

Title	The active miniature inverted-repeat transposable element mPing posttranscriptionally produces new transcriptional variants in the rice genome
Author(s)	Kum, Rise; Tsukiyama, Takuji; Inagaki, Haruka; Saito, Hiroki; Teraishi, Masayoshi; Okumoto, Yutaka; Tanisaka, Takatoshi
Citation	Molecular Breeding (2015), 35(8)
Issue Date	2015-07-18
URL	http://hdl.handle.net/2433/201985
Right	The final publication is available at Springer via http://dx.doi.org/10.1007/s11032-015-0353-y.; The full-text file will be made open to the public on 18 July 2016 in accordance with publisher's 'Terms and Conditions for Self- Archiving'.; This is not the published version. Please cite only the published version. この論文は出版社版でありません。 引用の際には出版社版をご確認ご利用ください。
Туре	Journal Article
Textversion	author

1	The active miniature inverted-repeat transposable element <i>mPing</i> post-transcriptionally
2	produces new transcriptional variants in the rice genome
3	
4	Rise Kum ¹ , Takuji Tsukiyama ^{1,*} , Haruka Inagaki ¹ , Hiroki Saito ¹ , Masayoshi Teraishi ¹ , Yutaka
5	Okumoto ¹ , Takatoshi Tanisaka ^{1,2}
6	
7	¹ Division of Agronomy and Horticulture Science, Graduate School of Agriculture, Kyoto University,
8	Kyoto 606-8502, Japan
9	² Department of Agriculture for Regional Reclamation, Kibi International University, Minami-Awaji
10	656-0484, Japan
11	
12	*Corresponding author.
13	Takuji Tsukiyama,
14	Division of Agronomy and Horticulture Science, Graduate School of Agriculture, Kyoto University,
15	Kitashirakawa, Sakyoku, Kyoto 606-8502, Japan
16	E-mail: takuji@kais.kyoto-u.ac.jp, Tel: +81-75-753-6046, Fax +81-75-753-6047
17	
18	
19	

20 Abstract

21	Post-transcriptional RNA processing inclusive of alternative splicing and alternative polyadenylation,
22	as well as transcriptional regulation, plays important regulatory roles in eukaryotic gene expression.
23	In eukaryotic genomes, transposable elements (TEs) can alter gene expression at both transcriptional
24	and post-transcriptional levels. <i>Miniature Ping (mPing)</i> is an active miniature inverted-repeat TE
25	discovered in the rice genome, and its insertion renders adjacent genes stress-inducible. In this study,
26	we examined the effect of <i>mPing</i> insertion into coding sequences on RNA processing. The 3' RACE
27	(rapid amplification of cDNA ends) analysis of mutant alleles, each harboring an <i>mPing</i> insertion,
28	revealed that <i>mPing</i> induced various alternative splicing events. Furthermore, it was found that
29	mPing induced alternative polyadenylation within its sequence. In the mutant allele, the body region
30	of <i>mPing</i> was heavily methylated, whereas the <i>mPing</i> -flanking regions were moderately methylated.
31	These results indicate that <i>mPing</i> alters transcript structures post-transcriptionally via induction of
32	alternative splicing that most likely depends on DNA methylation. Based on these results, we discuss
33	the availability of <i>mPing</i> as an insertional mutagen in rice.
34	
35	Keywords: Rice; Transposable element; <i>mPing</i> ; Alternative splicing; Alternative polyadenylation;
36	Post-transcriptional regulation

38 Introduction

39	In eukaryotic genomes, the expression of genes is controlled by transcriptional and
40	post-transcriptional regulatory mechanisms. Alternative splicing is one of the post-transcriptional
41	regulatory mechanism widely adopted in multicellular organisms (Nilsen and Graveley 2010;
42	Kornblihtt et al. 2013). Genome-wide analyses show that a large fraction of the protein-coding genes
43	of multicellular organisms are alternatively spliced, whereas no such alternative splicing has been
44	detected in unicellular organisms (Ast 2004). In human, approximately 95% of genes are
45	alternatively spliced (Pan et al. 2008). Also in plants, more than 60% of genes containing introns
46	undergo alternative splicing (Marquez et al. 2012; Syed et al. 2012). Other than alternative splicing,
47	alternative polyadenylation is important for regulating gene expression in both animals and plants
48	(Mayr and Bartel 2009; Mangone et al. 2010; Xing and Li 2011). In Arabidopsis and rice, 70% and
49	50% of genes have at least one polyadenylation site with microheterogeneity, respectively (Shen et
50	al. 2008; Wu et al. 2011).
51	Transposable elements (TEs) are DNA fragments that can move from the original position
52	to any position in the genome. TEs had been thought to be selfish elements for a long time since
53	McClintock (1950) first discovered them through analyzing unstable phenotypes of maize kernels.
54	The progress of genome projects in various organisms, however, revealed that most eukaryotic
55	genomes consist of large numbers of different types of TEs; 35% and over 85% of rice (Oryza

