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RATIONALITY OF W-ALGEBRAS: PRINCIPAL NILPOTENT
CASES

TOMOYUKI ARAKAWA

Abstract. We prove the rationality of all the minimal series principal W -

algebras discovered by Frenkel, Kac and Wakimoto [FKW], thereby giving a
new family of rational and C2-cofinite vertex operator algebras. A key in-
gredient in our proof is the study of Zhu’s algebra of simple W -algebras via
the quantized Drinfeld-Sokolov reduction. We show that the functor of taking

Zhu’s algebra commutes with the reduction functor. Using this general fact we
determine the maximal spectrums of the associated graded of Zhu’s algebras
of vertex operator algebras associated with admissible representations of affine

Kac-Moody algebras as well.

1. Introduction

Let Wk(g) = Wk(g, fprin) be the W -algebra associated with a complex finite-
dimensional simple Lie algebra g and a principal nilpotent element fprin of g at
level k [FL, LF, FF]. In [A2] we have confirmed the conjecture of Frenkel, Kac and
Wakimoto [FKW] on the existence of modular invariant representations of Wk(g)
for an appropriate level k. These representations are called the minimal series
representations of Wk(g) since in the case that g = sl2(C) they are precisely the
minimal series representations [BPZ] of the Virasoro algebra. It has been expected
[FKW] and widely believed that these representations of Wk(g) form a minimal
model of the corresponding conformal field theory in the sense of [BPZ] as in the
case that g = sl2(C). In the language of vertex operator algebras this amounts
to showing that the vertex operator algebras associated with minimal series rep-
resentations of W -algebras are rational and C2-cofinite. We have established the
C2-cofiniteness property previously in [A5]. The main purpose of this paper is to
resolve the remaining rationality problem.

Denote by Wk(g) the unique simple quotient of Wk(g) at a non-critical level k.
The vertex operator algebra Wk(g) is isomorphic to a minimal series representation
as a module over Wk(g) if and only if

k + h∨g = p/q ∈ Q>0, p, q ∈ N, (p, q) = 1,(1)

and

{
p ≥ h∨g , q ≥ hg if (q, r∨) = 1,
p ≥ hg, q ≥ r∨h∨Lg if (q, r∨) = r∨,
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2 TOMOYUKI ARAKAWA

where hg is the Coxeter number of g, h∨g is the dual Coxeter number of g, Lg is the
Langlands dual Lie algebra of g, and r∨ is the maximal number of the edges in the
Dynkin diagram of g. The central charge c(k) of Wk(g) is given by the formula

c(p/q − h∨g ) = l − 12
|qρ− pρ∨|2

pq
= −

l((hg + 1)p− h∨g q)(r
∨h∨Lgp− (hg + 1)q)

pq
,

where l is the rank of g, ρ is the half sum of positive roots of g and ρ∨ is the half
sum of positive coroots of g.

Main Theorem. Let k be as in (1). The vertex operator algebra Wk(g) is rational
(and C2-cofinite [A5]). The set of isomorphism classes of minimal series repre-
sentations of Wk(g) forms the complete set of the isomorphism classes of simple
modules over Wk(g).

Main Theorem has been proved in [BFM, Wan] in the case that g = sl2(C) and
in [DLTY] in the case that g = sl3(C) and k = 5/4 − 3 (or1 4/5 − 3).

Let us explain the outline of the proof of Main Theorem briefly. A crucial step in
the proof is the classification of the simple modules over the simple quotient Wk(g).
For this purpose it is sufficient [Zhu] to determine Zhu’s algebra of Wk(g). We carry
out this by studying Zhu’s algebra ofW -algebras via the quantized Drinfeld-Sokolov
reduction. Since this is a general argument we work in a more general setting: Let
f be any nilpotent element of g, Wk(g, f) the (universal) W -algebra associated with
(g, f) at level k. By definition [FF, KRW] we have

Wk(g, f) = H0
f (V k(g)),

where V k(g) is the universal affine vertex algebra associated with g at level k
and H•

f (M) denotes the BRST cohomology of the generalized quantized Drinfeld-
Sokolov reduction [KRW] associated with (g, f) with coefficient in a V k(g)-module
M . We show that

A(H0
f (L)) ∼= H0

f (A(L))(2)

for any quotient L of V k(g) at any level k (in fact we prove a stronger assertion,
see Theorem 8.1). Here, for a conformal vertex algebra V , A(V ) denotes Zhu’s
algebra2 of V , and H0

f (A(L)) denotes the (finite-dimensional analogue of) BRST
cohomology associated with (g, f) with coefficient in A(L), which is identical to
A(L)† in Losev’s notation [Los], see Section 3.

In the case that f = fprin the classification problem is relatively simple since
A(Wk(g, fprin)) ∼= Z(g) ([A2]), where Z(g) is the center of the universal enveloping
algebra U(g) of g, and hence, A(Wk(g)) is a quotient of the commutative algebra
Z(g). Moreover under the assumption of Main Theorem we have shown in [A2]
that

Wk(g) ∼= H0
fprin

(L(kΛ0))

as conjectured in [FKW], where L(kΛ0) is the unique simple quotient vertex algebra
of V k(g) which is an admissible representation [KW1] as a ĝ-module. It follows from

1There is the Feigin-Frenkel duality Wp/q−h∨
g

(g) ∼= Wq/r∨p−h∨
Lg

(Lg) for all p, q ∈ C∗. (The

details will be explained elsewhere.)
2More precisely, A(V ) is the L0-twisted Zhu’s algebra in the sense of [DSK] since Wk(g, f) is

1
2

Z≥0-graded in general. It is the usual Zhu’s algebra for f = fprin.
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(2) that Zhu’s algebra A(Wk(g)) of Wk(g) is completely determined by A(L(kΛ0)).
We deduce the classification result in Main Theorem from that of admissible affine
vertex algebras L(kΛ0) recently obtained by the author in [A8].

Once the classification of simple modules is established it is straightforward to
see that there is no extension between two distinct simple Wk(g)-modules from
the general result on the representation theory of Wk(g) achieved in [A2]. Finally
the fact that simple Wk(g)-modules do not admit non-trivial self-extensions follows
from the result of Gorelik and Kac [GK] who established the complete reducibility
of admissible representations of ĝ.

The isomorphism (2) has an application to affine vertex algebras as well: It
enables us to determine the variety VarA(L(kΛ0)) associated with Zhu’s algebra
of any admissible affine vertex algebra L(kΛ0) (Theorem 9.3). This result was
announced in [A8].

The assertion of Main Theorem is a special case of the conjecture of Kac and
Wakimoto [KW2] on the rationality of exceptional W -algebras. In subsequent pa-
pers we prove the rationality of a large family of W -algebras, including all the
exceptional W -algebras of type A, generalizing the result of [A6].

This paper is organized as follows. In Section 2 and Section 3 we reformulate
some results of Ginzburg [Gin] and Losev [Los] in terms of BRST reduction for
later purposes. In Section 4 we fix some notations for vertex algebras and clarify
the relationship between Frenkel-Zhu’s bimodules and Zhu’s C2-modules associated
with vertex algebras. In Section 5 we discuss the effect of shifts of conformal vector
to Frenkel-Zhu’s bimodules, which is needed to describe Frenkel-Zhu’s bimodules
associated with W -algebras. In Section 6 we collect some basic facts about affine
vertex algebras and study Zhu’s C2-modules and Frenkel-Zhu’s bimodules associ-
ated with objects in the the Kazhdan-Lusztig parabolic full subcategory KLk of
O of ĝ. In Section 7 we recall the definition of W -algebras and some results from
[A5]. In Section 8 we show that the functor of taking Frenkel-Zhu’s bimodules com-
mutes with the reduction functor on the category KLk. This result in particular
proves (2). In Section 9 we recall the main result of [A8] and determine varieties
VarA(L(kΛ0)) associated with Zhu’s algebras of admissible affine vertex algebras.
Finally we prove Main Theorem in Section 10.

Acknowledgments. The author wishes to thank Maria Gorelik for valuable dis-
cussions, in particular, for giving him a proof of Lemma 10.6. Some part of this
work was done while he was visiting Weizmann Institute, Israel, in May 2011,
Emmy Noether Center in Erlangen, Germany in June 2011, Isaac Newton Institute
for Mathematical Sciences, UK, in 2011, The University of Manchester, University
of Birmingham, The University of Edinburgh, Lancaster University, York Univer-
sity, UK, in November 2011, Academia Sinica, Taiwan, in December 2011, Chern
Institute of Mathematics, Shanghai Jiao Tong University, China, in August 2012.
He is grateful to those institutes for their hospitality. Finally, he thanks the referees
for the careful reading and useful comments.

Notation Throughout this paper the ground field is the complex number C and
tensor products are meant to be as vector spaces over C if not otherwise stated.
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2. The Slodowy slice and classical BRST reduction

Let R be a Poisson algebra. Recall that a Poisson module M over R is a R-
module M in the usual associative sense equipped with a bilinear map

R×M →M, (r,m) 7→ ad r(m) = {r,m},

which makes M a Lie algebra module over R satisfying

{r1, r2m} = {r1, r2}m+ r2{r1,m}, {r1r2,m} = r1{r2,m} + r2{r1,m}

for r1, r2 ∈ R, m ∈M . Let R -PMod be the category of Poisson modules over R.
For any finite-dimensional Lie algebra a the space C[a∗] = S(a) is a Poisson

algebra by the Kirillov-Kostant Poisson bracket. A Poisson module over C[a∗] is
the same as a C[a∗]-module M in the usual associative sense equipped with a Lie
algebra module structure a → EndM , x 7→ ad(x), over a such that ad(x)(fm) =
{x, f}m+ f ad(x)(m) for x ∈ a, f ∈ C[a∗], m ∈M .

Let g be a finite-dimensional simple Lie algebra as in Introduction, ( | ) the
normalized invariant inner product of g, that is, 1/2h∨g× the killing form of g. Let
ν : g ∼→ g∗ be the isomorphism defined by the form ( | ).

Let f be a nilpotent element of g, {e, f, h} an sl2-triple associated with f :

[h, e] = 2e, [e, f ] = h, [h, f ] = −2f.

Set

χ = ν(f) ∈ g∗.

The affine space

Sf = ν(f + ge) ⊂ g∗

is called the Slodowy slice at χ to AdG.χ, where ge is the centralizer of e in g and
G is the adjoint group of g. It is known [GG] that the Kirillov-Kostant Poisson
structure of g∗ restricts to Sf . Hence C[Sf ] is a Poisson algebra.

We have

g =
⊕
j∈ 1

2 Z

gj , gj = {x ∈ g| adh(x) = 2jx}.(3)

Put

g≥1 =
⊕
j≥1

gj ⊂ g>0 =
⊕
j>0

gj = g1/2 ⊕ g≥1.

