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Wrinkle Generation without Bifurcation in a

Shear-Enforced Rectangular Membrane with Free

Boundaries

Kei Senda∗, Mario Petrovic†, and Kei Nakanishi‡
Kyoto University, Kyoto 606-8501, Japan

The object of this study is to clarify wrinkling behavior of a shear-enforced flat

rectangular membrane with free boundaries. For this purpose, an equilibrium path

tracking method using a finite element method is developed. This method includes

bifurcation path tracking analysis that searches for bifurcation solutions. This method

establishes an image of membrane behavior by calculating a series of successive equilib-

rium states before and after bifurcation buckling. Through detailed analysis of stress,

displacement fields, and wrinkle interaction over a load parameter range, the analysis

shows how existing wrinkles affect each other and the generation of new wrinkles. As a

result, there is wrinkle generation with bifurcation and without bifurcation. The wrin-

kle generation mechanism without bifurcation is analyzed in detail. Wrinkle generation

caused by bifurcations could potentially result in a large number of equilibrium paths.

Each equilibrium path represents a specific wrinkle pattern. However, the analyzed re-

sults show that significantly fewer equilibrium paths are obtained than expected. These

are due to wrinkle generation without bifurcations and to deformation symmetry.
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Nomenclature

a = length, m

b = width, m

D = Flexural rigidity, Nm2

E = Young’s Modulus, GPa

f = force, N

h = shell thickness, m

M = shell section moment, Nm/m

N = shell section force, N/m

q = displacement, m

t = time, s

u = displacement, m

δf = imposed force, N

δu = imposed displacement, m

ϵ = membrane strain

κ = curvature

λ = eigenvalue

ν = Poisson’s ratio

ϕ = eigenvector

σ = membrane stress, N/m2

I. Introduction

When the structure and design of space vehicles are considered, weight and storage requirements

are key limiting factors. Inflatable structures have attracted attention because such structures satisfy

the above factors[1]. This study considers structures using deployable membranes. The structures

are initially folded, deployed into their desired shape, unfolded or inflated, and rigidized.

The research goal of this study is to achieve stable deployment along a planned trajectory for a

structure folded into a prescribed shape. However, because the structure is a membrane, with many
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degrees of freedom, the prediction of membrane behavior is difficult. Here membrane behavior refers

to displacement of membrane points under the effect of outside loads. In a deployment experiment

using an inflatable tube[2], an origami-like pattern was designed to facilitate predictable deployment.

However, small compressive forces cause local buckling and generate wrinkles. Buckling occurs after

a bifurcation[3–6]. When a bifurcation occurs, the material may become unstable and the subsequent

state may not be uniquely determined. This makes predicting stable deployment difficult. To solve

this problem, an understanding of wrinkle behavior is essential.

In this study, a wrinkle is defined as an out-of-plane membrane deformation that occurs when

a compressive load is applied to a membrane. Buckling is defined as a phenomenon generating a

finite deformation in a direction different from the load applied to the structure.

An equilibrium state, or an equilibrium point, is defined as the static state of a membrane

when a static load or an imposed displacement is applied. By varying a path parameter such

as displacement or load, an equilibrium path is obtained, i.e. a sequence of equilibrium points.

Bifurcation is a rapid equilibrium point shift and a qualitative change of the equilibrium state when

the path parameter varies. A wrinkle, i.e. buckling of a membrane, is generated after a bifurcation.

Therefore, in order to deploy a membrane structure along a planned trajectory, understanding of

the bifurcation structure and the equilibrium paths is necessary.

The first step in analyzing wrinkling behavior is modeling the membrane structure. A contin-

uum model based on partial differential equations and a Finite Element (FE) model are typical

approaches, however the former yields solutions for only simple systems. Therefore, finite element

modeling is used to analyze wrinkle behavior. In previous studies[7–9], membrane structures were

modeled with membrane elements that ignore bending stiffness. The membrane element approach

excels in terms of computational cost, however it can not accurately calculate out-of-plane defor-

mation. By using shell elements that include bending stiffness, wrinkle amplitude and wavelength

are calculated more accurately.

In a straight column or flat plate, the bifurcation after which buckling occurs is a branching

bifurcation[3, 10]. For a flat membrane, it is believed that a wrinkle is generated by bifurcation and

the number of wrinkles increases after bifurcation. A bifurcation is a singularity in the analysis.
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Therefore, obtaining equilibrium points after bifurcation is difficult and numerous studies have been

conducted[11]. A method for bifurcation path analysis is needed to obtain equilibrium points after

bifurcation.

The arc length method, and the introduction of imperfections and dynamic analysis, are the

common methods for path tracking after bifurcations[6, 12]. However, these methods do not always

yield a solution, they change the bifurcation structure, or they obtain a fraction of paths after the

bifurcation. To overcome this problem, a bifurcation path analysis method that is able to search for

solutions after bifurcation is needed. In this study, a method of searching for bifurcation solutions

is added into the equilibrium path tracking method, of Wagner and Wriggers[13].

Membrane wrinkling studies have mostly focused on certain effects on characteristics,

i.e. gravity[14], creases[15], stress concentrations[16], etc. In general, wrinkling is analyzed as a

membrane behavior event, and wrinkled geometry is computed for specific loads. The goal of this

study is to obtain a comprehensive image/understanding of membrane wrinkling. For that pur-

pose, several wrinkle generations, multiple wrinkle configurations, and wrinkle interaction will be

considered.

In this study, a flat rectangular membrane with free boundary conditions is sheared, see Wong

and Pellegrino[4] and Inoue[17]. In Wong and Pellegrino[5, 6] a wide range of numerical results

were shown. This study uses bifurcation path tracking analysis to search for equilibrium points

after bifurcations and to applies relatively small increments to imposed displacement for numerical

analysis of the bifurcation structure and wrinkle behavior.

Wong and Pellegrino describe wrinkle generation in terms of bifurcations. Bifurcations generate

multiple paths for wrinkle generation. Each bifurcation can increase the number of equilibrium

paths. There are many possible deformation patterns when the membrane has many wrinkles.

In this study, the results show a membrane has an initial single equilibrium path that branches

into 4 paths, then transitions into 2 paths and then again into 4 paths. When the first 4 paths

exist, the number of wrinkles increases to 33 or 34 without bifurcations by increasing the prescribed

displacement. This study clarifies a new wrinkle generation mechanism, in which wrinkles are gen-

erated at regular points on an equilibrium path. Because of this wrinkle mechanism, the branching
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Fig. 1 Sheared rectangular membrane. Top and bottom edges have fixed boundaries. Right
and left edges have free boundaries.

of the system is reduced and only a small number of paths exist. Two of the first 4 paths undergo

bifurcations resulting in only 2 paths.

Additionally, system symmetry is discussed using the system’s governing equations. This sym-

metry can be described as a dihedral group. Therefore, a single configuration results in three more

configurations by applying these symmetrical transformations. However, symmetry in deforma-

tion patterns of a membrane reduces the number of configurations. Finally, a simpler bifurcation

structure with fewer equilibrium paths, than expected based on the number of wrinkles is obtained.

This paper builds upon the previous work[18, 19] by improving the analysis method. The im-

proved analysis method is used to obtain additional results and discuss the behavior in greater

detail. The rest of this paper is organized as follows. Section II sets up the FEM model of a

rectangular membrane using ABAQUS. A custom built subroutine functions as the path analysis

method. Section III shows the path tracking method for a system with a prescribed displacement.

Section IV introduces the solutions caused by symmetry, the similarity values and bifurcation dia-

grams. Section V presents some numerical simulations and discusses the results. Section VI presents

concluding remarks.
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Table 1 Membrane material properties.

Membrane width a 0.30 [m]
Membrane height b 0.10 [m]

Membrane thickness h 12.5×10−6 [m]
Young’s Modulus E 3.0 [GPa]

Poisson’s ratio ν 0.3

II. Modeling and problem

A. Analyzed object and model

The membrane analyzed in this study is a flat membrane as illustrated in Fig. 1. The material

is Kapton and its properties are listed in Table 1. The choice of a Kapton membrane comes from

the flat membrane wrinkling data, e.g. Wong and Pellegrino[4] and Inoue[17]. The ratio of the

horizontal and the vertical lengths a : b is 3 : 1. Fixed boundaries are set for the top and bottom

edges, and free boundaries for the left and right edges. The fixed top edge is then subjected to a

prescribed displacement. Gravity and imperfections are not considered.

The origin of the xyz-coordinate system is fixed at the membrane center of mass in the unde-

formed state, i.e. when no external loads are applied. The x-axis is parallel to the bottom edge,

y-axis is perpendicular to the bottom edge, and z-axis is normal to the neutral plane, as defined in

Fig. 1. Coordinates (x, y, z) refer to a position on the membrane prior to deformation, and they do

not vary with deformation. Section AA’ is defined at y = 0[m] and BB’ at y = −0.045[m].

First, at the top fixed edge, a displacement of δuy = 30 × 10−6[m] is applied in the y-direction

and is constant throughout the analysis. This is to maintain consistency with experimental results

in Inoue[17]. Then, an imposed displacement δux in x direction is applied. In this study, δux is

increased from 0[m] to 650 × 10−6[m].

Membrane deformation is described by displacements at all points on the membrane. Point

displacements are represented by (ux, uy, uz) in (x, y, z) coordinates. However, the z-displacement

of points on the mid-plane is mainly considered, where displacement of a point in z-coordinate

uz(x, y, 0) is simply expressed by uz(x, y). Stress and strain are given for the mid-plane. The tensile

direction is positive for both stress and strain. Considering the plane stress, the ξξ′-axis corresponds

to the first principal stress direction and the ηη′-axis corresponds to the second principal stress
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direction. When wrinkles exist, the ξξ′-axis in a the wrinkle longitudinal direction is perpendicular

to ηη′-axis. Both ξξ′ and ηη′ rotate with the wrinkles and remain perpendicular to each other.

