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Abstract.  An improved method of de novo peptide sequencing based on mass 11 

spectrometry using novel N-terminal derivatization reagents with high proton affinity has 12 

been developed.  The introduction of a positively charged group into the N-terminal 13 

amino group of a peptide is known to enhance the relative intensity of b-ions in product 14 

ion spectra, allowing the easy interpretation of the spectra.  However, the 15 

physicochemical properties of charge derivatization reagents required for efficient 16 

fragmentation remain unclear.  In this study, we prepared several derivatization reagents 17 

with high proton affinity, which are thought to be appropriate for peptide fragmentation 18 

under low-energy CID conditions, and examined their usefulness in de novo peptide 19 

sequencing.  Comparison of the effects on fragmentation among three derivatization 20 

reagents having a guanidino or an amidino moiety, which differ in proton affinity, clearly 21 

indicated that there was an optimal proton affinity for efficient fragmentation of peptides.  22 



 

 2 

Among reagents tested in this study, derivatization with 4-amidinobenzoic acid brought 1 

about the most effective fragmentation.  This derivatization approach will offer a novel de 2 

novo peptide sequencing method under low-energy CID conditions. 3 

 4 
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Recent advances in various tandem mass spectrometric techniques have enabled the 1 

facile determination of the amino acid sequences of peptides[1-3].  In addition, the 2 

development of comprehensive databases of protein primary sequences predicted from 3 

the genomic sequences of various organisms has boosted the efficiency with which 4 

proteins can be identified by mass spectrometry (MS)[4].  With this database-dependent 5 

method, the assignment of each fragment ion in a product ion spectrum is not necessary, 6 

and identification is basically achieved by comparing the observed product ion spectra of 7 

enzymatically-digested peptides with those obtained by theoretical calculations based on 8 

primary sequences in databases using the Mascot[5], SEQUEST[6] or OMSSA[7] search 9 

engine.  As primary sequence databases continue to grow, database-dependent methods 10 

are expected to provide more powerful and convenient tools for analyses of 11 

peptides/proteins; however at present, their coverage is limited to the components of 12 

major organisms in most cases.  Amino acid sequencing without the assistance of a 13 

database (de novo sequencing) is still essential in the identification of peptides and 14 

proteins from unexplored organisms.   15 

De novo sequencing can be carried out by interpreting mass differences between a series 16 

of consecutive ions of N- or C-terminal fragments generated by collision-induced 17 

dissociation (CID)[8].  Since tryptic peptides always contain Arg or Lys residues at the 18 

C-terminus, y-ions are preferentially generated, allowing the easy interpretation of 19 

spectra.  However, when proteins are digested with other enzymes such as chymotrypsin, 20 

basic residues are located at various positions in digested peptides.  Fragmentation of 21 

these peptides gives complicated and often incomplete product ion spectra, making de 22 
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novo sequencing difficult.  This is also true for peptidomic analysis, in which peptides are 1 

generally analyzed without trypsin digestion[9].  Newly developed mass spectrometric 2 

techniques for better fragmentation, such as electron capture dissociation (ECD)[10] or 3 

electron transfer dissociation (ETD)[11], and for highly accurate mass measurements, 4 

such as Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry[12] or 5 

Orbitrap[13], have greatly improved the efficiency of de novo sequencing; however, 6 

there still remain difficulties in obtaining mass spectra that allow easy identification of 7 

key fragment ions for sequencing.  The difficulties come mainly from incomplete 8 

fragmentation of the peptide backbone.   9 

To overcome these problems, chemical modifications at the N-terminus of peptides have 10 

been attempted for more regular and “informative” fragmentation[14].  The introduction 11 

of a positively charged group, such as quaternary or tertiary ammonium and quaternary 12 

phosphonium groups, at the N-terminus is known to enhance the relative intensity of 13 

N-terminal fragment ions (b-ions) in product ion spectra, significantly facilitating the 14 

formation of whole series of b-ions[15-18].  Similarly, it has been reported that the 15 

introduction of a negatively charged group at the N-terminus enhances the generation of 16 

C-terminal fragment ions (y-ions) with suppression of the occurrence of b-ions[19].  This 17 

modification is particularly effective for tryptic peptides, in which y-ions are 18 

predominantly generated.   19 

Tris(2,4,6-trimethoxyphenyl)phosphonium acetic acid (TMPP-ac), which contains a 20 

quaternary phosphonium group, has been widely used for the derivatization to provide an 21 