56	sativa) and maize genomes consist of TEs, respectively (Turcotte et al. 2001; Schnable et al. 2009).
57	Recently, TEs have been recognized to be a major player in genomic evolution by causing genome
58	rearrangements and by altering the structure and regulation of individual genes (Feschotte and
59	Pritham 2007). Furthermore, it has been proposed that TEs contribute to the evolution of regulatory
60	network by altering gene expression at both transcriptional and post-transcriptional levels (Feschotte
61	2008).
62	Miniature inverted-repeat transposable elements (MITEs) are non-autonomous TEs widely
63	deployed in both prokaryotic and eukaryotic genomes. In the sequenced rice genome (cultivar
64	Nipponbare), MITEs are present in >70,000 copies, and many of them are found in the 5'
65	untranslated regions (UTRs), the 3' UTRs, and in the proximity of genes (Oki et al. 2008). Since the
66	5' and 3' UTRs are known to play important roles in gene expression (Chan and Yu 1998; Cazzola
67	and Skoda 2000; Mazumder et al. 2005; Misquitta et al. 2006; Lytle JR et al. 2007;
68	Aguilar-Hernández and Guzmán 2013), MITEs located in the 5' and 3' UTRs are considered to
69	influence the regulation of gene expressions. Furthermore, for over 300 protein-coding genes in rice,
70	coding sequences, polyadenylation sites, transcription start sites, and splicing sites overlap with
71	MITEs (Oki et al. 2008). These indicate that MITEs have greatly contributed to gene expression not
72	only at the transcriptional level but also at the post-transcriptional level in the evolution of the rice
73	genome.

74	Miniature <i>Ping</i> (<i>mPing</i>) is the only active MITE identified in the rice genome (Jiang et al.
75	2003; Kikuchi et al. 2003; Nakazaki et al. 2003). mPing is a 430-bp element including 15-bp
76	terminal inverted repeats (TIRs). Although <i>mPing</i> is inactive in most rice cultivars, the transposition
77	of <i>mPing</i> is activated by various stress treatments, such as cell culture (Jiang et al. 2003), anther
78	culture (Kikuchi et al. 2003), gamma irradiation (Nakazaki et al. 2003), hydrostatic pressure (Lin et
79	al. 2006), and introgression of closely related genome (Shan et al. 2005). Interestingly, in several
80	japonica landraces including a strain EG4 (cultivar Gimbozu), mPing is still actively transposing
81	under natural growth conditions (Naito et al. 2006). Recently, it was found that, in EG4, mPing is
82	mobilized in the embryo with the aid of the developmental stage-specific up-regulation of its
83	autonomous element, Ping (Teramoto et al. 2014). mPing preferentially transposes into within 0.5-kb
84	upstream of gene, and renders adjacent genes stress inducible (Naito et al. 2009; Yasuda et al. 2013),
85	which indicates that, like other MITEs, <i>mPing</i> also contribute to the generation of new regulatory
86	networks at the transcriptional level. Little is known, however, about the effects of <i>mPing</i> on the
87	post-transcriptional regulation of genes. In this study, we demonstrate that <i>mPing</i> is creating new
88	transcript isoforms by inducing various alternative splicing events. Furthermore, we discuss the
89	possible mechanisms of alternative splicing induced by the <i>mPing</i> insertion and the availability of
90	mPing as an insertional mutagen in rice.

92 Materials and Methods

93 Plant materials

- 94 EG4 (cultivar Gimbozu) is a Japanese landrace temperate *japonica* cultivar exhibiting high *mPing*
- 95 activity in nature (Naito et al. 2006). IM294 is a slender glume mutant line, which was induced by
- 96 gamma irradiation of seeds of EG4, harboring a mutant allele *rurm1* at the *Rice ubiquitin-modifier 1*
- 97 (*Rurm1*) locus destructed by an *mPing* insertion in exon 4 (Nakazaki et al. 2003; Tsukiyama et al.
- 98 2013). HS110 and HS169, like IM294, were gamma-ray induced mutant lines from EG4, exhibiting
- 99 early- and late-heading (flowering), respectively. HS110 harbors a mutant allele hd1 at the Heading
- 100 *date 1 (Hd1)* locus (Yano et al. 2000; Kikuchi et al. 2003), whereas HS169 harbors a mutant allele
- 101 *ehd1* (*=ef1-h*) completely disrupted by an *mPing* insertion at the *Early heading 1* (*Ehd1*) locus
- 102 (Nishida et al. 2002; Saito et al. 2009). All the plant materials were grown at an experimental paddy
- 103 field at Kyoto University, Kyoto, Japan.

104

105 **DNA and RNA extraction**

- 106 A leaf blade was sampled from each of five plants per strain/line 30 days after sowing (DAS), and
- 107 genomic DNA was extracted by cetryltrimethylammonium bromide (CTAB) method (Murray and
- 108 Thompson 1980). For RNA extraction, a leaf blade was sampled from each of five plants per
- 109 strain/line at 45 DAS (for *Hd1* and *Ehd1*) or 110 DAS (for *Rurm1*). Total RNA was extracted by

110 Quick Prep Total RNA extraction Kit (GE Healthcare, Little Chalfont, UK). DNA and RNA were

111 quantified with a spectrophotometer (Biophotometer; Eppendorf, Hamburg, Germany), and stored at

112 –20°C until use.