A wrinkle is a sinusoidal shaped out-of-plane deformation that occurs between two points where

curvature in η-direction changes sign.

The problems dealt with in this study are defined below. The membrane behavior is analyzed by

increasing the imposed shear displacement δux. The behavior includes wrinkle geometry indicated

by the displacement uz(x, y), bifurcation structure of the deformation, and stress. Stress values as

well as forces and moments at certain points will be used to explain the behavior in more detail.

The wrinkle generation mechanism is described by the following analysis.

B. Differential equations

The first step in the analysis of membrane wrinkling is establishing the governing equations for

plates[3]. These equations provide the key properties of the system. For membranes, the Kirchhoff-

Love assumptions for thin plates are adopted. By taking the standard plate definitions[3] the plate
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equations are written as:

Eh

1 − ν2

[
∂2ux

∂x2 + ∂uz

∂x

(
∂2uz

∂x2

)
+ ν

{
∂2uy

∂x∂y
+ ∂uz

∂y

∂2uz

∂x∂y

}]
+ Eh

2(1 + ν)

{
∂2ux

∂y2 + ∂2uy

∂x∂y
+ ∂2uz

∂x∂y

∂uz

∂y
+ ∂uz

∂x

∂2uz

∂y2

}
= fx(ux, uy, uz) = 0 (1)

Eh

1 − ν2

[
∂2ux

∂y2 + ∂uz

∂y

(
∂2uz

∂y2

)
+ ν

{
∂2ux

∂x∂y
+ ∂uz

∂x

∂2uz

∂x∂y

}]
+ Eh

2(1 + ν)

{
∂2uy

∂x2 + ∂2ux

∂x∂y
+ ∂2uz

∂x∂y

∂uz

∂x
+ ∂uz

∂y

∂2uz

∂x2

}
= fy(ux, uy, uz) = 0 (2)

− D

(
∂4uz

∂x4 + ν
∂4uz

∂x2∂y2

)
− 2D(1 − ν) ∂4uz

∂x2∂y2 − D

(
∂4uz

∂y4 + ν
∂4uz

∂x2∂y2

)
+ Eh

1 − ν2

{
∂2ux

∂x2 + ∂2uz

∂x2 + ν

(
∂2ux

∂x∂y
+ ∂uz

∂y

∂2uz

∂x∂y

)}
∂uz

∂x

+ Eh

2(1 + ν)

(
∂2ux

∂x∂y
+ ∂2uy

∂x2 + ∂2uz

∂x2
∂uz

∂y
+ ∂uz

∂x

∂2uz

∂x∂y

)
∂uz

∂y

+ Eh

1 − ν2

{
∂2ux

∂y2 + ∂uz

∂y

∂2uz

∂y2 + ν

(
∂2ux

∂x∂y
+ ∂2uz

∂x∂y

)}
∂uz

∂y

+ Eh

2(1 + ν)

(
∂2ux

∂y2 + ∂2uy

∂x∂y
+ ∂2uz

∂x∂y

∂uz

∂y
+ ∂uz

∂x

∂2uz

∂y2

)
∂uz

∂x

= fz(ux, uy, uz) = 0 (3)

where the membrane flexural rigidity is defined as D = Eh3

12(1−ν2) . The above equations are grouped

as:

f(u(x)) =


fx(ux(x, y, z), uy(x, y, z), uz(x, y))

fy(ux(x, y, z), uy(x, y, z), uz(x, y))

fz(ux(x, y, z), uy(x, y, z), uz(x, y))

 = 0 (4)
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The boundary conditions are given by:

ux(x, − b

2
, 0) = 0 uy(x, − b

2
, 0) = 0 uz(x, − b

2
, 0) = 0 (−3

2
b ≤ x ≤ 3

2
b) (5)

ux(x,
b

2
, 0) = δux uy(x,

b

2
, 0) = δuy uz(x,

b

2
, 0) = 0 (−3

2
b ≤ x ≤ 3

2
b) (6)

∂uz

∂x
(x, ± b

2
, 0) = 0 ∂uz

∂y
(x, ± b

2
, 0) = 0 ∂uz

∂z
(x, ± b

2
, 0) = 0 (−3

2
b ≤ x ≤ 3

2
b) (7)

Nxx(±3
2

b, y, 0) = Eh

1 − ν2

[
∂ux

∂x
+ 1

2

(
∂uz

∂x

)2

+ ν

{
∂uy

∂y
+ 1

2

(
∂uz

∂y

)2}]
(±3

2
b, y, 0)

= 0 (− b

2
≤ y ≤ b

2
) (8)

While it is not possible to analytically solve these equations, they can be used to determine

system symmetry to explain membrane behavior. This topic is discussed in a later section.

C. FEM model

The above geometry, properties and boundary conditions are modeled using ABAQUS. The

S4R shell elements in ABAQUS are used. For the mesh, equal divisions in x and y directions are

constructed resulting in 360×120 elements. The validity of this mesh density is discussed in Section

V. It should be noted that only geometric nonlinearity is considered. Nonlinearity due to other

factors such as material are not considered in the present study.

The static equilibrium of forces, i.e. nonlinear FE equations, F , based on the displacement

method, is formally written as:

F (u, f) = 0 (9)

where f is the applied force for displacement u. The static problem solves the equilibrium equation

with δux for the equilibrium point (u, f). The imposed displacement δux is included in u and the

reaction forces for displacements u are included in f . Equation (9) is a nonlinear equation for u

and f , which is difficult to solve. The solution method, e.g. an incremental calculation, is explained

in the next section.
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III. Equilibrium path tracking method

For equilibrium path tracking, a new equilibrium point, near the current equilibrium point, is

determined by slightly changing the path parameter. However, if the new point is a bifurcation

point, a bifurcation path analysis method is needed to search for post-bifurcation points because a

bifurcation point is a singularity in the analysis. A bifurcation diagram shows the relative position of

equilibrium points before and after the bifurcation point. The bifurcation diagram and deformation

must be obtained in order to understand membrane behavior at the bifurcation points within path

parameters.

First, from an analytical standpoint, the possible bifurcation structures will be discussed based

on the asymptotic theory discussed in Endo[20] where the path parameter is load. Because the path

parameter in this study is displacement, the relation between load and displacement is established.

The relationship between the deformed state of the membrane u and the incremental displacement

δux will be established, where the displacement δux is the path parameter. Finally, a method for

searching for bifurcation solutions equivalent to that of Wagner and Wriggers[13] is built into the

equilibrium path tracking method. This search consists of a stability inspection of the tangent

stiffness matrix. Near bifurcation points the relevant eigenvectors are used to obtain bifurcation

solutions. The process will be discussed in more detail later on.

Because this study does not consider imperfections, the following discussion about bifurcation

points will be based on perfect bifurcations. If imperfections are considered, the bifurcation structure

changes. A bifurcation point is removed and the equilibrium path that led to the bifurcation point

now connects directly into one of the post-bifurcation paths. Instead of branching paths after a

bifurcation, the imperfections select one path. Gravity has a similar effect; it acts as a disturbance

that selects a single path at a bifurcation. By considering these effects, bifurcation is reduced to a

single continuous equilibrium path.

A. Successive solution calculation

For successive solutions to nonlinear equations, the relationship between increments of f and

u is shown. The relationship to incremental δux will be discussed later.
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An equilibrium point (u0 + ũ, f0 + f̃) close to a given equilibrium point (u0, f0) of Eq. (9)

satisfies

F (u0 + ũ, f0 + f̃) = 0 (10)

Expanding Eq. (10) in a Taylor series and by omitting the higher order terms gives

Kũ = f̃ (11)

where K = ∂F
∂uT is the tangent stiffness matrix and − ∂F

∂fT is the unit matrix.

A solution at the new equilibrium point,(u0 + ũ, f0 + f̃) of the original nonlinear equation (10)

is determined by iterative methods, e.g. Newton-Raphson method. This is the equilibrium path

tracking method that seeks successive equilibrium points by gradually increasing f (or δux). Also,

it is the static solution method that obtains solutions satisfying the static equilibrium equation (9).

However, at the structure bifurcation point that is a singular point (uc, f c), det K = 0, and the

incremental displacement ũ corresponding to incremental load f̃ cannot be uniquely determined.

In this case, a bifurcation path analysis that searches for post-bifurcation paths is needed.

B. Asymptotic theory of bifurcation analysis

In order to correctly track paths after a bifurcation, a prediction of the bifurcation structure and

post-bifurcation behavior is desired. Some bifurcation analyses based on asymptotic theory have

been presented[20]. Although they are for static loads, they are helpful. Because experiments usually

use imposed displacements, an asymptotic theory of bifurcation analysis for imposed displacement

is needed. The following is an overview of bifurcation analysis for a static load.

1. Nonlinear equation solution

An equilibrium of a system is represented by Eq. (9). The equilibrium points are calculated by

the Newton-Raphson method, which is an iterative method to solve nonlinear equations (9). An

equilibrium point (u∗, f∗) is calculated close to the given equilibrium point (u(i), fi). By setting
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(u∗, f∗) = (u(i) + ũ(i+1), f∗), the following equation for i = 0, 1, 2, 3, . . . is obtained.