Denote by G>0 the unipotent subgroup of G whose Lie algebra is g>0. By [GG,
Lemma 2.1] the coadjoint action gives the isomorphism

G>0 × Sf
∼→ χ+ g⊥≥1(4)

of affine varieties, where g⊥≥1 is the annihilator of g≥1 in g∗.
Consider the affine subspace χ+ ν(g−1/2) of g∗>0. We have

C[χ+ ν(g−1/2)] = C[g∗>0]/Ī>0,χ,

where Ī>0,χ is the Poisson ideal of C[g∗>0] generated by x−χ(x) with x ∈ g≥1. The
Poisson bracket of the quotient algebra is given by

{x, y} = χ([x, y]) for x, y ∈ g1/2
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under the identification C[χ+ ν(g−1/2)] ∼= C[g∗1/2] = S(g1/2). As

g1/2 × g1/2 → C, (x, y) 7→ χ([x, y]),(5)

is a symplectic form, it follows that χ+ ν(g−1/2) is isomorphic to T ∗Cdim g1/2/2 as
Poisson varieties.

Let

µ : g∗ → g∗≥1

be the restriction map. Then µ is the moment map for the action of the unipotent
subgroup G≥1 of G whose Lie algebra if g≥0. We have

µ−1(χ+ ν(g−1/2)) = χ+ g⊥≥1.(6)

Let {xi|i = 1, . . . , dim g>0} be a homogeneous basis of g>0 with respect to the
grading (3) such that the first dim g1/2-elements {xi|i = 1, . . . ,dim g1/2} forms a
basis of g1/2, and let {ckij} be the structure constant: [xi, xj ] =

∑
k c

k
ijxk. For

i = 1, . . . , dim g>0 let φ̄i denote the image of xi under the natural Poisson algebra
homomorphism C[g∗>0] � C[χ+ g∗1/2]. By definition

{φ̄i, φ̄j} = χ([xi, xj ]) for i = 1, . . . , dim g1/2,

and φ̄i = χ(xi) for i > dim g1/2.
Let Πg∗>0 denote the space g∗>0 considered as a purely odd vector space, T ∗Πg∗>0

the tangent bundle of Πg∗>0 which is a symplectic supermanifold. Then C[T ∗Πg∗>0]
is a Poisson superalgebra, which is nothing but the exterior algebra

∧•(g∗>0 ⊕ g>0) =∧•(g∗>0)⊗
∧•(g>0) (with an obvious Poisson superbracket).

For a Poisson module M over C[g∗] set

C̄(M) = M⊗C[χ+ ν(g−1/2)]⊗C[T ∗Πg∗>0] =
⊕
p∈Z

C̄p(M),

C̄p(M) =
⊕

i−j=p

M⊗C[χ+ ν(g−1/2)]⊗
∧i

(g∗>0)⊗
∧j

(g>0).

Then C̄(C[g∗]) is naturally a graded Poisson superalgebra, and C̄(M) is a Poisson
module over C̄(C[g∗]) (in an obvious “super” sense). Set

d̄ =
dim g>0∑

i=1

(xi⊗1 + 1⊗φ̄i)⊗x∗i − 1⊗1⊗1
2

∑
1≤i,j,k≤dim g>0

ckijx
∗
i x

∗
jxk ∈ C̄1(C[g∗]),

where {x∗i } ⊂ g∗>0 ⊂ C[T ∗Πg∗>0] is the dual basis of {xi}.

Lemma 2.1. d̄2 = 0.

Since d̄ is an odd element it follows from Lemma 2.1 that (ad d̄)2 = 0 on
any Poisson module over C̄(C[g∗]). It follows that (C̄(C[g∗]), ad d̄) is a differen-
tial graded superalgebra and (C̄(M), ad d̄) is a module over the differential graded
algebra (C̄(C[g∗]), ad d̄). Let H•

f (M) be the cohomology of the cochain complex
(C̄(M), ad d̄). The space H•

f (C̄[g∗]) inherits the Z-graded Poisson superalgebra
structure from C̄(C[g∗]) and H0

f (M) is naturally a module over H0
f (C[g∗]).

Theorem 2.2 ([KS87, DSK], see also Theorem 2.3 below). We have Hi
f (C[g∗]) = 0

for i 6= 0 and H0
f (C[g∗]) ∼= C[Sf ] as Poisson algebras.
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Let HC be the full subcategory of the category of C[g∗] -PMod consisting of
modules on which the Lie algebra action of g is locally finite. Denote by Īχ the
ideal of C[g∗] generated by y − χ(y) with y ∈ g≥1. Then, for M ∈ HC, ĪχM is a
Poisson submodule of M over C[g∗>0].

The following assertion is a reformulation of a result of [Gin].

Theorem 2.3. For M ∈ HC, we have

Hi
f (M) ∼=

{
(M/ĪχM)ad g>0 for i = 0,
0 otherwise

In particular the functor

HC → C[Sf ] -PMod, M 7→ H0
f (M),

is exact, and

suppC[Sf ]H
0
f (M) = Sf ∩ suppC[g∗](M)

for a finitely generated object M of HC.

Proof. Since a cohomology functor commutes with injective limits we may assume
that M is finitely generated. Set C̄ = C̄(M), C̄p = C̄p(M), C̄ij = M⊗C[χ +
g∗1/2]⊗

∧i(g∗>0)⊗
∧−j(g>0) ⊂ C̄, so that C̄p =

⊕
i≥0, j≤0

i+j=p

C̄i,j . The differential ad d̄ :

C̄p → C̄p+1 decomposes as

ad d̄ = d̄− ⊕ d̄+,

where

d̄− =
∑

i

(xi⊗ id+ id⊗φ̄i)⊗ adx∗i ,(7)

d̄+ =
∑

i

(adxi⊗ id+ id⊗ ad φ̄i)⊗x∗i +
∑
i,j,k

id⊗ id⊗ckijxkx
∗
j adx∗i(8)

− id⊗ id⊗1
2

∑
i,j,k

ckijx
∗
i x

∗
j adxk.

Since d̄−C̄i,j ⊂ C̄i,j+1, d̄+C̄
i,j ⊂ C̄i+1,j , it follows that

{d̄−, d̄+} = 0, d̄2
− = d̄2

+ = 0.

Consider the spectral sequence Er ⇒ H•
f (M) with

Ep,q
1 = Hq(C̄p,•, d̄−), Ep,q

2 = Hp(E•,q
1 , d̄+).

By (7), H•(C̄p,•, d̄−) is the homology of the Koszul complex of the C[g∗>0]-module
M⊗C[χ + ν(g−1/2)]⊗

∧p(g∗>0) associated with the sequence x1, x2, . . . , xdim g>0 ,
where C[g∗>0] acts only on the first two factors. Since C[χ + ν(g−1/2)] is a free
C[g∗1/2]-module of rank 1 it follows that H•(C̄p,•, d̄−) is isomorphic to the homol-
ogy of the Koszul complex of the C[g∗≥1]-module M⊗

∧p(g∗>0) associated with the
sequence xdim g1/2+1 − χ(xdim g1/2+1), . . . , xdim g>1 − χ(xdim g>1). Hence thanks to
[Gin, Corollary 1.3.8] we have

E•,q
1

∼=

{
(M/ĪχM)⊗

∧•(g∗>0) for q = 0,
0 for q 6= 0.

(9)
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Hence from (9) we see that E•,0
2 is isomorphic to the Lie algebra cohomology

H•(g>0,M/ĪχM).
Now first consider the case that M = C[g∗]. Since C[g∗]/Īχ ∼= C[χ + g⊥≥1] we

have C[χ+ g⊥≥1] = C[G>0]⊗CC[Sf ] by (4), and thus,

Hi(g>0,C[χ+ g⊥≥1]) ∼=

{
C[Sf ] for i = 0,
0 for i > 0.

(10)

For a general module M the argument of [GG, 6.2] shows that the multiplication
map

ϕ : C[χ+ g⊥≥1]⊗C[Sf ](M/ĪχM)ad g>0 →M/ĪχM

is an isomorphism of g>0-module, where g>0 acts only on the first factor C[χ +
g⊥≥1] of C[χ + g⊥≥1]⊗C[Sf ](M/ĪχM)ad g>0 and C[Sf ] acts on (M/ĪχM)ad g>0 by the
identification C[Sf ] = (C[g∗]/ĪχC[g∗])ad g>0 . Therefore (10) gives that

Ep,q
2

∼=

{
(M/ĪχM)ad g>0 for p = q = 0,
0 otherwise.

We conclude that the spectral sequence collapses at E2 = E∞, and the assertion
follows. �

3. Finite W -algebras and equivalences of categories via BRST
reduction

Let A be an associative algebra over C equipped with an increasing 1
2Z-filtration

F•A such that

FpA · FqA ⊂ Fp+qA, [FpA,FqA] ⊂ Fp+q−1A.(11)

Then the associated graded space grF A =
⊕

p∈ 1
2 Z FpA/Fp−1/2A is naturally a

Poisson algebra. We assume that grF A is finitely generated as a ring.
Denote by A -biMod the category of A-bimodules. Let M be an object of

A -biMod equipped with an increasing filtration F•M compatible with the one on
A, that is,

FpA · FqM · FrA ⊂ Fp+q+rM, [FpA,FqM ] ⊂ Fp+q−1M.

Then grF M =
⊕

p FpM/Fp−1/2M is naturally a Poisson module over grF A. The
filtration F•M is called good if grF M is finitely generated over grF A in a usual
associative sense. If this is the case we set

VarM = supp(grF M) ⊂ Spec(grF A),

equipped with the reduced scheme structure. It is well-known that VarM is inde-
pendent of the choice of a good filtration.

Let F•U(g) be the standard PBW filtration of U(g):

F−1U(g) = 0, F0U(g) = C, FpU(g) = gFp−1U(g) + Fp−1U(g).

Set FpU(g)[j] = {u ∈ Up(g)| adh(u) = 2ju}, where, recall, h is defined in Section
2. Let

KpU(g) =
∑

i−j≤p

FiU(g)[j].
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Then K•U(g) is an increasing, exhaustive, separated filtration of U(g) that satisfies
(11). The filtration {KpU(g)} is called the Kazhdan filtration. The associated
graded Poisson algebra grK U(g) is naturally isomorphic to C[g∗].

Let M be a U(g)-bimodule. A Kazhdan filtration of M is an increasing, exhaus-
tive, separated, filtration K•M which is compatible with the Kazhdan filtration of
U(g).

Define

I>0,χ =
∑

x∈g≥1

U(g>0)(x− χ(x)).

Then I>0,χ is a two-sided ideal of U(g>0). Set

D = U(g>0)/I>0,χ,

and let

φ : U(g>0) � D

be the natural surjective algebra homomorphism, φi = φ(xi), where {xi} is defined
in section 2. Then

[φi, φj ] = χ([xi, xj ]) for i = 1, . . . , dim g1/2,

and φ̄i = χ(xi) for i > dim g1/2. It follows that D is isomorphic to the Weyl algebra
of rank dim g1/2/2. Let K•D be the filtration of D induced by K•U(g), that is,
KpD the image of KpU(g) ∩ U(g>0) in D. The associated graded Poisson algebra
grK D is isomorphic to C[χ+ ν(g−1/2)] which appeared in Section 2.

