odds of having depressive symptoms at baseline was examined by random-effect
148	logistic regression analysis, with adjustment for age, sex, body mass index, smoking status, daily activities
149	[moderate activities (e.g. carrying light loads) or severe activities (e.g. heavy lifting, digging, and climbing
150	upstairs) more than once a week], and comorbid conditions (coronary artery disease, respiratory disease,
151	stroke). Body Mass Index was assessed at the annual regular health check-up. Smoking status, daily activities,
152	and comorbid conditions were assessed using the self-administered questionnaires. In the present study,
153	random-effect models were employed to treat repeated measures between the same subjects at baseline (in
154	2008 and 2009), using the stata command xtlogit.
155	In the longitudinal analysis, assuming that lower hand-grip strength may predict the future risk of developing
156	depressive symptoms, the relationship between lower standardized hand-grip strength at baseline (treated as a
157	continuous variable) and development of depressive symptoms after one year was evaluated in subjects not
158	having depressive symptoms at baseline using the random-effect logistic regression model described above,
159	with adjustment for possible confounders aforementioned plus baseline MHI scores.
160	To examine the dose-dependency of the relationship, three categorical dummy variables were prepared
161	according to quartile of score for standardized hand-grip strength from each participant. Random-effect
162	logistic regression analysis was performed to evaluate the relationship between categorized standardized
163	hand-grip strength at baseline and the odds of having depressive symptoms at baseline, and to evaluate
164	subjects not having depressive symptoms at baseline between categorized standardized hand-grip strength at

165	baseline and the odds of developing depressive symptoms after one year. The first, second, and third quartiles
166	were compared to the fourth quartile and results were expressed as an odds ratio of patients presenting
167	depressive symptoms. Models were adjusted for the same possible confounders mentioned above. A test of
168	linear trend across these four quartiles was performed using random-effect logistic regression models based on
169	a previously reported method [21]. All analyses were performed using Stata SE version 13.1 (StataCorp LP,
170	USA).
171	
172	RESULTS
173	Of the 5347 participants enrolled in LOHAS, baseline data for standardized hand-grip strength and depressive
174	symptoms were available for 4314 subjects (80.7%) (Figure 1). These 4314 subjects had a mean age of 66.3
175	years, 58.5% were women, and mean unadjusted hand-grip strength was 29.8 kg. Table 1 shows subject
176	characteristics categorized by lower or higher average hand-grip strength, and characteristics of the 2479
177	(57.5%) of 4314 subjects with lower standardized hand-grip strength at baseline.
178	
179	Cross-sectional relationship between depressive symptoms and hand-grip strength
180	Results showed that depressive symptoms were reported by 31.3% of patients with lower hand-grip strength
181	and 25.8% of those with higher hand-grip strength ($P < 0.001$).
182	On multivariable random-effect logistic regression analysis, subjects with lower hand-grip strength (per 1SD
183	decrease) had higher odds of having depressive symptoms at baseline [adjusted odds ratio (AOR) 1.15, 95%

- 184 confidence interval (CI) 1.06-1.24; *P* =0.001] (Table 2).
- 185Compared with subjects in the fourth quartile of standardized hand-grip strength, those in the third, second, 186 and first quartiles had significantly higher odds of having depressive symptoms at baseline, with AORs of 0.94, 187 1.20, and, 1.35, respectively (P for trend =0.005) (Figure 2). 188189Association between longitudinal development of depressive symptoms and hand-grip strength 190 From the total 4314 subjects, data regarding depressive symptoms collected one year after baseline were 191 available for 2512. Of those, data from 1936 subjects shown not to have depressive symptoms at baseline were 192used for longitudinal analysis. The 1936 subjects had a mean age of 67.2 years, 60.2% were female, and 1039 193 subjects (53.6%) had a lower hand-grip strength at baseline. Results showed that 25.5% of subjects with a 194lower hand-grip strength and 20.4% of those with a higher hand-grip strength had developed depressive 195symptoms during follow-up (P=0.01). Multivariable random-effect logistic analysis revealed that subjects with 196 lower hand-grip strength at baseline (per 1SD decrease) had higher odds of developing depressive symptoms 197 after one year (AOR 1.13, 95% CI 1.01-1.27; P=0.036, Table 3). 198 Further, a significant dose-dependent relationship was observed between lower hand-grip strength and risk of 199 developing depressive symptoms, with AORs for third, second, and first standardized hand-grip strength 200 quartiles of 1.11, 1.17, and, 1.73, respectively (P for trend =0.005) (Figure 2). 201
- 202