113

- 114 **3'-RACE (Rapid Amplification of cDNA Ends) analysis**
- 115 cDNA was synthesized in 20 µl reaction mixture containing 1 µg of total RNA, AMV Reverse
- 116 Transcriptase XL (Takara Bio, Shiga, Japan), and oligo dT-3 site adaptor primer (Takara Bio).
- 117 Synthesis conditions were as follows: 10 min at 30°C, 30 min at 50°C, 5 min at 95°C, and 5 min at
- 118 5°C. The 1st 3'-RACE reactions and the 2nd 3'-RACE reactions were performed with primers
- 119 specific for each target gene and 3' adaptor primer. The primer sequences and annealing
- 120 temperatures for each primer are listed in ESM Table 1. Amplified fragments were subcloned into
- 121 pGEM-T easy vector (Promega, Madison, WI, USA), and were sequenced using an ABI 3730x1
- 122 DNA analyzer (Applied Biosystems, Foster City, CA, USA). Transcript isoforms were designated
- 123 according to the nomenclature of McCouch (2008).
- 124

125 Sequence analyses

- 126 Sequences of the 3'-RACE products were analyzed using the ORF Finder program of the National
- 127 Center for Biotechnology Information (NCBI) (http://www.ncbi.nlm.nih.gov/gorf/gorf.html). The

128 Plant *cis*-acting regulatory DNA elements (PLACE) database search

- 129 (http://www.dna.affrc.go.jp/PLACE/) (Higo et al. 1999) was performed to identify polyadenylation
- 130 signals in the *mPing* sequences. In rice, twenty hexamers (AATAAA, ATATAT, AAATAA, AATAAT,
- 131 ATAAAA, TATATA, ATAAAT, TGAAAT, AATATA, ATGAAT, TAATAA, AATGAA, AATTTT,
- 132 ATAATA, AAATTT, TTAATT, TTTGTT, AAAAAT, GAATAA, and AAATAT) have been reported
- 133 as major polyadenylation signals (Shen et al. 2008). The twenty hexamers were also searched in the
- 134 *mPing* sequences using the ClustalW program (http://clustalw.ddbj.nig.ac.jp/) (Thompson et al.
- 135 1994) of the DNA Data Bank of Japan (DDBJ). Functional domains and/or motifs in the *mPing*
- 136 sequences were searched using the Pfam database (http://pfam.xfam.org/) (Finn et al. 2014).
- 137

138 **Bisulfite sequencing**

- 139 Genomic DNA was treated with sodium bisulfite using an EZ DNA Methylation Gold Kit (Zymo
- 140 Research, Orange, CA, USA). Primers for bisulfite PCR (*hd1*-BS-F1:
- 141 5'-GAYAGTAAAAAAGATATTGGAAGTT-3' and *hd1*-BS-R1:
- 142 5'-CACCCTRRCCTCCCTRTCCAT-3') were designed with a Kismeth Primer Design program
- 143 (http://katahdin.mssm.edu/kismeth/primer_design.pl) (Gruntman et al. 2008). Bisulfite PCR was
- 144 performed in 50 μl reaction mixture containing 1 × EpiTaq PCR Buffer, 2.5 mM MgCl₂, 0.3 mM
- 145 dNTP, 0.4 µM of each primer, 10 ng of bisulfite-treated DNA, and 1.25 U of TaKaRa EpiTaq HS

- 146 (Takara Bio). PCR conditions were as follows: 40 cycles of a denaturation step for 10 s at 95°C, an
- 147 annealing step for 30 s at 50°C, and an extension step for 1 min at 72°C. PCR products were purified
- 148 with Diffinity 2 (Sigma, USA) and cloned into pGEM-T vector (Promega). More than 10 clones
- 149 were sequenced using an ABI 3730x1 DNA analyzer (Applied Biosystems). Methylation degree was
- analyzed using a Kismeth Bisulfite Analysis program
- 151 (http://katahdin.mssm.edu/kismeth/revpage.pl).
- 152
- 153 **Results**
- 154 Structure of the *hd1* transcripts in a mutant line HS110
- 155 *Heading date 1 (Hd1)* gene plays important roles in the causal genetic pathway of flowering
- 156 (heading) in rice (Yano et al. 2000), consisting of two exons and a single intron. The early heading
- 157 time mutant line HS110, which was induced with gamma ray irradiation of seeds of EG4, harbors a
- 158 mutant allele *hd1* disrupted by an *mPing* insertion (Kikuchi et al. 2003) (Fig. 1). Since except for this
- 159 *mPing* insertion, *hd1* has the same sequence as *Hd1*, and the insertion position of *mPing* is intron 1,
- 160 the function of *Hd1* should be retained by correct RNA splicing in HS110. Nevertheless, HS110
- 161 flowers 14 days earlier than the original strain EG4 (Tanisaka et al. 1992, Yano et al. 2000). This
- 162 indicates that the *mPing* insertion may affect the function of gene even if its insertion position is not
- 163 exon. Yano et al. (2000) showed that HS110 yielded two transcripts whereas EG4 yielded a single

164	transcript. We performed 3'-RACE to determine the structure of Hd1/hd1 transcripts in EG4 and
165	HS110; consequently, we confirmed that the structure of $Hd1$ transcript in EG4 was the same as that
166	in the sequenced cultivar Nipponbare (ESM Fig. 1). In HS110, we obtained three different
167	transcripts, and named them hd1-s1, hd1-s2, and hd1-s3, respectively (Fig. 1). hd1-s1 was the
168	normal transcript that was produced by correct RNA splicing. hdl-s2 and hdl-s3 were alternatively
169	spliced isoforms of <i>hd1</i> gene: the former contained a 26-bp sequence (nucleotides 1557-1582) in the
170	3'-terminal part of intron and a 261-bp sequence (nucleotides 1583-1843) in the 5'-terminal part of
171	mPing, and the latter consisted of exon 1, a 26-bp sequence (nucleotides 1557-1582) in the 3'
172	terminal part of intron 1 and a 404-bp sequence (nucleotides 1538-1941) in the 5' terminal part of
173	<i>mPing</i> . It is therefore considered that the <i>mPing</i> inserted within an intron can be incorporated as an
174	alternative exon, and can induce an alternative 5' splice site and an alternative polyadenylation site
175	within its sequence. Furthermore, it is indicated that <i>mPing</i> most likely influences the usage of 3'
176	splice sites.
177	
178	Structure of the transcripts of genes harboring the <i>mPing</i> insertion within an exon
179	In the <i>hd1</i> allele, we found that the <i>mPing</i> inserted within an intron induced alternative splicing and
180	alternative polyadenylation. We examined whether the <i>mPing</i> inserted within an exon also alters the
181	structure of transcripts. In the previous study, we documented that a slender glume mutant line