Denote by Cl the Clifford algebra associated with g>0 ⊕ g∗>0 and the bilinear
form g>0 ⊕ g∗>0 × g>0 ⊕ g∗>0 → C, (x + f, x′ + f ′) 7→ f(x′) + f ′(x). The algebra
Cl contains

∧•(g∗>0) and
∧•(g>0) as its subalgebras and the multiplication map∧•(g∗>0)⊗

∧•(g>0) → Cl is a linear isomorphism. Let F•Cl be the increasing fil-
tration of Cl defined by FpCl =

⊕
j≤p

∧•(g∗>0)⊗
∧j(g>0). Set FpCl[j] = {ω ∈

FpCl| adh(ω) = 2jω}, and define the filtration K•Cl by

KpCl =
∑

i−j≤p

FiCl[j].

We have grK Cl ∼= C[T ∗Πg∗>0] as Poisson superalgebras.
Let HC be the full subcategory of U(g) -biMod consisting of modules on which

the adjoint g-action is locally finite.
For M ∈ HC, let

C(M) = M⊗D⊗Cl =
⊕
p∈Z

Cp(M),

Cp(M) =
⊕

i−j=p

M⊗D⊗
∧i

(g∗>0)⊗
∧j

(g>0).

Here we have used the linear isomorphism Cl ∼=
∧•(g∗>0)⊗

∧•(g>0). The space
C(M) is naturally a Z-graded bimodule over the Z-graded superalgebra C(U(g)).

Set

d =
∑

i

(xi⊗1 + 1⊗φi)⊗x∗i − 1⊗1⊗1
2

∑
i,j,k

ckijx
∗
i x

∗
jxk ∈ C1(U(g)).

Lemma 3.1. d2 = 0 in C(U(g)).



RATIONALITY OF W-ALGEBRAS: PRINCIPAL NILPOTENT CASES 9

Since d is an odd element it follows from Lemma 3.1 that (ad d)2 = 0 on C(M).
By abuse of notation we denote by H•

f (M) the cohomology of the cochain complex
(C(M), ad d). Since (C(U(g)), ad d) is a differential graded algebraH•

f (U(g)) is nat-
urally a Z-graded superalgebra and H•

f (M) is naturally a bimodule over H•
f (U(g)).

The finite W -algebra [Pre] associated with (g, f) may be defined as the associative
algebra

U(g, f) := H0
f (U(g))

([D3HK], see (14) below).
Let K•M be a Kazhdan filtration of M ∈ HC. Set

KpC(M) =
∑

p1+p2+p3≤p

Kp1M⊗Kp2D⊗Kp3Cl.

When this is applied to M = U(g), K•C(U(g)) defines an increasing, exhaustive,
separated filtration of C(U(g)) satisfying (11). Note that d ∈ K1C(U(g)), and
thus, ad d ·KpC(U(g)) ⊂ KpC(U(g)) and ad d defines a derivation of grK C(U(g)).
By definition the differential graded algebra (grK C(U(g)), ad d) is isomorphic to
(C̄(C[g∗]), ad d̄) , and grK C(U(g∗)) is isomorphic to C̄(grK M) as Poisson modules
over C̄(C[g∗]), where C̄(grK M) is the complex considered in Section 2.

Let K•H
•
f (M) be the filtration of H•

f (M) induced from the filtration K•C(M).
We have

grK H0
f (U(g)) ∼= H0

f (grK U(g)) ∼= C[Sf ]

as Poisson algebra ([GG, DSK]). In fact, we have the following more general asser-
tion.

Theorem 3.2. (i) Let M be an finitely generated object of HC, K•M a good
Kazhdan-filtration of M . Then

grK Hi
f (M) ∼= Hi

f (grK M) ∼=

{
(grK M/Īχ grK M)ad g>0 for i = 0,
0 otherwise

as Poisson modules over C[Sf ]. In particular

VarH0
f (M) = VarM ∩ Sf .

(ii) We have Hi
f (M) = 0 for i 6= 0, M ∈ HC. In particular the functor

HC → U(g, f) -biMod, M 7→ H0
f (M),(12)

is exact.

Proof. (i) By the assumption grK M is an object of HC. Moreover, thanks to (the
proof of) [Gin, Lemma 4.3.3], the filtration K•C(M) is convergent in the sense of
[CE]. Hence the assertion follows immediately from Theorem 2.3. (ii) Suppose
that M is finitely generated. Then M admits a good Kazhdan filtration, and
hence, Hi

f (M) = 0 for i 6= 0. But this prove the vanishing of all M ∈ HC since the
cohomology functor commutes with injective limits. �

We shall now give yet another description of the functor (12), and show that
(12) is equivalent to the functor constructed by Ginzburg [Gin] and Losev [Los],
independently.
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Choose a Lagrangian subspace l of g1/2 with respect to the symplectic form (5),
and let

m = l⊕ g≥1.

Then m is a nilpotent subalgebra of g>0 and the restriction of χ to m is a character,
that is, χ([x, y]) = 0 for x, y ∈ m. Let {x′i|i = 1, . . . , dimm} be a basis of m,
{x′i

∗|i = 1, . . . , dimm} the dual basis of m∗, ckij
′ the structure constants of m.

Let Clm Clifford algebra associated with m⊕m∗ and the natural bilinear form
on it. For M ∈ HC set

C(M)′ = M⊗Clm,

d′ =
dim m∑
i=1

(x′i + χ(x′i))⊗x′i
∗ − 1⊗1⊗1

2

∑
1≤i,j,k≤dim m

ckij
′
x′i

∗
x′j

∗
x′k ∈ C(U(g))′.

Then we have (d′)2 = 0 and (C(M ′), ad d′) is a cochain complex as well. Denote
by H•

f (M)′ the corresponding cohomology.

Proposition 3.3.
(i) We have an algebra isomorphism H0

f (U(g))′ ∼= U(g, f).
(ii) For M ∈ HC we have Hi

f (M)′ = 0 for i 6= 0 and H0
f (M)′ ∼= H0

f (M) as
modules over U(g, f).

Proof. We may assume that M be a finitely generated as in the proof of Theorem
3.2. Let K•M be a good Kazhdan filtration. In the same manner as Theorem 3.2
one can show that

grK Hi
f (M)′ ∼=

{
(grK M/mχ grK M)ad m for i = 0,
0 for i 6= 0,

where mχ is the ideal generated by x − χ(x) with x ∈ m. Since the natural map
(grK M/Īχ grK M)ad g>0 → (grK M/mχ grK M)ad m is an isomorphism by the argu-
ment of [GG, 5.5] we have

grK H0
f (M) ∼→ grK H0

f (M)′(13)

as modules over C[Sf ].
Now in the same manner as in [AKM, 3.2.5] one can construct a map H0

f (M) →
H0

f (M)′, which induces the map (13), and hence must be an isomorphism. For
M = U(g) this gives an algebra isomorphism H0

f (U(g)) ∼→ H0
f (U(g))′ and for a

general M this gives the assertion (ii). �

Let Cχ be the one-dimensional representation of m defined by the character χ.
For M ∈ HC the space

Whm(M) := M⊗U(m)Cχ

is equipped with a (U(g), U(g, f))-bimodule structure. Indeed, there is an obvious
left U(g)-module structure on Whm(M). To see the right U(g, f)-module structure
consider the space M⊗

∧•(m), which is naturally a right module over C(U(g))′ =
U(g)⊗Clm. Under this right module structure the element d′ ∈ C(U(g))′ gives
M⊗

∧•(m) the chain complex structure, and this complex is identical to the Cheval-
ley complex for calculating the Lie algebra m-homology H•(m,M⊗Cχ) with coef-
ficient in the diagonal m-module M⊗Cχ, where m acts on M by xm = −mx. The
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right C(U(g))′-action onM⊗
∧•(m) gives the right U(g, f)-action onH•(m,M⊗Cχ),

in particular on H0(m,M⊗Cχ) = Whm(M). This action obviously commutes with
the left U(g)-action.

By [Gin], we have Hi(m,M⊗Cχ) = 0 for i 6= 0, M ∈ HC, and hence, the functor

Whm : HC → (U(g), U(g, f)) -biMod, M 7→ Whm(M)

is exact.
Let C be the full subcategory of g -Mod consisting of objects on which x− χ(x)

acts locally nilpotently for all x ∈ m. Here, for any algebra A, A -Mod denotes the
category of left A-modules. Note that Whm(M) with M ∈ HC belongs to C when
it is considered as a left g-module.

For an objectM of C consider the spaceM⊗
∧•(m∗) as a (left) C(U(g))′-module.

The cochain complex (M⊗
∧•(m∗), d′) is identical to the Chevalley complex for cal-

culating Lie algebra m-cohomology H•(m,M⊗C−χ) with coefficient in the diagonal
m-module M⊗C−χ. It follows that H•(m,M⊗C−χ) is a module over U(g, f), and
we have a functor

Whm : C → U(g, f) -Mod, M 7→ H0(m,M⊗C−χ).

By [Skr], one knows that Hi(m,M⊗C−χ) = 0 for i > 0, M ∈ C, and Whm defines
an equivalence of categories.

The following assertion can be proved in the same way as [A2, Theorem 2.4.2]
using Proposition 3.3.

Proposition 3.4. For M ∈ HC we have H0
f (M) ∼= Whm(Whm(M))) as U(g, f)-

bimodules.

Let

Y = Whm(U(g)) = U(g)⊗U(m)Cχ.

Then by Proposition 3.4 we obtain the usual realization of U(g, f):

U(g, f) ∼= Whm(Y ) ∼= EndU(g)(Y )op.(14)

The assignment U(g, f)-Mod → C, E 7→ Y⊗U(g,f)E, gives a functor which is quasi-
inverse to Whm ([Skr]).

Remark 3.5. By Proposition 3.4 and [Los, 3.5], it follows that the functor HC →
U(g, f) -biMod, M 7→ H0

f (M), coincides with the functor •† constructed by Losev
[Los]. This observation enables us to improve the main result of [A3]; The details
will appear elsewhere.

Let I be a two-sided ideal of U(g). Then U(g)/I is a quotient algebra, and thus,
H0

f (U(g)/I) inherits the algebra structure from C(U(g)/I). On the other hand, the
exact sequence 0 → I → U(g) → U(g)/I → 0 induces the exact sequence

0 → H0
f (I) → U(g, f) → H0

f (U(g)/I) → 0

by Theorem 3.2. Hence we have the algebra isomorphism

H0
f (U(g)/I) ∼= U(g, f)/H0

f (I).(15)

Let CI denote the full subcategory of C consisting of objects which are annihilated
by I.



