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ABSTRACT: 

Monitoring of pharmacodynamics in addition to pharmacokinetics is one of strategies to 

individualize mycophenolate mofetil (MMF) therapy. The purpose of this study was to 

develop sensitive liquid chromatography-tandem mass spectrometry (LC-MS/MS) methods 

for evaluation of the pharmacokinetics and pharmacodynamics of mycophenolic acid (MPA). 

Concentrations of mycophenolic acid glucuronide (MPAG), mycophenolic acid 

acyl-glucuronide (AcMPAG), as well as unbound MPA and MPAG, were determined, and 

inosine-5′-monophosphate dehydrogenase (IMPDH) activity was calculated by measuring 

concentrations of produced xanthosine-5′-monophosphate (XMP) and intracellular 

adenosine-5′-monophosphate (AMP) after incubation of peripheral blood mononuclear cell 

(PBMC) lysates. A metal-free MastroTM column and 2 gradient patterns were used to improve 

the quantification limit of XMP to 0.1 µM. In the clinical MPA concentration range, the 

linearity of the calibration curve, inter- and intra-day precision, and accuracy satisfied the 

relevant FDA guidelines. The MPA concentrations in hematopoietic stem cell transplant 

(HSCT) patients determined by the enzyme assay and the present LC-MS/MS method 

showed a good correlation (r2 = 0.95, p < 0.001). In this study, we report sensitive and 

validated LC-MS/MS methods to evaluate the pharmacokinetics and pharmacodynamics of 
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MPA, which are sufficiently sensitive to assess small quantities of PBMC lysates collected 

shortly after HSCT. 

 

Key words: mycophenolic acid, IMPDH, LC-MS/MS, therapeutic drug monitoring 
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INTRODUCTION 

Mycophenolate mofetil (MMF) is an immunosuppressive agent used worldwide for the 

prevention of rejection after solid-organ transplantations (Kaufman et al., 2004), and it is also 

used in hematopoietic stem cell transplant (HSCT) recipients for graft-versus-host disease 

(GVHD) prophylaxis (Minagawa et al., 2012). The therapeutic effect of mycophenolic acid 

(MPA), the active and hydrolyzed form of MMF, is based on the potent, selective, and 

reversible inhibition of inosine-5′-monophosphate dehydrogenase (IMPDH). IMPDH is the 

rate-limiting enzyme involved in de novo synthesis of guanosine nucleotides; IMPDH 

catalyzes the oxidation of inosine-5′-monophosphate (IMP) to xanthosine-5′-monophosphate 

(XMP) by a nicotinamide adenine dinucleotide (NAD+)-dependent reaction (Allison et al., 

2000). Because this XMP synthesis pathway is essential for the mitogenic function of 

lymphocytes, the inhibitory effect of MPA on IMPDH stops T cell proliferation and thereby 

leads to immunosuppression (Allison et al., 2000). 

MPA is glucuronidated in the liver mainly to an inactive metabolite, mycophenolic acid 

glucuronide (MPAG), and partially to a pharmacologically active metabolite, mycophenolic 

acid acyl-glucuronide (AcMPAG) (Shipkova et al., 2003). Fig. 1 shows the structure of each 

compound. MPAG undergoes enterohepatic recirculation (Bullingham et al., 1998). MPA is 
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highly bound to albumin and the unbound fraction of MPA is approximately 1−3% of the 

total concentration (Nowak et al., 1995). MMF has large inter-individual variability in 

pharmacokinetics and requires therapeutic drug monitoring (TDM) (Staatz et al., 2007). 

While the recommended target range for the MPA area under the curve from 0 to 12 hours 

(AUC0–12) in renal transplant recipients is 30–60 mg · h/L (Shaw et al., 2001), the optimal 

MMF dose for GVHD prophylaxis in HSCT patients has not been established (Minagawa et 

al., 2012). Moreover, it was reported that pre-transplant IMPDH activity is associated with 

clinical outcome in renal transplant patients, which suggests that IMPDH activity should be 

investigated as a suitable marker in the field of transplantation (Glander et al., 2004). 