N-terminal positive charge[20].  This modification favors the generation of N-terminal 22 
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fragment ions under high-energy CID conditions by virtue of a fixed positive charge at 1 

the N-terminus; however, derivatization with a fixed charge has been shown to reduce the 2 

efficiency of fragmentation under low-energy CID conditions, which are commonly used 3 

in tandem quadrupole or quadrupole ion-trap mass spectrometers, and to often induce an 4 

almost exclusive cleavage at the amide bond of Asp on its C-terminal side (Asp effect) 5 

when singly charged ions are selected as a precursor ion[21].  These disadvantages of 6 

TMPP-ac are considered due to the absence of “mobile protons” in the derivatized 7 

peptide that can mediate the cleavage of amide bonds under low-energy CID 8 

conditions[22].  Thus, N-terminus-modifying groups with a certain level of affinity for 9 

protons are expected to be advantageous, in that they can be protonated during the 10 

ionization process, and that the protons added to the modified N-terminus can migrate to 11 

the amide bonds and promote their cleavage under low-energy CID conditions (Fig. 1).  12 

In this regard, a pyridyl group is one of the most suitable N-terminus modifiers for de 13 

novo peptide sequencing.  The introduction of a pyridyl group, by virtue of its affinity for 14 

protons, enables the preferential detection of b-ions by retaining the proton in N-terminal 15 

fragments[15].  16 

In spite of numerous attempts to find good derivatization tools for de novo peptide 17 

sequencing, the relationship between proton affinity and the fragmentation-promoting 18 

effect of a peptide/protein derivatization reagent under low-energy CID conditions has 19 

not been examined in detail.  Also, the optimum physicochemical properties required for 20 

efficient fragmentation remain unclear.  In this study, to explore the structure of charge 21 

derivatization appropriate for de novo sequencing, we prepared several reagents with 22 
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high proton affinity and examined their usefulness in de novo peptide sequencing under 1 

low-energy CID conditions. 2 

 3 

Experimental section 4 

Chemicals.   5 

4-Amidinobenzamide hydrochloride and 6-amidino-2-naphthol methanesulfonate were 6 

purchased from Tokyo Chemical Industry (Tokyo, Japan).  4-(Aminomethyl)benzoic 7 

acid, 1H-pyrazole-1-carboxamidine hydrochloride, nicotinic acid and 8 

4-methoxybenzylalcohol were obtained from Wako Pure Chemical Industries (Osaka, 9 

Japan).  Methyl bromoacetate and N-hydroxysuccinimide were from Nacalai Tesque 10 

(Kyoto, Japan).  4-Nitrophenyl chloroformate was purchased from Aldrich (St. Louis, 11 

MO, USA).  1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride was from 12 

Watanabe Chemical Industries (Hiroshima, Japan).  13 

4-(4,6-Dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride (DMT-MM) was 14 

obtained from Kokusan Chemical (Tokyo, Japan).  Angiotensin I was purchased from 15 

Calbiochem (Darmstadt, Germany).  The other peptides used in this study were 16 

synthesized using Fmoc solid-phase chemistry in our laboratory.  17 

Nicotinoyloxysuccinimide was synthesized as described in the literature[15].  18 

 19 

Synthesis of 4-amidinobenzoic acid.   20 

4-Amidinobenzamide hydrochloride (5 g, 25 mmol) was dissolved in a mixture of 6 M 21 

HCl (150 ml) and 12 M acetic acid (30 ml) and the solution was refluxed at 110°C for 6 h. 22 
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The reaction solution was cooled with ice and the resulting precipitate was filtered to 1 

yield a crystal of 4-amidinobenzoic acid hydrochloride (4.6 g, 92%). 1H-NMR (400MHz: 2 

DMSO-d6) 7.99 (d, 2H J=8.4 Hz), 8.15 (d, 2H J=8.2 Hz), 9.49 (s, 1H), 9.66 (s, 2H), 13.53 3 

(br.s, 1H). ESI-MS: [M+H]+  (m/z) calculated: 165.1, found: 165.1 4 

 5 

Synthesis of 4-(guanidinomethyl)benzoic acid.   6 

4-(Aminomethyl)benzoic acid (0.5 g, 3.3 mmol) was dissolved in 1 M sodium carbonate 7 

