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Jun Ohkubo

Lie algebraic discussions for time-
inhomogeneous linear birth-death
processes with immigration

Abstract Analytical solutions for time-inhomogeneous linear birth-death
processes with immigration are derived. While time-inhomogeneous linear
birth-death processes without immigration have been studied by using a gen-
erating function approach, the processes with immigration are here analyzed
by Lie algebraic discussions. As a result, a restriction for time-inhomogeneity
of the birth-death process is understood from the viewpoint of the finiteness
of the dimensionality of the Lie algebra.

Keywords Doi-Peliti method · Wei-Norman method · Lie algebra ·
Time-inhomogeneous birth-death process

1 Introduction

A birth-death process is one of the basic tools to investigate various stochas-
tic phenomena, and actually many works have been performed in various
research fields ranging from physics, biology and engineering to social sci-
ences [1]. Depending on the choice of the transition rates, we obtain vari-
ous types of the birth-death processes, which are available to modeling di-
verse stochastic phenomena adequately. While it goes without saying that
the birth-death processes have been used in various contexts, there is one
important problem; in general, it is difficult to obtain anaytical solutions
for the birth-death processes, especially, in time-inhomogeneous birth-death
processes, in which the transition rates are time-dependent.

As for some of the time-homogeneous birth-death processes, there is a
famous spectral formula, so-called Karlin-McGregor spectral formula, to de-
scribe transition probabilities [2–7]. In the spectral formula, each birth-death

Jun Ohkubo
Graduate School of Informatics, Kyoto University,
Yoshida Hon-mach, Sakyo-ku, Kyoto-shi, Kyoto 606-8501, Japan E-mail:
ohkubo@i.kyoto-u.ac.jp



2

process is connected to the three-term relation of a certain type of an orthog-
onal polynomial, and the characteristics of orthogonal polynomials play im-
portant roles to obtain the Karlin-McGregor spectral formula. On the other
hand, a generating function approach is another famous analytical treatment
to investigate the birth-death processes [1]. As for the time-inhomogeneous
cases, the generating function approach has succeeded in deriving analytical
solutions for a special type of birth-death process [8]; the special type of birth-
death process, i.e., the linear birth-death process, has been also discussed in
the context of economical issues [9]. In the seminal work by Kendall [8], the
linear birth-death process with a specific initial condition (a single “ances-
tor”) has been analyzed, and the analytical solutions are given. However,
it has not been obvious which types of the time-inhomogeneous birth-death
processes can be solved analytically.

In the present paper, analytical solutions for the time-inhomogeneous lin-
ear birth-death processes with immigration are derived. It will be clarified
why the immigration process, which is not considered in the Kendall’s work,
makes the analytical treatment difficult. While there are works by Bran-
son [10, 11], in which the immigration effects for the same specific initial
condition as by Kendall have been discussed a little, here, complete solutions
for arbitrary initial conditions are given by employing a completely different
approach, i.e., the Lie algebraic approach. The Lie algebraic approach will
easily clarify the fact that the time-inhomogeneous immigration rate should
be proportional to the time-inhomogeneous birth rate in order to derive the
analytical solutions.

The outline of the present paper is as follows. In section 2, the model
for the birth-death process is explained. Section 3 gives basic formulations
for the Lie algebraic discussions. Sections 4 and 5 show the application of
the Lie algebraic discussions to the evaluation of transition probabilities and
moments, respectively. Section 6 gives concluding remarks.

2 Time-inhomogeneous linear birth-death process with
immigration

In the present paper, the following birth-death process is analyzed:


∅ → A at rate γ(t),

A → A+A at rate λ(t),

A → ∅ at rate µ(t).