Recently, it was reported that the area under the effect curve (AUEC) of IMPDH activity on 

day 21 after HSCT was associated with non-relapse mortality and overall mortality, but was 

not associated with GVHD (Li et al., 2014). Further studies are needed on the 

pharmacokinetics and pharmacodynamics of MPA in HSCT patients.  

To evaluate IMPDH activity in peripheral blood mononuclear cells (PBMCs), various 

methods such as liquid chromatography-tandem mass spectrometry (LC-MS/MS) have been 

described (Glander et al., 2009; Maiguma et al., 2010; Laverdière et al., 2012). However, 

there remain several limitations in established IMPDH assay methods: calibration standards 
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are prepared by dilution without PBMC matrix (Glander et al., 2009; Laverdière et al., 2012), 

and the quantification limit of XMP is 0.25 µM, which is insufficient to determine the 

concentrations of XMP and AMP in samples obtained from HSCT patients. 

Therefore, we developed sensitive LC-MS/MS methods to measure plasma 

concentrations of MPA, its 2 metabolites, and unbound MPA and MPAG, as well as IMPDH 

activity in PBMC lysates. We used PBMC matrix as a calibration standard for our 

LC-MS/MS analyses according to the Bioanalytical Method Validation (BMV) guideline 

(FDA, 2013), and aimed to improve the sensitivity of XMP by measurements using a specific 

column and 2 gradient patterns. We evaluated and validated the presently reported 

LC-MS/MS methods in samples from 3 healthy volunteers and 6 HSCT patients. 

 

EXPERIMENTAL 

Chemicals and reagents 

MPA was purchased from Wako Pure Chemical Industries Ltd. (Osaka, Japan). MPAG was 

purchased from Analytical Services International Ltd. (London, UK). AcMPAG and XMP 

disodium salt were purchased from Santa Cruz Biotechnology Inc. (Santa Cruz, CA, USA). 

Mycophenolic acid-d3 (MPA-D3) was purchased from Toronto Research Chemicals Inc. 
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(North York, Canada). Adenosine-5′-monophosphate (AMP) sodium salt from yeast, IMP 

disodium salt from yeast, and NAD+ were purchased from Nacalai Tesque Inc. (Kyoto, 

Japan). 8-Bromo-adenosine-5′-monophosphate (Br-AMP) sodium salt was purchased from 

Jena Bioscience (Jena, Germany). All the chemicals used were of the highest grade available. 

 

Stock solutions, working solutions, calibration standards, and quality control samples 

For analysis of MPA, its metabolites, and unbound MPA and MPAG, stock solutions were 

prepared by dissolving MPA (1 mg/mL), MPAG (10 mg/mL), AcMPAG (1 mg/mL) and 

MPA-D3 (1 mg/mL) in methanol. All solutions were stored at -80 °C. Working solutions were 

prepared by diluting stock solutions with methanol to the appropriate concentrations (200 

µg/mL MPA, 1600 µg/mL MPAG, and 40 µg/mL AcMPAG) for analysis of MPA and its 

metabolites, and further diluting solutions to 0.5 µg/mL MPA and 50 µg/mL MPAG for 

analysis of unbound MPA and MPAG. All diluted working solutions were stored at -20 °C. 

Calibration standards were prepared from the working solutions to yield target concentrations 

of MPA (0.1 to 20 µg/mL), MPAG (0.8 to 160 µg/mL), and AcMPAG (0.02 to 4 µg/mL) by 

diluting solutions with acidified plasma for analysis of MPA and its metabolites. For analysis 

of unbound MPA and MPAG, MPA and MPAG calibration solutions were prepared at 
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concentrations ranging from 5 to 200 ng/mL and 500 to 20000 ng/mL, respectively, using 

purified water. The working solution of internal standard MPA-D3 was prepared from stock 

solution at the time of the assay by dilution with methanol. Quality control (QC) samples of 

MPA, MPAG, and AcMPAG were prepared at low, medium, and high concentrations in 

acidified plasma of healthy subjects and kept at -20 °C. 