182	IM294 has an <i>mPing</i> insertion in exon 4 of <i>Rice ubiquitin-related modifier-1 (Rurm1</i>) gene, which is
183	responsible for the mutation of slender glume (Nakazaki et al. 2003) (Fig. 2). Using the same way as
184	in the analysis of <i>Hd1/hd1</i> transcripts, we found that EG4 produced only a normal <i>Rurm1</i> transcript
185	produced by correct RNA splicing, although the truncation of 3'UTR was observed in some
186	transcripts (ESM Fig. 2). On the other hand, IM294 harboring a mutant allele <i>rurm1</i> yielded four
187	different transcripts (rurm1-s1~s4) (Fig. 2). In rurm1-s1, three introns were correctly spliced out,
188	and a whole <i>mPing</i> sequence was included in exon 4. In <i>rurm1-s2</i> and <i>rurm1-s3</i> , alternative
189	polyadenylation occurred at different positions in the <i>mPing</i> sequence. <i>rurm1-s4</i> consisted of exon 1,
190	exon 2, and a 50-bp sequence (nucleotides 636-685) in the 5'-terminal part of intron 3 that were
191	retained by reading through the 5' splice site and by generating the alternative polyadenylation.
192	A late heading time mutant line HS169 has a mutant allele <i>ehd1-h</i> completely disrupted by
193	an <i>mPing</i> insertion into exon 2 (Nishida et al. 2002; Saito et al. 2009) (Fig. 3). The <i>Ehd1</i> gene in the
194	wild type consists of five exons and four introns. In EG4, we identified two alternatively spliced
195	isoforms (<i>Ehd1-s2</i> and <i>Ehd1-s3</i>) along with the normal transcript (<i>Ehd1-s1</i>) (ESM Fig. 3). In
196	Ehd1-s2 and Ehd1-s3, intron 2 was retained by alternative 3' splicing, and alternative
197	polyadenylation occurred at two different positions in intron 2. On the other hand, we obtained eight
198	alternatively spliced transcripts (ehd1-s1~s8) from HS169 (Fig. 3). In ehd1-s1, a 160-bp sequence
199	(nucleotides 1370-1529) in the 5'-terminal part of exon 2 was eliminated by being provided with

200	alternative 3' splice site in the <i>mPing</i> sequence. In <i>ehd1-s2</i> , exon 2 having the <i>mPing</i> sequence was
201	excluded from mature mRNA. In <i>ehd1-s3</i> , a 955-bp sequence (nucleotides 110-1064) in the
202	5'-terminal part of intron 1 was retained by reading through the 5' splice site and by generating
203	alternative polyadenylation. Furthermore, in <i>ehd1-s4~s8</i> , intron 1 was partially eliminated
204	(nucleotides 110-693) by alternative 3' splicing, and alternative polyadenylation occurred at different
205	positions in alternatively retained intron 1. In addition to the results of 3' RACE for the <i>rurm1</i> allele,
206	these results indicate that the $mPing$ inserted within an exon induces not only alternative 3' splice
207	and alternative polyadenylation sites within its sequence but also exon skipping. Furthermore, it is
208	considered that <i>mPing</i> most likely influences the splicing pattern of intron adjacent to exon.
209	
209 210	Premature termination codons and polyadenylation signals in the <i>mPing</i> sequence
209 210 211	Premature termination codons and polyadenylation signals in the <i>mPing</i> sequence Sequence analysis revealed that <i>mPing</i> has 23 and 16 potential premature termination codons (PTCs)
209210211212	Premature termination codons and polyadenylation signals in the <i>mPing</i> sequence Sequence analysis revealed that <i>mPing</i> has 23 and 16 potential premature termination codons (PTCs) (TAA, TAG, and TGA) on the plus and minus strands, respectively (Fig. 4 and ESM Fig. 4). The
 209 210 211 212 213 	Premature termination codons and polyadenylation signals in the <i>mPing</i> sequence Sequence analysis revealed that <i>mPing</i> has 23 and 16 potential premature termination codons (PTCs) (TAA, TAG, and TGA) on the plus and minus strands, respectively (Fig. 4 and ESM Fig. 4). The <i>Rurm1</i> gene encodes a 99 amino acid protein homologous to the yeast Urm1 (Ubiquitin-related
 209 210 211 212 213 214 	Premature termination codons and polyadenylation signals in the <i>mPing</i> sequence Sequence analysis revealed that <i>mPing</i> has 23 and 16 potential premature termination codons (PTCs) (TAA, TAG, and TGA) on the plus and minus strands, respectively (Fig. 4 and ESM Fig. 4). The <i>Rurm1</i> gene encodes a 99 amino acid protein homologous to the yeast Urm1 (Ubiquitin-related modifier) protein (Furukawa et al. 2000). The C-terminal glycine-glycine residues are essential for
 209 210 211 212 213 214 215 	Premature termination codons and polyadenylation signals in the <i>mPing</i> sequence Sequence analysis revealed that <i>mPing</i> has 23 and 16 potential premature termination codons (PTCs) (TAA, TAG, and TGA) on the plus and minus strands, respectively (Fig. 4 and ESM Fig. 4). The <i>Rurm1</i> gene encodes a 99 amino acid protein homologous to the yeast Urm1 (Ubiquitin-related modifier) protein (Furukawa et al. 2000). The C-terminal glycine-glycine residues are essential for the function of the Urm1 protein (Furukawa et al. 2000). Sequence analysis showed that the RURM1
 209 210 211 212 213 214 215 216 	Premature termination codons and polyadenylation signals in the mPing sequence Sequence analysis revealed that mPing has 23 and 16 potential premature termination codons (PTCs) (TAA, TAG, and TGA) on the plus and minus strands, respectively (Fig. 4 and ESM Fig. 4). The Rurm1 gene encodes a 99 amino acid protein homologous to the yeast Urm1 (Ubiquitin-related modifier) protein (Furukawa et al. 2000). The C-terminal glycine-glycine residues are essential for the function of the Urm1 protein (Furukawa et al. 2000). Sequence analysis showed that the RURM1 proteins which were translated from rurm1-s1, rurm1-s2, and rurm1-s3 lacked the C-terminal