(10 ml).  1H-pyrazole-1-carboxamidine hydrochloride (0.5 mg, 3.4 mmol) was added, 8 

and the solution was stirred at room temperature overnight.  Next, acetone (100 ml) was 9 

added, and the resultant precipitate was washed with acetone (x2), diethyl ether (x3) and 10 

DMF (x3).  The precipitate was dissolved in a small amount of DMSO and reprecipitated 11 

by acetone after the removal of insoluble materials to yield 4-(guanidinomethyl)benzoic 12 

acid (0.2 g, 32%). 1H-NMR (400MHz: DMSO-d6) 4.36 (d, 2H J=5.7 Hz), 7.22 (d, 2H 13 

J=8.2 Hz), 7.64 (br.s, 3H), 7.84 (d, 2H, J=8.2 Hz). ESI-MS: [M+H]+  (m/z) calculated: 14 

194.1, found: 194.1 15 

 16 

Synthesis of 2-(6-amidino-2-naphthyloxy)acetic acid.   17 

2-(6-amidino-2-naphthyloxy)acetic acid was synthesized as described previously.[23] 18 

Briefly, to a solution of 6-amidino-2-naphthol methanesulfonate (0.52 g, 1.8 mmol) and 19 

triethylamine (0.88 ml, 7 mmol) in DMF (10 ml) was added a solution of 20 

4-methoxybenzyl-4-nitrophenylcarbonate (0.7 g, 2.3 mmol), which was prepared from 21 

the reaction of 4-methoxybenzylalcohol with 4-nitrophenyl chloroformate in the presence 22 
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of pyridine, in DMF (10 ml) dropwise over 5 minutes.  The reaction mixture was stirred at 1 

50°C for 3 h, and at room temperature for 15 h, poured into water (25 ml), acidified with 2 

cold 10% citric acid (4.5 ml) and extracted with dichloromethane (3 × 50 ml).  The 3 

combined organic solution was washed with 10% sodium bicarbonate solution and brine, 4 

dried (MgSO4), concentrated and purified by silica gel column chromatography 5 

(EtOAc/hexane, 1:3 to 1:1) to give 6 

N-(4-methoxybenzyloxycarbonyl)-6-amidino-2-naphthol (0.59 g, 94%).  A solution of 7 

this compound (0.48 g, 1.4 mmol) in acetone (32 ml) was treated with potassium 8 

carbonate (0.64 g, 4.4 mmol) and methyl bromoacetate (0.38 g, 2.5 mmol), and stirred at 9 

room temperature for 48 h.  The reaction mixture was concentrated, extracted with ethyl 10 

acetate, and washed with water and brine.  The organic solution was dried, evaporated 11 

and purified by silica gel column chromatography (EtOAc/hexane, 1:1) to give methyl 12 

4-[N-(4-methoxybenzyloxycarbonyl)-6-amidino-2-naphthyloxy]acetic acid (0.37 g, 13 

63%).  This compound (0.25 g, 0.6 mmol) was dissolved in a 1 M sodium hydroxide 14 

solution and the reaction mixture was stirred at room temperature for 1 h.  The solution 15 

was acidified with 1 M HCl to pH 2 and filtered.  The filtrate was evaporated, and the 16 

residue was dissolved in DCM (40 ml) and TFA (0.4 ml, 4 mmol).  The reaction mixture 17 

was stirred at room temperature for 10 min.  After the solvent was evaporated, diethyl 18 

ether was added, and the resultant solid was filtered, washed with diethyl ether and dried 19 

in vacuo to give 2-(6-amidino-2-naphthyloxy)acetic acid in quantitative yield. 1H-NMR 20 

(400MHz, DMSO-d6) δ 4.86 (s, 2H), 7.39 (m, 2H), 7.83 (d, J=8.7 Hz, 1H) 7.99 (m, 2H) 21 
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8.51 (s, 1H) 9.40 (s, 2H) 9.53 (s, 2H) 13.14 (br.s, 1H). ESI-MS: [M+H]+ (m/z) calculated: 1 

245.1, found: 245.1 2 

 3 

Synthesis of 4-amidinobenzoyloxysuccinimide.   4 

4-Amidinobenzoic acid (328 mg, 2 mmol) was dissolved in dry DMF and mixed with 5 

1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (383 mg, 2 mmol) and 6 

N-hydroxysuccinimide (230 mg, 2 mmol).  The mixture was stirred under argon at room 7 

temperature overnight.  The solution was evaporated in vacuo, and the residue was 8 

purified by silica gel column chromatography (EtOAc/CHCl3/TFA, 80:20:0.5) to give 9 

