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Quantum walks, whose dynamics is prescribed by alternating unitary coin and shift operators, possess
topological phases akin to those of Floquet topological insulators, driven by a time-periodic field. While there is
ample theoretical work on topological phases of quantum walks where the coin operators are spin rotations, in
experiments a different coin, the Hadamard operator, is often used instead. This was the case in a recent photonic
quantum walk experiment, where protected edge states were observed between two bulks whose topological
invariants, as calculated by the standard theory, were the same. This hints at a hidden topological invariant in the
Hadamard quantum walk. We establish a relation between the Hadamard and the spin rotation operator, which
allows us to apply the recently developed theory of topological phases of quantum walks to the one-dimensional
Hadamard quantum walk. The topological invariants we derive account for the edge state observed in the
experiment; we thus reveal the hidden topological invariant of the one-dimensional Hadamard quantum walk.
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I. INTRODUCTION

Topological insulators have attracted much attention from
various branches of physics, due to their unique surface states
predicted by topological invariants [1,2]. Although many
materials, such as HgTe, Bi2Se3, etc., have been identified
as being topological insulators, the necessary requirements
on the intrinsic parameters, e.g., the spin-orbit interactions
and internal magnetic fields, are hard to meet. One proposed
way to overcome this difficulty is to use Floquet topological
insulators, i.e., to employ a periodic drive to bring a mate-
rial from a topologically trivial phase to the topologically
nontrivial one [3–6]. By altering the drive sequence, not
only the parameters, but even the relevant symmetries of
the system [7–9] can be tuned, offering a versatile route to
topological insulators.

Since the Floquet topological insulator is defined by a
unitary time evolution operator, the spectral properties of its
effective Hamiltonian are characterized by the quasienergy,
which has a 2π periodicity, in natural units where the time
is measured in units of the drive period and � = 1. As
a consequence, in the presence of chiral or particle-hole
symmetries, surface states at π as well as 0 quasienergy should
be considered. The number of π quasienergy states is a novel
topologically protected quantity, and is a corresponding novel
bulk topological number. Accordingly, 1-dimensional chiral
(or particle-hole) symmetric Floquet topological insulators
are characterized by two topological invariants, Z × Z (or
Z2 × Z2). Thus, the Floquet topological insulator provides
richer physics compared with the time-independent topologi-
cal insulator.

Floquet topological insulators have already been realized
in various experiments: by fabricating coupled helical waveg-
uides for laser pulses in fused silica [10], by irradiating the
surface of a topological insulator with circularly polarized
light [11], and by “shaking,” i.e., periodically modulating an
optical lattice with trapped cold atoms to realize the Haldane

model [12] and Hofstadter model [13]. However, none of these
experiments has yet identified the unique π quasienergy states
so far.

There is a promising way to realize Floquet topological
insulators using discrete-time quantum walks [14,15] (quan-
tum walks for short). The dynamics of a quantum walk is
implemented by combining two fundamental operators: coin
and shift operators, which change the internal degree of
freedom and the position of a walker, respectively. Recently,
such quantum walks have been experimentally realized in
various systems, such as cold atoms [16], trapped ions [17,18],
optical fiber loops [19,20], bulk optics [21], and integrated
photonic circuits [22]. It has been clarified [23,24] that the
discrete-time quantum walk is an ideal platform to construct
Floquet topological insulators because of the high tunability
of relevant symmetries [7–9], and the parameters which are
essential to establish nontrivial topological phases. Motivated
by this work, studies of the topological phase of quantum
walks have been started [25–30], and their connection with the
entanglement in these walks has also been investigated [31].
Remarkably, edge states originating in the nontrivial topo-
logical phase at zero and π quasienergy have been observed
in an experiment on a one-dimensional photonic quantum
walk [32]. However, the bulk topological invariants predicting
these edge states were not identified: edge states were observed
at an interface between two regions with the same topological
number.

In the present work, we identify the hidden topological
invariants of the Hadamard quantum walk realized in the
experiment of Ref. [32]. We generalize the approach used
for chiral-symmetric quantum walks [23–27], and find a pair
of integers, i.e., a Z × Z topological invariant.

This paper is organized as follows. In Sec. II, we define the
one-dimensional discrete-time Hadamard quantum walk and
show how it is related to more commonly investigated quantum
walks. In Sec. III we define a generalization of chiral symmetry
for the Hadamard quantum walk, and give the formulas for
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the corresponding chiral-symmetric time frames. In Sec. IV
we calculate the topological invariants of the simple and the
split-step Hadamard walks, and illustrate the consequences
of these invariants, the topologically protected bound states,
by numerical examples. In Sec. V, we apply this formalism
to the setup realized in Ref. [32], and demonstrate that the
bound states observed in the experiment are predicted by
our bulk topological invariants. Finally, Sec. VI is devoted
to discussions and conclusion.