218	had a PTC within the <i>mPing</i> sequence (ESM Fig. 6). To investigate whether the retained <i>mPing</i>
219	sequence could provide the genes with a new functional activity, we searched functional domains
220	and/or motifs on the <i>mPing</i> sequence by Pfam analysis. <i>mPing</i> encoded no domain and motif
221	showing similarity to any known functional protein, indicating that proteins that were translated
222	from mRNAs having the <i>mPing</i> sequence would not acquire any known functional activity. On the
223	other hand, <i>hd1-s2</i> and <i>hd1-s3</i> were found to harbor a PTC within the alternatively retained intron
224	sequence. The Hd1 protein has a CCT domain, which is often found near the C-terminus of proteins
225	involved in photo-response signaling (Strayer et al. 2000). It was therefore considered that the Hd1
226	proteins translated from <i>hd1-s2</i> and <i>hd1-s3</i> might lose the function due to lacking the CCT domain
227	(ESM Fig. 7).
227 228	(ESM Fig. 7). Alternative polyadenylation was induced in the <i>mPing</i> sequences of <i>hd1</i> and <i>rurm1</i> alleles.
227 228 229	(ESM Fig. 7).Alternative polyadenylation was induced in the <i>mPing</i> sequences of <i>hd1</i> and <i>rurm1</i> alleles.In plants, polyadenylation is mainly regulated by polyadenylation signals, such as AATAAA and
227 228 229 230	 (ESM Fig. 7). Alternative polyadenylation was induced in the <i>mPing</i> sequences of <i>hd1</i> and <i>rurm1</i> alleles. In plants, polyadenylation is mainly regulated by polyadenylation signals, such as AATAAA and ATTATT, which are usually located 10- to 35-bp upstream of the cleavage site of 3' UTR (Wu et al.
 227 228 229 230 231 	 (ESM Fig. 7). Alternative polyadenylation was induced in the <i>mPing</i> sequences of <i>hd1</i> and <i>rurm1</i> alleles. In plants, polyadenylation is mainly regulated by polyadenylation signals, such as AATAAA and ATTATT, which are usually located 10- to 35-bp upstream of the cleavage site of 3' UTR (Wu et al. 1995; Shen et al. 2008). Using the PLACE database, we detected two (AATAAA and AATTAAA)
 227 228 229 230 231 232 	 (ESM Fig. 7). Alternative polyadenylation was induced in the <i>mPing</i> sequences of <i>hd1</i> and <i>rurm1</i> alleles. In plants, polyadenylation is mainly regulated by polyadenylation signals, such as AATAAA and ATTATT, which are usually located 10- to 35-bp upstream of the cleavage site of 3' UTR (Wu et al. 1995; Shen et al. 2008). Using the PLACE database, we detected two (AATAAA and AATTAAA) and one (AATAAT) polyadenylation signals on the plus and minus strands of <i>mPing</i>, respectively
 227 228 229 230 231 232 233 	 (ESM Fig. 7). Alternative polyadenylation was induced in the <i>mPing</i> sequences of <i>hd1</i> and <i>rurm1</i> alleles. In plants, polyadenylation is mainly regulated by polyadenylation signals, such as AATAAA and ATTATT, which are usually located 10- to 35-bp upstream of the cleavage site of 3' UTR (Wu et al. 1995; Shen et al. 2008). Using the PLACE database, we detected two (AATAAA and AATTAAA) and one (AATAAT) polyadenylation signals on the plus and minus strands of <i>mPing</i>, respectively (Fig. 4 and ESM Fig. 4). The locations of these signals, however, were far from the cleavage sites
 227 228 229 230 231 232 233 234 	 (ESM Fig. 7). Alternative polyadenylation was induced in the <i>mPing</i> sequences of <i>hd1</i> and <i>rurm1</i> alleles. In plants, polyadenylation is mainly regulated by polyadenylation signals, such as AATAAA and ATTATT, which are usually located 10- to 35-bp upstream of the cleavage site of 3' UTR (Wu et al. 1995; Shen et al. 2008). Using the PLACE database, we detected two (AATAAA and AATTAAA) and one (AATAAT) polyadenylation signals on the plus and minus strands of <i>mPing</i>, respectively (Fig. 4 and ESM Fig. 4). The locations of these signals, however, were far from the cleavage sites observed in <i>hd1-s3</i>, <i>rurm1-s2</i>, and <i>rurm1-s3</i>, respectively. In addition to AATAAA, 19 hexemers are