DISCUSSION

203	In this study, we showed a significant relationship between hand-grip strength standardized with age and sex
204	and depressive symptoms as assessed by a self-administered questionnaire (MHI-5), based on a large
205	population-based sample. In particular, our results revealed that subjects with below-average standardized
206	hand-grip strength were at greater risk of subsequently developing depressive symptoms, which suggests that
207	lower hand-grip strength may be a causative factor in the development of depressive symptoms, independent
208	from age and sex.
209	Results also revealed that the association was clearly defined when categorized standardized hand-grip strength
210	were used for analysis, with the odds of presenting depressive symptoms at baseline increasing with decreasing
211	standardized hand-grip strength in a dose-dependent manner. Further, this relationship was also observed
212	between categorized standard hand-grip strength and the longitudinal development of depressive symptoms
213	one year after baseline. Results from the present study were generalized through the use of a large
214	population-based sample of older subjects. Additionally, the positive results, standardized using the national
215	data may strengthen reliability of our main results.
216	A number of studies have identified an association between lower physical function, assessed using many
217	indices such as the muscle strength of lower limbs, walking speed and self-perceived functional decline, and
218	depressive symptoms[22, 23]. A recent study suggests a bidirectional association between walking speed and
219	depressive symptoms, but most studies investigated merely cross-sectional relationships [23]. To our
220	knowledge this is the first study to examine a longitudinal relationship between baseline hand-grip strength and
221	the development of depressive symptoms.

222	In the present study, we focused on hand-grip strength as representative of general physical function. Rantanen
223	et al. evaluated the association between hand grip strength and the strength of other muscle functions, and
224	reported correlation coefficients with elbow flexion strength ($r = 0.672$), knee extension strength ($r = 0.514$),
225	and trunk extension strength ($r = 0.541$) which indicate an approximation of total body muscle strength [8, 12].
226	Hand-grip strength may thus serve as useful and simple measure of total body muscle function.
227	The longitudinal analysis in the present study showed that lower hand-grip strength, representing lower motor
228	functions, is associated with the future risk of worsening mental health. One cohort study have shown that
229	patients treated for depressive symptoms who have lower hand-grip strength or felt physical handicaps
230	remained in a depressive mood for several years [24]. This finding suggests that lower hand-grip strength may
231	have had a direct effect on the decreased metal health of the participants. Growing evidences suggests that
232	lower hand-grip strength is closely associated with decreased physical quality of life (QOL), which would in
233	turn explain how hand-grip strength, representing states of motor functions, affects mental health via physical
234	QOL. Contrarily, patients with depressive symptoms might be likely to develop lower hand-grip strength
235	based on the possible hypothesis that depression might cause decline in systemic physical functioning.
236	Demakakos et al. revealed a bidirectional association between walking speed and depressive symptoms,
237	supporting the speculation the association between hand-grip strength and depressive symptoms was
238	bidirectional [23].
239	Previous studies have shown that a significant proportion of community-dwelling residents have depressive
240	symptoms [25, 26]. However, healthcare providers other than psychiatrists are not familiar with identifying

241	depression, and many patients remain undiagnosed and undertreated. In general, most questionnaires used to
242	screen for depressive symptoms consist of items which are perceived as threatening by psychologically
243	distressed patients, and thus likely to affect doctor-patient relationship. This highlights the difficulties of
244	managing depressed patients in local settings. Given that hand-grip strength can be measured even at routine
245	health check-ups, we speculate that hand-grip strength might be a candidate of predictors when developing
246	clinical prediction rules to detect depressive symptoms. Further investigations are needed to apply the result
247	into actual clinical settings.
248	Several limitations of our study warrant mention. Longitudinal analysis in the present study might have been
249	biased by the exclusion of 34.6% of subjects from follow-up. We compared the baseline characteristics (age,
250	sex, and depressive symptoms) between patients with follow-up and those lost to follow-up, but there have
251	been no remarkable differences. Duration of the follow-up period was only one year, and we did not examine
252	the long-term relationship between hand-grip strength and depressive symptoms. Although our results indicate
253	that depressive symptoms are sufficiently measured by MHI-5, assessment using this method does not fulfill
254	the criteria of definitive diagnosis of depression. Data on details of socioeconomic status were not recorded in
255	the present study, so we could not take this potential confounding factor into account in the multivariable
256	analyses. In addition, our study was limited to a Japanese population, and the extrapolation of our findings to
257	other countries requires further investigation. Although the results reveal a longitudinal relationship between
258	hand-grip strength and depressive symptoms, the test performance of screening depressive symptoms using
259	hand-grip strength cannot be assessed in the present study. Finally, as a general limitation of observational