F (u(i) + ũ(i+1), f∗) = F (u(i), f∗) + ∂F

∂uT
(u(i))ũ(i+1) + 1

2!
ũ(i+1) T ∂2F

∂u∂uT
(u(i))ũ(i+1) + · · · = 0

(12)

where higher order terms are omitted. Rearranging gives:

ũ(i+1) ≈ −K−1
i F (u(i), f∗) (13)

where Ki = ∂F

∂uT
(u(i)) is the tangent stiffness matrix at u(i).

Calculation of F (u(1), f∗), F (u(2), f∗), . . . , F (u(n), f∗) is performed until F (u(n), f∗) = 0.

2. Asymptotic theory near the bifurcation point

When determinants of the tangent stiffness matrices K0, K1, K2, . . . are zero, ũ(1), ũ(2),

ũ(3), . . . cannot be determined uniquely. At a bifurcation point, the tangent stiffness matrix has at

least one zero eigenvalue. Solution (u(i), fi) is called a simple singular point when tangent stiffness

matrix Ki has one zero eigenvalue. Following Endo, et al[20], a bifurcation point (uc, fc) that

is a simple singular point is discussed. At a bifurcation point (uc, fc), the expanded incremental

equation based on Eq. (9) becomes:

F (uc, fc) + Kcũ + I f̃ + · · · − F (uc, fc) = 0 (14)

where ||ũ|| ≪ 1, |f̃ | ≪ 1. The eigenvalues and the corresponding eigenvectors of Kc, respectively,

are λ1, λ2, . . . , λn and ϕ1, ϕ2, . . . , ϕn which are normalized. All eigenvalues are real and λ1 = 0.
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The basis matrix is Φ and incremental displacement vector ũ is approximated as:

ũ = Φq̃ =
[

ϕ1 ϕ2 · · · ϕn

]


q̃1

q̃2

...

q̃n


(15)

∂F

∂uT
(uc, fc) =

(
∂F

∂uT

)
c

= Kc (16)

= Φ



∂
ϕ
F1

∂
ϕ
u1

∂
ϕ
F1

∂
ϕ
u2

· · · ∂
ϕ
F1

∂
ϕ
un

∂
ϕ
F2

∂
ϕ
u1

∂
ϕ
F2

∂
ϕ
u2

· · · ∂
ϕ
F2

∂
ϕ
un

...
...

. . .
...

∂
ϕ
Fn

∂
ϕ
u1

∂
ϕ
Fn

∂
ϕ
u2

· · · ∂
ϕ
Fn

∂
ϕ
un


ΦT = Φ



λ1 0 · · · 0

0 λ2 · · · 0
...

...
. . .

...

0 0 · · · λn


ΦT (17)

The coordinate transformation of Eq. (15) yields

ΦT
(
F (uc + ũ, fc + f̃) − F (uc, fc)

)
= 0 (18)

ΦKcq̃ + ΦT

(
∂F

∂f

)
c

f̃ + · · · = 0 (19)

λ1q̃1 + ϕT
1

(
∂F
∂f

)
c

f̃ + · · ·

λ2q̃2 + ϕT
2

(
∂F
∂f

)
c

f̃ + · · ·
...

λnq̃n + ϕT
n

(
∂F
∂f

)
c

f̃ + · · ·


=



F̃1(q̃, f̃)

F̃2(q̃, f̃)
...

F̃n(q̃, f̃)


= 0 (20)

The solution for the incremental displacements is:

q̃2 = − 1
λ2

(
ϕT

2

(
∂F

∂f

)
c

f̃ + · · ·
)

(21)

...

q̃n = − 1
λn

(
ϕT

n

(
∂F

∂f

)
c

f̃ + · · ·
)

(22)

The generalized displacement q̃2, q̃3, . . . , q̃n can be eliminated, since they are the incremental dis-

placements components associated with the non-zero eigenvalues. By substituting q̃2, q̃3, . . . , q̃n
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functions of q̃1 and f̃ into Eq. (20), the following equation is obtained.

F̃1(q̃, f̃) = F̃1(q̃1, f̃) = 0 (23)

Equation (23) is expanded into a Taylor series, which yields

F̃1(0, 0) +
n∑

i=1

1
i!

∂iF̃1

∂q̃i
1

q̃i
1 +

n∑
i=1

1
i!

∂iF̃1

∂f̃ i
f̃ i +

n∑
i=1

n∑
j=1

1
(i + j)!

∂i+jF̃1

∂q̃i
1∂f̃ j

q̃i
1f̃ j = 0 (24)

A00 + (A10q̃1 + · · · ) + (A01f̃ + · · · ) + (A11q̃1f̃ + · · · ) = 0 (25)

Aij = 1
i!j!

∂i+j

∂q̃1
i∂f̃ j

F̃1(0, 0) (26)

3. Classification of bifurcation points

A tangent stiffness matrix has one zero eigenvalue, and the following conditions are assumed:

|q̃1| = O(δ), |f̃ | = O(ϵ), 0 < ϵ ≪ 1, 0 < δ ≪ 1 (27)

λ1 = 0, λ2 = · · · = λn = O(1) (28)

Aij = O(1) (29)

ϕT
i

(
∂F

∂f

)
c

= O(1) (i = 2, 3, . . . , n) (30)

According to the asymptotic theory, there exist the following bifurcation points: (i)-a limit point,

i.e. maximum or minimum point, (i)-b limit point, i.e. inflection point, (ii)-a asymmetric bifurcation

point, and (ii)-b symmetric bifurcation point. The relation between the incremental displacement

and the loading parameter is analyzed in each case.

(i)-a Snap-through bifurcation point (maximum and minimum point)

If ϵ ∼ δ2 ≪ δ, Eq. (25) is rearranged as:

A20q̃2
1 + A01f̃ = 0 (31)
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Eqs. (21) to (22) become

q̃2 ∼ − 1
λ2

ϕT
2

(
∂F

∂f

)
c

f̃ = O(f̃) ≪ O(q̃1) (32)

...

q̃n ∼ − 1
λn

ϕT
n

(
∂F

∂f

)
c

f̃ = O(f̃) ≪ O(q̃1) (33)

Considering assumption q̃1 ≫ f̃ , Eq. (15) yields the direction of the bifurcation path as:

ũ =
[

ϕ1 ϕ2 · · · ϕn

]


q̃1

q̃2

...

q̃n


(34)

∼ q̃1ϕ1 (35)

Therefore, ũ ≈ q̃1ϕ1 is satisfied near the bifurcation points. The force f̃ is a quadratic function

of q̃1, and the bifurcation point is the extremal value of the function. So, q̃1 changes rapidly for a

slight change of f̃ .

(i)-b Snap-through bifurcation point (inflection point) (A20 = 0)

If ϵ ∼ δ3 ≪ δ, Eq. (25) is rearranged as:

A30q̃3
1 + A01f̃ = 0 (36)

Here, ũ ≈ q̃1ϕ1 is also satisfied near the bifurcation points. The force f̃ is a cubic function of q̃1,

and the bifurcation point is the inflection point of the function. So, q̃1 changes rapidly after a slight

change of f̃ .
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(ii)-a Asymmetric bifurcation point (A01 = 0, A20A02 − 1
4 A11 < 0)

If ϵ2 ≪ δϵ ∼ δ2 ≪ ϵ ≪ δ, Eq. (25) is rearranged as:

A20q̃2
1 + A11q̃1f̃ = 0 (37)

Here, ũ ≈ q̃1ϕ1 is also satisfied near the bifurcation points. This results in q̃1 = 0 or q̃1 is a linear

function of f̃ . q̃1 = 0 is the primary path. The linear function A20q̃1 + A11f̃ = 0 is the bifurcation

path. At the bifurcation path, q̃1 is the same order of f̃ .

(ii)-b Symmetric bifurcation point (A01 = A20 = 0, A20A02 − 1
4 A11 < 0)

If ϵ2 ≪ δ3 ∼ δϵ ≪ ϵ ≪ δ, Eq. (25) is rearranged as:

A30q̃3
1 + A11q̃1f̃ = 0 (38)

Here, ũ ≈ q̃1ϕ1 is also satisfied near the bifurcation points. This results in q̃1 = 0 or q̃1 is quadratic

function of f̃ . q̃1 = 0 is the primary path and a quadratic function A30q̃2
1 + A11f̃ = 0 is the

bifurcation path. So, q̃1 changes rapidly for a slight change of f̃ .

C. imposed displacement and imposed load relation

In this subsection, the analysis method based on nonlinear equations for imposed displacements

will be explained in terms of asymptotic theory.

The governing nonlinear equations is Eq. (9) where the displacement vector u, and the external

force vector f are defined as:

u =


u1

u2f

u2nof

 , f =


f1

f2f

f2nof

 (39)

where the underlined variables are prescribed and those with suffixes 1 and 2 correspond to geometric

boundary conditions and loads as mechanical boundary conditions, respectively. In addition, u1
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represents the y and z degrees of freedom at the top boundary and the x, y and z degrees of freedom

at the bottom boundary, therefore u1 = 0.

The term u2f are the degrees of freedom on the top boundary in x-direction. The term u2nof

represents the degrees of freedom of all nodes except at the top and bottom boundaries. Force f1

is the load that is applied to maintain the constraint u1 = 0. The term f2f is the load generated

by the imposed u2f . The term u2f is a M size vector and u2nof is a N size vector.

The f2nof
term is the external force on the degrees of freedom in u2nof , however there is no

external force on them, hence f2nof
= 0. The original nonlinear equation becomes:

F (u1, u2f , u2nof , f1, f2f , f2nof
) = 0 (40)

By dividing this into this three parts, i.e. the fixed boundary, the boundary with the imposed

displacement and the other parts, the nonlinear equations are rewritten as:

F 1(u1, u2f , u2nof , f1) = 0 (41)

F 2f (u1, u2f , u2nof , f2f ) = 0 (42)

F 2nof (u1, u2f , u2nof , f2nof
) = 0 (43)

Now a coordinate transformation is performed. By considering the generalized coordinates in x-

direction at the top edge, the transformation is:

u2f =



1 0 · · · 0 1

0 1 · · · 0 1
...