12 TOMOYUKI ARAKAWA

Theorem 3.6. For a two-sided ideal I of U(g) we have an equivalence of categories

CI ∼= H0
f (U(g)/I) -Mod, M 7→ Whm(M).

Proof. By (15), H0
f (U(g)/I) -Mod can be identified by (15) with the full sub-

category of U(g, f) -Mod consisting objects M which are annihilated by H0
f (I).

Therefore, thanks to Skryabin’s equivalence, it is enough to check that Whm(M) ∈
H0

f (U(g)/I) -Mod forM ∈ CI , and that Y⊗U(g,f)E ∈ CI for E ∈ H0
f (U(g)/I) -Mod.

The former is easy to see. The latter follows from the proof of [Gin, Theorem
4.5.2]. �

4. Frenkel-Zhu’s bimodules and Zhu’s C2-modules

Recall that a vertex algebra is a vector space V equipped with an element 1 ∈ V
called the vacuum, T ∈ End(V ), and a linear map

Y (?, z) : V → (EndV )[[z, z−1]], a 7→ Y (a, z) = a(z) =
∑
n∈Z

a(n)z
−n−1,

such that
(i) 1(z) = idV ,
(ii) a(n)b = 0 for n� 0, a, b ∈ V , and a(−1)1 = a,
(iii) (Ta)(z) = [T, a(z)] = d

dza(z) for a ∈ V ,
(iv) (z − w)n[a(z), b(w)] = 0 in End(V ) for n� 0, a, b ∈ V .

For a vertex algebra V we have the Borcherds identity
∞∑

i=0

(
p
i

)
(a(r+i)b)(p+q−i) =

∞∑
i=1

(−1)i

(
r
i

)
(a(p+r−i)b(q+i) − (−1)rb(q+r−i)a(p+i))

in EndV for all p, q, r ∈ Z, a, b, c ∈ V .
A module over a vertex algebra V is a vector space M equipped with a linear

map

Y M (?, z) : V → (EndM)[[z, z−1]], a 7→ aM (z) =
∑
n∈Z

aM
(n)z

−n−1,

such that Y M (1, z) = idM , aM
(n)m = 0 for n� 0, a ∈ V , m ∈M , and

∞∑
i=0

(
p
i

)
(a(r+i)b)M

(p+q−i) =
∞∑

i=1

(−1)i

(
r
i

)
(aM

(p+r−i)b
M
(q+i) − (−1)rbM(q+r−i)a

M
(p+i))

in EndM for all p, q, r ∈ Z, a, b, c ∈ V . In particular V itself if a module over
V called the adjoint module. Let V -Mod be the abelian category of V -modules.
Below if no confusion arises we write a(n) for aM

(n).
For a V -module M set

C2(M) := spanC{a(−2)m|a ∈ V,m ∈M}.

Zhu’s C2-algebra [Zhu] of V is by definition the space

RV =: V/C2(V )

equipped with the Poisson algebra structure given by

ā · b̄ = a(−1)b, {ā, b̄} = a(0)b for a, b ∈ V,
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where ā = a+C2(V ). Zhu’s C2-module of M is the space M/C2(M) equipped with
the Poisson module structure over RV given by

ā · m̄ = a(−1)m, {ā, m̄} = a(0)m for a ∈ V, m ∈M.

A vertex algebra V is called finitely strongly generated if RV is finitely generated
as a ring; it is called rational if any V -module is completely reducible; it is called C2-
cofinite if Zhu’s C2-algebra RV is finite-dimensional. The C2-cofiniteness condition
is equivalent to the lisse condition in the sense of [BFM] ([A4]).

A vertex algebra V is called conformal if it is equipped with a vector ω ∈ V , called
the conformal vector, such that the corresponding field Y (ω, z) =

∑
n∈Z Lnz

−n−2

satisfies the relation

[Lm, Ln] = (m− n)Lm+n +
(m3 −m)δm+n,0

12
cV for some cV ∈ C,

L−1 = T,

L0 is diagonalizable on V.

The number cV is called the central charge of V .
In this paper we assume that a vertex algebra V is conformal and 1

2Z-graded3

with respect to L0:

V =
⊕

d∈ 1
2 Z

Vd, Vd = {a ∈ V |L0a = da}.

For a homogeneous elements a ∈ V we denote by wt(a) the eigenvalue of L0 on a.
A V -module M is called graded if

M =
⊕
d∈C

Md, Md = {m ∈M |(L0 − d)rm = 0, r � 0};

it is called positively graded if in addition there exists a finite set {d1, . . . , dr} ⊂ C
such that Md = 0 unless d ∈

∪r
i=1(di + 1

2Z≥0). If V is C2-cofinite any finitely
generated V -module is positively graded ([ABD]). Let V -gMod be the abelian full
subcategory of V -Mod consisting of positively graded V -modules, Irr(V ) the set of
isomorphism classes of simple objects of V -gMod.

Let A(V ) be the (L0-twisted) Zhu’s algebra of V ([FZ, DSK]). By definition

A(V ) = V/O(V ),

where O(V ) is the subspace of V spanned by the vectors

a ◦ b :=
∑
i≥0

(
wt(a)
i

)
a(i−2)b

with homogeneous vectors a, b ∈ V . The multiplication ∗ of A(V ) given by

a ∗ b =
∑
i≥0

(
wt(a)
i

)
a(i−1)b.

Let M be a V -module. Frenkel-Zhu’s bimodule [FZ] associated to M is the
bimodule A(M) over A(V ) defined by

A(M) = M/O(M),

3This is because W -algebras are 1
2

Z≥0-graded in general. However since principal W -algebras

are Z≥0-graded it is enough to consider the Z-graded case in order to prove Main Theorem.
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where O(M) is the subspace of M spanned by the elements

a ◦m :=
∑
i≥0

(
wt(a)
i

)
a(i−2)m

with homogeneous vectors a ∈ V and m ∈M . The bimodule structure of A(M) is
given by

a ∗m =
∑
i≥0

(
wt(a)
i

)
a(i−1)m, m ∗ a =

∑
i≥0

(
wt(a) − 1

i

)
a(i−1)m.(16)

Note that

a ∗m−m ∗ a =
∑
i≥0

(
wt(a) − 1

i

)
a(i)m.(17)

Lemma 4.1 ([FZ, Proposition 1.5.4]). The assignment M 7→ A(M) defines a right
exact functor from V -Mod to A(V ) -biMod.

Zhu’s C2-algebra RV and Zhu’s algebra A(V ) are related as follows: Set

V≤p =
⊕
d≤p

Vd

and let FpA(V ) be the image of V≤p in A(V ). Then F•A(V ) defines an increasing,
exhaustive 1

2Z-filtration of A(V ) satisfying (11) ([Zhu]). (In the cases that we will
consider in this paper the filtration F•A(V ) will be separated as well; this is true,
for instance, if V is positively graded.) On the other hand the grading of V induces
the grading of RV : RV =

⊕
p∈ 1

2 Z(RV )p, where (RV )p is the image of Vp in RV :
(RV )p

∼= Vp/C2(V )p, C2(V )p = C2(V ) ∩ Vp. The linear map

(RV )p → FpA(V )/Fp−1/2A(V ), a+ C2(V )p 7→ a+O(V ) ∩ V≤p + V≤p−1/2

defines a surjective homomorphism

πV : RV � grF A(V )(18)

of graded Poisson algebras ([ALY, Proposition 3.2]). It follows that A(V ) is finite-
dimensional if V is C2-cofinite.

For a graded V -module M =
⊕

d∈C Md, there is a similar relation between
M/C2(M) and A(M) as well: Set

M≤p =
⊕

d∈p− 1
2 Z≥0

Md,

and let FpA(M) be the image of M≤p in A(M). Then the space grF A(M) =⊕
p∈C FpA(M)/Fp−1/2A(M) is a graded Poisson module over grF A(V ), and hence

over RV by (18).
The following assertion can be proved in the same manner as [ALY, Proposition

3.2].

Lemma 4.2. Let M be a graded V -module. The linear map Mp/C2(M)p →
FpA(M)/Fp−1/2A(M), m + C2(M)p 7→ m + O(M) ∩M≤p + M≤p−1/2, defines a
surjective homomorphism

πM : M/C2(M) � grF A(M)

of Poisson modules over RV . Here C2(M)p = C2(M) ∩Mp.
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Now assume for a moment that V is Z≥0-graded with respect to L0. Let
U(V ) =

⊕
d∈Z U(V )d be the current algebra [FZ, MNT] of V , which is a degreewise

complete graded topological algebra. Then a V -module is the same as a continuous
representation of U(V ). Since

A(V ) ∼= U(V )0/
∑
p>0

U(V )pU(V )−p(19)

([NT]), where U denotes the degreewise closure of U , an A(V )-module E can be
regarded as a module over U(V )≤0 :=

⊕
p≤0

U(V )p on which U(V )p, p < 0, acts

trivially. Set

MV (E) := U(V )⊗U(V )≤0E ∈ V -gMod,(20)

and let LV (E) be the unique simple quotient of MV (E). By Zhu’s theorem [Zhu]
we have

Irr(V ) = {LV (E)|E ∈ Irr(A(V ))},(21)

where, for any algebra A, Irr(A) denotes the set of isomorphism classes of simple
objects of A -Mod.

5. The effect of shifts of conformal vector to Frenkel-Zhu’s
bimodules

Let V be a 1
2Z-graded conformal vertex algebra with conformal vector ω. Sup-

pose that there exists an element ξ ∈ V that satisfies the conditions

Lnξ = δn,0ξ, ξ(n)ξ = κδn,11 for n ∈ Z≥0

with some κ ∈ C, and that ξ(0) acts semisimply on V with eigenvalues in Z. Then
one can “shift” the conformal vector ω by 1

2L−1ξ to obtain a new conformal vector.
Namely

ωξ := ω +
1
2
ξ(−2)1

also defines a conformal vector of V , with central charge cnew = cold − 3κ, where
cold is the central charge of V with respect to ω.

Although the definition of Zhu’s algebra and Frenkel-Zhu’s bimodules depend
on the choice of a conformal vector, the above shift of a conformal vector does
not change the structure of Zhu’s algebra nor Frenkel-Zhu’s bimodules as we show
below: for a V -module M let Anew(M) (temporary) denote Frenkel-Zhu’s bimodule
of M with respect to the conformal vector ωξ and let Aold(M) (temporary) denote
Frenkel-Zhu’s bimodule with respect to the conformal vector ω.

Let ∆(z) be Li’s ∆-operator [Li] associated with ξ:

∆(z) = z
ξ(0)
2 exp(

∑
n≥1

ξ(n)

−2n
(−z)n).

Proposition 5.1.