260	studies, we were unable to adjust for unknown confounding factors highly associated with the investigated
261	relationship.
262	In conclusion, our results from a large population-based sample show a significant epidemiological association
263	between hand-grip strength and both depressive symptoms at baseline and the longitudinal development of
264	depressive symptoms.
265	
266	ACKNOWLEDGEMENTS
267	The authors wish to thank the staff of the public offices of Tadami and Minami-Aizu for their assistance in
268	locating participants and scheduling examinations. The authors are also grateful to the participants of the
269	LOHAS. All authors have indicated that no financial conflicts of interest were present.
270	
271	
272	
273	
274	
275	
276	
277	
278	

279

REFERENCES

280	1.	Mehta KM, Yaffe K, Covinsky KE. Cognitive impairment, depressive symptoms, and functional
281	decline in	older people. J Am Geriatr Soc. 2002;50(6):1045-50.
282	2.	Russo A, Onder G, Cesari M, Zamboni V, Barillaro C, Capoluongo E, et al. Lifetime occupation
283	and physi	ical function: a prospective cohort study on persons aged 80 years and older living in a community.
284	Occup E	nviron Med. 2006;63(7):438-42.
285	3.	Landi F, Liperoti R, Russo A, Giovannini S, Tosato M, Capoluongo E, et al. Sarcopenia as a risk
286	factor for	falls in elderly individuals: results from the ilSIRENTE study. Clin Nutr. 2012;31(5):652-8.
287	4.	Yanagita M, Willcox BJ, Masaki KH, Chen R, He Q, Rodriguez BL, et al. Disability and depression:
288	investigat	ing a complex relation using physical performance measures. Am J Geriatr Psychiatry.
	nivesuga	nig a complex relation using physical performance measures. This occurrent respensally.
289	C	12):1060-8.
289 290	C	
	2006;14(1 5.	12):1060-8.
290	2006;14(1 5.	12):1060-8. Brown WJ, Ford JH, Burton NW, Marshall AL, Dobson AJ. Prospective study of physical activity
290 291	2006;14(1 5. and depre 6.	 12):1060-8. Brown WJ, Ford JH, Burton NW, Marshall AL, Dobson AJ. Prospective study of physical activity essive symptoms in middle-aged women. Am J Prev Med. 2005;29(4):265-72.
290 291 292	2006;14(1 5. and depre 6.	 12):1060-8. Brown WJ, Ford JH, Burton NW, Marshall AL, Dobson AJ. Prospective study of physical activity essive symptoms in middle-aged women. Am J Prev Med. 2005;29(4):265-72. Studenski S, Perera S, Patel K, Rosano C, Faulkner K, Inzitari M, et al. Gait speed and survival in

- 296 8. Rantanen T, Harris T, Leveille SG, Visser M, Foley D, Masaki K, et al. Muscle strength and body
- 297 mass index as long-term predictors of mortality in initially healthy men. J Gerontol A Biol Sci Med Sci.