(1)

The first process in (1) means the immigration process, and the seminal work
by Kendall [8] corresponds to the case without the immigration, i.e., γ(t) = 0.
Note that the actual rates of the second and third processes depend on the
number of particles A. In order to see the transition procedures of the model
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more clearly, we here give the master equation of the process as follows:

d

dt
P (n, t) =γ(t)P (n− 1, t)− γ(t)P (n, t)

+ λ(t)(n− 1)P (n− 1, t)− λ(t)nP (n, t)

+ µ(t)(n+ 1)P (n+ 1, t)− µ(t)nP (n, t), (2)

where n is the number of particle A, and n ∈ N. The probability P (n, t)
means that there is n particles at time t. In the works by Kendall [8] and
Branson [10, 11], only the specific initial condition with a single “ancestor”,
i.e., P (1, 0) = 1 and P (i, 0) = 0 for i ̸= 1, has been discussed. In the present
paper, the initial condition is not restricted and the initial value can take an
arbitrary non-negative integer value.

When we consider the no-immigration cases (γ(t) = 0), λ(t) and µ(t) can
take arbitrary time-dependency, as discussed by Kendall [8]. However, for
γ(t) ̸= 0 cases, as shown later, we must restrict the birth rate, λ(t), and the
immigration rate, γ(t), as follows:

γ(t) = βλ(t), (3)

where β is a time-independent constant.

3 Application of the Wei-Norman method and resulting
restriction

In this section, the Lie algebraic approach are explained. Firstly, an alge-
braic probabilistic method, the so-called Doi-Peliti formulation [12–14], is
introduced, which is needed for the Lie algebraic discussions. Secondly, an
application of the Wei-Norman method [15, 16] to our problem is discussed.
In addition, for readers’ convenience, we give a brief summary of the Wei-
Norman method in the Appendix.

3.1 Algebraic probabilistic method: Doi-Peliti formulation

The Doi-Peliti formulation [12–14], is a famous tool in nonequilibrium sta-
tistical physics; reaction-diffusion processes and their critical behaviors have
been mainly studied by employing the Doi-Peliti formulation and field the-
oretical methods. (As for the applications of the Doi-Peliti formulation, see
the review paper [17] and the textbook [18], for example.) While the Doi-
Peliti formulation can be extended a little as shown in recent works [19,20],
we here employ the conventional formulation, as introduced below.

In the Doi-Peliti formulation, the following creation and annihilation op-
erators are introduced:

[a, a†] ≡ aa† − a†a = 1, (4)
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where a† is the creation operator, and a corresponds to the annihilation
operator. The actions of the operators on a ‘ket’ state |n⟩ are defined as
follows:

a†|n⟩ = |n+ 1⟩, a|n⟩ = n|n− 1⟩, a|0⟩ = 0, (5)

where |0⟩ is the vacuum state. As the dual state, the following ‘bra’ state ⟨n|
is introduced:

⟨n|a† = ⟨n− 1|n, ⟨n|a = ⟨n+ 1|, ⟨0|a† = 0. (6)

The bra and ket states satisfy the following inner product:

⟨m|n⟩ = n!δm,n. (7)

The key point in the Doi-Peliti formulation is the rewriting of the original
master equation (2) in terms of the creation and annihilation operators. Here,
we introduce the following state vector |φ(t)⟩:

|φ(t)⟩ =
∞∑

n=0

P (n, t)|n⟩, (8)

in which P (n, t) is the probability in the original master equation (2). Then,
the following time-evolution equation for the state vector |φ(t)⟩ is derived
from the original master equation:

d

dt
|φ(t)⟩ = H(t)|φ(t)⟩, (9)

where

H(t) = γ(t)(a† − I) + λ(t)(a†a†a− a†a) + µ(t)(a− a†a). (10)

(It is easy to confirm that Eq. (9) corresponds to the original master equation
(2) by comparing each coefficient of |n⟩.)

Since Eq. (9) is described only in terms of the creation and annihilation
operators, one can employ conventional field-theoretical method, such as the
coherent-state path integral method (for example, see [17]). In order to use
the coherent-state path integral method, usually some more definitions and
preparations are needed. However, here, the formulations in Eqs. (9) and (10)
are enough for the following Lie algebraic discussions.