(i) The map V → V , a 7→ ∆(1)a, induces an algebra isomorphism

Aold(V ) ∼→ Anew(V ).
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(ii) Let M be a V -module on which ξ(0) acts semisimply. Then the map M →
M , m 7→ ∆(1)m, induces an Aold(V )(∼= Anew(V ))-bimodule isomorphism

Aold(M) ∼→ Anew(M).

Proposition 5.1 follows from the following lemma.

Lemma 5.2. Let M be a V -module on which ξ(0) acts semisimply. Then

∆(1)(a ◦old m) = (∆(1)a) ◦new (∆(1)m),

∆(1)(a ∗old m) = (∆(1)a) ∗new (∆(1)m),

∆(1)(m ∗old a) = (∆(1)m) ∗new (∆(1)a)

for a ∈ V , m ∈ M . Here ◦old and ∗old (respectively, ◦new and ∗new) are opera-
tions (16) with respect to the grading defined by L0,old (respectively, L0,new). Here
Y (ω, z) =

∑
n∈Z Ln,oldz

−n−2, Y (ωξ, z) =
∑

n∈Z Ln,newz
−n−2.

Proof. Let m be a homogeneous vector of M such that ξ(0)m = 2λm. Then
wt(m)new = wt(m)old − λ, where wt(m)new and wt(m)old denote the eigenvalue
of L0,new and L0,old on m, respectively. Write

exp(
∑
n≥1

ξ(n)

−2n
(−z)−n) =

∑
n≥0

unz
−n

with un ∈ C[ξ(1), ξ(2), . . . , ]. Since we have

∆(1)Y (a, z) = Y (∆(z + 1)a, z)∆(1)(22)

for any a ∈ V by [Li, Proposition 3.2], we have

∆(1)(a ◦old m) = ∆(1)Resz=0(Y (a, z)
(z + 1)wt(a)old

z2
m)

= Resz(∆(1)Y (a, z)
(z + 1)wt(a)old

z2
m)

= Resz=0(Y (∆(z + 1)a, z)
(z + 1)wt(a)old

z2
∆(1)m)

=
∑
n≥0

Resz=0(Y (una, z)
(z + 1)wt(a)old+λ−n

z2
∆(1)m)

=
∑
n≥0

Resz=0(Y (una, z)
(z + 1)wt(una)new

z2
∆(1)m) = (∆(1)a) ◦new (∆(1)m).

The proof of the other equalities is similar. �

6. Affine vertex algebras

Let ĝ be the non-twisted affine Kac-Moody algebra associated with g and ( | ):

ĝ = g[t, t−1]⊕CK.

The commutation relations of ĝ are given by

[xtm, ytn] = [x, y]tm+n +mδm+n,0(x|y)K for x, y ∈ g,m, n ∈ Z,
[K, ĝ] = 0.

We consider g as a subalgebra of ĝ by the embedding g ↪→ ĝ, x 7→ xt0.
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For k ∈ C define

V k(g) = U(ĝ)⊗U(g[t]⊕CK)Ck,

where Ck is the one-dimensional representation of g[t]⊕CK on which g[t] acts
trivially and K acts as a multiplication by k. There is a unique vertex algebra
structure on V k(g) such that 1 := 1⊗1 is the vacuum and

Y (xt−11, z) = x(z) :=
∑
n∈Z

(xtn)z−n−1

for x ∈ g. The vertex algebra V (g) is called the universal affine vertex algebra
associated with g at level k.

A V k(g)-module is the same as a smooth ĝ-module of level k, where by a smooth
ĝ-module M we mean a ĝ-module M such that (xtn)m = for n� 0, x ∈ g, m ∈M .

We have

C2(M) = g[t−1]t−2M(23)

for a V k(g)-module M . It follows that the assignment x 7→ (xt−1)1, x ∈ g, gives
the isomorphism of Poisson algebras

C[g∗] ∼→ RV k(g) = V k(g)/g[t−1]t−2V k(g).(24)

We will identify RV k(g) with C[g∗] through the above isomorphism. The Poisson
module structure of M/C2(M) = M/g[t−1]t−2M over C[g∗] is then given by

x · m̄ = (xt−1)m, {x, m̄} = (xt0)m

for x ∈ g, m ∈M .
We will assume that k is non-critical, that is, k 6= −h∨g , unless otherwise stated,

although this condition is not essential. The standard conformal vector ωg of V k(g)
is given by the Sugawara construction:

ωg =
1

2(k + h∨g )

∑
i

(Xit
−1)(Xit−1)1,

where {Xi} is a basis of g, {Xi} the dual bases with respect to ( | ). This gives a
Z≥0-grading on V k(g).

We have [FZ] the natural isomorphism of algebras

A(V k(g)) ∼= U(g).(25)

This can be also seen using (19) from the fact that the current algebra of V k(g)

is isomorphic to the standard degreewise completion [MNT] Ũk(ĝ) of Uk(ĝ) :=
U(ĝ)/(K − k id). For a g-module E, we have

MV k(g)(E) ∼= U(ĝ)⊗U(g[t]⊕CK)E,(26)

where E is considered as a g[t]⊕CK-modules on which K acts as the multiplication
by k and g[t]t acts trivially.

Let Nk(g) be the unique maximal ideal of V k(g). Then

L(kΛ0) := V k(g)/Nk(g)

is a simple vertex algebra called the (simple) affine vertex algebra associated with
g at level k.
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Let KLk be the full subcategory of the category of V k(g) -gMod consisting of
objects M on which g ⊂ ĝ acts locally finitely. By (26), MV k(g)(E) is an object of
KLk for a finite-dimensional g-module E.

The following assertion is clear.

Lemma 6.1. (i) The assignment M 7→M/C2(M) defines a right exact func-
tor from KLk to HC.

(ii) The assignment M 7→ A(M) defines a right exact functor from KLk to HC.

Let KL∆
k be the full subcategory of KL consisting of modules which admit a finite

filtration 0 = M0 ⊂ M1 ⊂ . . .Mr = M such that Mi/Mi+1
∼= MV k(g)(E) for some

finite-dimensional representation Ei for each i. Note that the adjoint module V k(g)
is an object of KL∆

k and that M ∈ KLk belongs to KL∆
k if and only if it is a free

U(g[t−1]t−1)-module of finite rank.

Lemma 6.2. (i) Let M be an object of KL∆
k . Then πM : M/C2(M) →

grF A(M) is an isomorphism.
(ii) Let 0 → M1 → M2 → M3 → 0 be an exact sequence in KL∆

k . Then the
induced sequence 0 → A(M1) → A(M2) → A(M3) → 0 is exact as well.

(iii) Let M be a finitely generated object of KLk. Then A(M) is finitely gener-
ated as a left (or a right) U(g)-module.

Proof. (i) Let F•O(M) be the filtration of O(M) induced by the filtration {M≤p} of
M , grF O(M) =

⊕
p FpO(M)/Fp−1/2O(M). The freeness of M over U(g[t−1]t−1)

implies that a(−2)m 6= 0 for any nonzero elements a ∈ V k(g), m ∈ M . Hence
grF O(M) = C2(M) ⊂M = grF M and the assertion follows. (ii) It is sufficient to
show that the induced sequence

0 → grF A(M1) → grF A(M2) → grF A(M3) → 0(27)

is exact. Since 0 →M1 →M2 →M3 → 0 is an exact sequence of free U(g[t−1]t−1)-
modules it induces an exact sequence

0 →M1/C2(M1) →M2/C2(M2) →M3/C2(M3) → 0

by (23). By (i), this prove the exactness of (27). (iii) Since it is finitely generated,
M is a quotient of an object of KL∆. By the right exactness of the functor A(?) it
is enough to show the assertion for objects of KL∆. By (ii) it then suffices to show
the assertion for the modules of the form M = MV k(g)(E). But this follows from
[FZ, Theorem 3.2.1]. �

Let {e, f, h} be the sl2-triple defined in Section 2. In the definition of W -algebras
Wk(g, f) below we shift the conformal vector ωg of V k(g) to the conformal vector

ωg,h = ωg +
1
2
(ht−2)1(28)

to give a well-defined conformal vector of Wk(g, f). We will identify Frenkel-Zhu’s
bimodules of M ∈ KLk with respect to ωg,h with Frenkel-Zhu’s bimodules with
respect to ωg through Proposition 5.1 and denote both of them by A(M).
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7. W -algebras and Poisson modules over Slodowy slices

For a V k(g)-module M , let (Cch(M), Q(0)) be the BRST complex of the (gener-
alized) quantized Drinfeld-Sokolov reduction associated with (g, f) defined in [FF,
KRW]. We have

Cch(M) = M⊗Dch⊗
∧∞

2 +•
,

where Dch is the βγ-system of rank 1
2 dim g1/2,

∧∞
2 +• is the space of semi-infinite

forms associated with g>0 ⊕ g∗>0. The vertex algebra Dch is freely generated by
the fields φi(z) with i = 1, . . . , dim g1/2 (corresponding to the basis {xi} of g1/2)
satisfying the OPE’s

φi(z)φj(w) ∼ χ([xi, xj ])
z − w

.

The space
∧∞

2 +• of semi-infinite forms is a vertex superalgebra freely generated by
the odd fields ψ1(z), . . . , ψdim g>0(z) (corresponding to the basis {xi} of g>0) and
ψ∗

1(z), . . . , ψ∗
dim g>0

(z) (corresponding to the dual basis {x∗i } of g∗>0) satisfying the
OPE’s

ψi(z)ψ∗
j (w) ∼ δij

z − w
, ψi(z)ψj(w) ∼ ψ∗

i (z)ψ∗
j (w) ∼ 0.

The differential Q(0) is the zero-mode of the fields

Q(z) =
∑
n∈Z

Q(n)z
−n−1

:=
dim g>0∑

i=1

(xi(z) + φi(z))ψ∗
i (z) − 1

2

∑
1≤i,j,k≤dim g>0

ckijψ
∗
i (z)ψ∗

j (z)ψk(w).

Here we have omitted the tensor product symbol and have put φi(z) = χ(xi) for
i > dim g1/2. (Note that in the formula of Q(z) above there is no need to take the
normal ordering because of the existence of the structure constant ckij .)

By abuse of notation we denote also by H0
f (M) the cohomology of the complex

(Cch(M), Q(0)).
The W -algebra associated with (g, f) at level k is by definition

Wk(g, f) = H0
f (V k(g)).(29)

The space Wk(g, f) inherits the vertex algebra structure from Cch(V k(g)). The
vertex algebra Wk(g, f) is conformal with the conformal vector ωW defined by

ωW = ωg,h + ωD + ωV
∞
2 +• ,

where

Y (ωD, z) =
1
2

dim g1/2∑
i=1

: ∂zφ
i(z)φi(z),

Y (ωV
∞
2 +• , z) = −

dim g>0∑
i=1

mi : ψ∗
i (z)∂zψi(z) : +

dim g>0∑
i=1

mi : ∂zψ
∗
i (z)ψi(z) : .
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Here φi(z) is the field of D corresponding to the vector xi ∈ g1/2 such that
χ([xi, xj ]) = δij , mi = j if xi ∈ gj , and we have used the state-field correspon-
dence. Here the conformal vector ωg of V k(g) has been shifted to ωg,h so that
Q(0)ωW = 0.