II. HADAMARD QUANTUM WALKS

In this paper we consider one-dimensional quantum walks
where the walker has two internal states, denoted by |+〉 :=
(1,0)T and |−〉 := (0,1)T . The wave function of the walker
reads

|�(t)〉 =
∑
x∈Z

∑
s=±

�x,s(t)|x〉 ⊗ |s〉, (1)

where x ∈ Z is the discrete position and t ∈ N is the discrete
time. The time evolution is generated by the unitary time-step
operator as

|�(t)〉 = Ut |�(0)〉, (2)

where the time-step operator U is composed of a sequence of
coin operators C and shift operators S, to be defined below.

A coin operator C acts on the internal state of the walker
while leaving the position x unaffected,

CH [θ (x)] :=
∑

x

|x〉〈x| ⊗ H[θ (x)]. (3)

We take as coin operator the generalized Hadamard operator,

H[θ (x)] :=
(+ cos θ (x) + sin θ (x)

+ sin θ (x) − cos θ (x)

)
, (4)

with a parameter θ depending on the position x. This can be
expressed using the Pauli matrices

σ1 :=
(

0 1
1 0

)
, σ2 :=

(
0 −i

i 0

)
, σ3 :=

(
1 0
0 −1

)
,

and the identity matrix σ0 := I2, as

H[θ ] = e−iθσ2σ3 = cos θσ3 + sin θσ1. (5)

Most of the previous theoretical work used as coin operator
the rotation e−iθσ2 = cos θσ0 − i sin θσ2, which has the same
matrix elements as the Hadamard operator up to the position
of the minus sign. Although this seems like a small difference,
it can have far reaching consequences, as we will show below.

A shift operator is complementary to the rotation operator
in that it changes the position of the walker in a way that
depends on the value of the internal degree of freedom. We
will use two shift operators, defined as

S± :=
∑

x

(|x ± 1〉〈x| ⊗ |±〉〈±| + |x〉〈x| ⊗ |∓〉〈∓|). (6)

We consider two types of quantum walks, constructed from
the Hadamard coin and the shift operators above. The simple
Hadamard quantum walk is defined via its time-step operator
as

UA(θ (x)) = S−S+CH(θ (x)). (7)

The split-step Hadamard walk has the time-step operator

UB[θ1(x),θ2(x)] = S−CH[θ2(x)]S+CH[θ1(x)]. (8)

For both the simple and the split-step quantum walk, the
effective Hamiltonian H is a useful tool to understand their
long-time dynamics. It is defined from the unitary time-step
operator by

U = e−iH . (9)

Stationary states of a quantum walk are eigenstates of the
time-step operator U ,

U |ψε〉 = λε|ψε〉, λε = e−iε. (10)

Here the quasienergy ε, the eigenenergy of the effective
Hamiltonian, has 2π periodicity: due to unitarity of U , λε

takes its values from the unit circle on the complex plane.

III. CHIRAL SYMMETRY OF HADAMARD
QUANTUM WALKS

For a one-dimensional Hamiltonian to possess topological
phases, it needs to have some symmetry that links positive
and negative energy states to each other [7–9]. We suggest an
extension of the concept of chiral symmetry, and show that
both Hadamard walks possess it. This will later allow us to
describe the bulk topology and protected edge states of the
Hadamard walks.

A. Chiral symmetry at nonzero energy

As a starting point we introduce the chiral symmetry at
nonzero energy for a Hamiltonian. Consider a system of free
fermions, with grand canonical Hamiltonian

Ĥ =
∑
nm

ĉ†nHnm(ξ )ĉm − μ
∑

n

ĉ†nĉn, (11)

where the matrix of the single-particle Hamiltonian H is a
continuous function of some system parameters denoted by
ξ ∈ 
. This includes all parameters that are subject to disorder.
The requirement for chiral symmetry of the Hamiltonian reads

�H (ξ )� = −H (ξ ), (12)

with a unitary chiral-symmetry operator � = �† = �−1, that
acts in each unit cell independently, and is independent of the
disorder realization ξ .

A global, fixed on-site potential φ ∈ R, that is not subject
to disorder,

H ′
nm(ξ ) = Hnm(ξ ) + φ, (13)

obviously breaks chiral symmetry, since φ ∈ R commutes
with any � instead of anticommuting. However, all it does
is simply displace the energy of all states by φ. Thus, if H

hosts topologically protected bound states, so will H ′; the only
difference is that they will be at energy φ instead of energy 0.

The same discussion applies to periodically driven systems.
The requirement of Eq. (12), translated for the time-evolution
operator using Eq. (9), but allowing for a constant shift of
quasienergy, reads

�U (ξ )� = e−2iφU (ξ )−1. (14)

Importantly, not only � but also φ ∈ R is here assumed not to
be subject to disorder, i.e., independent of the parameters ξ .
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If Eq. (14) holds, the operator eiφU (ξ ) has chiral symmetry
(in the usual sense [27,33]), and it may host topologically
protected edge states at ε = 0 or π . If this is the case,
the original time-step operator U (ξ ) will have the same
topologically protected end states at quasienergy ε = φ,
respectively, ε = π + φ. In the following we will not write out
the arguments ξ representing the effects of disorder explicitly.