4-amidinobenzoyloxysuccinimide (170 mg, 33%). 1H-NMR (400MHz, DMSO-d6) 10 

δ 2.92 (s, 4H), 8.03 (d, 2H, J = 8.2 Hz), 8.31(d, 2H, J = 8.3 Hz), 9.45 (br.s, 11 

3H).  ESI-MS: [M+H]+ (m/z) calculated:262.1, found: 261.9 12 

 13 

Peptide derivatization.   14 

For derivatization with 4-amidinobenzoic acid or nicotinic acid, the succinimide ester of 15 

each compound was dissolved in phosphate buffer (100 mM, pH 7.5 for peptides without 16 

lysine residues and pH 5.9 for peptides with lysine residues) at a concentration of 10 mM, 17 

and mixed with peptides (1 mM) at room temperature overnight.  The derivatized 18 

peptides were purified by reversed phase (RP) -HPLC (H2O/CH3CN with 0.1%TFA).  19 

For derivatization with 2-(6-amidinonaphthalen-2-yloxy)acetic acid or 20 

4-(guanidinomethyl)benzoic acid, each compound was dissolved in DMSO at a 21 

concentration of 2.5 mM and mixed with peptides (0.25 mM) and DMT-MM (2.5 mM).  22 
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The resultant mixture was stirred at room temperature overnight.  The derivatized 1 

peptides were purified by RP-HPLC (H2O/CH3CN with 0.1%TFA).   2 

 3 

Mass spectrometric analysis.   4 

The MSn analysis was performed on a Shimadzu LCMS-IT-TOF mass spectrometer 5 

equipped with a nano-electrospray ion source (Kyoto, Japan).  Samples were dissolved in 6 

50% acetonitrile and 0.1% formic acid to a final concentration of ~10 µM and loaded into 7 

nanospray tips (HUMANIX, Hiroshima, Japan).  All mass spectra were obtained in the 8 

positive mode, and the precursor ions for the analysis were manually selected.  A 9 

potential of 1.0 kV was applied to the nanospray tip in the ion source.  For CID 10 

experiments, argon was used as the collision gas and the collision energy was set at 120% 11 

(arbitrary units) with 30 ms of activation time both for MS2 and MS3.  Precursor ion 12 

isolation width was set at 3.0 m/z units. 13 

 14 

Computational calculations.   15 

pKb values were calculated using ACD/pKa DB (Advanced Chemistry Development, 16 

Toronto, Canada).  Proton affinity was calculated using the following equation, 17 

 18 

PA = – ∆Eelec – ∆ZPE + 5/2RT 19 

 20 

where ∆Eelec and ∆ZPE are the differences in electronic energies and zero-point energies, 21 

respectively, between protonated and unprotonated molecules.  The Spartan’06 program 22 
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(Wavefunction, Irvine, CA) was used for these calculations.  Geometry optimization was 1 

carried out at the HF/6-31G*, and energies were obtained from MP2/6-311G* 2 

single-point calculations.  An amide form of each derivatization compound was used for 3 

the calculation (Table 2).   4 

 5 

Results and discussion 6 

Selection of derivatization groups with high proton affinity.   7 

First we explored the structures having high proton affinity that could be suitable for 8 

N-terminal derivatization.  The structural effect of N-terminal-modifying groups on the 9 

cleavage of peptide bonds in a molecule under low-energy CID conditions is likely 10 

implicated in its role as a “reservoir of mobile protons[22]”.  It has been proposed that the 11 

cleavage of a peptide bond under such conditions is driven by protonation at the nitrogen 12 

atom of amide bonds (Fig. 1), where the proton is transferred from N-terminal or other 13 

basic moieties in the molecule that was protonated by the initial ionization process[24].  14 

After the bond cleavage, the proton at the oxazolone ring is again transferred back to an 15 

energetically more favorable site such as the N-terminal amino group, in order to form a 16 

b-ion.  The proton during this process is referred to as a “mobile proton”, and plays an 17 

important role in determining whether b- or y-ions are more favorably produced after the 18 

cleavage.  If the proton affinity of the N-terminal modifying groups is high, the mobile 19 

proton is more readily transferred there to form b-ions.   20 

So, the N-terminal-modifying groups should have high proton affinity, and the selection 21 

of a structure is made primarily based on the calculated pKb values.  Although pKb is a 22 
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measure of basicity in an aqueous solution, it is highly correlated with the gas phase 1 

basicity, and therefore, suitable for the selection of compounds with high proton affinity.  2 