For analysis of IMPDH activity, XMP (1 mM) and Br-AMP (1 mM) stock solutions 

were prepared in water, and AMP (1 mM) stock solution was prepared in 0.5% ammonium 

hydroxide. All solutions were stored at -80 C°. Working solutions of 100 µM XMP and 500 

µM AMP were stored at -20 °C. Calibration standards were prepared for XMP (0.1 to 10 μM) 

and AMP (0.5 to 50 µM) by dilution with a mixture of the supernatant from the PBMC lysate, 

incubation buffer, and stop solution. The working solution for internal standard Br-AMP was 

prepared from stock solution at the time of assay by dilution with 95% water and 5% 

methanol. 

 

Clinical sample collection 

Blood samples were collected in 3 mL heparinized collection tubes from 6 HSCT patients 

before and 1, 2, 4, and 8 hours after MMF administration on day 7 and 21 after 
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transplantation. Blood samples were centrifuged at 15000 g for 10 minutes, and 20 µL of 

10% acetic acid was added to 1 mL of the separated plasma sample for stabilization of 

AcMPAG. Unbound MPA was separated by ultrafiltration of 500 µL plasma using Amicon 

Ultra 30 K centrifugal filter devices (Merck Millipore Ltd., Carrigtwohill, Ireland) at 14000 g 

for 10 min. MPA concentrations of all clinical samples were also determined using an 

enzyme assay (Roche total MPA assay on Cobas 6000; Roche Diagnostics, Tokyo, Japan), 

and the results of this enzyme assay were compared to those obtained using the LC-MS/MS 

method described herein.  

PBMCs were isolated from the remaining blood sample by density gradient 

centrifugation using Ficoll-Paque PLUS (GE Healthcare Bio-Sciences AB, Uppsala, Sweden), 

and frozen at -20 °C until analysis. Area under the plasma concentration time curve from 0 to 

8 hours (AUC0-8) of MPA and its metabolites was determined using the linear trapezoidal 

method. This clinical study was performed in accordance with the Declaration of Helsinki 

and its amendments and was approved by the Kyoto University Graduate School and Kyoto 

University Hospital Ethics Committee. Written informed consent was obtained from each 

patient. 
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Assay condition 

IMPDH activity was evaluated in PBMC lysates based on previous reports (Glander et al., 

2009; Maiguma et al., 2010; Laverdière et al., 2012) with slight modifications. First, 300 µL 

of water was added to a sample of thawed PBMC lysate, after which the mixture was agitated 

by vortexing to break down cell membranes and centrifuged at 1000 g for 2 min. The reaction 

was initiated by adding 50 μL of the supernatant to 52 µL of incubation mixture consisting of 

1.6 mM phosphate buffer (consisting of sodium dihydrogen phosphate and sodium 

monohydrogen phosphate, pH 7.4), 3.9 mM potassium chloride, 1.2 mM of IMP, and 0.6 mM 

of NAD+ (final concentrations). The incubation assay was performed at 37 °C for 150 min. 

The reaction was stopped by the addition of 5 µL of 2.5 M perchloric acid followed by 10 µL 

of 3 M potassium monohydrogen phosphate. The mixture was centrifuged for 5 min and the 

supernatant was used for determination. AMP concentrations were determined using another 

sample without the addition of IMP and NAD+. IMPDH activity was calculated based on 

XMP formation and normalized to intracellular AMP using the following equation, in which 

produced XMP (XMPproduced) and AMP (AMPmeasured) concentrations are expressed in 

micromoles per liter and incubation time (ti) is expressed in seconds: 

IMPDH activity (µmol · s-1 · mol-1 AMP) = XMPproduced · 106/(ti · AMPmeasured). 
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Internal standards for LC-MS/MS measurements 

MPA-D3 and Br-AMP were chosen as internal standards for LC-MS/MS assays (Delavenne et 

al., 2011; Laverdière et al., 2012). Fifty µL of acidified plasma sample was mixed with 100 

µL of 0.2 µg/mL MPA-D3 internal standard for analysis of MPA and its metabolites, 50 µL of 

ultra-filtrated plasma sample was mixed with 10 µL of 0.2 µg/mL MPA-D3 internal standard 

for analysis of unbound MPA. On one hand, 60 μL of incubation mixture was mixed with 10 

μL of 100 µM Br-AMP internal standard for analysis of IMPDH activity. Each sample was 

filtered through a Cosmonice Filter W (Nacalai Tesque Inc., Kyoto, Japan) with a pore size of 

0.45 µm for LC-MS/MS determination. 