B. Chiral symmetry of Hadamard quantum walks

We follow the method developed by some of the authors of
this work [27] to describe chiral symmetry of quantum walks,
adapted to deal with chiral symmetry at finite quasienergy.
A quantum walk has chiral symmetry at finite quasienergy if
its time-step operator can be split into two parts, conjugated
inverses of each other:

U = e−iφF �F−1�, (15)

with φ ∈ R. We can directly confirm chiral symmetry of the
above quantum walk by substituting U and U−1 in Eq. (15)
into left and right hand sides in Eq. (14), respectively, and
using �−1 = �. In order to find such a decomposition, the
starting time of the period can be shifted; i.e., the walk can be
described in a different time frame. This process is detailed
in Ref. [27] for quantum walks where the coin operator is a
rotation, and where

� :=
∑

x

|x〉〈x| ⊗ σ1. (16)

To reveal the chiral symmetry of the Hadamard walks, we
start by rewriting Eq. (5) as

H[θ (x)] = e−iθ(x)σ2e−iφe−iχσ3 (17)

with χ = −φ = π/2. Importantly, χ and φ are global, fixed
parameters. Now as for the factor e−iφ , it commutes with all
operators, and so it will only shift the quasienergy.

To deal with the factor e−iχσ3 in Eq. (17), we first make a
few observations. It can be broken up into two parts, as

e−iχσ3 = e−i(χ/2)σ3e−i(χ/2)σ3 . (18)

Then we notice that e−i(χ/2)σ3 commutes with both S+ and S−,
since

S± =
∑

x

(
|x ± 1〉〈x| ⊗ σ0 ± σ3

2
+ |x〉〈x| ⊗ σ0 ∓ σ3

2

)
.

Finally, we point out the relation

σ1e
−i(χ/2)σ3σ1 = ei(χ/2)σ3 = (e−i(χ/2)σ3 )−1, (19)

which will be useful to show chiral symmetry.
Using the results of the previous paragraph, we rewrite

the time step operators of the Hadamard walks, Eqs. (7)
and (8), in a time frame where the chiral symmetry at nonzero
quasienergy is explicit. For the simple Hadamard walk this
reads

UA = e−iφFA�F−1
A �, (20a)

FA = e−i[θ(x)/2]σ2e−i(χ/2)σ3S−, (20b)

�F−1
A � = S+e−i(χ/2)σ3e−i[θ(x)/2]σ2 , (20c)

while for the split-step Hadamard walk we find

UB = e−i2φFB�F−1
B �, (21a)

FB = e−i[θ1(x)/2]σ2S−e−iχσ3e−i[θ2(x)/2]σ2 , (21b)

�F−1
B � = e−i[θ2(x)/2]σ2e−iχσ3S+e−i[θ1(x)/2]σ2 , (21c)

with, in both cases, χ = −φ = π/2. We remark that chiral
symmetry of the simple and split-step Hadamard walks is
preserved even when the parameter θ (x) of the coin operator
in Eq. (4) depends on the position x in a disordered way.

IV. TOPOLOGICAL PHASES OF HADAMARD
QUANTUM WALKS

Having established chiral symmetry for the Hadamard
quantum walks, we now determine the bulk topological
invariants controlling the number of edge states in these
walks [27,28,33]. We will follow the procedure developed
in Ref. [33], which expresses the topological invariants as
winding numbers of parts of the operator F from Eq. (15)
between eigenspaces of the chiral-symmetry operator �. In
the Appendix, an alternative procedure developed in Ref. [27]
is presented.

To briefly summarize, Ref. [33] states that

ν0 = 1

2πi

∫ π

−π

dk
d

dk
ln detF+−(k), (22a)

νπ = 1

2πi

∫ π

−π

dk
d

dk
ln detF−−(k), (22b)

where F+−(k) is the part of F in the quasimomentum space
representation that maps from the subspace of the Hilbert
space where � = −1 (i.e., the eigenspace of � belonging to
eigenvalue −1) to the � = +1 subspace, while F−− is the part
of F that acts in the � = −1 subspace.

To adapt the results of Ref. [33] to the Hadamard quantum
walks, we need to take two things into account. First, Eqs. (20b)
and (21b) give the matrix of F in a basis where the chiral-
symmetry operator is not diagonal, that is, � = σ1. In such a
basis, i.e., whenever

� =
(

0 1
1 0

)
, F (k) =

(
a(k) b(k)
c(k) d(k)

)
, (23)

for the parts of F necessary for the topological invariants we
have

2F+− = (1 1)

(
a b

c d

)(
1

−1

)
= (a − b + c − d), (24a)

2F−− = (1 −1)

(
a b

c d

)(
1

−1

)
= (a − b − c + d).