The availability and/or the ease of synthesis of derivatization reagents were also taken 3 

into consideration.  Of many possible basic moieties, a guanidino moiety, a functional 4 

group in the Arg side chain, was chosen as a good candidate for the N-terminal charge 5 

derivatization, due to its low pKb value (<1).  An amidino moiety, which has a pKb value 6 

slightly higher than that of a guanidino group (1~2), was also considered appropriate.  7 

The presence a carboxyl group in the derivatization reagent is essential for forming an 8 

amide linkage with the N-terminal amino group, and a benzene ring is incorporated to 9 

facilitate the synthesis of the reagents.  Thus, we decided to test 10 

4-guanidinomethylbenzoic acid (Gmb, pKb=1.9) and 4-amidinobenzoic acid (Aba, 11 

pKb=3.2) for derivatization (Fig. 2).  For the latter, substitution of the benzene ring with a 12 

naphthalene ring was expected to further lower the pKb value based on the calculation, 13 

and therefore, 2-(6-amidino-2-naphthyloxy)acetic acid (Ana, pKb=2.6), which was 14 

relatively easily synthesized among the acidic compounds having a amidinonaphthyl 15 

moiety, was also tested in this study.  Their performances as a derivatization reagent were 16 

evaluated based on a comparison with nicotinic acid (Nic, pKb=9.2).  17 

 18 

Comparison of effects on fragmentation among derivatives.   19 

We first evaluated the effects of four derivatization reagents on fragmentation using 20 

model peptides (Table 1).  Basic residues such as Arg, His and Lys often disrupt the 21 

fragmentation process by trapping mobile protons on their side chains.  Therefore, we 22 
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evaluated the effect of derivatization using model peptides with or without basic amino 1 

acid residues.  Peptides were derivatized at the N-terminal amino group by the reagents 2 

using DMT-MM as a condensation reagent[25], and analyzed by an ion trap 3 

time-of-flight hybrid mass spectrometer. 4 

 5 

1. Peptide without basic amino acid residues.   6 

Singly charged ions were chosen as precursor ions for CID experiments of peptide 1 7 

(AAGLQIA), which contains no basic amino acid residues.  When the peptide was 8 

analyzed without derivatization, a product ion spectrum shown in Fig. 3A was 9 

obtained. While several b- and y-ions were observed, not all of the diagnostic fragment 10 

ions required for determining the entire sequence of the peptide were obtained, even 11 

using MS3.  No b1 ion was observed, as was expected given the proposed mechanism 12 

of peptide fragmentation in the gas phase, which requires a modification of the 13 

N-terminal amino group with an amide linkage.  Derivatization of the N-terminus with 14 

nicotinic acid, which was reported to facilitate the identification of N-terminal 15 

fragments[15], clearly gave a whole series of b-ions including b1 (Fig. 3B).  However, 16 

some of the y-ions were still observed at an intensity significant to complicate the 17 

spectrum, and the relative intensity of b-ions in the low mass range (e.g., b3 and b4) 18 

was lower than that of the high mass range (e.g., b6).  When the peptide was 19 

derivatized with Gmb, Aba or Ana, fragmentation was improved in all cases, 20 

providing a whole series of b-ions  (Fig. 3C-E).  In contrast to the derivatives with 21 

nicotinic acid, the relative intensity of b6 ions from all of these derivatives was 22 
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decreased, while that of b-ions in the low mass range was significantly increased.  1 

Unfortunately, neutral losses of ammonia from b-ions were markedly observed in the 2 

cases of derivatives with Gmb and Ana, which made the resultant product ion spectra 3 

of Gmb- and Ana-derivatized peptides relatively complicated.  This hampered the 4 

identification of b-ions, and was considered unfavorable for the application of these 5 

derivatizations to other peptides.  The loss of ammonia molecules is generally known 6 

to occur in the side chains of Arg, Lys, Gln and Asn.  Since peptide 1 lacks these 7 

amino acid residues, the guanidino and amidino moiety of Gmb and Ana, respectively, 8 

were most likely the sources of ammonia.  By contrast, the peaks arising from neutral 9 

losses of ammonia were not significantly observed in the product ion spectrum of the 10 