 

LC-MS/MS conditions 

The LC-MS/MS system (LCMS-8040; Shimadzu, Kyoto, Japan) was run in multiple 

reactions monitoring mode with positive ion mode for determinations. The dwell time was 

0.1 sec for all compounds. The columns were kept at 40 °C. The autosampler was kept at 

4 °C, and 1 µL sample solution was injected for each determination. LabSolutions LCMS 

software (Shimadzu) was used to control the instruments and to process the data. 
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For analysis of MPA, its metabolites and unbound MPA and MPAG, chromatographic 

separation was achieved with a Gemini C18 column (150 mm × 2.00 mm, particle size 5 µm; 

Phenomenex, Torrance, CA, USA). The column was eluted with combinations of water (A) 

and methanol (B) containing 0.1% formic acid and 2 mM ammonium acetate, respectively. 

The flow rate was 0.2 mL/min. The elution gradient was: 0–5 min, linear from 30 to 90% B; 

5–9 min, 90% B; 9–12 min, 100% B; 12–15 min, 30% B. The retention times were as 

follows: MPA, 6.92 min; MPAG, 5.86 min; AcMPAG, 6.78 min; MPA-D3, 6.92 min. The 

molecules were detected according to the following mass transitions: 321.1 > 207.1 (MPA), 

514.1 > 207.1 (MPAG), 514.2 > 207.1 (AcMPAG), and 324.2 > 210.0 (MPA-D3). 

For analysis of IMPDH activity, a metal-free MastroTM column (150 mm × 2.1 mm, 

particle size 3 µm; Shimadzu GLC, Tokyo, Japan) was used, and the solvents were water (A) 

and methanol (B) containing 1 mM ammonium acetate, respectively. The flow rate was 0.2 

mL/min, and we used 2 elution gradient patterns. The gradient for XMP analysis was: 0–4.5 

min, linear from 10 to 50% B; 4.5–5.0 min, 100% B; 5.0–5.5 min, linear from 100 to 10% B; 

5.5–10.0 min, 10% B. The gradient for AMP analysis was: 0–4.5 min, linear from 0 to 50% 

B; 4.5–5.0 min, 100% B; 5.0–5.5 min, linear from 100 to 0% B; 5.5–10.0 min, 0% B. 

Retention times in the XMP assay were 1.64 min for XMP and 3.60 min for Br-AMP, and 
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retention times in the AMP assay were 4.11 min for AMP and 4.83 min for Br-AMP. The 

molecules were detected according to the following mass transitions: 365.1 > 97.2 (XMP), 

348.1 > 136.2 (AMP), and 428.0 > 216.0 (Br-AMP). 

 

Method validation 

The intra- and inter-day precision levels were assessed based on the coefficient of variation 

(CV, %), whereas the accuracy (%) was determined by the following equation: 

Accuracy (%) = (QCmeasured/QCreference) × 100  

where QCmeasured is the measured QC concentration and QCreference is the reference QC 

concentration. Assessments were validated by analyzing 5 replicates of QC samples. The 

stability of MPA and its metabolites in acidified plasma samples from patients was examined 

at 4 °C continuously for the first 24 hours after blood sampling. XMP and AMP stability in 

PBMC lysate samples from healthy subjects was examined at -20 °C continuously for 10 

weeks after PBMC extraction. Seven- or 8-point calibration curves were prepared by adding 

standard products to blank matrix. The coefficient of determination (r2) was used to evaluate 

the linearity of the calibration curve. Matrix effects were determined by comparing the peak 

areas (corrected by internal standards) of compounds added to acidified plasma or PBMC 
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matrix with those added to water. 