(24b)

Second, the Hadamard walks have chiral symmetry at finite
quasienergy φ. Instead of topological invariants ν0 and νπ , we
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thus have invariants νφ and νπ+φ , which read

νφ = 1

2πi

∫ π

−π

dk
d

dk
ln[a(k) − b(k) + c(k) − d(k)], (25a)

νπ+φ = 1

2πi

∫ π

−π

dk
d

dk
ln [a(k) − b(k) − c(k) + d(k)].

(25b)

We obtained this by substituting Eqs. (24) into Eqs. (22), and
omitting a factor of 1/2, which does not change the winding
number.

A. Simple Hadamard walk

We first consider the simple Hadamard quantum walk, as
defined in Eq. (7). We take a translation-invariant bulk, with
θ (x) = θ , in a chiral time frame, as defined by Eq. (20). The
operator FA at quasimomentum k reads

FA(k) = e−iχ/2e−i(θ/2)σ2

(
1 0
0 ei(k+χ)

)
. (26)

The parameter χ = π/2 shows up in two roles here. First, it
works as a global-phase, k-independent factor. This cannot
change the winding number. The second role is as a displace-
ment of k by χ . This again does not change the winding
number which is calculated by integrating over the whole k

space. Thereby, we are free to set χ = 0, when we substitute
Eq. (26) into Eqs. (24) and (25). We obtain

ν−π/2 = 1

2πi

∫ π

−π

dk
d

dk
ln(sθ+ − eiksθ−), (27a)

ν+π/2 = 1

2πi

∫ π

−π

dk
d

dk
ln(sθ− + eiksθ+), (27b)

using the shorthand

sθ± = cos
θ

2
± sin

θ

2
=

√
2 sin

θ ± π/2

2
. (28)

The invariant at quasienergy ±π/2 is the winding number of
a loop on the complex plane, centered at sθ± with radius sθ∓.
In the case in which the radius is larger than the distance of
the center from the origin, the loop encircles the origin, and
we have a winding number of +1. In the opposite case, the
winding number is 0. Therefore, to calculate the values of the
winding numbers, we need to consider

s2
θ+ − s2

θ− = 2 sin θ. (29)

For the winding numbers, the above considerations give

(ν−π/2,ν+π/2) =
{

(0,1) if 0 < θ < π,

(1,0) if − π < θ < 0.
(30)

The topological invariants are not defined when θ = 0 or θ =
π . In these cases, the time-evolution operator reads UA(θ =
π/2 ± π/2) = ±ie−i(k+π/2)σ3 , with a quasienergy spectrum
that has no gaps.

Numerical examples

We illustrate the above results on the topology of the
simple Hadamard walk, by showing examples where edge

states appear near a boundary between two bulks with different
topological invariants. To this end, we define two sets of θ (x):

θα : {θ− = −π/4, θ+ = +π/4}, (31)

θβ : {θ− = +3π/4, θ+ = +π/4}, (32)

where

θ− := θ (x � −1), θ+ := θ (x � 0).

According to Eq. (30), we expect that topologically protected
edge states at quasienergies ε = ±π/2 appear near x ≈ 0
for UA(θα), because the two bulk regions have different
topological numbers, while no edge state should appear for
UA(θβ) because of the same topological numbers in both
regions.

We numerically simulate the time evolution |�(t)〉 =
Ut

A|�(t = 0)〉 up to t = 100 and calculate the probability
distribution

P (x,t) :=
∑

s=+,−
|(〈x| ⊗ 〈s|)|�(t)〉|2. (33)

The initial state is set to

|�(t = 0)〉 := (|+〉 + i|−〉)/
√

2 ⊗ |0〉. (34)

Figures 1(a-1) and 1(a-2) show the contour maps of P (x,t)
in the x-t plane up to the time step t = 60 for UA(θα),
Eq. (31), and UA(θβ), Eq. (32), respectively. On the one hand,
Fig. 1(a-1) clearly shows that the high probability amplitudes
stably remain near the origin where the topological numbers
change. On the other hand, Fig. 1(a-2) exhibits low probability
amplitudes near x = 0 as expected.

The presence/absence of edge states is further highlighted
in Figs. 1(b-1) and 1(b-2) showing snapshots of the proba-
bility distribution P (x,t) at t = 100 for UA(θα) and UA(θβ),
respectively. We also numerically compute the spectrum of the
time-step operators of the single-step Hadamard walks UA(θα)
and UB(θβ), and show the eigenvalues λε = e−iε in the insets.
Here we consider the finite position space from −L to L − 1
with L = 100 and impose the periodic boundary conditions to
−L and L − 1. Thereby, we have two boundaries at x = 0 and
−L, where θ (x) is varied. If one of these boundaries hosts an
edge state at quasienergy ε, so must the other boundary: this
gives an extra double degeneracy of the edge states. Although
this degeneracy is lifted, because wave functions of the edge
states at the same quasienergy but opposite edges overlap
due to their exponential tails, this is the correction that is
exponentially small in the system size, in our case, below the
numerical accuracy ∼10−16. Consistent with our theoretical
prediction, the eigenvalues corresponding to edge states (red
crosses) appear at ε = ±π/2 for UA(θα), while they are not
there for UA(θβ). This illustrates the validity of Eq. (30).