Aba-derivatized peptide, and this derivative was considered more advantageous in 11 

terms of the sequence analysis.  It is known that the ammonia loss is driven by the 12 

protonation at nitrogen atoms in the guanidino moiety of Arg.  It is likely that the 13 

relatively high proton affinity of the guanidino and amidino groups in Gmb and Ana, 14 

respectively, strongly stabilizes the protonated forms, increasing the chance of 15 

elimination of ammonia.  The amidino group of Aba also has high proton affinity, but 16 

its strength does not seem to be high enough to eliminate ammonia molecules. 17 

 18 

2. Peptide with basic amino acid residues.   19 

The effect of derivatization was then evaluated using peptide 2 (DRVYIHPFH, 20 

angiotensin I), which contains three basic amino acid residues.  Since singly charged 21 

ions were not generated from this peptide, doubly charged ions were chosen as a 22 
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precursor for the MS/MS analysis.  Complete suppression of y-ions was difficult in 1 

this case, so the improving effect of derivatization was primarily assessed by the 2 

number of b-ions detected in the subsequent experiments.   3 

In the product ion spectrum of the underivatized peptide (Fig. 4A), seven b-ions were 4 

observed.  The amide bond between Ile and His was not cleaved by this fragmentation, 5 

which made de novo determination of the whole peptide sequence impossible.  6 

Derivatization with Nic did not increase the number of b-ions detected (Fig. 4B).  In 7 

particular, b1 and b3 ions were not observed, indicating that the cleavage of amide 8 

bonds in the N-terminal region was not effective, although the detection of these ions 9 

might be possible by MS3.  Derivatization with Gmb and Ana also gave poor 10 

fragmentation, and the number of b-ions detected was not increased (Fig. 4D and 4E).  11 

In these cases, the generation of b1 ions was most intense, whereas b3, b4 and b5 ions 12 

were detected only weakly if at all.  This indicates that the cleavage of amide bonds in 13 

the central region did not effectively occur in the Gmb- and Ana-derivatized peptides.  14 

By contrast, the introduction of Aba gave much more informative results (Fig. 4C), 15 

with whole series of b-ions observed in this spectrum, although the intensity of some 16 

of the y-ions (y2 and y4) was higher that that of b-ions.  As a consequence, only the 17 

derivatization with Aba enabled the complete de novo sequencing of peptide 2.  18 

 19 

In the process of peptide fragmentation of singly charged ions, the mobile proton is 20 

usually supplied from the protonated N-terminal amino group.  Thus, when the 21 

N-terminal amino group is modified by a charged group like a quarternary phosphonium, 22 
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the singly charged ion generated has no mobile protons, giving rise to poor fragmentation 1 

under low energy CID conditions.  When a group with high proton affinity is introduced 2 

into the N-terminal amino group of a peptide, protonation during the ionization step 3 

occurs preferentially at the modified N-terminus, and this proton can serve as a mobile 4 

proton to mediate the cleavage of amide bonds.  If the affinity is too high, the mobility of 5 

the proton is restricted to lower the efficiency in terms of the peptide bond cleavage.  On 6 

the other hand, weak proton affinity is disadvantageous for the back transfer of protons to 7 

the modified N-terminus after bond cleavage, as well as for the initial protonation during 8 

the ionization step, resulting in less efficient fragmentation to form b-ions.  Thus, an 9 

optimal proton affinity is required for N-terminal modifier groups to cause 10 

fragmentations adequate for the sequence analysis. 11 

Given these considerations, unfavorable fragmentation of Gmb- or Ana-derivatized 12 

peptides is likely to be due to a rather high proton affinity of these moieties.  13 

Consequently, protons are localized to a greater extent at the N-terminus to cause a 14 

significant loss of ammonia from the derivatized N-terminus of peptide 1 and preferential 15 

fragmentations in the N-terminal region of peptide 2.  By contrast, the ineffective 16 

fragmentation at the N-terminal region of Nic-derivatized peptide 2 is possibly ascribable 17 

to the rather low affinity of the Nic moiety.  In this case, the presence of substructures 18 

with high proton affinity in the C-terminal region such as a His side chain could have 19 

unfavorably affected the transfer of protons to the amide bonds in the N-terminal region.  20 