The internal levels of XMP or AMP in the reagents of IMP and NAD+ or PBMC 

samples were determined by analyzing incubation samples with or without them. The 

produced XMP concentrations at 0, 60, 120, and 150 min after incubation were determined 

using PBMCs from 3 healthy subjects. The concentrations of AMP and protein in PBMC 

lysate samples of various concentrations from 3 healthy subjects were determined. Protein 

concentrations were measured by the Bradford method. 

 

Inhibition assay of MPA and AcMPAG 

MPA-mediated inhibition of IMPDH activity was assessed in PBMC lysate samples from 3 

healthy subjects. MPA and AcMPAG were added to each PBMC lysate sample to a final 

concentration ranging from 0 to 300 ng/mL and from 0 to 3000 ng/mL, respectively, and 

incubated as previously described. MPA- or AcMPAG-mediated inhibition of IMPDH 

activity was assayed by measuring residual IMPDH activity after the addition of MPA or 

AcMPAG. Pharmacodynamic parameters were calculated by the following sigmoid inhibitory 

maximum effect model: 

E = E0 · [1−Imax · Cp
γ/(IC50

γ + Cp
γ)] 
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where E0 is baseline IMPDH activity, Imax is maximal IMPDH inhibition, Cp is the MPA 

plasma concentration, IC50 is the MPA concentration that causes 50% of maximal IMPDH 

inhibition, and γ is the Hill coefficient that governs the slope of the MPA concentration versus 

IMPDH activity. The E0 values were taken as the original IMPDH activity of each subject 

without the addition of MPA and AcMPAG. 

 

RESULTS 

Method validation 

We initially confirmed the selectivity of the chromatographic method for the targeted analytes 

and the internal standard. Fig. 2 shows the chromatograms of every tested analytes in 

acidified plasma matrix (A–D) and in PBMC matrix (E and F). As shown in Table 1, the 

calibration curve was linear in the examined range. Matrix effects of each compound and 

each concentration were stable (Table 1). Table 2 shows the inter- and intra-day precision 

(CV, %) and accuracy (%). All CVs were less than 15% and accuracy ranged from 85% to 

115%, with the exception of the lower limit of quantification for XMP (in this case, CVs 

were less than 20% and accuracy ranged from 80% to 120%). MPA, MPAG, and AcMPAG 

were stable at 4 °C under acidic conditions until 24 hours after blood sampling (101.9 ± 4.6% 
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of initial values, mean ± SD, n = 3). IMPDH activity in PBMC lysate samples stored at 

-20 °C was stable until 10 weeks after extraction (105.8 ± 14.2% of initial values, mean ± SD, 

n = 3). 

We further measured potential contamination by XMP and AMP in our commercial 

sources of IMP and NAD+ as previously suggested (Laverdière et al., 2012). As shown in Fig. 

3, the IMP and NAD+ used for the incubation medium contained 0.1 µM XMP and 6.1 µM 

AMP, respectively. The combination of 1.2 mM IMP and 0.6 mM NAD+ in the incubation 

medium led to linear formation of XMP in 3 healthy subjects under the assay conditions 

described above (Fig. 4A). The AMP and protein concentrations in PBMC lysates from 3 

healthy subjects showed a good correlation, but a certain amount of protein was contained in 

each sample at 0 µM AMP (Fig. 4B). The addition of MPA (0–300 ng/mL) or AcMPAG (0–

3000 ng/mL) to the PBMC lysates showed a similar inhibition curve in 3 healthy subjects 

(Fig. 5). IC50, Imax, and γ were 1.65 ± 0.92 ng/mL, 0.99 ± 0.03, and 1.08 ± 0.52, respectively, 

for MPA, and 9.48 ± 1.52 ng/mL, 0.98 ± 0.01, and 1.00 ± 0.23, respectively, for AcMPAG 

(mean ± SD, n = 3 for each result). 