236	hexamers in the 10- to 35-bp upstream regions of cleavage site in <i>hd1-s3</i> , <i>rurm1-s2</i> , and <i>rurm1-s3</i> .
237	We detected one putative polyadenylation signal (ATAATA) in the 23-bp and 25-bp upstream
238	regions of cleavage site in hd1-s3 and rurm1-s2, respectively (Fig. 4). However, we detected no such
239	hexamer in <i>rurm1-s3</i> . This indicates the existence of another polyadenylation signal in the <i>mPing</i>
240	sequence.
241	
242	DNA methylation of <i>mPing</i> and its flanking regions in the <i>hd1</i> allele
243	A recent study showed that DNA hypermethylation regulated the inclusion of alternative spliced
244	exon (Maunakea et al. 2013). We conceived that <i>mPing</i> and/or its flanking regions might be
245	hypermethylated in the mutant allele. To confirm this hypothesis, we investigated DNA methylation
246	status of intron of the Hd1/hd1 gene using bisulfite sequencing. All types of cytosine residues (CG,
247	CHG, and CHH) were hardly methylated in the intron of the <i>Hd1</i> gene (Fig. 5), whereas in the <i>hd1</i>
248	gene, the body region of <i>mPing</i> was heavily methylated at CG (98%) sites and moderately
249	methylated at CHG (48%) and CHH (24%) sites. Moreover, the methylation level of the 5'
250	<i>mPing</i> -flanking region highly increased in the <i>hd1</i> gene (Fig. 5). This region coincided with a part of
251	the retained intron in $hd1$ -s2 and $hd1$ -s3. This indicates that the alternative exon induced by mPing
252	insertion might be regulated by DNA methylation targeting to <i>mPing</i> and/or its flanking regions.
253	

254 Discussion

255 Nowadays, TEs are considered to contribute to the evolution of regulatory networks by altering gene 256 expression at both the transcriptional and post-transcriptional levels (Feschotte 2008). In maize, TEs 257 such as Ds1 and Mu1 are known to induce alternative splicing or alternative polyadenylation 258 (Wessler et al. 1987; Ortiz and Strommer 1990; Wessler 1991). In Solanacea, the insertion of MiS 259 element provides a functionally indispensable alternative exon in the tobacco mosaic virus N 260 resistance gene (Kuang et al. 2009). These are experimental evidences that TEs have the capacity to 261 alter regulatory networks at post-transcriptional level. Our previous studies showed that the rice 262 active MITE mPing renders adjacent genes stress-inducible when it is inserted within 0.5-kb 263 upstream of the transcription start site (Naito et al., 2009; Yasuda et al., 2013). In this study, we 264 found that *mPing* induces alternative splicing and alternative polyadenylation when it is inserted 265 within the coding sequence of genes. These findings demonstrate that mPing can alter gene 266 expression not only at the transcriptional level but also at the post-transcriptional level. 267 HS66, like HS110, is an early heading mutant line, which was induced by gamma 268 irradiation of seeds of EG4, and harbors a mutant allele hdl at the Hdl locus destructed by a 43-bp 269 deletion in the first exon (Yano et al. 2000). Although HS66 produced the same amount of hd1 270 transcript as EG4, the transcript had a PTC due to the 43-bp deletion (Yano et al. 2000). On the other 271 hand, in HS110, small amount of functional transcript (hd1-s1 in this study) was produced along

272	with various aberrant transcripts (probably, including <i>hd1-s2</i> and <i>hd1-s3</i> in this study) (Yano et al.
273	2000). Days to heading of HS110 was 4 days later than that of HS66 under natural field conditions
274	(Yano et al. 2000). Yano et al. (2000) concluded that this phenotypic difference might reflect the
275	presence of normal-size transcripts (hd1-s1 in this study) in HS110. These findings support that the
276	production of alternatively spliced transcripts due to the <i>mPing</i> insertion causes the disruption of the
277	functional allele.
278	Alternative polyadenylation is recognized as a widespread mechanism of controlling gene
279	expression, since the 3' UTR length influences the fate of mRNAs in several ways (Di Giammartino
280	et al. 2011). In human, 6% of TEs (~1,500 TEs) give rise to polyadenylation sites (Chen et al. 2009).
281	In rice, 280 genes used polyadenylation signals within MITE-derived sequences (Oki et al. 2008).
282	Furthermore, in Arabidopsis, COPIA-R7 inserted into the disease resistance gene RPP7 affects the
283	choice between two alternative polyadenylation sites in the RPP7 pre-mRNA, and thereby
284	influences the critical balance between RPP7-coding and non-RPP7-coding isoforms (Tsuchiya and
285	Eulgem 2013). These findings indicate that TEs can drive the evolution of post-transcriptional
286	regulation networks by providing genes with polyadenylation sites. In this study, it was shown that
287	mPing could induce alternative polyadenylation sites within its own sequence. We investigated only
288	the mPing inserted in the coding sequences of genes. In actuality, however, the EG4 genome
289	includes 26 genes harboring the <i>mPing</i> insertion in the 3' UTR (Naito et al. 2009). The expression of