By definition the assignment M 7→ H0
f (M) defines a functor from V k(g) -Mod

to Wk(g, f) -Mod.
For a V k(g)-module M , consider Zhu’s C2-module Cch(M)/C2C

ch(M) over the
Poisson superalgebra RCch(V k(g)). Since we have Q(0)C2C

ch(M) ⊂ C2C
ch(M),

Cch(M)/C2C
ch(M) is a quotient complex, which is by definition isomorphic to the

complex (C̄(M/C2(M)), ad d̄) studied in Section 2. We have the obvious map

η̄M : H0
f (M)/C2H

0
f (M) → H0

f (M/C2(M)).

For the adjoint module M = V k(g), η̄V k(g) gives the isomorphism

ηV k(g) : RWk(g,f)
∼→ C[Sf ]

([DSK]). It follows that η̄M is a homomorphism of Poisson modules over C[Sf ].

Theorem 7.1 ([A5]).
(i) We have Hi

f (M) = 0 for i 6= 0, M ∈ KLk. In particular the functor
KLk → Wk(g, f) -Mod, M 7→ H0

f (M), is exact.
(ii) For M ∈ KLk, η̄M gives the isomorphism

H0
f (M)/C2(H0

f (M)) ∼= H0
f (M/C2(M))

of Poisson modules over C[Sf ].

Let N be an ideal of V k(g). By Theorem 7.1 (i) H0
f (N) embeds into Wk(g, f),

and we have the isomorphism

H0
f (V k(g)/N) ∼= Wk(g, f)/H0

f (N)(30)

of vertex algebras. In particular,

H0
f (L(kΛ0)) ∼= Wk(g, f)/H0

f (Nk(g)).

8. Quantized Drinfeld-Sokolov reduction and Frenkel-Zhu’s
bimodules associated with W -algebras

For a V k(g)-module M , consider the bimodule A(Cch(M)) over A(Cch(V k(g))).
Since we have Q(0)O(Cch(M)) ⊂ O(Cch(M)), (A(Cch(M)), Q(0)) is a quotient
complex, which is isomorphic to the complex (C(A(M)), ad d) studied in Section 2,
where, throughout this section, A(M) denotes Frenkel-Zhu’s bimodule associated
with M with respect to the conformal vector (28). Consider the map

ηM : A(H0
f (M)) → H0

f (A(M)),
[c] +O(H0

f (M)) 7→ [c+O(C(M))].

For the adjoint module M = V k(g), ηV k(g) gives the isomorphism

A(Wk(g, f)) ∼→ U(g, f)(31)

of algebras ([A2, DSK], or see Proposition 8.4 (ii) below). It follows that ηM is a
homomorphism of U(g, f)-bimodules.

We can now state the main result of this section:
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Theorem 8.1. For any object M of KLk, ηM gives the isomorphism

A(H0
f (M))) ∼= H0

f (A(M))

of U(g, f)-bimodules.

Remark 8.2. Theorem 8.1 holds at the critical level k = −h∨g as well by considering
the outer grading as in [A1, A2].

To avoid confusion we denote by K•A(M) (instead by F•A(M)) the filtration of
A(M) with respect to the grading defined by the conformal vector (28) forM ∈ KLk.

Lemma 8.3. (i) The filtration K•A(V k(g)) coincides with the Kazhdan fil-
tration of U(g) = A(V k(g)).

(ii) Let M be an object of KLk, Then K•A(M) is a Kazhdan filtration of A(M).
It is good if M is finitely generated.

Proof. (i) and the first assertion of (ii) is easily seen from the definition. To see the
second assertion of (ii) observe that M/C2(M) is a finitely generated C[g∗]-module
for a finitely generated object M of KLk. Hence so is grK A(M) by Lemma 4.2. �

Proposition 8.4.
(i) For an object M of KLk, ηM : A(H0

f (M)) → H0
f (A(M)) is surjective.

(ii) For an object M of KL∆
k , ηM : A(H0

f (M)) → H0
f (A(M)) is an isomor-

phism.

Proof. (i) First, suppose that M is finitely generated. By Lemma 8.3, K•A(M) is
a good Kazhdan filtration of A(M). Hence we have

grK H0
f (A(M)) ∼= H0

f (grK A(M))(32)

by Theorem 3.2. Here grK H0
f (A(M)) is the associated graded with respect to

the induced filtration KpH
0
f (A(M)) = Im(H0

f (KpA(M)) → H0
f (A(M))). Since

ηM (KpA(H0
f (M))) ⊂ KpH

0
f (A(M)), ηM induces a homomorphism

grK ηM : grK A(H0
f (M)) → grK H0

f (A(M)).

It is enough to show that gr ηM is surjective.
Consider the surjection

πM : M/C2(M) � grK A(M).

Since both M/C2(M) and grK A(M) are objects of HC, this induces the surjection

H0
f (πM ) : H0

f (M/C2(M)) � H0
f (grK A(M)) ∼= grK H0

f (A(M))

by Theorem 2.3.
Now we have the following commutative diagram:

H0
f (M)/C2(H0

f (M))
π

H0
f
(M)

−−−−−→ grK A(H0
f (M))

η̄M

y ygr ηM

H0
f (M/C2(M))

H0
f (πM )

−−−−−→ grK H0
f (A(M)).

(33)

Since η̄M is an isomorphism by Theorem 7.1 (ii), it follows that gr ηM is surjective
as required.
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Next, let M be an arbitrary object of KLk. There exists a sequence of finitely
generated objects M0 ⊂ M1 ⊂ M2 ⊂ . . . in KLk such that M =

∪
iMi. Since

(co)homology functor commutes with injective limits, A(M) = lim
−→

i

A(Mi),H0
f (M) =

lim
−→

i

H0
f (Mi), A(H0

f (M)) = lim
−→

i

A(H0
f (Mi)), and H0

f (A(M)) = lim
−→

i

H0
f (A(Mi)). This

proves the assertion.
(ii) By Lemma 6.2 (i) H0

f (πM ) is an isomorphism. Hence the commutativity of
(33) implies that πH0

f (M) and gr ηM are isomorphisms, and hence, so is ηM . �

Proof of Theorem 8.1. As in the proof of Proposition 8.4 it is sufficient to show the
case that M is finitely generated. Then there exists an exact sequence

0 → N → V →M → 0(34)

in the category KLk with V ∈ KL∆
k . By the right exactness of the functor A(?) this

yields an exact sequence

A(N) → A(V ) → A(M) → 0

in the category HC. Applying the exact functor H0
f (?) : HC → U(g, f) -biMod

(Theorem 3.2) to the above sequence we obtain an exact sequence

H0
f (A(N)) → H0

f (A(V )) → H0
f (A(M)) → 0.

On the other hand by applying the exact functor H0
f (?) : KLk → Wk(g, f) -Mod

(Theorem 7.1) to (34) we obtain the exact sequence

0 → H0
f (N) → H0

f (V ) → H0
f (M) → 0.

This yields an exact sequence

A(H0
f (N)) → A(H0

f (V )) → A(H0
f (M)) → 0.(35)

Now we have the following commutative diagram:

A(H0
f (N)) −−−−→ A(H0

f (V )) −−−−→ A(H0
f (M)) −−−−→ 0

ηN

y ηV

y ηM

y
H0

f (A(N)) −−−−→ H0
f (A(V )) −−−−→ H0

f (A(M)) −−−−→ 0.

(36)

By Proposition 8.4 ηN and ηM are surjective and ηV is an isomorphism. As the
horizontal sequences are exact it follows that ηM is an isomorphism. This completes
the proof. �

For an ideal N of V k(g), let JN denote the image of A(N) in A(V k(g)) = U(g),
so that

A(V k(g)/N) = U(g)/JN .(37)

Note that H0
f (V k(g)/N) is a quotient vertex algebra of Wk(g, f) provided it is

nonzero (see (30)).

Theorem 8.5. For any ideal N of V k(g), we have the isomorphism of algebras

A(H0
f (V k(g)/N)) ∼= U(g, f)/H0

f (JN ).
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Proof. Set L = V k(g)/N . By Theorem 8.1,

A(H0
f (L)) ∼= H0

f (A(L)),

and by Theorem 3.2 the exact sequence 0 → JN → U(g) → A(L) → 0 induces the
exact sequence

0 → H0
f (JN ) → U(g, f) → H0

f (A(L)) → 0.

This completes the proof. �
The following assertion follows immediately from Theorems 3.6 and 8.5.

Theorem 8.6. For any ideal N of V k(g) we have the equivalence of categories

CJN ∼→ A(H0
f (V k(g)/N)) -Mod, M 7→ Whm(M).

A quasi-inverse functor is given by E 7→ Y⊗U(g,f)E.

9. Varieties associated with Zhu’s algebras of admissible affine
vertex algebras

Let g = n− ⊕ h⊕ n be a triangular decomposition of g with Cartan subalgebra
h, ∆ the set of roots of g, ∆+ the set of positive roots of g, W the Weyl group of g,
Q∨ ⊂ h the coroot lattice of g, P∨ ⊂ h the coweight lattice of g, ρ the half sum of
positive roots of g, ρ∨ the half sum of positive coroots of g. For λ ∈ h∗, let Mg(λ)
be the Verma module of g with highest weight λ ∈ h∗, Lg(λ) the unique simple
quotient of Mg(λ).

Let ĥ = h⊕CK be the Cartan subalgebra of ĝ, ĥ∗ = h∗ ⊕CΛ0 the dual of ĥ,
where Λ0(K) = 1, Λ0(h) = 0. Let ∆̂re be the set of real roots in the dual h̃∗ of the
extended Cartan subalgebra h̃ of ĝ, ∆̂re

+ the set of positive real roots, Ŵ = W nQ∨

the Weyl group of ĝ, W̃ = W n P∨ the extended Weyl group of ĝ, ρ̂ = ρ + h∨Λ0.
For λ ∈ ĥ∗, let ∆̂(λ) = {α ∈ ∆̂re|〈λ + ρ̂, α∨〉 ∈ Z}, the set of integral roots of λ,
Ŵ (λ) = 〈sα|α ∈ ∆̂(λ)〉 ⊂ Ŵ the integral Weyl group of λ, where sα is the reflection
with respect to α. Denote by λ̄ the restriction of λ ∈ ĥ∗ to h.