...
. . .

...
...

0 0 · · · 1 1

0 0 · · · 0 1





u2f1 − u2fM

u2f2 − u2fM

...

u2fM−1 − u2fM

u2fM


= T u

′

2f

As shown in the equation, the new coordinates are described by the original coordinates u2f and

the equation can be solved for u
′

2f in reverse, thus u
′

2f is also a generalized coordinate. Substituting
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this relation into the above equations, considering the constraint condition u2f = δuxe, and the

vector c as the constant vector:

c = [0 · · · 0 1]T (44)

the Taylor expansion by using the relationships u2f = T u
′

2f = T cδux is performed:

∂F 1

∂uT
1

ũ1 + ∂F 1

∂uT
2f

T cδũx + ∂F 1

∂uT
2nof

ũ2nof + ∂F 1

∂fT
1

f̃1 + · · · = 0 (45)

∂F 2f

∂uT
1

ũ1 + ∂F 2f

∂uT
2f

T cδũx + ∂F 2f

∂uT
2nof

ũ2nof + ∂F 2f

∂fT
2f

f̃2f + · · · = 0 (46)

∂F 2nof

∂uT
1

ũ1 + ∂F 2nof

∂uT
2f

T cδũx + ∂F 2nof

∂uT
2nof

ũ2nof + ∂F 2nof

∂fT

2nof

f̃2nof
+ · · · = 0 (47)

Here, the addition of the tilde notation is to indicate that the increments occur at the bifurcation

point, as is discussed in Section III B 2. The linear parts are rewritten in matrix forms as:


∂F 1
∂uT

1

∂F 1
∂uT

2f

T ∂F 1
∂uT

2nof

∂F 2f

∂uT
1

∂F 2f

∂uT
2f

T
∂F 2f

∂uT
2nof

∂F 2nof

∂uT
1

∂F 2nof

∂uT
2f

T
∂F 2nof

∂uT
2nof




ũ1

cδũx

ũ2nof

 =


f̃1

f̃2f

f̃2nof

 (48)

or:


K11 K12T K13

K21 K22T K23

K31 K32T K33




ũ1

cδũx

ũ2nof

 =


f̃1

f̃2f

f̃2nof

 (49)

The boundary conditions ũ1 = 0, f̃2nof
= 0 transform the equation into:

 K
′

22 k22 K23

K
′

32 k32 K33




0

δũx

ũ2nof

 =

 f̃2f

0

 (50)
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where cδũx = [0 δũx]T holds. Matrices K
′

22, K
′

32 and vectors k22, k32 are:

K
′

22 =



(K22)11 (K22)12 · · · (K22)1M−1

(K22)21 (K22)22 · · · (K22)2M−1

...
... · · ·

...

(K22)M1 (K22)M2 · · · (K22)MM−1


(51)

K
′

32 =



(K32)11 (K32)12 · · · (K32)1M−1

(K32)21 (K32)22 · · · (K32)2M−1

...
... · · ·

...

(K32)N1 (K32)N2 · · · (K32)NM−1


(52)

k22 =



M∑
i=1

(K22)1i

M∑
i=1

(K22)2i

...
M∑

i=1
(K22)Mi


, k32 =



N∑
i=1

(K32)1i

N∑
i=1

(K32)2i

...
N∑

i=1
(K32)Ni


(53)

Rearranging the place the known variables on the right side and unknowns to the left, gives:

 −T −1K−1
22 −T −1K−1

22 K23

−K32T K−1
22 K32T K−1

22 K32 + K33


 f̃2f

ũ2nof

 =

 cδũx

0

 (54)

Now the possible bifurcations in Eq. (54) are discussed. By performing an eigenvalue analysis

of the tangent stiffness matrix and obtaining the eigenvector corresponding to the zero eigenvalue,

the following relationships are established:

ϕc ·

 cδũx

0

 = 0 ⇒

 cδũx

0

 =
M+N∑

i=2
qiϕi (55)
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or

ϕc ·

 cδũx

0

 ̸= 0 ⇒

 cδũx

0

 =
M+N∑

i=1
qiϕi (56)

According to asymptotic theory, the former is the bifurcation point and the latter is the limit point.

The bifurcation point of the former is considered first. The linear equations are:

 −T −1K−1
22 −T −1K−1

22 K23

−K32T K−1
22 K32T K−1

22 K32 + K33


(

N+M∑
i=2

qiϕi

)
=

N+M∑
i=2

λiqiϕi (57)

To satisfy this relation, the eigenvector corresponding to the zero eigenvalue is not needed. At

the bifurcation point, deformation occurs along the direction of the zero eigenvector without any

increment in δux. Now the limit point is considered:

 −T −1K−1
22 −T −1K−1

22 K23

−K32T K−1
22 K32T K−1

22 K32 + K33


(

N+M∑
i=1

qiϕi

)
=

N+M∑
i=1

λiqiϕi (58)

In this case the eigenvector corresponding to the zero eigenvalue is needed. When a bifurcation

occurs with a finite change in δux, the bifurcation mode corresponding to the zero eigenvalue

eigenvector does appear.

Then the generalized coordinates are:

 δũx

ũ2nof

 (59)

In order to determine the generalized force, Eq. (50) is rearranged.

[
K

′

22 k22

] 0

δũx

+ K23ũ2nof = f̃2f (60)

δũxk22 + K23ũ2nof = f̃2f (61)
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The following equations are obtained by summing up the components in the above equation as:

M∑
i=1

M∑
j=1

(K22)ijδũx +

[
M∑

i=1
(K23)i1

M∑
i=1

(K23)i2 · · ·
M∑

i=1
(K23)iN

]


ũ2nof1

ũ2nof2

...

ũ2nofN


=

M∑
i=1

(f̃2f )i (62)

k22δũx + kT
23ũ2nof = f̃ (63)

where the load parameter f̃ is defined as:

f̃ =
M∑

i=1
(f̃2f )i (64)

Using Eq. (63), Eq. (50) is written as:

 k22 kT
32

k32 K33


 δũx

ũ2nof

 =

 f̃

0

 (65)

By transferring the known variables to the right side and the unknowns to the left, the following

holds:

 k−1
22 −k−1

22 kT
32

−k−1
22 k32 k−1

22 k32kT
32 + K33


 f̃

ũ2nof

 =

 δũx

0

 (66)

The tangent stiffness matrix is obtained, which corresponds to the case of imposed displacement as:

 k−1
22 −k−1

22 kT
32

−k−1
22 k32 k−1

22 k32kT
32 + K33

 (67)

Extracting some parts of Eq. (54) led to Eq. (66). As with Eq. (54), if ϕc is the eigenvector

corresponding to the zero eigenvalue of the tangent stiffness matrix, the the following relation is
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considered with the vector on the right side in Eq. (66).

ϕc ·

 δũx

0

 = 0 ⇒

 δũx

0

 =
M+N∑

i=2
qiϕi (68)

or

ϕc ·

 δũx

0

 ̸= 0 ⇒

 δũx

0

 =
M+N∑

i=1
qiϕi (69)

According to asymptotic theory, the former is the bifurcation point and the latter the limit point.

Again, first the bifurcation point is considered and the linear equations become

 k−1
22 −k−1

22 kT
32

−k−1
22 k32 k−1

22 k32kT
32 + K33


(

N+M∑
i=2

qiϕi

)
=

N+M∑
i=2

λiqiϕi (70)

To satisfy this relation, the eigenvector corresponding to the zero eigenvalue is not needed. When a

bifurcation occurs without any change in δux, the bifurcation mode corresponding to the eigenvector

of the zero eigenvalue does appear.

Considering the latter:

 k−1
22 −k−1

22 kT
32

−k−1
22 k32 k−1

22 k32kT
32 + K33


(

N+M∑
i=1

qiϕi

)
=

N+M∑
i=1

λiqiϕi (71)

In this case, the eigenvector must correspond to the zero eigenvalue. When a bifurcation occurs, with

no change in δux, there is no change corresponding to the mode of the zero eigenvalue eigenvector.

This explains how to estimate the post-bifurcation path using the above tangent stiffness matrix.

D. Bifurcation path analysis method

1. Outline

According to section III B, bifurcation points are bifurcation branching points and limit

points[20]. When the solution passes through a limit point, snap-through bifurcation occurs and the
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equilibrium path jumps in a discontinuous manner. The branching bifurcation points are classified

as the symmetric and the asymmetric bifurcation points. Symmetric and asymmetric bifurcation

points generate symmetric bifurcation buckling and asymmetric bifurcation buckling, respectively.

It is possible to predict the type of bifurcation structure using asymptotic theory. However, the

accuracy of the prediction is reduced because the higher order terms are neglected. In the case

of snap-through buckling and symmetric bifurcation buckling, the direction of the incremental dis-

placement from the buckling point is equal to the eigenvector corresponding to a zero eigenvalue.

In the case of asymmetric bifurcation buckling, displacement and load should be changed to satisfy

the relation in III B 2 (ii)-a.