Thus, it is likely that Aba has the optimal proton affinity for peptide fragmentation under 21 

low-energy CID conditions. 22 
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The ab initio calculation of proton affinity supported these considerations (Table 2).  In 1 

this study, considering a balance between accuracy and computational cost, we used the 2 

HF/6-31G* and MP2/6-311G* levels of theory for geometry optimization and 3 

single-point calculation, respectively.  The calculated proton affinity of Nic in Table 2 is 4 

in good agreement with the experimental value[26], indicating that the calculation 5 

method is valid.  As expected, all compounds have higher proton affinity than that of an 6 

amino group of alanine[27].  When comparisons were made between compounds, the 7 

proton affinity of Aba was intermediate, being higher than that of Nic but lower than that 8 

of Gmb or Ana.   Such a “moderate” affinity is considered effective for the “catch” and 9 

“release” of protons during ionization and fragmentation (Fig. 1).   10 

 11 

Establishment of a peptide derivatization method.  Before the effect of Aba on the 12 

fragmentation of various peptides was evaluated, a facile and effective derivatization 13 

method was developed.  For the formation of an amide linkage at the N-terminal amino 14 

group, a succinimide ester method has often been used[15].  Succinimide ester 15 

compounds are relatively stable and rapidly react with amino groups of peptides in an 16 

aqueous solution.  Thus, the succinimide ester of Aba was synthesized, and reacted with 17 

the model peptide.  As shown in Fig 5, almost complete derivatization of peptide 1 was 18 

achieved within 2 h when reaction was performed in a buffer at pH 7.5.  All by-products 19 

of the reaction, such as 4-amidinobenzoic acid, are highly hydrophilic and so could be 20 

easily separated by RP-HPLC without interfering with the elution of derivatized peptides.  21 

While the succinimide ester of Aba can also react with an amino group of the Lys side 22 
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chain in the peptide in this reaction, specific introduction into the N-terminal amino group 1 

could be achieved by using a weakly acidic buffer (pH 5.9) for the reaction; however, 2 

complete modification at the N-terminal amino group was difficult under these 3 

conditions[15].  For selective modification at the N-terminal amino group, oxidative 4 

amide formation using alkynes could be a promising method[28]. 5 

 6 

Validation of the effect of 4-amidinobenzoic acid on fragmentation.  The effect of 7 

Aba on fragmentation was further evaluated using four model peptides, 3-6, which have 8 

11-13 amino acid residues (Table 1).   9 

 10 

1. Peptides without basic amino acid residues.   11 

We first examined the effect of Aba-derivatization using two peptides containing no 12 

basic amino acid residues.  A singly charged ion was selected as a precursor in each of 13 

the following analyses.  Fragmentation of the underivatized peptide 3, 14 

DYPVDIYYLMD, gave only seven b- and four y-ions (Fig. 6A), with intense 15 

fragmentation in the C-terminal region (e.g., b9 and b10).  Since b1 and b3 ions were not 16 

observed, de novo sequencing of the peptide was impossible from this spectrum, even 17 

though the MS3 analysis was performed.  Peptide 4, SYANGFSATSASL, also showed 18 

poor fragmentation without derivatization as shown in Fig. 6C (six b- and three y-ions).  19 

In addition, neutral losses of water and ammonia molecules from the produced 20 

fragment ions were frequently observed, as is often the case for peptides containing 21 



 

 19 

Ser, Thr and Asn residues.  The product ion spectrum eventually gave only limited 1 

information on the amino acid sequence of 4.   2 

In contrast, derivatization of these peptides with Aba, had a marked effect on the 3 

fragmentation, and a complete series of b-ions were successfully detected with the 4 

almost complete suppression of y-ion formation to enable the de novo sequencing of 5 

the peptides.  The effect was particularly evident in the product ion spectrum of 6 

Aba-derivatized peptide 3 (Fig. 6B), in which all the b-ions were clearly detected with 7 

a similar level of intensity, except for the b5 ion: the intensity of this ion was relatively 8 

high due to the Asp effect[29].  In the case of Aba-derivatized peptide 4 (Fig. 6D), 9 

neutral losses of water or ammonia molecules were still observed to some extent, but 10 

assigning the fragment ions was much easier than in the case of the underivatized 11 

peptide, which allowed complete sequencing.   12 

 13 

2. Peptides with basic amino acid residues.   14 

We next examined the effect of Aba-derivatization using peptides containing basic 15 

amino acid residues.  A doubly charged ion was selected as a precursor in each of the 16 

following analyses.  We first selected peptide 5 in which a Lys residue is located at the 17 