B. Split-step Hadamard walk

We next consider the split-step Hadamard quantum walk, as
defined in Eq. (8), with two coin operators CH[θ1,2(x)] applied
during one time step. We emphasize that this quantum walk
has been realized in an optical experiment [32]. We take a
translation-invariant bulk, with θj (x) = θj , for both j = 1,2,
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FIG. 1. (Color online) Examples for bound states as signatures of a topological phase boundary in single-step Hadamard walks. Top:
Contour maps of the probability distribution P (x,t) in x-t plane for the quantum walks of (a-1) UA(θα), Eq. (31), and (a-2) UA(θβ ), Eq. (32).
The topological numbers (ν−π/2,ν+π/2) for the negative and positive x regions are shown in the figures. The position dependence of the
probability distribution P (x,t) at t = 100 is shown in (b-1) and (b-2) for the single-step Hadamard walk UA(θα) and UA(θβ ), respectively. The
insets in (b-1) and (b-2) show eigenvalues λ = e−iε of the corresponding time-evolution operator UA(θα,β ) of the main figure. The eigenvalues
corresponding to edge states are distinguished by red crosses from those of bulk states (green thick arcs).

in a chiral time frame, as defined by Eq. (21). The operator FB

reads

FB = e−iχ e−i(θ1/2)σ2

(
1 0
0 ei(k+2χ)

)
e−i(θ2/2)σ2 . (35)

Again, the parameter χ does not affect the winding numbers;
then we can set χ = 0.

The calculation of the topological invariants follows the
same lines as for the simple Hadamard walk. We substitute
Eq. (35) into Eqs. (24) and (25). We obtain

νπ = 1

2πi

∫ π

−π

dk
d

dk
ln

(
sθ1+sθ2+ − eiksθ1−sθ2−

)
, (36a)

ν0 = 1

2πi

∫ π

−π

dk
d

dk
ln

(
sθ1−sθ2+ + eiksθ1+sθ2−

)
, (36b)

using the shorthands defined in Eq. (28), and bearing in mind
that the quasienergies are displaced by π instead of π/2 as for
the simple Hadamard walk.

Using the same logic as for the simple Hadamard walk for
the winding numbers gives us

νπ = (sgn[− sin θ1 − sin θ2] + 1)/2, (37a)

ν0 = (sgn[sin θ1 − sin θ2] + 1)/2. (37b)

The phase diagram in Fig. 2 shows the topological numbers ν0

and νπ at quasienergies ε = 0,π , respectively, of UB(θ1,θ2).

Numerical examples

We illustrate the topological properties of the split-step
Hadamard walk using two parameter sets,

θγ : {θ1− = θ2− = −π/4; θ1+ = θ2+ = +π/4}, (38)

θ δ : {θ1− = −θ2− = −π/4; θ1+ = θ2+ = +π/4}, (39)

where

θ1(2)− := θ1(2)(x � −1), θ1(2)+ := θ1(2)(x � 0).

Because only θ = ±π/4 is employed, the quantum walk
UB(θγ,δ) would be called the split-step Hadamard walk. As
indicated by the triangles in Fig. 2, the parameters of the
sets θγ,δ are located on the red solid and blue dashed lines
indicating the quasienergy gap closing around ε = 0 and π ,
respectively. In the case of θγ , the quasienergy gap around
ε = 0 vanishes, while the other gap around ε = π is still open.
Since the topological numbers νπ differ in the positive and
negative x regions for UB(θγ ), the edge states should exist.
However, in the case of θ δ , parameters of the negative (positive)
x region locate on the blue dashed (red solid) line. This results
in no more energy gaps in the whole system. Then, we predict
no edge states for UB(θ δ).

We confirm these predictions from the phase diagram by
numerical simulations as shown in Fig. 3. In the case of
UB(θγ ), we confirm the edge state at the quasienergy ε = π
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FIG. 2. (Color online) The phase diagram of the split-step quan-
tum walk UB (θ1,θ2) defined in Eq. (8). Gapped phases are indexed
by topological numbers (ν0,νπ ), Eqs. (37). The red solid and blue
dashed lines indicate closing of quasienergy gaps around ε = 0
and π , respectively. The symbols in the phase diagram indicate the
parameters of the numerical examples we consider, i.e., upper and
lower triangles for θγ , θ δ in Eqs. (39) and (38), circles for θ e1 in
Eq. (40), and rectangles for θ e2 in Eq. (41).

as well as the gap closing around ε = 0. We also numerically
confirm that no energy gaps emerge for UB(θ δ), and then no
edge states.