Set

ĥ∗
k = {λ ∈ ĥ∗|λ(K) = k},

the set of weights of ĝ of level k. For λ ∈ ĥ∗
k, let L(λ) be the irreducible represen-

tation of ĝ with highest weight λ. Clearly, L(λ) is irreducible as a V k(g)-module.
A weight λ ∈ ĥ∗ is called admissible if (1) λ is regular dominant, that is,

〈λ + ρ̂, α∨〉 6∈ {0,−1,−2,−3, . . . } for all α ∈ ∆̂re
+ , and (2) Q∆̂(λ) = Q∆̂re. The

admissible weights of ĝ were classified in [KW1]. The module L(λ) is called admis-
sible if λ is admissible. Admissible representations are (conjecturally all) modular
invariant representations of ĝ ([KW1]).

A number k is called admissible for ĝ if kΛ0 is an admissible weight. By [KW2,
Proposition 1.2], k is an admissible number for ĝ if and only if

k + h∨ =
p

q
, p, q ∈ N, (p, q) = 1, p ≥

{
h∨g if (r∨, q) = 1,
hg if (r∨, q) = r∨.

(38)

A number k of the form (38) is called an admissible number with denominator q.
For an admissible number k of ĝ, let Prk be the set of admissible weights λ of

level k such that ∆̂(λ) ∼= ∆̂(kΛ0) as root systems.
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Theorem 9.1 ([A8]). Let k be an admissible number for ĝ, λ ∈ ĥ∗
k. Then L(λ) is

a module over the vertex algebra L(kλ0) if and only if λ ∈ Prk. In particular the
vertex operator algebra L(kΛ0) is rational in the category O of ĝ as conjectured in
[AM].

By Zhu’s theorem, the first statement of Theorem 9.1 is equivalent to that Lg(λ)
with λ ∈ h∗ is a module over A(L(kΛ0)) if and only if λ+kΛ0 ∈ Prk. On the other
hand by Duflo’s theorem [Duf] any primitive ideal of U(g) is the annihilating ideal
of some irreducible highest weight module Lg(λ). Hence Theorem 9.1 implies the
following.

Corollary 9.2. Let k be an admissible number for ĝ. A simple U(g)-module M is
an A(L(kΛ0))-module if and only if AnnU(g)M = AnnU(g) Lg(λ̄) for some λ ∈ Prk.

Let k be an admissible number for ĝ. We shall determine

VarA(L(kΛ0)) := Specm(grF A(L(kΛ0)))(∼= Specm(grK A(L(kΛ0)))),

which is a G-invariant, conic, Poisson subvariety of g∗.
Recall [A4] that the associated variety XV of a finitely strongly generated vertex

algebra V is defined as

XV = Specm(RV ).

Note that V is C2-cofinite if and only if XV is zero-dimensional.
By (18), VarA(L(kΛ0)) is a subvariety of XL(kΛ0), which is also a G-invariant,

conic, Poisson subvariety of g∗.
Let us identify g∗ with g through ν, and let N ⊂ g∗ = g be the nilpotent cone.
By a conjecture of Feigin and Frenkel proved in [A5] we have

XL(kΛ0) ⊂ N for an admissible number k for ĝ.

In fact the following holds:

Theorem 9.3 ([A5]). Let k be an admissible number for ĝ. Then XL(kΛ0) is an
irreducible subvariety of N which depends only on the denominator q of k, that is,
there exist a nilpotent element fq of g such that

XL(kΛ0) = AdG.fq.

More explicitly, we have

XL(kΛ0) =

{
{x ∈ g|(adx)2q = 0} if (q, r∨) = 1,
{x ∈ g|πθs(x)

2q/r∨
= 0} if (q, r∨) = r∨,

where θs is the highest short root of g and πθs : g → EndC(Lg(θs)) is the finite
dimensional irreducible representation of g with highest weight θs.

Theorem 9.3 has the following important consequence [A5]: By Theorems 2.3
and 7.1 we have

XH0
f (L(kΛ0))

∼= XL(kΛ0) ∩ Sf .(39)

Hence the transversality of Sf with G-orbits (see [GG]) implies the following:

Theorem 9.4 ([A5]). Let k be an admissible number with denominator q. Then
the vertex algebra H0

fq
(L(kΛ0)) is a non-zero C2-cofinite quotient of Wk(g, f).

Now we are in a position to state the main result of this section.
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Theorem 9.5. Let k be an admissible number for ĝ with denominator q . We have
an isomorphism of affine varieties

VarA(L(kΛ0)) ∼= XL(kΛ0).

Proof. By Theorem 9.3, it is sufficient to show the following assertion.

Proposition 9.6. Let f be any nilpotent element of g, and let k be any complex
number. The following conditions are equivalent:

(i) XL(kΛ0) ⊃ AdG.f .
(ii) Var(A(L(kΛ0))) ⊃ AdG.f .

Proof. Clearly (ii) implies (i) as VarA(L(kΛ0))) ⊂ XL(kΛ0). Conversely, suppose
that XL(kΛ0) ⊃ AdG.f . Since VarA(L(kΛ0)) is G-invariant and closed it is suf-
ficient to show that the point f ∈ g = g∗ is contained in VarA(L(kΛ0)). By
(39), XH0

f (L(kΛ0)) contains f , and hence, H0
f (L(kΛ0)) is nonzero. It follows that

A(H0
f (L(kΛ0))) = H0

f (A(L(kΛ0))) is nonzero as well. Since VarH0
f (A(L(kΛ0))) =

VarA(L(kΛ0)) ∩ Sf by Theorem 3.2 (i), VarA(L(kΛ0)) intersects Sf non-trivially.
As VarH0

f (A(L(kΛ0))) is invariant under the natural C∗-action on Sf which is con-
tracting to f (see [Gin]), VarA(L(kΛ0)) must contain the point f as required. �

�

Conjecture 1. For a finitely strongly generated simple vertex operator algebra V of
CFT type we have VarA(V )(:= SpecmgrF (A(V ))) ∼= XV .

Note that Conjecture 1 in particular implies the widely believed fact that a
finitely strongly generated rational vertex operator algebra of CFT type must be
C2-cofinite.

10. Proof of Main Theorem

In this section we let f = fprin, a principal nilpotent element of g,

Wk(g) = Wk(g, fprin) = H0
fprin

(V k(g)),

and Wk(g) = the unique simple quotient of Wk(g)

as in Introduction. The vertex algebra Wk(g) is Z≥0-graded by L0, where

Y (ωW , z) =
∑
n∈Z

Lnz
−n−2.

The central charge c(k) of Wk(g) is given in Introduction. We have the isomor-
phisms

C[g∗]G ∼→ C[Sf ] = H0(C̄(C[g∗]), ad d̄) ∼= RWk(g), p 7→ p⊗1,

Z(g) ∼→ U(g, fprin) = H0(C(U(g)), ad d) ∼= A(Wk(g)), z 7→ z⊗1

([Kos], see also [A2]), where Z(g) denotes the center of U(g). We will identity
A(Wk(g)) with Z(g) through the above isomorphism.

For a central character γ : Z(g) → C, let Cγ be the one-dimensional representa-
tion of Z(g) defined by γ. Put

MW (γ) = MWk(g)(Cγ), LW (γ) = LWk(g)(Cγ)
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(see section 4). We have

Irr(Wk(g)) = {LW (γλ)|λ ∈ h∗/W − ρ},

where γλ : Z(g) → C is the evaluation at Mg(λ). Note that

Wk(g) ∼= LW (γ−(k+h∨
g )ρ∨),

see [A2, 5.4].

Theorem 10.1. Let N be an ideal of V k(g) and suppose that H0
fprin

(V k(g)/N) 6= 0,
so that H0

fprin
(V k(g)/N) is a quotient vertex algebra of Wk(g) (see (30)). We have

Irr(H0
fprin

(V k(g)/N)) = {LW (γ)|U(g) ker γ ⊃ JN}

(Here JN is defined in Section 8, see (37)).

Proof. Recall Skryabin’s equivalence for f = fprin in Section 3:

Z(g) -Mod ∼→ C, E 7→ Y⊗Z(g)E,

which goes back to Kostant [Kos]. In particular, {Yγ |γ ∈ h∗/W − ρ} gives the
complete set of isomorphism classes of simple object of C, where Yγ = Y⊗Z(g)Cγ .
We have [Kos]

AnnU(g) Yγ = U(g) ker γ.

Therefore Yγ is annihilated by JN if and only if JN ⊂ U(g) ker γ. In other words
{Yγ |U(g) ker γ ⊃ JN} gives the complete set of isomorphism classes of simple ob-
jects of CJN . By Theorem 8.6 this is equivalent to that

Irr(A(H0
f (V k(g)/N))) = {Cγ |U(g) ker γ ⊃ JN}.

This completes the proof. �

Recall that XL(kΛ0) ⊂ N for an admissible number k for ĝ (Theorem 9.3). An
admissible number k is called non-degenerate if

XL(kΛ0) = N = AdG.fprin.

From Theorem 9.3 and the fact that

(θ|ρ∨) = hg − 1, (θs|ρ∨) = h∨Lg − 1,(40)

where θ is the highest root of g, it follows that an admissible number k is non-
degenerate if and only if k satisfies

q ≥

{
hg if (q, r∨) = 1,
r∨h∨Lg if (q, r∨) = r∨,

where q is the denominator of k, that is, k is of the form (1).

Theorem 10.2. Let k be an admissible number for ĝ. Then H0
fprin

(L(kΛ0)) 6= 0
if and only if k is non-degenerate. If this is the case then

H0
fprin

(L(kΛ0)) ∼= Wk(g).

Moreover, Wk(g) is C2-cofinite.

Proof. The fact thatH0
fprin

(L(kΛ0)) ∼= Wk(g) for a non-degenerate admissible num-
ber k was proved in [A2, Theorem 9.1.4]. The rest of the assertion is the special
case of Theorem 9.4. �
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Let

Prk
non−deg = {λ ∈ Prk|〈λ, α∨〉 6∈ Z for all α ∈ ∆},

the set of non-degenerate admissible weights [FKW, Lemma 1.5] of level k. It is
known [FKW] that Prk

non−deg is non-empty if and only if k is non-degenerate. Put

Prk
W = {γλ̄|λ ∈ Prk

non−deg}.

Then ]Prk
W = ]Prk

non−deg/]W sinceW acts on Prk
non−deg freely (by the dot action).

The irreducible representations {LW (γ)|γ ∈ Prk
W } are called minimal series

representations of Wk(g). In [A2] we have verified the conjectural character formula
of minimal series representations of Wk(g) given by Frenkel-Kac-Wakimoto [FKW].
(In fact the main result of [A2] gives the character of all LW (γ), see Theorem 10.8
and Corollary 10.9 below.)

Remark 10.3. The module LW (γ) with γ ∈ Prk
W admits a two-sided resolution in

terms of free field realizations [A7]. However we do not need this result.

Theorem 10.4. Let k be a non-degenerate admissible number for ĝ, γ a central
character of Z(g). Then LW (γ) is a module over Wk(g) if and only if it is a
minimal series representation of Wk(g), that is,

Irr(Wk(g)) = {LW (γ)|γ ∈ Prk
W}.

Proof. Set Jk = JNk(g), so that

A(L(kΛ0)) = U(g)/Jk.