290	these genes is considered to be influenced by alternative polyadenylation signals provided by the
291	mPing sequence. In this way, alternative polyadenylation induced by mPing also might play an
292	important role in diversifying gene expression in rice.
293	In addition to polyadenylation signals, many potential PTCs are distributed on both plus and
294	minus strands of <i>mPing</i> . Thus, <i>mPing</i> appears to easily produce transcripts encoding truncated
295	proteins by providing PTC, independent of insertion direction, when the <i>mPing</i> sequences will be
296	incorporated into mature mRNAs. In this study, rurm1-s2 and rurm1-s3 in IM294, and ehd1-s1 in
297	HS169 were expected to have PTC in the retained <i>mPing</i> sequences. Transcripts having PTC would
298	be selectively degraded by the nonsense-mediated decay (NMD) pathway (Chang et al. 2007).
299	However, the NMD pathway targets only transcripts having PTC at more than 55-bp upstream from
300	the last exon/exon junction (Inacio et al. 2004; Hori et al. 2007). If the alternatively spliced
301	transcripts have a PTC on the last exon, they could escape from the NMD pathway. In <i>rurm1-s2</i> ,
302	rurm1-s3, and ehd1-s1, mPing induced not only PTC but also alternative polyadenylation sites
303	within its sequence, and consequently constituted the last exon having a PTC in mature transcript.
304	Following the rules mentioned above, these transcripts would not be subject to degradation by the
305	NMD pathway, and would produce truncated proteins. It was therefore considered that the
306	exonization of <i>mPing</i> sequence could contribute to the proteome diversity, even if it leads to a
307	truncated protein with loss-of-function or dominant-negative activities.

308	Recently, it has been reported that DNA methylation is involved in regulation of alternative
309	splicing. In mammals, intragenic DNA methylation operates in exon definition to modulate
310	alternative splicing and can enhance exon recognition via recruitment of a methyl-CpG binding
311	protein MeCP2 (Maunakea et al. 2013). On the other hand, DNA methylation has been studied as the
312	epigenetic defense mechanism of the host genome against active TEs since a long time ago. Like
313	other TEs, <i>mPing</i> is known to be methylated in many cultivars (Shen et al. 2006; Ngezahayo et al.
314	2009; Wang et al. 2009). In this study, we found that, in the <i>hd1</i> gene, CG sites of <i>mPing</i> were
315	heavily methylated, whereas CHG and CHH sites of 5' mPing-flanking region were moderately
316	methylated compared with these of corresponding region in the wild type Hd1 gene. In the rice
317	genome, CHG and CHH methylation in gene body were retained at low level (approximately 6% and
318	1%, respectively) (Zemach et al. 2010). On the other hand, approximately 35% of CHG and 4% of
319	CHH sites were methylated in 5' TE-flanking region (Zemach et al. 2010). These indicate that an
320	increase of methylation in intron of the hdl gene was certainly caused by the mPing insertion.
321	Although the relationship between methylation status of CHG and CHH sites and exon recognition is
322	not fully understood, DNA methylation would be responsible for alternative splicing events in the
323	hdl gene.
324	Alternative splicing is regulated by various abiotic stresses. Most of the genes that produce
325	alternatively spliced transcripts in response to abiotic stresses are involved in the translational and

326	post-translational regulations (Mastrangelo et al. 2012). The OsDREB2B gene was found to produce
327	two splice variants in response to drought and heat stresses in rice (Matsukura et al. 2010). In
328	Arabidopsis, the loss-of-functions of STA1 (Lee et al. 2006) and RDM16 (Huang et al. 2013), both of
329	which were pre-mRNA-splicing factors, caused hypersensitivity to cold and salt stresses,
330	respectively. These indicate that alternative splicing is one of important mechanisms for plants to
331	adapt to abiotic stress environments. In the RT-PCR assay for the hdl transcripts, HS110 produced
332	different banding patterns in response to the transition from long-day to short-day conditions (Yano
333	et al. 2000). This indicates that alternative splicing patterns of the hdl gene were altered by
334	environmental condition. Although further experiments are needed, it is probable that <i>mPing</i> can
335	change alternative splicing patterns in response to abiotic stresses.
336	In rice breeding, active TEs Tos17 and As/Ds are employed for gene tagging systems
337	because they disrupt gene functions by their transpositions into coding sequences (Miyao et al. 2003;
337 338	because they disrupt gene functions by their transpositions into coding sequences (Miyao et al. 2003; Kolesnik et al. 2004). <i>mPing</i> can also induce by the transposition into coding sequences (Nakazaki et
337338339	because they disrupt gene functions by their transpositions into coding sequences (Miyao et al. 2003; Kolesnik et al. 2004). <i>mPing</i> can also induce by the transposition into coding sequences (Nakazaki et al. 2003; Kikuchi et al. 2003; Saito et al. 2009). However, unlike <i>Tos17</i> and <i>Ac/Ds</i> , <i>mPing</i>
337338339340	because they disrupt gene functions by their transpositions into coding sequences (Miyao et al. 2003; Kolesnik et al. 2004). <i>mPing</i> can also induce by the transposition into coding sequences (Nakazaki et al. 2003; Kikuchi et al. 2003; Saito et al. 2009). However, unlike <i>Tos17</i> and <i>Ac/Ds</i> , <i>mPing</i> preferentially transposes into within 0.5-kb upstream of gene, and renders adjacent genes stress
337338339340341	because they disrupt gene functions by their transpositions into coding sequences (Miyao et al. 2003; Kolesnik et al. 2004). <i>mPing</i> can also induce by the transposition into coding sequences (Nakazaki et al. 2003; Kikuchi et al. 2003; Saito et al. 2009). However, unlike <i>Tos17</i> and <i>Ac/Ds</i> , <i>mPing</i> preferentially transposes into within 0.5-kb upstream of gene, and renders adjacent genes stress inducible (Naito et al. 2009; Yasuda et al. 2013). Although <i>mPing</i> is quiescent in most cultivars
 337 338 339 340 341 342 	because they disrupt gene functions by their transpositions into coding sequences (Miyao et al. 2003; Kolesnik et al. 2004). <i>mPing</i> can also induce by the transposition into coding sequences (Nakazaki et al. 2003; Kikuchi et al. 2003; Saito et al. 2009). However, unlike <i>Tos17</i> and <i>Ac/Ds</i> , <i>mPing</i> preferentially transposes into within 0.5-kb upstream of gene, and renders adjacent genes stress inducible (Naito et al. 2009; Yasuda et al. 2013). Although <i>mPing</i> is quiescent in most cultivars under natural growth conditions, the transposition of <i>mPing</i> can be transiently induced by various