3.2 Application of the Wei-Norman method

The Wei-Norman method [15,16] is one of the method to treat linear differen-
tial equations with time-varying coefficients. For example, the Wei-Norman
method has been used to analyze Fokker-Planck equations [21] and finan-
cial issues [22]. In Ref. [23], chemical reaction systems has been treated via
the Wei-Norman method, but a kind of infinite-matrix formulation has been
used. The infinite-matrix formulation is a little difficult to treat, and then the
Doi-Peliti formulation would be more suitable for the Wei-Norman method.
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Actually, in a recent work by the author of the present paper, the Wei-
Norman method has been used to analyze a simple birth-death process in
combination with the Doi-Peliti formulation [24].

The aim here is focusing on the Lie algebraic structure and its conse-
quences, and hence the explanation of the Wei-Norman method is omitted;
see the Appendix for the brief summary of the Wei-Norman method.

The most important condition for the Wei-Norman method is the fact that
the Lie algebra has a finite dimension. For example, in the no-immigration
cases (γ(t) = 0), the generator H(t) in Eq. (10) consists of the following
operators:

a†a†a, a†a, a.

Since the commutation relations for the above three operators are closed, i.e.,

[a†a†a, a] = −2a†a, [a†a†a, a†a] = −a†a†a, [a, a†a] = −a,

the Wei-Norman method is applicable. (Note that the Lie algebra composed
with the three operators, {a†a†a, a, a†a} is not solvable, and hence it could
not be guaranteed that the analytical solution is obtained by quadrature. As
for such discussions based on the Lie algebraic structures, see the original
papers by Wei and Norman [15, 16]. However, as shown later, we will see
that analytical solutions for the birth-death process can be obtained in our
restricted cases.) Next, let us tackle with the general case with immigration.
In this case, we have the following five operators:

a†, I, a†a†a, a†a, a.

The problem is as follows: Is it possible to consider the following Lie algebra
in order to employ the Wei-Norman method?:

L ?
=

{
I, a†, a, a†a, a†a†a

}
.

Here, note that the Lie algebra does not have a finite dimension because

[a†a†a, a†] = a†a†, (11)

and hence a new operator a†a† must be included in the Lie algebra, and
[a†a†a, (a†)2] = 2(a†)3, and so on. The important point here is that from
the above naive construction, we cannot have a Lie algebra with a finite
dimension.

Here, the following trick is employed [25]: using a time-independent con-
stant β, consider the following Lie algebra:

L =
{
I, a, a†a, a†(β + a†a)

}
. (12)

Since

[a†(β + a†a), a] = −βI − 2a†a, [a†(β + a†a), a†a] = −a†(β + a†a), (13)

the Lie algebra L in Eq. (12) is closed, and hence it becomes possible to
apply the Wei-Norman method.
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There is one notice here: the finite dimensionality is not for the represen-
tations but for the algebra. That is, if we construct matrix representations
of the Lie algebra, it is needed to infinite-dimensional matrices. Here, only
the finite dimensionality of the algebra is necessary for the Wei-Norman
method. In this sense, it would be possible to use the matrix representations,
as in Ref. [23], instead of the Doi-Peliti formulation. However, because the
Doi-Peliti formulation enables us to use simple algebraic calculations in the
following discussions, especially the discussions in sections 4 and 5, we here
do not use the infinite-dimensional matrix representations.

According to the Lie algebra L, the generator H(t) in Eq. (10) should be
rewritten as follows:

H(t) = −γ(t)I + λ(t)a†(β + a†a) + µ(t)a− (λ(t)− µ(t))a†a

=

4∑
k=1

ak(t)Hk, (14)

where

a1(t) = −γ(t), a2(t) = λ(t), a3(t) = µ(t), a4(t) = −(λ(t)− µ(t)),

H1 = I, H2 = a†(β + a†a), H3 = a, H4 = a†a,

and β is defined as Eq. (3), i.e., β = γ(t)/λ(t)
From the above discussions, it is clarified that the time-inhomogeneous

linear birth-death process with immigration can be analytically treated (at
least, via the Wei-Norman method) only if the immigration rate γ(t) is pro-
portional to the birth rate λ(t). Actually, this is consistent with the previous
work by Branson [10,11]. While in the previous work [10,11] the reason why
this limitation should be employed has not been stated explicitly, we here
explicitly see the reason via the Lie algebraic discussions. Of course, as for
the death rate µ(t), an arbitrary time-inhomogeneous function is available.