At bifurcation point (uc, f c), the tangent stiffness matrix K has a zero eigenvalue λc = 0

(detK = 0) and a corresponding eigenvector ϕc. In order to determine the position of the bifur-

cation point, a pinpointing procedure that is similar to the method to solve the extended system

described in Wriggers, et al.[13] is used. The eigenvalue analysis of the tangent stiffness matrix

is performed and (uc + ϵϕc, f c) is computed. The perturbed state is in the eigenvector direction

from the bifurcation point, where ϵ is an infinitesimal parameter. By assuming the perturbed state

is near a post-bifurcation path, a convergence calculation, the Newton-Raphson iteration, is per-

formed as described in Section III B. This static analysis searches for a new equilibrium point after

the bifurcation. If a post-bifurcation equilibrium point cannot be found, the initial condition is

changed by varying ϵ and the search for a new equilibrium point is repeated. This method, which

estimates the bifurcation mode as the eigenvector and searches for the bifurcation path, is simi-

lar to the method used in Wanger and Wriggers[13]. The difference is that Wanger and Wriggers

used a directional derivative of the tangent stiffness matrix for the perturbed state. The following

path analysis method algorithm has the ability to track paths after symmetric and asymmetric

bifurcations, whether they are stable or unstable.

2. Analysis algorithm

If there are multiple bifurcation points with multiple zero eigenvalues, an effective way to search

for buckling modes is the linear combination of eigenvectors. An algorithm to search for bifurcation
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solution, where the bifurcation point is a double singular point (i.e. K has two zero eigenvalues), is

shown.

1. By increasing δux, an eigenvalue analysis of the tangent stiffness matrix K in Eq. (66) is

performed.

2. Existence of the primary path is checked. For this purpose, path tracking without perturbation

ũ is performed by increasing δux from the initial point (uc, f c).

3. The point (uc + ϵT Φ, f c) is calculated where the eigenvector ϕ1 and ϕ2 correspond to the

zero eigenvalues, Φ = [ϕ1 ϕ2], ϵ = [ϵ cos θ ϵ sin θ]T and 0 < ϵ ≪ 1, 0 ≤ θ < 2π. Vector ϵT Φ is

called the disturbance vector. A convergence calculation for the static analysis is performed

from this state to obtain a new equilibrium point. Various values of θ are tested and then ϵ

is increased gradually to seek the post-bifurcation path. If the solution is obtained, the path

tracking is performed by increasing δux from this state.

4. The point (u + ϵT Φ, f) is calculated from the pre-buckling point(u, f), where ϵ and Φ are

defined in step 3. If a solution is obtained, the path tracking is performed by decreasing δux

from this point.

An algorithm for a simple singular point follows the same progression but with a slight modi-

fication. In steps 3. and 4., uc ± ϵϕ is used instead of uc + ϵT Φ where ϕ is the eigenvector of the

zero eigenvalue and ϵ is an infinitesimal parameter.

IV. Analysis methods of solution

A. Symmetric solutions

Based on group theory[21], the equivalence of a system that possesses symmetry is described

as:

M(γ)f(u(x), µ) = f(M(γ)u(M(γ)x), µ) (72)

The observed membrane has symmetry that is invariant with respect to e, s, r and sr, where e is the

identity transformation, s is the reflection transformation with respect to xy-plane, r is the rotation
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transformation by 180◦ about the z-axis and sr is the combination of s and r. This symmetry group

is known as the dihedral group D2 = {e, r, s, sr}. The representation matrices for the elements are:

M(e) =


1 0 0

0 1 0

0 0 1

 , M(r) =


−1 0 0

0 −1 0

0 0 1



M(s) =


1 0 0

0 1 0

0 0 −1

 , M(sr) =


−1 0 0

0 −1 0

0 0 −1

 (73)

The rotation transformation is a 180◦ rotation about z-axis at the origin in Fig. 1. Substituting

them into the governing equations (4) yields:

f(M(r)u(M(r)x)) = [−fx, −fy, fz]T = M(r)f(u(x)) = 0 (74)

f(M(s)u(M(s)x)) = [fx, fy, −fz]T = M(s)f(u(x)) = 0 (75)

f(M(sr)u(M(sr)x)) = [−fx, −fy, −fz]T = M(sr)f(u(x)) = 0 (76)

Hence, the symmetry transformations satisfy the equivalence condition of the governing equations.

In addition, the boundary conditions in Eqs. (5) to (8) are invariant under the symmetry transforma-

tions. As a result, this system has the symmetry that is invariant under all possible transformations.

Deformation u0(x, y, z) satisfies the governing equations (4) and boundary conditions of

Eqs. (5) to (8). Three deformations us(x, y, z), ur(x, y, z), and usr(x, y, z) are obtained from

u0(x, y, z) by means of the reflection transformation, the rotation transformation, and the rotation

and reflection transformation, respectively. The three deformations us, ur, and usr are the solutions

satisfying the governing equations (4) and the boundary conditions of Eqs. (5) to (8).

Symmetry between two solutions is defined through an example. If deformation u1(x, y, z)

is equivalent to usr(x, y, z), there exists a symmetry where u0 agrees with u1 using the rotation

and reflection transformation. Also, u1 is equivalent to u0 transformed by the rotation and reflec-

tion transformation. In other words, u0 and u1 have the rotation and reflection symmetry. The
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deformation u1 is a different representation of u0.

Symmetry in a solution can also be defined through an example. If u0(x, y, z) is equivalent to

ur(x, y, z), then u0 has the symmetry that is invariant under the rotation transformation. Also, u0

has the rotation symmetry. In this case, ur is obtained, which is equivalent to u0 by the rotation

transformation. It is said that we obtain the same solution or we do not obtain a new solution by

the transformation.

B. Similarity value

In order to identify similarity between the two solutions, the similarity value is constructed as

the inner product of solutions:

< f1(nx, ny), f2(nx, ny) >=
Nx∑
p=1

Ny∑
q=1

f̂1(m, n)f̂∗
2 (m, n) (77)

where fj(nx, ny) is a vector whose components are displacement values sampled at all finite element

nodes and f̂j(m, n) is the discrete Fourier transformation of fj(nx, ny).

The similarity value is evaluated using the first bifurcation point of the membrane. Because

of membrane symmetry, the first bifurcation point is also symmetric, as is theoretically predicted.

Therefore, the theoretical similarity value between two deformations should be 1. However, the

above defined similarity value is based on a discrete set. When the similarity value of f1 and f2 are

obtained numerically after the first bifurcation point, a value of 0.999995... was obtained. Therefore,

the values after the fifth digit are considered to be numerical error. During comparison of different

wrinkle patterns, the number of digits to which similarity is obtained is referred, e.g. 0.99999345

achieved similarity within 5 digits.

C. Bifurcation diagram

A method of expressing the equilibrium path as it passes through the bifurcation point is needed.

Here, calculating the inner product of the eigenvector and the incremental displacement vector is

considered to make a bifurcation diagram.

At the bifurcation point (uc, F c), the tangent stiffness matrix Kc becomes det Kc = 0. At
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this point there exist Nc zero eigenvalues λci = 0 (i = 1, . . . , Nc) and corresponding eigenvectors

ϕci.

Kciϕci = λciϕci (i = 1, 2, . . . , Nc)

where ϕci is normalized as ||ϕci|| = 1. Using λci = 0 and where ci is an arbitrary constant results

in:

Kc

(
Nc∑
i=1

ciϕci

)
= 0 (78)

As explained in the earlier section the incremental displacement ũc occurs whereas the incremental

load f̃ ≃ 0:

Kcũc ≃ 0 (79)

Combining Eq. (78) and Eq. (79) the following holds:

ũc ≃
Nc∑
i=1

ciϕci (80)

The displacement increment after the bifurcation point, ũ is expressed as a linear combination of

eigenvectors ϕci corresponding to the zero eigenvalues of the tangent stiffness matrix. Calculation

of ci is as:

ci = ũc · ϕci (i = 1, . . . , Nc) (81)

For construction of the bifurcation diagram, ci will be used.

27



Fig. 2 Convergence: a) wrinkle wavelength with element number, and b) δux at the first
bifurcation point with element number.

V. Numerical results

A. Validity of the FEM modeling

The geometry, properties, and boundary conditions mentioned in section II are modeled in

ABAQUS. Based on discussions in Wong and Pellegrino[6], the S4R (4 node shell element with

reduced Gauss integration) elements are selected. Using this element, numerical results agree best

with the experimental results in Wong and Pellegrino[4] and Inoue[17]. The number of elements is

360×120 = 4.23×104, which is the same value used in Wong and Pellegrino[6] for a membrane with

an aspect ratio of 3:1. By maintaining square elements, the number of elements can be increased

or decreased by changing the number of elements along a single edge of the membrane, where the

other edge is determined by the aspect ratio.

By increasing the shear displacement up to δux = 250 × 10−6[m], the wavelength and ampli-

tude of wrinkles are observed as indicators of wrinkle shape at at section AA’. Because of the free

boundaries, the wrinkle amplitude and wavelength near those boundaries varies by a large amount.

By omitting the first 6 wrinkles from each free boundary, the amplitude and wavelength average

of the remaining wrinkles is closer to the individual values. Fig. 2 a) shows the convergence of

wavelength with respect to the number of elements in the FE model. Thus, the element number

360 × 120 = 4.23 × 104 achieves sufficient convergence. A larger number of elements would in-

crease the computational cost with minimum improvements wavelength accuracy. The amplitude

convergence is similar and omitted.
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When compatibility and completeness conditions are satisfied, an asymptotic convergence to-

ward the continuum model is obtained by increasing the number of elements. Considering the

problem of this study, the shear displacement δux needed for the first bifurcation point is analyzed

with respect to the mesh density. The dots in Fig. 2 b) are obtained by this analysis, and a function

y = a1x−2 + a2x−1 + a3 is used to connect them. The convergence indicates that the bifurcation

point is located at 31.64 × 10−6 [m]. As can be seen, the FEM model with 360 × 120 = 4.32 × 104

elements has a relative error of 0.13 %. The conclusion is that sufficient convergence has been

obtained.