C-terminus, considering the use of this method for sequencing of tryptic peptides.  18 

Product ion spectrum of the underivatized peptide only showed the predominant bond 19 

cleavage between Phe and Pro residues (e.g., b2 and y4) because an amide bond 20 

N-terminal to a proline residue is particularly labile (Fig. 7A).  However, when the 21 

peptide was derivatized with Aba, a complete series of b-ions were detected in the 22 



 

 20 

product ion spectrum (Fig. 7B), which allowing easy interpretation of the spectrum.  1 

Although an amino moiety of the Lys side chain can also react with the succinimide 2 

ester of Aba, the specific introduction of 4-amidinobenzoic acid into the N-terminal 3 

was achieved by adjusting the reaction buffer to pH 5.9.  We then performed the 4 

MS/MS analysis of peptide 6, ATQQTAAYKTLVS, without derivatization.  Nine b- 5 

and six y-ions were observed (Fig. 7C) to preclude determination of the sequence in 6 

the N-terminal region.  This was likely because of the high basicity of the Lys residue 7 

in the C-terminal region.  After derivatization with Aba, a complete series of b-ions 8 

were clearly detected in the product ion spectrum (Fig. 7D), although MS3 analysis 9 

was required to detect the b1 ion.  Identification of some of the b-ions was difficult due 10 

to the overlap with y- and other ions in the spectra, but they were clearly distinguished 11 

by comparison of spectra between underivatized and derivatized peptides, because m/z 12 

values of y-ions remain unchanged after derivatization.     13 

A complete series of b-ions were also detected for peptide 7, TDVNGDGRHAL, after 14 

derivatization with Aba (Fig. 7F), whereas only incomplete fragmentation occurred 15 

before derivatization (Fig. 7E).  In the product ion spectrum of the Aba-derivatized 16 

peptide, the intensity of b7 and b8 ions was still low.  This is because of the high proton 17 

affinity of the Arg side chain, which is known to suppress the dissociation of amide 18 

bonds adjacent to the Arg residue.  It has been shown that such an unfavorable effect of 19 

the Arg residue can be removed by modification of a guanidino group of the Arg side 20 

chain with acetylacetone[30] or malondialdehyde[31].  21 

   22 



 

 21 

Conclusions 1 

In this study, we evaluated the improving effect of N-terminal charge derivatization on 2 

peptide fragmentation using compounds with high-proton affinity.  Comparison of the 3 

effects on fragmentation among four derivatization reagents differing in proton affinity 4 

clearly indicated that there was an optimal affinity for efficient fragmentation of peptides: 5 

a balance between the release and catch of protons for the activation of amide bonds and 6 

for the preferential generation of b-ions, respectively, is needed to achieve complete 7 

fragmentation.  Among four reagents tested, derivatization with 4-amidinobenzoic acid 8 

brought about the most effective fragmentation in all peptides used in this study, which 9 

enabled de novo peptide sequencing; however, the identification of b-ions was still not 10 

very easy in some cases due to the overlap of b-ions with other series of ions, especially 11 

when multiply charged ions were selected as a precursor.  The utilization of 12 

isotope-labeled derivatization reagents may provide a much easier solution for the 13 

identification of b-ions by comparing the spectra between the derivatives obtained by 14 

labeled and non-labeled reagents[15].  Experiments using 15N-labeled 4-amidinobenzoic 15 

acid are currently underway.  Derivatization with 4-amidinobenzoic acid will 16 

undoubtedly improve the peptide fragmentation pattern, which may offer a novel de novo 17 

peptide sequencing method under low-energy CID conditions. 18 
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Fig. 1  Mechanism of formation of b-ions during peptide fragmentation
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Fig. 5  Improving effect of 4-amidinobenzoic acid on fragmentation of various peptides 
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Table 1  Amino acid sequence of peptides used in this study 

 

No. Peptide sequence 

1 AAGLQIA 

2 DRVYIHPFHL 

3 DYPVDIYYLMD 

4 SYANGFSATSASL 

5 ATQQTAAYKTLVS 

6 TDVNGDGRHAL 

 



Table 2  Calculated proton affinities of compounds used for derivatization 

 

Compounds PA (kcal/mol) 

Gmb 244.5 

Ana 241.4 

Aba 235.2 

Nic 215.3 

 