299	9.	Gale CR, Sayer AA, Cooper C, Dennison EM, Starr JM, Whalley LJ, et al. Factors associated with
300	symptoms	s of anxiety and depression in five cohorts of community-based older people: the HALCyon
301	(Healthy A	Ageing across the Life Course) Programme. Psychol Med. 2011;41(10):2057-73.
302	10.	van Milligen BA, Lamers F, de Hoop GT, Smit JH, Penninx BW. Objective physical functioning in
303	patients w	ith depressive and/or anxiety disorders. J Affect Disord. 2011;131(1-3):193-9.
304	11.	Bohannon RW. Hand-grip dynamometry predicts future outcomes in aging adults. J Geriatr Phys
305	Ther. 2008	8;31(1):3-10.
306	12.	Rantanen T, Volpato S, Ferrucci L, Heikkinen E, Fried LP, Guralnik JM. Handgrip strength and
307	cause-spec	cific and total mortality in older disabled women: exploring the mechanism. J Am Geriatr Soc.
308	2003;51(5)):636-41.
309	13.	Ling CH, Taekema D, de Craen AJ, Gussekloo J, Westendorp RG, Maier AB. Handgrip strength
310	and morta	lity in the oldest old population: the Leiden 85-plus study. CMAJ. 2010;182(5):429-35.
311	14.	Puh U. Age-related and sex-related differences in hand and pinch grip strength in adults. Int J
312	Rehabil Re	es. 2009;33(1):4-11.
313	15.	Massy-Westropp NM, Gill TK, Taylor AW, Bohannon RW, Hill CL. Hand Grip Strength: age and
314	gender stra	atified normative data in a population-based study. BMC Res Notes. 2011;4:127.
315	16.	Otani K, Takegami M, Fukumori N, Sekiguchi M, Onishi Y, Yamazaki S, et al. Locomotor
316	dysfunctio	on and risk of cardiovascular disease, quality of life, and medical costs: design of the Locomotive

- 317 Syndrome and Health Outcome in Aizu Cohort Study (LOHAS) and baseline characteristics of the study
- 318 population. J Orthop Sci. 2012;17(3):261-71.
- 319 17. Nakamura K. A "super-aged" society and the "locomotive syndrome". J Orthop Sci.
- 320 2008;13(1):1-2.
- 321 18. Ono R, Yamazaki S, Takegami M, Otani K, Sekiguchi M, Onishi Y, et al. Gender difference in
- 322 association between low back pain and metabolic syndrome: locomotive syndrome and health outcome in
- 323 Aizu cohort study (LOHAS). Spine (Phila Pa 1976). 2012;37(13):1130-7.
- 324 19. The survey on the physical strength and physical exercise capability [database on the Internet]2008.
- 325 Available from: http://www.e-stat.go.jp/SG1/estat/Xlsdl.do?sinfid=000004849615
- 326 20. Yamazaki S, Fukuhara S, Green J. Usefulness of five-item and three-item Mental Health
- 327 Inventories to screen for depressive symptoms in the general population of Japan. Health Qual Life Outcomes.
- 328 2005;3:48.
- 329 21. Hu F, Sigal R, Rich-Edwards J, Colditz G, Solomon C, Willett W, et al. Walking compared with
- 330 vigorous physical activity and risk of type 2 diabetes in women: a prospective study. JAMA.
- 331 1999;282(15):1433-9.
- 332 22. Buigues C, Padilla-Sanchez C, Fernandez Garrido J, Martinez RN, Ros VR, Cauli O. The
- relationship between depression and frailty syndrome: a systematic review. Aging Ment Health. 2014:1-11.
- 23. Demakakos P, Cooper R, Hamer M, de Oliveira C, Hardy R, Breeze E. The bidirectional
- association between depressive symptoms and gait speed: evidence from the English Longitudinal Study of

- 336 Ageing (ELSA). PLoS One. 2013;8(7):e68632.
- 337 24. van Milligen BA, Vogelzangs N, Smit JH, Penninx BW. Physical function as predictor for the
- 338 persistence of depressive and anxiety disorders. J Affect Disord. 2011;136(3):828-32.
- 339 25. Stordal E, Mykletun A, Dahl AA. The association between age and depression in the general
- 340 population: a multivariate examination. Acta Psychiatr Scand. 2003;107(2):132-41.
- 341 26. Kaneko Y, Motohashi Y. Male gender and low education with poor mental health literacy: a
- 342 population-based study. J Epidemiol. 2007;17(4):114-9.
- 343

345 FIGURE LEGENDS

- 346 Figure 1 Flow chart of the study
- 347 Figure 2 Odds ratio of depressive symptoms (a) at baseline, and (b) after one-year follow-up, by quartile of
- 348 standardized hand-grip strength