V. INTERPRETATIONS OF HIDDEN TOPOLOGICAL
INVARIANTS IN EXPERIMENT

Finally, we resolve the hidden topological invariant found
in the photonic quantum walk experiment in Ref. [32] where
the time-evolution operator is the one given in Eq. (8). We
consider two parameter sets which are also investigated in the
experiment [32]:

θ e1 : {θ1− = 0, θ2− = +π/4;

θ1+ = +7π/16, θ2+ = +π/4}, (40)

θ e2 : {θ1− = −5π/16, θ2− = 0;

θ1+ = +13π/16, θ2+ = 0}. (41)

In Ref. [32], it is reported that the parameter spaces with
the topological numbers (1,0) and (0,1) in Fig. 2 have the
topological number 0 and the regions with the topological
number (0,0) and (1,1) in Fig. 2 have the topological number
1. Thereby, in the case of θ e1, the topological numbers of
the positive and negative x regions differ by 1, and then
edge states are expected. In the case of θ e2, the topological
numbers in both regions are zero, and then edge states are not
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FIG. 3. (Color online) Examples of bound states as signatures of a topological phase transition in split-step Hadamard walks. Top: Contour
maps of the probability distribution P (x,t) in the x-t plane for the quantum walk (a-1) UB (θγ ), Eq. (38), and (a-2) UB (θ δ), Eq. (39). The
topological numbers (ν0,νπ ) for the negative and positive x regions are shown in the figures. A letter “N” means that the topological number
for the corresponding quasienergy cannot be defined because of the gap closing. (b) The position dependence of the probability distribution
P (x,t) at t = 100. The eigenvalues of the time-step operators are shown in the insets as in Figs. 1(b-1) and 1(b-2).
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FIG. 4. (Color online) The position dependence of the probabil-
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split-step walks UB (θ e1) and UB (θ e2), respectively. The topological
numbers (ν0,νπ ) for the negative and positive x regions are shown in
the figures. The meaning of insets is the same as those in Figs. 1(b-1)
and 1(b2).

expected. However, edge states are observed in both cases in
the experiment.

In Figs. 4(a) and 4(b), we show the probability distribution
P (x,t) at t = 100 of the walks UB(θ e1) and UB(θ e2), respec-
tively, starting from the initial state

|ψ(t = 0)〉 := |+〉 ⊗ |0〉,
which also coincides with the experimental. The correspond-
ing eigenvalues of UB (θ e1) and UB(θ e2) are shown in the insets.
We confirm that the split-step walks UB(θ e1) and UB(θ e2)
exhibit edge states at ε = 0 and ε = 0,π , respectively.

Now we look at the phase diagram in Fig. 2. The phase
diagram predicts that the quantum walk UB(θ e1) should have
an edge state at ε = 0 because the regions for x � −1 and
x � 0 have the topological numbers (ν0,νπ ) = (0,0) and (1,0),
respectively. Furthermore, in the case of UB(θ e2), the edge
states should appear at quasienergies ε = 0,π because the
regions for x � −1 and x � 0 have the topological numbers

(0,1) and (1,0), respectively. These theoretical results are
completely consistent with the numerical results in Fig. 4
and observations in the experiment [32]. Thereby, we have
succeeded in explaining the hidden topological invariant found
in the experiment by the phase diagram Fig. 2 which is derived
by establishing the relation between the rotation and Hadamard
matrices.

VI. DISCUSSION AND CONCLUSION

Comparing Figs. 1(a-1) and 1(a-2) with Fig. 3(a), we notice
that the the contour maps of the probability distribution P (x,t)
in the former ones are sparser and checkerboard like. The
origin of this is a sublattice symmetry of the time-evolution
operator defined as

�SU�S = −U, (42)

where

�S :=
( ∑

x∈even

|x〉〈x| −
∑

x∈odd

|x〉〈x|
)

⊗ σ0.

The single-step walk UA retains sublattice symmetry, while
the split-step walk UB generally does not. This symmetry
constrains the walker at every time step to hop from the even
sublattice (x even) to the odd sublattice (x odd), leading to the
checkerboard pattern of P (x,t).

If a quantum walk has sublattice symmetry, as defined
by Eq. (42), every eigenstate at quasienergy ε must have a
sublattice partner at quasienergy ε + π [25,34]. This explains
why the single-step Hadamard walk has edge states at ε =
±π/2 appearing simultaneously. We note that, due to the
specific value of θ2 = 0 in the parameter set θ e2, the split-step
walk UB(θ e2) has sublattice symmetry. Therefore, the edge
states appearing at ε = 0,π in the inset of Fig. 4(b) are
sublattice symmetric partners of each other.

The results of this paper can be applied straightforwardly
to quantum walks where the generalized Hadamard coin is
replaced by operators e−iθσ2σj , with j = 1,2, instead of j = 3.
In the case of j = 2, we again obtain a chiral-symmetric walk:
in analogy with Eq. (17), we have

e−iθσ2σ2 = e−iφe−i(θ+η)σ2 , (43)

where η = −φ = π/2. Thereby, σ2 shifts the angle of the
rotation matrix and the quasienergy by π/2, but does not affect
chiral symmetry. The other case, j = 1, is easily understood
because σ1 = −iσ2σ3. Using Eqs. (17) and (43), we obtain

e−iθσ2σ1 = e−iφe−i(θ+η)σ2e−iχσ3 , (44)

where η = χ = −φ = π/2 are global and fixed parameters.
Thereby, σ1 also does not break chiral symmetry.