Models with more elements, e.g. 375×125, 390×130, and 432×144 were also used for analysis.

The results from these numbers of elements were compared to the result from 360 × 120 elements to

confirm that the results converged and were insensitive above 4.32 × 104 elements. This also applies

to results for δux > 250 × 10−6[m].

The convergence of the numerical results is controlled by two additional parameters in the

ABAQUS calculation. First, Rα
n is the convergence criterion for the ratio of the largest residual to

the corresponding average flux norm. The default value is Rα
n = 5 × 10−3. Second is Cα

n , which is

the convergence criterion for the ratio of the largest solution correction to the largest corresponding

incremental solution value. Its default value is Cα
n = 1 × 10−2. For general analysis, the default

values are sufficient; however, to obtain more precise results, values that are 10−4 times of the

default values are used combined with the δux increment of 10−7[m].

B. Membrane behavior

As defined in Section II, the imposed displacement is applied to the membrane at the top

boundary and the deformation is calculated. This is done mainly through the observation of the

membrane deformation and through the bifurcation structure. Stress states are observed at specific

points of interest. For the deformation, the displacement value uz(x, y) in the z-direction on the

mid-plane is shown in the figures. The first and second principal stresses are presented as σξ(x, y)

and ση(x, y) whose directions are coincident with ξξ′ and ηη′, which are related to the wrinkle shape.

Displacement is imposed on the top edge, first in y-direction as δuy = 30 × 10−6[m]. The
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Fig. 3 Schematic bifurcation diagram with respect to imposed shear displacement δux.

incremental displacement in x-direction is imposed δux from 0[m] to 650 × 10−6[m]. The schematic

bifurcation diagram is shown in Fig. 3. This bifurcation diagram will be used to illustrate membrane

behavior as δux is increased.

For notation, bifurcation points are indicated by ‘Bif. Xn’, where X indicates the micrometer

value of the δux where the bifurcation point occurs. The subscript n is an identifier used if there

are multiple bifurcation points at the same value of δux. Paths are indicated by ‘Path Y -m’, where

Y is the value of the δux where the path starts, and m is an identifier if there are multiple paths

that start at the same point.

1. Path 0

The equilibrium path is observed for the interval 0 ≤ δux < 31.68×10−6[m]. The initial imposed

displacement is δuy = 30 × 10−6[m] and δux = 0 so the membrane remains flat. This results in a

tensile σyy and, because of the Poisson effect, a tensile σxx. A state of biaxial tension is maintained

throughout most of the membrane. On free boundaries, σxx = 0 because no stress is applied from

outside of the free boundaries. The σxx near the free boundaries is smaller than in the central

region. As δux is increased, the out-of-plane deformation remains 0 and planar shear deformation

is observed. This path is followed until δux = 31.68 × 10−6[m], where the first bifurcation point is

detected as Bif. 31.
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2. Bif. 31

At Bif. 31 of δux = 31.68×10−6[m], the single equilibrium path branches into four paths, Paths

31-1, 31-2, 31-3 and 31-4. All post-bifurcation paths contain wrinkles that are generated at this

point. Bif. 31 is a double singular point with a two zero eigenvalues and its bifurcation diagrams

are shown in Fig. 4. The deformations at δux = 31.83 × 10−6[m] after Bif. 31 are shown in Fig. 5.

Using the algorithm explained in Section III D, the post-bifurcation paths are searched for

using disturbance vectors for 0 < θ ≤ 2π. As the imposed displacement is increased from δux =

31.68 × 10−6[m], every path converges on one of four paths that are detected after this point. As

Fig. 4 indicates, Paths 31-1, 31-2, 31-3, and 31-4 are paths whose directions are almost same as the

disturbance vectors of θ = π/4, 5π/4, 7π/4, 3π/4. Figure 4 b) shows the proximity of the bifurcation

point in more detail. Because this is a double singular bifurcation point, it has stable paths for any

0 < θ ≤ 2π as indicated by the stable surface. As shear displacement is increased, the surface is

reduced to one of the four paths leading away from the point.

The out-of-plane deformations of these four paths are shown in Fig. 5. By observing the wrinkles

closest to the free boundary, the side with an upward convex wrinkle is identified by + and the side

with a downward convex wrinkle by −. The wrinkle patterns of four paths are then indicated as

follows: Path 31-1 as (+, −), Path 31-2 as (−, +), Path 31-3 as (−, −), and Path 31-4 as (+, +).

Relative to the rest of the membrane, the center of the membrane remains flat. A single

wrinkle pattern that occupies half of the membrane can be identified. By applying the rotation

transformation, the reflection transformation and the rotation and reflection transformation to this

one wrinkle pattern occupying half of the membrane and combining the transformations, all full

membrane wrinkle patterns are obtained. Because of this symmetry, one wrinkle pattern exists

on each side, and has + or − sign. This symmetry also results in four wrinkle patterns for the

whole membrane. Paths 31-1 and 31-2 are equivalent with both the reflection transformation about

xy-plane and the rotation transformation. The same applies to Paths 31-3 and 31-4. Thus these

paths appear symmetric in the bifurcation diagram.

Figure 6 a) and b) shows the first principal stress σξ and second principal stress ση at the

mid-plane. The initial position of wrinkles near the free boundaries is explained by the compressive
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stress ση near the free boundaries. Therefore, wrinkle formation is expected.

Similarly to Path 0, σxx near the free boundaries is smaller. As δux is increased, the tensile stress

to the right and upper direction increases, and σξ becomes as shown in Fig. 6 a) and ση becomes

as shown in Fig. 6 b). Therefore, the region near the free boundaries takes on the states of uniaxial

compression, whereas the other region is in biaxial tension. As δux is increased, the compressive

regions near the boundaries expand toward the middle, and their compression amplitudes increase.

3. Path 31

By increasing δux until δux = 60.90 × 10−6[m], all four paths connected from Bif. 31 are

observed. The behavior on this path is represented by the generation of new wrinkles one after

another on the flat part of the membrane next to existing wrinkles.

This process is shown for Path 31-3 in Fig. 7. Similar behavior occurs along all other paths. A

small wrinkle is generated next to existing wrinkles on each side of the flat part of the membrane.

By increasing δux, this wrinkle grows until it makes contact with the top and bottom boundaries.

Once both contacts have been made, the rest of the membrane, up to the middle area, changes its

sign in the z-direction, but remains flat. This is followed by the generation of a new wrinkle on each

side.

This process is repeated until the flat section of the membrane is filled with wrinkles. Additional

shear will increase the number of wrinkles and the amplitude of the wrinkles. The process can be

observed for the AA’ cross-section in Fig. 8 b). The process for Path 31-1 is shown in Fig. 8 a)

The other two paths have reflection symmetry behavior, and are omitted. This behavior will be

discussed in more detail in a later section.

In Fig. 9 the out-of-plane deformation at δux = 60.00 × 10−6[m] is shown, just before the

upcoming bifurcation. Here, Paths 31-1 and 31-2 have 34 wrinkles and Paths 31-3 and 31-4 have

33 wrinkles. The four paths keep their wrinkle patterns as follows. Paths 31-1, 31-2, 31-3, and 31-4

are identified as (+, −), (−, +), (−, −), and (+, +), respectively.

The key point is that during this process, the eigenvalue analysis of the tangent stiffness matrix

showed that all eigenvalues remain positive. Therefore, this wrinkle generation is not a result of
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bifurcation behavior. This wrinkle generation mechanism is regarded as unique. How this is achieved

will be shown in a later section.

4. Bif. 60

The second bifurcations on this membrane are Bif. 601 and Bif. 602 at δux = 60.90×10−6[m] on

Path 31-3 and Path 31-4, respectively. For Path 31-1 and Path 31-2, all eigenvalues of the tangent

stiffness matrix remain positive at larger values of δux. At this point, wrinkle generation without

bifurcation is complete. No flat sections remain on the membrane.

For Path 31-3, a snap through bifurcation is observed, where one zero eigenvalue is obtained

at δux = 60.90 × 10−6[m], and the path jumps to either Path 601-1 or 601-2. A change in sign

occurs near the right free boundary, and it results in a (−, −) configuration becoming a (+, −)

configuration. Similarly, when the jump is to Path 601-2, the change is on the right side from

(−, −) to (−, +). This transition is the rotational symmetry of the former. Symmetrical transitions

occur along Path 31-4. The transition for Path 31-4 with (+, +) to Path 602-2 with (+, −) is the

reflection symmetry of the first transition. The transition from Path 31-4 with (+, +) to Path 602-1

with (−, +) is the rotation and reflection symmetry of the first transition.

The comparison of the deformation on Path 601-1 and Path 31-1 at δux = 61.00 × 10−6 results

in 7 digit similarity using the similarity value in section IV. Therefore, Path 601-1 and Path 602-1

are equivalent to Path 31-1. Also, Path 601-2 and Path 602-2 are equivalent to Path 31-2.

The bifurcation structure for this point is shown in Fig. 10 a). By increasing δux, the main path

(c1 = 0) becomes unstable at δux = 60.90 × 10−6[m]. The system then follows either Path 601-1 or

601-2 that is Path 31-1 or 31-2. Path 31-1 or 31-2 are symmetrically positioned at c1 = ±1.05×10−4.

This is considered as a symmetric snap through bifurcation. If δux is decreased from values larger

than δux = 60.90 × 10−6[m], the system on Paths 601-1 and 601-2 will not go back to the primary

path of Path 31-3. The system follows Paths 31-1 and 31-2 back to Bif. 31. This bifurcation

structure and its behavior are the same for both Path 31-3 and Path 31-4.