349

TABLES

		Hand grip strength	
	Total	High	Low
	(n=4314)	(n=1835)	(n=2479)
Age, mean ± SD, years	66.3 ± 9.0	65.5 ±9.0	66.9 ±8.9
Age groups			
40 - 49, %	6.1	7.0	5.4
50 - 59 , %	14.6	15.6	13.8
60 - 69 , %	36.3	37.7	35.3
70 - 79,%	43.0	40.0	45.5
Sex, female, (%)	58.5	55.7	60.6
Hand grip strength, mean ± SD, kg	29.8 ± 9.9	35.5 ± 9.5	25.6 ± 7.9
Mental Statement			
MHI, mean ± SD	74.7 ±18.43	76.4 ± 17.7	73.5±18.7
Depressive symptoms, %	29.0	25.8	31.3
Body mass index, mean ± SD	23.8 ± 3.2	24.2 ± 3.0	23.5 ± 3.2
Smoking status			
Current smoker, %	13.6	14.0	13.3
ex-smoker, %	21.7	23.5	20.3
Moderate or severe			
activities more than once a	73.3	79.6	68.6
week, %			
Comorbidities			
Heart disease, (%)	6.8	6.2	7.3
Respiratory disease, (%)	3.8	4.0	3.7
Stroke, (%)	4.2	3.3	4.8

352 Table 1. Characteristics of all subjects by hand grip strength in cross-sectional study

354	Table 2.	Odds ratio	o of depr	essive sym	ptoms by	hand grip	strength, age,	sex, and comorbidities in

355 cross-sectional analysis

	F	Fully-adjusted model				Minimally-adjusted model			
-	AOR	95% CI		<i>P</i> value	AOR	95% CI		<i>P</i> value	
Hand grip strength (per 1SD decrease)	1.15	1.06	1.24	0.001	1.16	1.08	1.25	<0.001	
Age categories									
40-49	Ref.				Ref.				
50-59	1.18	0.73	1.93	0.502	1.35	0.88	2.07	0.175	
60-69	1.39	0.89	2.19	0.149	1.50	1.02	2.23	0.042	
70-79	1.56	0.99	2.46	0.053	1.67	1.13	2.46	0.010	
Sex									
Male	Ref.				Ref.				
Female	1.41	1.09	1.82	0.009	1.30	1.09	1.53	0.003	
Body mass index (per 1 unit increase)	1.00	0.97	1.03	0.954					
Current smoker (vs. never-smoker)	1.24	0.90	1.71	0.183					
Ex-smoker (vs. never-smoker)	1.01	0.76	1.35	0.949					
Moderate or severe activities more than once a week (vs. no)	0.96	0.85	1.07	0.425					
Comorbidities									
(vs. none)									
Heart disease	1.21	0.85	1.72	0.292					
Respiratory disease	1.66	1.06	2.58	0.026					
Stroke	1.09	0.70	1.69	0.707					

AOR; adjusted odds ratio, CI; confidence interval

Age and sex were adjusted in the minimally-adjusted model

356

357

359	Table 3. Odds ratio of de	pressive symptoms at 1	year by hand grip strength, ag	e, sex, and comorbidities in
				,,,,

360 longitudinal analysis.

	Fully-adjusted model				Minimally-adjusted model			
-	AOR	95% CI		<i>P</i> value	AOR	95% CI		<i>P</i> value
Hand grip strength (per 1SD decrease)	1.13	1.01	1.27	0.036	1.14	1.01	1.28	0.035
Age categories								
40-49	Ref.				Ref.			
50 - 59	3.45	1.06	11.28	0.04	3.65	1.17	11.36	0.025
60 - 69	5.81	1.82	18.60	0.003	5.92	1.96	17.89	0.002
70-79	9.37	2.82	31.17	< 0.001	9.99	3.20	31.15	< 0.001
Sex								
Male	Ref.				Ref.			
Female	1.76	1.20	2.57	0.004	1.88	1.41	2.52	< 0.001
Body mass index (per 1 unit increase)	1.03	0.99	1.08	0.111				
Current smoker (vs. never-smoker)	1.38	0.86	2.23	0.183				
Ex-smoker (vs. never-smoker)	1.07	0.70	1.61	0.764				
Moderate or severe activities more than once a week (vs. no)	1.01	0.85	1.21	0.888				
Comorbidities								
(vs. none)								
Heart disease	1.35	0.83	2.18	0.226				
Respiratory disease	1.51	0.81	2.82	0.190				
Stroke	0.70	0.37	1.31	0.263				

AOR; adjusted odds ratio, CI; confidence interval

Age and sex were adjusted in the minimally-adjusted model

361 362