The remaining task is to apply the Wei-Norman method to our problem,
which needs some tedious calculations, and the results are as follows: The
following form of the time-evolution operator U(t), which satisfies d

dtU(t) =
H(t)U(t) and U(0) = I, is assumed:

U(t) = eg1(t)Ieg2(t)a
†(β+a†a)eg3(t)aeg4(t)a

†a, (15)

and then via the Wei-Norman method, the following simultaneous ordinary
differential equations are derived for each operator in the Lie algebra L:

(H1 = I) :

− γ(t) = ġ1(t)− βg2(t)ġ3(t)− βg2(t)g3(t)ġ4(t), (16)

(H2 = a†(β + a†a)) :

λ(t) = ġ2(t) + (g2(t))
2ġ3(t)− g2(t)ġ4(t) + (g2(t))

2g3(t)ġ4(t), (17)

(H3 = a) :

µ(t) = ġ3(t) + g3(t)ġ4(t), (18)

(H4 = a†a) :

− λ(t)− µ(t) = ġ4(t)− 2g2(t)ġ3(t)− 2g2(t)g3(t)ġ4(t), (19)
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that is,

ġ1(t) = β(µ(t)g2(t)− λ(t)), (20)

ġ2(t) = λ(t) + g2(t)(g2(t)µ(t)− µ(t)− λ(t)), (21)

ġ3(t) = µ(t) + g3(t)(λ(t) + µ(t)− 2µ(t)g2(t)), (22)

ġ4(t) = −λ(t)− µ(t) + 2µ(t)g2(t). (23)

Equation (21) has the form of the Riccati equation, and using the initial
conditions g1(0) = g2(0) = g3(0) = g4(0) = 0, we finally obtain the following
analytical solutions for {gi(t)}:

g1(t) = β

(
ρ(t)−

∫ t

0

µ(τ)

W (τ)
dτ

)
, (24)

g2(t) = 1− 1

W (t)
, (25)

g3(t) = eρ(t)(W (t))2
∫ t

0

e−ρ(τ)

(W (τ))2
µ(τ)dτ, (26)

g4(t) = −ρ(t)− 2 lnW (t), (27)

where

ρ(t) =

∫ t

0

(µ(τ)− λ(τ))dτ, (28)

W (t) = e−ρ(t)

(
1 +

∫ t

0

eρ(τ)µ(τ)dτ

)
. (29)

In the following sections, as examples of some statistical quantities related
to the birth-death process, the transition probabilities from arbitrary initial
conditions and first-order moment with a specific initial condition are derived.

4 Evaluation of transition probabilities

Using the Doi-Peliti formulation, the transition probability from state n at
time t = 0 to state m at time t is written as

Pn→m(t) =
1

m!
⟨m|U(t)|n⟩, (30)

where U(t) is the time-evolution operator in Eq. (15). Hence, we have

Pn→m(t) =
1

m!
⟨m|eg1(t)Ieg2(t)a

†(β+a†a)eg3(t)aeg4(t)a
†a|n⟩

=
1

m!
eg1(t)+g4(t)n⟨m|eg2(t)a

†(β+a†a)eg3(t)a|n⟩. (31)
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Here, we focus on the following relations:

⟨m|eg2(t)a
†(β+a†a)

= ⟨m|
∞∑
i=0

(g2(t))
i

i!
{a†(β + a†a)}i

=

m∑
i=0

(g2(t))
i

i!
⟨m− i|{m(β +m− 1)} · · · {(m− i+ 1)(β +m− i)}

=

m∑
i=0

(g2(t))
i

i!
⟨m− i| m!Γ (β +m)

(m− i)!Γ (β +m− i)
, (32)

and hence the following transition probabilities are obtained:

Pn→m(t)

=


m∑
i=0

n!Γ (β +m)

i!(m− i)!(n−m+ i)!Γ (β +m− i)
(g2(t))

i(g3(t))
n−m+i (n ≥ m),

n∑
i=0

n!Γ (β +m)

i!(n− i)!(m− n+ i)!Γ (β + n− i)
(g2(t))

m−n+i(g3(t))
i (n < m).