The conclusion is that after δux = 60.90 × 10−6[m], there are only two stable equilibrium paths

corresponding to Paths 31-1 and 31-2. Their wrinkle configurations are almost the same as shown
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in Fig. 9 a) and b).

5. Path 60

Paths 601-1 and 602-1 are equivalent to Path 31-1 on the interval 60.90 × 10−6 ≤ δux <

80.48 × 10−6[m]. Similarly, Paths 601-2 and 602-2 are equivalent to Path 31-2 on the same interval.

For the paths on this interval, the increase in δux results in only a wrinkle amplitude increase.

Wrinkle patterns are preserved.

6. Bif. 80

Following the two Paths 31-1 and 31-2, which remain after δux = 60.90 × 10−6[m], bifurcation

points Bif. 801 and Bif. 802 occur at δux = 80.48 × 10−6[m].

For Path 31-1 at Bif. 801, the occurrence of a zero eigenvalue leads to a deformation of wrinkles

in the middle section (−0.05 < x < 0.05[m]) of the membrane. The bifurcation results in two

wrinkle patterns, as shown in Fig. 11 a) and b) that are Paths 801-1 and 801-2. They are similar

to each other, but result in only 3 digits of similarity. Deformation is represented by a local drop

in wrinkle amplitude near the fixed boundaries on both top and bottom edges of the membrane.

Section ξξ′ of the wrinkles is positioned as in Fig. 1, on Path 80-1. The amplitude decrease occurs

along an upward convex wrinkle on the right side (positive direction of x) of section ξξ′ and along

a downward convex wrinkle on the left side of section ξξ′. The symmetric deformation occurs on

Path 80-2. The drop in amplitude occurs along an upward convex wrinkle to the left side (negative

direction of x) and along a downward convex wrinkle on the right side of section ξξ′. In Fig. 11 c),

a comparison of the two wrinkle patterns is defined as (uz(x, y))P ath 80−1 − (uz(x, y))P ath 80−2 and

the difference is observed.

For Path 31-1 at Bif. 801, the bifurcation diagram is shown in Fig. 10 b). This is a simple

bifurcation point with one zero eigenvalue. A snap-through bifurcation occurs where Path 31-1

jumps to Path 801-1 or Path 801-2. The disturbance vectors, i.e. the imposed eigenvectors to search

for the post-bifurcation paths, are symmetric in reflection. However, when the entire wrinkle pattern

is considered, Paths 801-1 and 801-2 are not equivalent to any of the three symmetry transformations,

i.e. the reflection, the rotation, and the reflection and rotation transformations. Therefore, path
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tracking along both paths is needed.

Paths 31-1 and 31-2 are equivalent by the reflection or the rotation transformations. Hence, the

behavior at Bif. 802 on Path 31-2 is similar to the behavior of Bif. 801 mentioned above. Also, the

resulting Paths 802-1 and 802-2 are not equivalent by any of the three symmetry transformations.

The deformations on Paths 801-1 and 802-1 are equivalent by the reflection or the rotation

transformations. The deformations on Paths 801-2 and 802-2 are also equivalent by the reflection

or the rotation transformations.

7. Path 80

Path tracing continues on the interval 80.48 × 10−6 ≤ δux < 440.21 × 10−6[m] following Path

801-1 and Path 801-2.

The behavior along these paths is represented by the generation of local wrinkles near the top

and bottom edges, one after another. This process along Path 801-1 is shown in Fig. 12. When δux

is increased, the wrinkle amplitude decreases locally near the fixed boundaries, leading to curvature

inflections. This characteristic formation is referred to as a collapsed section. As δux is increased,

the decrease in amplitude will eventually result in a wrinkle section with an amplitude of 0, which

then starts to increase to the opposite sign of the rest of the wrinkle.

With increasing δux, these collapsed sections will grow in size. In addition, these sections will

also shift their positions. What is observed is that both amplitude change and position shifts occur

while all eigenvalues of the tangent stiffness matrix remain positive. At δux = 440.00 × 10−6[m] in

Fig. 13 a) and b), most central wrinkles have collapsed sections.

The behavior on Path 801-2 is similar to Path 801-1. Again, a comparison of

(uz(x, y))P ath 80−1 − (uz(x, y))P ath 80−2 is shown in Fig. 13 c). The similarity value defined in

Section IV determines that the paths are similar to within five digits without any transformation.

In conclusion, as both paths experience position shifts of collapsed sections, they both converge to

a single wrinkle pattern.

The other two paths, Paths 802-1 and 802-2, are equivalent to Paths 801-1 and 801-2 by the

reflection or the rotation transformations.
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8. Bif. 440

Path tracking of both Path 801-1 and 801-2 determines the next bifurcation point at δux =

440.21 × 10−6[m] as Bif. 4401. It is a simple singular point and the path branches to either Path

4401-1 or 4401-2.

Along Paths 801-1 and 801-2, collapsed sections increase in size. At δux = 440.21 × 10−6[m],

the collapsed sections of two wrinkles reach critical sizes. One of the wrinkles will split into new

wrinkles.

In Fig. 14, the behavior at this point can be observed. The wrinkle pattern at δux = 440.21 ×

10−6[m], before the disturbance vector imposition, is shown in Fig. 14 a). The disturbance vector

imposition causes a snap through bifurcation. The above pattern jumps to one of the patterns

observed in Fig. 14 b) and c). The collapsed sections near the top and bottom fixed boundaries of

one wrinkle expand toward the middle of the wrinkle. By increasing shear to δux = 440.50×10−6[m],

the generation of new wrinkles is finalized as in Fig. 14 d) and e). The expanded collapsed sections

meet, and the wrinkle amplitude along the center drops until it changes its sign. One wrinkle

generates two new wrinkles, one of the same sign and one with the opposite sign.

Comparing the two wrinkle patterns on Paths 4401-1 and 4401-2, one is the equivalent of the

other by the rotation and reflection transformation. Similarity up to five digits is calculated. Because

the two paths are symmetric, only one is tracked until the next bifurcation.

The above behavior and the behavior at Bif. 4402 on Paths 802-1 and 802-2 have either reflection

or rotation symmetry.

9. Path 440

Path 4401-1 is tracked along the interval 440.21 × 10−6 ≤ δux < 645.96 × 10−6[m].

Bif. 4401 results in single wrinkle collapsed sections merging and generating new wrinkles.

Collapsed sections on other wrinkles remain. The behavior on Path 4401-1 is similar to that of Path

80, where existing collapsed sections grow and shift in position.

Behavior of Path 4401-2 is equivalent to Path 4401-1 by the rotation and reflection transforma-

tion. The above paths, Paths 4401-1 and 4401-2, and the other two paths, Paths 4402-1 and 4402-2,
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have reflection or rotation symmetry.

10. Bif. 645

The next bifurcation point on Path 4401-1 is Bif. 6451 at δux = 645.96 × 10−6[m]. It is a simple

singular point and the path branches to either Path 6451-1 or 6451-2.

Collapsed sections of two wrinkles reach a critical size. One splits into new wrinkles. The

wrinkle pattern at δux = 645.96 × 10−6[m], before the disturbance vector imposition, is shown in

Fig. 15 a). Collapsed sections near the top and bottom fixed boundaries expand toward the middle

of the wrinkle as in Fig. 15 b) and c). A slight increase in shear to δux = 646.00×10−6[m] completes

the wrinkle generation, see Fig. 15 d) and e). The process is the same as in Bif. 4401.

By comparing the two wrinkle patterns representing Paths 6451-1 and 6451-2 at δux = 647.00×

10−6[m], a five digit similarity without any transformations is determined. Therefore, a single path

can be considered after this bifurcation point.

The behavior at Bif. 6452 on Path 4401-2 is equivalent to Bif. 6451 transformed by the rotation

and reflection transformation.

The behaviors at Bif. 6453 and Bif. 6454 are equivalent to Bif. 6451 and Bif. 6452 after trans-

formation by the reflection or the rotation transformations.

C. Wrinkle generation without bifurcations

In the previous sections, observed results for the membrane behavior were shown. These results

showed bifurcation points and wrinkle patterns for a range of imposed displacement at 0 ≤ δux ≤

650 × 10−6[m]. Now, the focus is on the wrinkles generated without bifurcations. This wrinkle

generation occurs on equilibrium paths between the first and second bifurcation point. Therefore,

it is not related to bifurcation points. The behavior is calculated by the path tracking analysis.

1. Observations

Bifurcation free wrinkle generation is observed in the interval of imposed displacement of 31.68×

10−6 < δux ≤ 60.90 × 10−6[m]. As δux is increased, the number of wrinkles increases along all four

paths originating from Bif. 31. Along the interval, every path is stable, i.e. the tangent stiffness

37



matrix K on every path is positive definite, and wrinkle generation occurs at stable equilibrium

points.

The process of wrinkle generation for a single wrinkle on Path 31-3 is shown in Fig. 7. Figure

7 a) shows the wrinkle pattern at δux = 35.00 × 10−6[m]. Near the free boundaries, there are

three upward convex and three downward convex wrinkles along each boundary. The middle of the

membrane remains flat. In Fig. 7 b), the imposed displacement is increased to δux = 36.00×10−6[m].