In Ref. [32], two topological invariants, Q0 and Qπ , are
defined that are associated with a boundary between two bulks.
These invariants are nothing but the topologically protected
number of 0 and π quasienergy edge states localized at the
boundary. The topological invariants ν0 and νπ we define in
this paper are associated with the bulks. By the arguments
detailed in Ref. [27], the change in ν0 (νπ ) as we cross from
the left bulk to the right predicts the value of Q0 (Qπ ):
this is the bulk-boundary correspondence for one-dimensional
Hadamard quantum walks.
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The formulas for the topological invariants in this paper
assumed translation invariance in the bulk, so that the quasimo-
mentum k is a good quantum number. For disordered quantum
walks, e.g., where θ (x) is a random function of position, there
are alternative formulations of the topological invariants, based
on the scattering matrices [28,35]. These can be applied to
disordered Hadamard walks using the mapping we presented
in this paper.

In summary, we have studied the topological phases of
the one-dimensional Hadamard quantum walk. We have
generalized the definition of chiral symmetry, and provided
a sufficient requirement for quantum walks to obey this
symmetry, in Eq. (15). Employing the generalized definition,
one-dimensional Hadamard quantum walks have chiral sym-
metry, and the corresponding topological invariants, which
characterize the topological phases, can be calculated. We have
used this result to reveal the topological invariants behind a
recent photonic quantum walk experiment [32]. Our results
add to the growing body of knowledge on the topological
phases of quantum walks and Floquet topological insulators.
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APPENDIX: ALTERNATIVE CALCULATION
OF TOPOLOGICAL NUMBERS

In Sec. IV, we calculate the topological numbers of the
quantum walks based on the method developed in Ref. [33].
Here, for completeness, we present the calculation following
the method of Ref. [27]. The two methods are equivalent; we
present this derivation for pedagogical reasons.

1. Single-step Hadamard walk

First, we focus on the single-step Hadamard walk. From
Eq. (20a), the chiral-symmetric form of the single-step
Hadamard walk is written as

UA = e−iφFA�F−1
A �,

FA = e−i[θ(x)/2]σ2e−i(χ/2)σ3S−,

�F−1
A � = S+e−i(χ/2)σ3e−i[θ(x)/2]σ2 , (A1)

where χ = −φ = π/2. As explained in Ref. [27], if a time-
evolution operator of the quantum walk U has chiral symmetry,
another chiral-symmetric time-evolution operator U ′ can be
identified only at the different “time frame.” The one for UA,
thus U ′

A, is given by

U ′
A = e−iφ�F−1

A �FA. (A2)

Since the phase φ only shifts the quasienergy, we proceed
in our calculations by setting φ = 0 on the above equations

during the calculation and shift the quasienergy by π/2 at
the end. In the momentum representation (by assuming the
constant θ ), we have

UA(k) = e−i(θ/2)σ2

(
e−i(k+χ) 0

0 eik(k+χ)

)
e−i(θ/2)σ2

= cos(k + χ )cθσ0 − icksθσ2 − i sin(k + χ )σ3

and

U ′
A(k) =

(
e−i(k+χ) 0

0 1

)
e−iθσ2

(
1 0
0 ei(k+χ)

)
= cos(k + χ )cθσ0 − isθσ2 − i sin(k + χ )cθσ3.

Here, we use the shorthands

cθ ≡ cos(θ ), sθ ≡ sin(θ ).

The factor χ only shifts the momentum k, which does not
change the topological number. Then, we set χ = 0 in the
following.

Applying a unitary transform so that the time evolution
operators have chiral symmetry in the basis that the chiral-
symmetry operator is diagonal, i.e., � = σ3, we have

ŨA(k) = ei(π/4)σ2UA(k)e−i(π/4)σ2

= ckcθσ0 + iskσ1 − icksθσ2

and

Ũ ′
A(k) = ei(π/4)σ2U ′

A(k)e−i(π/4)σ2

= ckcθσ0 + iskcθσ1 − isθσ2.

Since the coefficients of the σ0 term of ŨA(k) and Ũ ′
A(k) are

the same, both operators have a common eigenvalue

λA,± = e±iωA, sin(ωA) =
√

1 − (ckcθ )2 � 0.

The corresponding eigenvectors |ψ±〉 and |ψ ′
±〉 of ŨA(k) and

Ũ ′
A(k), respectively, also have the similar structures

|ψA,±〉 = 1√
2

(∓ieiϕA(k)

1

)
, |ψ ′

A,±〉 = 1√
2

(∓ieiϕ′
A(k)

1

)
,

(A3)

but with different phase factors

eiϕA(k) = (−cksθ + isk)/ sin(ωA), (A4a)

eiϕ′
A(k) = (−sθ + iskcθ )/ sin(ωA). (A4b)

The winding number is defined through the Berry phase,

ν ≡ 1

iπ

∫
dk〈ψ |d/dk|ψ〉. (A5)

Substituting eigenvectors in Eq. (A3), the winding numbers ν

and ν ′ of UA and U ′
A, respectively, become

ν = 1

2π

∮
dϕA(k), ν ′ = 1

2π

∮
dϕ′

A(k).