(33)

5 Evaluation of moments

In order to evaluate the moments for the number of particles in the birth-
death process at time t, the following projection state is useful (see, for
example, [17]):

⟨P| ≡ ⟨0|ea. (34)

Using the projection state, the j-th order moment is evaluated as follows:

nj(t) =

∞∑
n=0

njP (n, t) = ⟨P|(a†a)j |φ(t)⟩. (35)

While it would be possible to derive higher-order moments with arbitrary
initial conditions, it needs long and tedious calculations; we here demonstrate
the calculation of the first order moment with the specific initial condition
with n = 1 at time t = 0, which corresponds to the previous work by Kendall
[8] when γ(t) = 0.

Firstly, we employ the following identity:

⟨0|eaa† = ⟨0|
∞∑
i=0

1

i!
aia†

= ⟨0|
∞∑
i=0

1

i!

(
iai−1 + a†ai

)
= ⟨0|ea. (36)
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Note that ⟨0|a† = 0. Hence, we have

n(t)

= ⟨P|(a†a)U(t)|1⟩

= ⟨P|(a†a)eg1(t)Ieg2(t)a
†(β+a†a)eg3(t)aeg4(t)a

†a|1⟩

= eg1(t)+g4(t)⟨P|aeg2(t)a
†(β+a†a)|1⟩

+ g3(t)e
g1(t)+g4(t)⟨P|aeg2(t)a

†(β+a†a)|0⟩, (37)

where |1⟩ = a†|0⟩ corresponds to the specific initial condition, i.e., |φ(0)⟩ =
P (1, 0)|1⟩ = |1⟩.

Secondly, we employ the following two identities:

⟨P|a† = ⟨P| (38)

and

(a†a†a)ia†|0⟩ = i!(a†)i+1|0⟩. (39)

Hence, the first term in the last line in Eq. (37) becomes (except for the
factor exp(g1(t) + g4(t)))

⟨P|aeg2(t)a
†(β+a†a)|1⟩ = ⟨P|a

∞∑
i=0

(g2(t))
i(a†)i+1|0⟩

= ⟨P|
∞∑
i=0

(g2(t))
i(i+ 1)(a†)i|0⟩

=

∞∑
i=0

(g2(t))
i(i+ 1)

=
g2(t)

(1− g2(t))2
+

1

1− g2(t)
. (40)

Thirdly, employing the following identity

(a†(β + a†a))i|0⟩ = β(β + 1) · · · (β + i− 1)(a†)i|0⟩, (41)

the second term in the last line in Eq. (37) becomes (except for the factor
g3(t) exp(g1(t) + g4(t)))

⟨P|aeg2(t)a
†(β+a†a)|0⟩ = ⟨P|a

∞∑
i=0

(g2(t))
i

i!

Γ (β + i)

Γ (β)
(a†)i|0⟩

= ⟨P|
∞∑
i=0

(g2(t))
i

i!

Γ (β + i)

Γ (β)
i(a†)i−1|0⟩

=

∞∑
i=0

(g2(t))
i

(i− 1)!

Γ (β + i)

Γ (β)

=
β

(1− g2(t))β+1
. (42)
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Finally, we obtain

n(t) = eg1(t)+g4(t)(1− g2(t))
−β−2 (1 + βg2(t) + βg2(t)(1− g2(t))g3(t)) .

(43)

When β = 0, the first moment is written as

n(t) = e−ρ(t), (44)

which recovers the result by Kendall [8].