By Theorem 10.2, we have Wk(g) = H0
fprin

(V k(g)/Nk(g)). Hence Theorem 10.1
gives that

Irr(Wk(g)) = {LW (γ)|U(g) ker γ ⊃ Jk}.

Now recall that λ̄ ∈ h∗ is called anti-dominant if 〈λ̄+ ρ, α∨〉 6∈ N for all α ∈ ∆+.
Clearly, for any central character γ : Z(g) → C there exists an anti-dominant λ̄ ∈ h∗

such that γ = γλ̄. It is well-known that Lg(λ̄) = Mg(λ̄) for an anti-dominant λ̄ and
that

AnnU(g)Mg(λ̄) = U(g) kerχλ̄.

We have

{LW (γ)|U(g) ker γ ⊃ Jk}
={LW (γλ̄)|λ̄ ∈ h∗, λ̄ is anti-dominant, AnnU(g) Lg(λ̄) ⊃ Jk} (by the above)

={LW (γλ̄)|λ̄ ∈ h∗, λ̄ is anti-dominant, Lg(λ̄) is an A(L(kΛ0))-module}

={LW (γλ̄)|λ ∈ ĥ∗, λ̄ is anti-dominant, L(λ) is an L(kΛ0)-module}

={LW (γλ̄)|λ ∈ Prk, λ̄ is anti-dominant} (by Theorem 9.1)

={LW (γλ̄)|λ ∈ Prk
non−deg} = {LW (γ)|γ ∈ Prk

W}.

This completes the proof. �

Theorem 10.5. For a non-degenerate admissible number k for ĝ, Zhu’s algebra
A(Wk(g)) is semisimple.
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In order to prove Theorem 10.5, we consider the Lie algebra homology functor

g-Mod → Z(g)-Mod, M 7→ H0(n−,M).

Since Mg(λ) is free over U(n−),

Hi(n−,Mg(λ)) ∼=

{
Cγλ

for i = 0,
0 for i > 0.

(41)

Lemma 10.6. Let λ ∈ h∗ be regular, that is, 〈λ+ ρ, α∨〉 6= 0 for all α ∈ ∆. Then

for an exact sequence 0 → Cγλ

φ1→ E
φ2→ Cγλ

→ 0 of Z(g)-modules, there exists an
exact sequence 0 → Mg(λ) → N → Mg(λ) → 0 of g-modules such E ∼= H0(n−, N)
as Z(g)-modules.

Proof. Choose homogeneous generators p1, . . . , prk g of of Z(g). Let

Υ : Z(g) ∼→ S(h)W

be the Harish-Chandra isomorphism, so that zvλ = Υ(z)(λ + ρ)vλ for z ∈ Z(g),
where vλ is the highest weight vector of Mg(λ). Set v = φ1(1) and fix v′ ∈ E such
that φ2(v′) = 1. Then there exists d1, . . . , drk g ∈ C such that

piv
′ = Υ(pi)(λ+ ρ)v′ + div.

Let us identify S(h) with C[α∨
1 , . . . , α

∨
rk g]. It is well-known that

det(
∂Υ(pi)
∂α∨

j

)1≤i,j≤rk g = C
∏

α∈∆+

α∨,(42)

where C is some nonzero constant. The hypothesis on λ implies that the value of
(42) at λ+ ρ is non-zero. It follows that there exists some µ ∈ h∗ such that

Υ(pi)(λ+ tµ+ ρ) = Υ(pi)(λ+ ρ) + tdi +O(t2)(43)

for all i = 1, . . . , rk g.
Let A = C[t], hA = h⊗CA. Denote by Aλ+tµ the hA-module that is a rank one

free A-module on which h ∈ h acts as multiplication by the scalar λ(h)+ tµ(h). Set
M = Aλ+tµ/t

2Aλ+tµ and view M as an h-module. Observe that tM ∼= Cλ and we
have the exact sequence

0 → tM →M → Cλ → 0(44)

of h-modules. Set

N = U(g)⊗U(b)M,

where b = h⊕ n and M is regarded as a b-module via the natural surjection b → h.
Applying the induction functor U(g)⊗U(b)? to (44) we obtain the exact sequence

0 →Mg(λ) → N →Mg(λ) → 0(45)

of g-modules. Next applying the functor H0(n, ?) we get the exact sequence

0 → Cγλ
→ H0(n−, N) → Cγλ

→ 0

of Z(g)-modules by (41). By construction, H0(n−, N) ∼= E as required. �

Proposition 10.7. For λ ∈ Prk we have L(λ) ∼= ML(kΛ0)(Lg(λ̄)) (see (20)).
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Proof. We have a surjective map

MV k(g)(Lg(λ̄)) = U(ĝ)⊗U(g[t]⊕CK)Lg(λ̄) � ML(kΛ0)(Lg(λ̄))

of ĝ-modules. It follows that ML(kΛ0)(Lg(λ̄)) is an object of O of ĝ. Being a
L(kΛ0)-module, ML(kΛ0)(Lg(λ̄)) decomposes into a direct sum of admissible rep-
resentations by Theorem 9.1. Since it is generated by the highest weight vector of
Lg(λ̄), ML(kΛ0)(Lg(λ̄)) must be isomorphic to L(λ). �

Proof of Theorem 10.5. Since Wk(g) = H0
fprin

(L(kΛ0)) is C2-cofinite by Theo-
rem 9.4, Zhu’s algebra A(Wk(g)) is finite-dimensional. Also, we have shown that
Irr(A(Wk(g))) = {Cγ |γ ∈ Prk

W} in Theorem 10.4.
Let λ ∈ Prk

non−deg, and let

0 → Cγλ̄
→ E → Cγλ̄

→ 0(46)

be an exact sequence of A(Wk(g))-modules. We need to show that this sequence
splits.

Recall that Lg(λ̄) = Mg(λ̄) for λ ∈ Prk
non−deg. By Lemma 10.6 there exists an

exact sequence

0 → Lg(λ̄) → N → Lg(λ̄) → 0(47)

of g-modules that gives the exact sequence (46) by applying the functor H0(n−, ?).
Since AnnU(g) Lg(λ̄) = U(g) ker γλ we have

AnnU(g)N = U(g)AnnZ(g)E.(48)

On the other hand, by applying the exact functor Y⊗Z(g)? to (46) we obtain the
exact sequence of A(L(kΛ0))-modules

0 → Yγλ̄
→ Y⊗Z(g)E → Yγλ̄

→ 0

by Theorem 8.6. It follows similarly that

AnnU(g)(Y⊗Z(g)E) = U(g)AnnZ(g)E.(49)

From (48) and (49), it follows that N is a module over A(L(kΛ0)) as well, and (47)
is an exact sequence of A(L(kΛ0))-modules. Therefore by applying the functor
U(L(kΛ0))⊗U(L(kΛ0))≤0? to (47) we obtain an exact sequence

0 → L(λ) →ML(kΛ0)(N) → L(λ) → 0(50)

of L(kΛ0)-modules by Proposition 10.7. Here the map L(λ) → ML(kΛ0)(N) is
injective since L(λ) is simple. Now, thanks to Gorelik and Kac [GK], an admissible
ĝ-module does not admit a non-trivial self-extension. Therefore (50) must split.
Restricting (50) we see that (47) splits, and therefore, (46) splits as well. This
completes the proof. �

Let Ok be the full subcategory of category O of ĝ consisting of modules of level
k, which can be regarded as a full subcategory of V k(g) -Mod. Let H0

−(?) : Ok →
Wk(g)-Mod be the quantized Drinfeld-Sokolov “−”-reduction functor [FKW].

Recall the following result.

Theorem 10.8 ([A2]). Let k be any complex number.
(i) The functor H0

−(?) : Ok → Wk(g)-Mod is exact.
(ii) For λ ∈ ĥ∗

k, H
0
−(M(λ)) ∼= MW (γλ̄).
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(iii) For λ ∈ ĥ∗
k, H

0
−(L(λ)) ∼=

{
LW (γλ̄) if λ̄ is anti-dominant,
0 otherwise.

Let [M(λ) : L(µ)] (resp. [MW (γ) : LW (γ′)]) be the multiplicity of L(µ) (resp.
LW (γ′)) in the local composition factor of M(λ) (resp. in the local composition
factor of MW (γ)).

Corollary 10.9. Let λ, µ ∈ ĥ∗
k and suppose that µ̄ is anti-dominant. Then

[MW (γλ̄) : LW (γµ̄)] = [M(λ) : L(µ)].

Proof. Since chM(λ) =
∑

µ[M(λ) : L(µ)] chL(µ) we have

chMW (γλ̄) =
∑

µ∈cW (λ)◦λ
µ̄ is anti-dominant

[M(λ) : L(µ))] chLW (γµ̄).

It remains to observe that if µ, µ′ ∈ Ŵ (λ) ◦ λ, γµ̄ = γµ̄′ , and µ̄ and µ̄′ are both
anti-dominant then µ = µ′. �

Theorem 10.10. Let k be a non-degenerate admissible number for ĝ. The simple
vertex operator algebra Wk(g) is rational.

Proof. By Theorem 10.2, it is sufficient to show that

Ext1Wk(g) -Mod(LW (γ),LW (γ′)) = 0 for LW (γ),LW (γ′) ∈ Irr(Wk(g)).

By Theorem 10.4 we can write γ = γλ̄, γ = γλ̄′ with λ, λ′ ∈ Prk
non−deg. Let

0 → LW (γ′) → N → LW (γ) → 0(51)

be an exact sequence of Wk(g)-modules.
Let ∆γ be the L0-eigenvalue of the lowest weight vector vγ of LW (γ), which is

a rational number. Suppose that ∆γ < ∆γ′ , and choose a vector v ∈ N∆γ such
that the image of v in LW (γ) is vγ . Then there is a Wk(g)-module homomorphism
MW (γ) → N that sends the highest weight vector of MW (γ) to v. If (51) is non-
splitting, N must coincide with the image of MW (γ). In particular, [MW (γ) :
LW (γ′)] 6= 0. By Corollary 10.9, this is equivalent to [M(λ) : L(λ′)] 6= 0. This
forces that λ = λ′ since both λ and λ′ are dominant weighs of ĝ. This contradicts
the assumption that ∆γ < ∆γ′ .

By applying the duality functor D(?) to (51), we see that the same argument
applies to show that Ext1Wk(g)-Mod(LW (γ),LW (γ′)) = 0 in the case ∆γ > ∆γ′ .

Finally, suppose that ∆γ = ∆γ′ =: ∆. Then we have the exact sequence

0 → LW (γ′)∆ → N∆ → LW (γ)∆ → 0.

The semisimplicity of A(Wk(g)) (Theorem 10.5) implies that the above sequence
splits. Therefore (51) splits as well. This completes the proof. �

Main Theorem follows immediately from Theorems 10.4, 10.5 and 10.10. �
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