A small wrinkle is generated on the flat surface of the membrane, next to existing wrinkles. This

wrinkle does not stretch from the top to bottom edges of the membrane. In Fig. 7 c) imposed

displacement is increased further to δux = 37.00 × 10−6[m]. The new wrinkle on the right side

expands to the top boundary. The wrinkle on left side expands to the bottom boundary. By further

increasing the imposed displacement to δux = 38.00 × 10−6[m], a new wrinkle pattern, shown in

Fig. 7 d) emerges. Now, the new small wrinkles run from top to bottom. Once the small wrinkles

expand from top to bottom, the middle of the membrane changes sign in z-direction. However, the

middle remains flat. In this process, where new wrinkles are generated, three new upward convex

and four new downward convex wrinkles are observed on each side.

In Figs. 6 c) and d), the two-dimensional stress state on the mid-plane is shown for δux =

38.00 × 10−6[m]. The first principal stress σξ is tensile throughout the membrane. The second

principal stress ση is tensile in the middle, on the flat part of the membrane, while it is compressive

around the wrinkled areas. However, the compressive stress area does not cover the small wrinkles

in Fig. 7 b). Because these small wrinkles are under biaxial tension, to distinguish them from other

wrinkles, they are referred to as waves. Wrinkles occur as a result of buckling in a compressive

stress area. Waves are generated without buckling in a biaxial tension stress area. The first axis

tension and second axis compression area is referred to as the compressive stress areas.

One by one, waves are generated on each side of the flat section of the membrane. As imposed

displacement δux increases, the compressive stress area expands toward the middle of the mem-

brane. When the compressive stress area covers the wave, by definition the wave becomes a wrinkle.

Therefore, a wrinkle is generated without bifurcation buckling.

To show the process in more detail, section CD in the ηη′ direction is constructed as shown
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in Fig. 6 e). The position in section CD is defined by node numbers, projections of finite element

nodes onto section CD. The total number of nodes is 30. Figure 16 shows the results for δux =

37.58 × 10−6[m], δux = 37.75 × 10−6[m], δux = 38.00 × 10−6[m], and δux = 38.20 × 10−6[m].

Depending on the behavior, each figure illustrates an appropriate node range.

Figure 16 d) shows the second principal stress ση in section CD. The compressive stress area

progresses into the middle. It also shows that there are both the compressive stress area and the

biaxial tensile stress areas in section CD. The second principal stress at every node decreases as δux

increases. Figure 16 e) shows the minimal principal stress in the node interval from 10 to 14 in section

CD. The border between the positive and the negative second principal stress areas moves from node

11 to 13 toward point D when the imposed displacement increase from δux = 37.58 × 10−6[m] to

δux = 38.20 × 10−6[m]. The key point is that the area of node 13 and its right side is the biaxial

tensile stress area by δux = 38.20 × 10−6[m].

Figure 16 a) shows an increase of out-of-plane displacement between nodes 1 and 11 as δux is

increased. Figure 16 b) shows the out-of-plane displacement more closely between nodes 12 and

19. As the imposed displacement δux is increased, the out-of-plane displacement decreases between

nodes 14 and 16.

Figure 16 c) shows a change in curvature from positive to negative between nodes 15 and 20 at

δux = 38.00 × 10−6[m]. At δux = 38.20 × 10−6[m], the wave is convex upward. Recalling Fig. 16 d),

the area after node 13 is a biaxial tensile stress area. Therefore, this is not a wrinkle but a wave.

2. Wrinkle generation mechanism

Increasing the imposed displacement δux from 0, the semicircular regions of uniaxial compression

near the free boundaries occur, while the other region remains as a biaxial tension stress area, as

indicated by Fig. 6 d). The compressive stress regions gradually expand toward the middle of the

membrane with increasing δux. This is confirmed by Fig. 16 d).

For the path segment of interest, 37.58 × 10−6 ≤ δux ≤ 38.20 × 10−6[m], the middle section

of the membrane including point D tends to remain flat without out-of-plane displacement due to

biaxial tension.
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Figure 16 a) shows that there is a downward convex wrinkle near node 3 and an upward convex

wrinkle near node 8. Their curvature magnitudes are large. The region from node 1 to node 11

is always a compressive stress area, but its second principal stress ση decreases toward node 11.

Combining the large curvatures and the decreasing second principal stress results in larger out-of-

plane displacements, see the variation between node 1 and 11 in Fig. 16 a).

The out-of-plane displacements of the wrinkles near the free boundary converge to zero toward

point D. In Fig. 16 b), while the out-of-plane displacement around node 12 increases, the out-of-

plane displacement around node 14 decreases. For this process, the bending moment Mξ is given in

Fig. 16 f) and g) and the section transversal force Nz is given in Fig. 16 h). The bending moment

and the transversal force are applied to the membrane due to the existence of bending rigidity in

the model.

The bending moment changes from positive to negative around node 14. It reaches the minimum

value around node 15, and it converges to 0 toward the middle of the membrane. By increasing

δux, the minimum value also decreases. This negative value of the bending moment results in a

downward convex deformation of the membrane.

The transverse force Nz is negative between nodes 8 and 15. This means a downward force is

applied in the region. The peak of an upward convex wrinkle occurs near node 8. On this wrinkle,

the larger tensile stress σξ and the curvature along ξ causes a negative transverse force. The smaller

compressive stress ση and the curvature along η cause a smaller positive transverse force. These

result in a negative transverse force near node 8. This is confirmed by the fact that a positive

transverse force, i.e. an upward force, is applied to a downward convex wrinkle near node 3.

As a result, in Fig. 16 b) the deformation is convex upward until node 14, but it becomes

convex downward at node 15. In addition, the left side of node 15 is pushed downward. At

δux = 38.00 × 10−6[m], this results in a small region of negative curvature between node 15 to 20.

As this region is under biaxial tension, the deformation with varying curvature is a wave.

In summary, initial wrinkles exist in a uniaxial compression region. The biaxial tension region

is generally flat. In the biaxial tension region near the existing wrinkles, a wave deformation is

generated. This phenomena can be considered as the origin of wrinkles. As the imposed displacement
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δux is increased, the uniaxial compression region spreads to the wave and transforms it into a

wrinkle. This process occurs without bifurcations. As the uniaxial compression region spreads, the

new wrinkle grows in size and generates the conditions for a new wave. The whole process repeats

itself. This is a wrinkle generation mechanism without bifurcations.

VI. Conclusion

Because wrinkle generation is generally considered to be a result of bifurcations, the expected

result was a branching structure at every wrinkle generation. This could potentially result in a

large number of equilibrium paths where each represents a specific wrinkle pattern. However, as

the results show, significantly fewer equilibrium paths were obtained. This was due to wrinkle

generation without bifurcation and to deformation symmetry.

The first bifurcation generates the initial wrinkles along four equilibrium paths. The mem-

brane is divided into the biaxial tension area and the uniaxial compression areas. Wrinkles are only

generated in the uniaxial compression area. A wave is generated in the biaxial tension area, near

the uniaxial compression area. With increasing shear displacement, the uniaxial compression area

expands onto the wave and turns it into a wrinkle. The process of wrinkle generation without bifur-

cation repeats on all four paths until no section of flat membrane remains. The number of wrinkles

increases to 33 and 34. This wrinkle generation without bifurcation results in fewer equilibrium

paths than expected for this number of wrinkles.

Increasing shear further causes wrinkle amplitude to increase until the next bifurcation. Dif-

ferent behavior occurs where small sections of existing wrinkles collapsed. With further increases

in shear displacement, these collapsed sections govern wrinkle generation by destabilizing existing

wrinkles. This is the expected behavior for bifurcations causing wrinkle generation. However, the

wrinkle patterns after wrinkle generation show symmetry, resulting in fewer unique wrinkle patterns.

Based on the results of the above analysis, the following conclusions can be made. Based on

the number of wrinkles generated, there was a possibility of a complex bifurcation structure with

numerous equilibrium paths. Additionally, the existence of symmetry described by a dihedral group

indicates three more solutions for each solution obtained, implying a multiplicity of the solution
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and additional equilibrium points. However, the wrinkle generation mechanism without bifurcations

reduces the number of equilibrium paths. Furthermore, the symmetry between deformation patterns

reduces the number of possible wrinkle configurations. The number of possible wrinkle configurations

is reduced even further by re-coalesce of equilibrium paths occurring after bifurcations. Finally, the

membrane bifurcation structure is less complex than it potentially could have been.

The universality of the behavior discussed in this study depends on the universality of the stress

field that causes the behavior. Wrinkle generation without bifurcations is caused by the transition

between uniaxial compression and biaxial tension. For real systems, effects of gravity, creases,

imperfections, and other conditions need to be considered. Therefore, any set of conditions that

maintain uniaxial compression and biaxial tension would have this type of wrinkle generation.
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Fig. 4 Bifurcation diagram at Bif. 31.
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Fig. 5 Wrinkle patterns at δux = 31.83 × 10−6[m] just after Bif. 31.
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Fig. 6 Principal stress values.
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Fig. 7 Wrinkle pattern progression on Path 31-3.

Fig. 8 Wrinkle pattern progression in section AA’.
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Fig. 9 Wrinkle pattern at δux = 60.00 × 10−6[m].
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Fig. 10 Bifurcation diagram for Bif. 60 and Bif. 80.

Fig. 11 Paths 801-1 and 801-2 at δux = 81.00 × 10−6[m].
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34 wrinkle pattern

generation of collapsed sections

expansion of collapsed sections

after unstable expansion of a collapsed section = 36 wrinkles

Fig. 12 Wrinkle pattern progression on Path 801-1.

Fig. 13 Paths 801-1 and 801-2 at δux = 440.00 × 10−6[m].
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Fig. 14 Bif. 4401 wrinkle pattern.
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Fig. 15 Bif. 6451 wrinkle pattern.
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Fig. 16 Path 31-3, wave section analysis.
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