 

Measurement of clinical samples 
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Time course data was obtained from 6 HSCT patients on day 7 and 21. The MPA 

concentrations determined by the enzyme assay and LC-MS/MS showed a good correlation 

(r2 = 0.95, p < 0.0001, Fig. 6A). The AUC0-8 ratio of MPAG/MPA varied from 10 to 40 in 

each individual, but this ratio was similar across measurements in each patient, and thus 

showed low intra-individual variability (Fig. 6B). The AUC0-8 ratio of AcMPAG/MPA 

showed high inter- and intra-individual variability (Fig. 6C). Fig. 7 shows a typical time 

profile of MPA concentration and IMPDH activity on day 7 after oral administration of 30 

mg/kg/day, three times per day of MMF. 

 

DISCUSSION 

Based on a previous report (Delavenne et al., 2011), we developed a method to analyze 

plasma concentrations of MPA, its metabolites MPAG and AcMPAG, and unbound MPA and 

MPAG. Analytical methods for IMPDH activity have been published previously (Glander et 

al., 2009; Maiguma et al., 2010; Laverdière et al., 2012), but there are limitations on these 

established methods: they did not use PBMC matrix for calibration standards, and the 

quantification limit of XMP was 0.25 µM, which was not sufficient to determine the amount 

of XMP shortly after HSCT. The LC-MS/MS method described here used PBMC matrix for 



 

 19 

calibration standards and allowed the sensitive measurement of IMPDH activity. Our 

LC-MS/MS method can determine XMP concentrations as low as 0.1 µM by using a 

metal-free column that suppresses the adsorption of phosphate compounds onto the column 

surface. Furthermore, the analytical LC-MS/MS methods reported herein were fully validated 

with regard to correct peak shapes, linearity within the range of clinical concentrations, and 

reproducibility and accuracy of inter- and intra-day measurement (Fig. 2; Tables 1, 2). We 

demonstrated that XMP and AMP could be quantified even in the small quantities of PBMC 

lysates collected from patients on day 7 and 21 after HSCT. 

As stated in a previous report (Laverdière et al., 2012), XMP and AMP have been 

detected as contaminants in commercially available IMP and NAD+ (Fig. 3). Therefore, we 

determined the amount of XMP in each sample by subtracting the XMP contamination (0.1 

µM) from the measured values. AMP concentrations were measured without IMP and NAD+. 

It has been reported that the IC50 of MPA for IMPDH activity in human PBMC lysates in 

vitro is 5−6 nM (1.6−1.9 ng/mL) (Maiguma et al., 2010) or 2−3 ng/mL (Glander et al., 2001), 

but no reports have compared the IC50 of MPA to that of AcMPAG. We added 0−300 ng/mL 

of MPA or 0−3000 ng/mL of AcMPAG to PBMC lysates from 3 healthy subjects and 

incubated them for 150 min; the IC50 of MPA (1.65 ± 0.92 ng/mL) coincided with previously 
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reported values, and the IC50 of AcMPAG (9.48 ± 1.52 ng/mL) was about 6 times greater than 

that of MPA (Fig. 5). IMPDH activity was completely inhibited by 100 ng/mL MPA and 1000 

ng/mL AcMPAG. Although small inter-individual variability in IMPDH activity was 

observed in the 3 healthy subjects, large inter-individual variability in IMPDH activity in 

HSCT patients is expected, as shown in a previous report (Li et al., 2014). 

IMPDH activity decreased as the MPA plasma concentration increased, and there was 

no time delay between the peak MPA concentration and the lowest level of IMPDH activity 

(Fig. 7). Previous studies show that monitoring pharmacodynamics in addition to 

pharmacokinetics might be useful for individualized therapy with MPA (Glander et al., 2004). 