Thereby, the winding numbers are determined from the trace
of ϕA(k) and ϕ′

A(k) as k is changed from 0 to 2π . Considering
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Eq. (A4), this gives the following results,

ν =
{−1 (0 < θ < π ),

1 (−π < θ < 0),

and

ν ′ = 0.

Finally by using a formula derived in Ref. [27] in order to
calculate the topological numbers for quasienergies ε = φ and
π + φ

νφ = ν ′ + ν

2
, νπ+φ = ν ′ − ν

2
, (A6)

we obtain

(ν−π/2,ν+π/2) =
{

(−1/2, +1/2) for 0 < θ < π,

(+1/2, −1/2) for − π < θ < 0.

(A7)
Since the global shift of topological numbers does not alter
the argument of the bulk-edge correspondence, we confirm the
consistent result with Eq. (30) in Sec. IV by shifting numbers
in the right side of Eq. (A7) by 1/2.

2. Split-step Hadamard walk

In the case of the split-step Hadamard walk, we have the
following two chiral-symmetric time-evolution operators:

UB = e−i2φFB�F−1
B �, (A8)

U ′
B = e−i2φ�F−1

B �FB, (A9)

where

FB = e−i[θ1(x)/2]σ2S−e−iχσ3e−i[θ2(x)/2]σ2 ,

�F−1
B � = e−i[θ2(x)/2]σ2e−iχσ3S+e−i[θ1(x)/2]σ2 ,

with χ = −φ = π/2. Again we set φ = 0 of UB and U ′
B and

shift the quasienergy by π at the end of the calculation. We
derive the time evolution operators in the momentum-space
representation as

UB(k) = [cos(k + 2χ )cθ2cθ1 − sθ2sθ1 ]σ0

− i[cos(k + 2χ )cθ2sθ1 + sθ2cθ1 ]σ2

− i sin(k + 2χ )cθ2σ3 (A10)

and

U ′
B(k) = [cos(k + 2χ )cθ2cθ1 − sθ2sθ1 ]σ0

− i[cos(k + 2χ )cθ1sθ2 + sθ1cθ2 ]σ2

− i sin(k + 2χ )cθ1σ3.

Comparing the above two equations, we notice that UB(k) and
U ′

B(k) are identical only by switching θ1 and θ2. This means
that results for UB(k) are immediately applied to those for
U ′

B(k) by switching θ1 and θ2. Thereby, we present calculations
only for UB(k) hereafter.

Similarly to the single-step Hadamard walk case, we can
set χ = 0 in Eq. (A10) and apply the unitary transformation;
we have

ŨB(k) = ei(π/4)σ2UB(k)e−i(π/4)σ2

= [cos(k)cθ2cθ1 − sθ2sθ1 ]σ0 + i sin(k)cθ2σ1

− i[cos(k)cθ2sθ1 + sθ2cθ1 ]σ2.

The eigenvalue of ŨB(k) is

λB,± = e±iωB ,

sin(ωB) =
√

1 − [cos(k)cθ2cθ1 − sθ2sθ1 ]2 � 0,

and the corresponding eigenvector is

|ψB,±〉 = 1√
2

(∓ieiϕB (k)

1

)
,

eiϕB (k) = −[cos(k)cθ2sθ1 + sθ2cθ1 ] + i sin(k)cθ2

sin(ωB)
. (A11)

Substituting Eq. (A11) into Eq. (A5), the winding number
ν of UB is summarized as follows: when

sin2(θ1) − sin2(θ2) > 0, (A12)

ν =
{−1 (0 < θ1 < π ),

1 (−π < θ1 < 0), (A13)

otherwise

ν = 0. (A14)

As we mentioned, the winding number ν ′ of U ′
B(k) is given by

switching θ1 and θ2 in the above results for ν.
Finally, we obtain the consistent phase diagram with that

of Fig. 2 in Sec. IV, by substituting ν and ν ′ of UB and U ′
B ,

respectively, into Eq. (A6), taking account of the quasienergy
shift by π , and 1/2 shift of the topological numbers.
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[28] B. Tarasinski, J. K. Asbóth, and J. P. Dahlhaus, Phys. Rev. A 89,

042327 (2014).
[29] J. M. Edge and J. K. Asboth, Phys. Rev. B 91, 104202 (2015).
[30] J. K. Asboth and J. M. Edge, Phys. Rev. A 91, 022324 (2015).
[31] C. M. Chandrashekar, H. Obuse, and T. Busch,

arXiv:1502.00436.
[32] T. Kitagawa, M. A. Broome, A. Fedrizzi, M. S. Rudner, E. Berg,

I. Kassal, A. Aspuru-Guzik, E. Demler, and A. G. White, Nat.
Commun. 3, 882 (2012).
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