6 Concluding remarks

The present work corresponds to a little extension of the seminal work by
Kendall [8]. Employing a completely different approach from the Kendall’s
work, we can adequately recover the previous results. Moreover, the general
results with the immigration effects are given. While it has not been clarified
whether analytical solutions can be obtained for general time-inhomogeneous
cases or not, the Lie algebraic discussions suggest naturally the restriction,
i.e., the time-inhomogeneous immigration rate should be proportional to the
time-inhomogeneous birth rate. Note that the discussion is not a proof for the
impossibility to obtain analytical solutions for arbitrary time-inhomogeneity,
but it seems natural that the infinite dimensionality of the Lie algebra is
related to the impossibility.

The discussions based on the Lie algebraic method could state the limita-
tion for obtaining analytical solutions for more general birth-death processes.
For birth-death processes with infinite state space, i.e., the particle number
n can take an arbitrary non-negative integer value, it would be difficult to
obtain the Lie algebra with a finite dimension in general. Although there
are some simple systems with multiple species, which give the Lie algebra
with a finite dimension, the linear birth rate, which corresponds to the pro-
cess A → A + A, makes in general the Lie algebraic treatment difficult, as
shown in the present paper. In this sense, the birth-death process without
immigration could be the utmost time-inhomogeneous birth-death process
with arbitrary time-dependent rates; even in the birth-death process with
immigration, there is the restriction for the time-dependent rates.

Acknowledgements This work was supported in part by grant-in-aid for sci-
entific research (Grants No. 25870339) from the Ministry of Education, Culture,
Sports, Science and Technology, Japan.

A The Wei-Norman method

For readers’ convenience, the Wei-Norman method is briefly explained in this ap-
pendix. The Wei-Norman method is one of the Lie algebraic method to solve linear
differential equations with varying coefficients. As for the related algebraic method,
the so-called Magnus expansion, see the review paper in [26]. For the details of the
Wei-Norman method, see the original papers [15,16].
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Let L be a finite-dimensional Lie algebra generated by H1, . . . , HL under the
commutator product. Note that the following procedures are applicable only if the
Lie algebra has a finite dimension.

For later use, we define an adjoint operator, ad, which is a linear operator on
L and

(adHi)Hj ≡ [Hi, Hj ] = HiHj −HjHi, (45)

(adHi)
2Hj = [Hi, [Hi, Hj ]], (46)

and so on.
Define a time-evolution operator U(t), which satisfies

d

dt
U(t) = H(t)U(t) (47)

and U(0) = I, where I is the identity operator. In addition, the operator H(t) is
assumed to be written as

H(t) =
K∑

k=1

ak(t)Hk, (48)

where K is finite and K ≤ L.
The Wei-Norman method finds an expression of the time-evolution operator

U(t) with the following form:

U(t) = exp (g1(t)H1) exp (g2(t)H2) · · · exp (gL(t)HL) , (49)

where gl(0) = 0 for all l ∈ {1, 2, . . . , L}. The time derivative of Eq. (49) gives

d

dt
U(t) =

L∑
l=0

ġl(t)

l−1∏
j=1

exp(gj(t)Hj)

Hi

 L∏
j=i

exp(gj(t)Hj)

 . (50)

Performing a post-multiplication by the inverse operator U−1, and employing the
Baker-Campbell-Hausdorff formula,

eHiHje
−Hi = e(adHi)Hj , (51)

the following expression is obtained:(
d

dt
U(t)

)
U−1(t) =

L∑
l=0

ġl(t)

l−1∏
j=1

exp (gj(t)(adHj))

Hl. (52)

On the other hand, from Eqs. (47) and (48), we have

d

dt
U(t) =

L∑
l=0

al(t)HlU(t), (53)

where al(t) ≡ 0 for l > K. Hence, the following expression is obtained:(
d

dt
U(t)

)
U−1(t) =

L∑
l=0

al(t)Hl. (54)

Comparing Eqs. (52) with (54), we finally obtain

L∑
l=0

al(t)Hl =
L∑

l=0

ġl(t)

l−1∏
j=1

exp (gj(t)(adHj))

Hl. (55)

That is, we have a linear relation between al(t) and ġl(t). Hence, comparing the
coefficients of each Hl in the left and right hand sides, the coupled ordinary differ-
ential equations for {ġl(t)} are derived.
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