Recently, pharmacokinetic and pharmacodynamic analyses were performed in 56 

nonmyeloablative HSCT patients (Li et al., 2014), but IMPDH activity was determined only 

on day 21, and the activity on day 7 could not be determined because of myelosuppression 

resulting from even the nonmyeloablative-conditioning regimen. In addition, determination 

of IMPDH activity not only at a stable time point but also at an early time point after HSCT 

is important, because IMPDH activity changes as the chimerism progresses. Utilizing the 

sensitive analytical method reported herein, it is possible to measure IMPDH activity at time 

points as early as day 7 after HSCT, which is not possible with previously reported analysis 



 

 21 

methods. Therefore, our method should allow for precise evaluations of pharmacokinetics 

and pharmacodynamics that will benefit HSCT patients. 

Because each sample contains a different number of PBMCs, IMPDH activity must be 

corrected by cell number. Although enzyme activity can be normalized using cell count, 

protein concentration, and AMP concentration, use of cell count for normalization causes 

high intra- and inter-observer variability. We simultaneously determined the amount of AMP 

and protein in samples in order to determine the appropriate correction for the number of 

PBMCs. Although AMP concentrations and protein concentrations showed a good linear 

correlation (Fig. 4B), each sample included a certain amount of excessive protein, which may 

have been due to extracellular protein that could not be washed out by the process of PBMC 

isolation that was performed on the final samples. It has been reported that the use of multiple 

washing steps after cell isolation may remove MPA from cells, leading to an underestimation 

of in vivo MPA-induced IMPDH inhibition (Glander et al., 2012). However, a minimal 

washing procedure resulted in residual protein and erythrocyte contamination that may have 

influenced the estimation of IMPDH activity when corrected by protein concentration 

(Glander et al., 2012). Normalization of the results from each sample based on its respective 

intracellular AMP concentration minimizes the impact of contaminants on the determination 
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of IMPDH activity. Therefore, in our study we used a minimal washing procedure and 

selected intracellular AMP as the factor by which to correct the number of PBMCs. 

The good correlation between MPA plasma concentrations measured using the 

LC-MS/MS method reported here and the enzyme assay normally used for routine TDM in 

our hospital indicated that our LC-MS/MS method was comparable to the routine automated 

method. However, the MPA concentrations measured using the enzymatic method were 

overestimated in comparison with those measured using LC-MS/MS, possibly because of the 

cross-reaction of AcMPAG in the enzymatic method. Figs. 6B and C show the 

inter-individual variability in the AUC ratios of MPAG/MPA and AcMPAG/MPA. Although 

the reason for the intra-individual variability in the AcMPAG/MPA ratio is unclear, it might 

be caused by differences in the activity of the UDP-glucuronosyl transferases responsible for 

metabolism of MPAG and AcMPAG. In future studies, we will investigate the influence of 

enterohepatic circulation of MPAG and the effect of AcMPAG on the pharmacodynamics of 

MPA using the newly developed LC-MS/MS methods reported here. 

 

CONCLUSION 

We developed sensitive and validated LC-MS/MS methods for the analysis of MPA 
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pharmacokinetics and pharmacodynamics in HSCT patients. Because we needed to improve 

the analytical sensitivity of measurements of IMPDH activity for the analysis of samples in 

HSCT patients, we used a specific column and 2 gradient patterns, and the quantification 

limit of XMP was improved to 0.1 µM, which allowed us to determine XMP in small samples 

of PBMCs collected on day 7 after HSCT. The newly developed methods reported here 

provide good precision and accuracy according to the BMV guideline of the FDA, and are 

convenient for large-scale clinical studies. Precise MPA pharmacokinetic/pharmacodynamic 

monitoring will allow clinicians to further optimize MPA-induced immunosuppression for 

various diseases and transplantation procedures.  
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Figure legends 

Fig. 1.  Structures of MPA (A), MPAG (B), and AcMPAG (C). 

Fig. 2. Chromatograms obtained from acidified plasma matrix containing 6.7 ng MPA (A), 

53.3 ng MPAG (B), 1.3 ng AcMPAG (C) and 1.3 ng MPA-D3 (D). Chromatograms obtained 

from PBMC matrix containing 6.9 pmol XMP and 14 pmol Br-AMP (E) and 34.3 pmol AMP 

and 14 pmol Br-AMP (F). 

Fig. 3. Internal levels of XMP and AMP in a buffer solution only (A), containing IMP and 

NAD+ (B), containing PBMCs (C), and containing IMP, NAD+, and PBMCs (D). PBMCs 

were obtained from healthy subjects. Each bar shows the mean ± SD (n = 3). 

Fig. 4. Time profiles of XMP production in 3 healthy subjects (A), and the correlation 

between AMP and protein concentrations in PBMC lysates from 3 healthy subjects (B). Each 

symbol represents the mean ± SD (n = 3) for each subject. XMP production increased linearly 

with the time of incubation (A: r2 = 0.89–0.97; p < 0.001). The AMP concentration was 

strongly correlated with the protein concentration (r2 = 0.97; p < 0.001). 

Fig. 5. In vitro inhibition of IMPDH activity by MPA (A) and AcMPAG (B). After PBMC 

lysates from 3 healthy subjects were incubated for 150 min with several concentrations of 

MPA or AcMPAG, IMPDH activity was determined. Each figure shows a typical curve from 
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each subject. 

Fig. 6. Correlation of MPA concentrations measured using the enzyme assay with those 

determined using the LC-MS/MS method (A). AUC0-8 ratio of MPAG/MPA (B) and 

AcMPAG/MPA (C) in 6 patients. Time course data obtained from 6 HSCT patients treated 

with MMF at the first and third week after transplantation were used in the analyses. 

Fig. 7. A typical time course of MPA concentration and IMPDH activity after oral 

administration of 30 mg/kg/day, three times per day of MMF on day 7 after HSCT.  
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Table 1. Calibration range, coefficient of determination (r2), and matrix effect 

 
Calibration range r2 

Matrix effect (n = 3) 

Mean ± SD (%) 

   
Low Middle High 

MPA 0.1–20 µg/mL 1.00 87.1 ± 3.8 104 ± 5 104 ± 4 

MPAG 0.8–160 µg/mL 0.998 100 ± 13 94.6 ± 3.0 97.0 ± 4.6 

AcMPAG 0.02–4 µg/mL 1.00 75.0 ± 11.0 94.1 ± 6.7 97.5 ± 3.8 

free MPA 5–200 ng/mL 1.00 98.7 ± 4.1 99.7 ± 3.2 101 ± 2 

free MPAG 0.5–20 µg/mL 0.999 97.0 ± 4.2 97.8 ± 3.0 96.9 ± 1.9 

XMP 0.1–10 µM 0.997 70.3 ± 9.0 76.8 ± 6.4 73.5 ± 4.9 

AMP 0.5–50 µM 0.999 90.1 ± 8.9 92.1 ± 2.2 88.4 ± 5.9 
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Table 2. Intra- and inter-day precision and accuracy values 

  
 

CV (%) 
 

Accuracy (%) 

 
Low Middle High 

 
Low Middle High 

Intra-day 

(n = 5) 

MPA 
 

0.71 1.50 1.93 
 

114 109 101 

MPAG 
 

7.93 5.54 5.37 
 

102 112 112 

AcMPAG 
 

7.04 4.33 7.49 
 

104 110 110 

free MPA 
 

2.84 1.40 0.69 
 

93.8 101 101 

free MPAG 
 

0.61 0.63 0.71 
 

96.5 97.1 104 

XMP 
 

3.24 1.69 1.67 
 

117 93.4 103 

AMP 
 

4.47 1.57 0.72 
 

99.8 106 97.1 

Inter-day 

(n = 5) 

MPA 
 

5.69 5.06 3.49 
 

97.0 96.1 95.3 

MPAG 
 

4.98 6.24 2.06 
 

93.5 96.3 95.2 

AcMPAG 
 

7.07 5.72 6.12 
 

95.5 90.3 87.3 

free MPA 
 

7.93 3.90 3.02 
 

104 103 98.0 

free MPAG 
 

2.91 4.67 2.96 
 

100 96.0 103 

XMP 
 

19.1 5.89 3.36 
 

114 107 97.6 

AMP 
 

0.29 5.41 3.26 
 

100 99.5 102 
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