344	et al. 2006). Furthermore, <i>mPing</i> is actively transposing without any stresses in several <i>japonica</i>
345	landraces under natural growth condition, and its copy number reaches approximately 1000 copies
346	(Naito et al. 2006). We have already established a screening system that detects <i>mPing</i> insertion near
347	or in the target genes (Yasuda et al. 2013). In this study, we demonstrated that <i>mPing</i> induces
348	alternative splicing and alternative polyadenylation, and thereby can influence gene expression at
349	post-transcriptional level. Thus, we conclude that <i>mPing</i> would be a suitable element for
350	mutagenesis in rice since it is able not only to produce loss-of-function alleles but also to modify the
351	expression of a target gene at both the transcriptional and post-transcriptional levels.
352	
353	Acknowledgement
353 354	Acknowledgement This work was supported by grants from the Ministry of Education, Culture, Sports and Technology
353354355	Acknowledgement This work was supported by grants from the Ministry of Education, Culture, Sports and Technology of Japan in the form of Grants-in-Aid for Scientific Research, 17380003 and 25292006.
353354355356	Acknowledgement This work was supported by grants from the Ministry of Education, Culture, Sports and Technology of Japan in the form of Grants-in-Aid for Scientific Research, 17380003 and 25292006.
 353 354 355 356 357 	Acknowledgement This work was supported by grants from the Ministry of Education, Culture, Sports and Technology of Japan in the form of Grants-in-Aid for Scientific Research, 17380003 and 25292006. Reference
 353 354 355 356 357 358 	Acknowledgement This work was supported by grants from the Ministry of Education, Culture, Sports and Technology of Japan in the form of Grants-in-Aid for Scientific Research, 17380003 and 25292006. Reference Aguilar-Hernández V, Guzmán P (2013) Spliceosomal introns in the 5' untranslated region of plant
 353 354 355 356 357 358 359 	Acknowledgement This work was supported by grants from the Ministry of Education, Culture, Sports and Technology of Japan in the form of Grants-in-Aid for Scientific Research, 17380003 and 25292006. Reference Aguilar-Hernández V, Guzmán P (2013) Spliceosomal introns in the 5' untranslated region of plant BTL RING-H2 ubiquitin ligases are evolutionary conserved and required for gene expression.
 353 354 355 356 357 358 359 360 	Acknowledgement This work was supported by grants from the Ministry of Education, Culture, Sports and Technology of Japan in the form of Grants-in-Aid for Scientific Research, 17380003 and 25292006. Reference Aguilar-Hernández V, Guzmán P (2013) Spliceosomal introns in the 5' untranslated region of plant BTL RING-H2 ubiquitin ligases are evolutionary conserved and required for gene expression. BMC Plant Biol 13:179

- 362 Cazzola M, Skoda RC (2000) Translational pathophysiology: a novel molecular mechanism of
- 363 human disease. Blood 95:3280-3288
- 364 Chan MT, Yu SM (1998) The 3' untranslated region of a rice alpha-amylase gene functions as a
- 365 sugar-dependent mRNA stability determinant. Proc Natl Acad Sci USA 95:6543-6547
- 366 Chang Y-F, Imam JS, Wilkinson MF (2007) The nonsense-mediated decay RNA surveillance
- 367 pathway. Annu Rev Biochem 76:51–74
- 368 Chen C, Ara T, Gautheret D (2009) Using Alu elements as polyadenylation sites: A case of
- 369 retroposon exaptation. Mol Biol Evol 26:327-334
- 370 Di Giammartino DC, Nishida K, Manley JL (2011) Mechanisms and consequences of alternative
- 371 polyadenylation. Mol Cell 2011 43:853-866
- 372 Feschotte C (2008) Transposable elements and the evolution of regulatory networks. Nat Rev Genet
- **373** 9:397-405
- 374 Feschotte C, Pritham EJ (2007) DNA transposons and the evolution of eukaryotic genomes. Annu
- 375 Rev Genet 41:331-368
- 376 Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, Eddy SR, Heger A, Hetherington K,
- 377 Holm L, Mistry J, Sonnhammer EL, Tate J, Punta M (2014) Pfam: the protein families database.
- 378 Nucleic Acids Res 42(Database issue):D222-230
- 379 Furukawa K, Mizushima N, Noda T, Ohsumi Y (2000) A protein conjugation system in yeast with

- 380 homology to biosynthetic enzyme reaction of prokaryotes. J Biol Chem 275:7462-7465
- 381 Gruntman E, Qi Y, Slotkin RK, Roeder T, Martienssen RA, Sachidanandam R (2008) Kismeth:
- analyzer of plant methylation states through bisulfite sequencing. BMC Bioinformatics 9:371
- 383 Higo K, Ugawa Y, Iwamoto M, Korenaga T (1999) Plant cis-acting regulatory DNA elements
- 384 (PLACE) database Nucleic Acids Res 27:297-300
- 385 Hori K, Watanabe Y (2007) Context Analysis of Termination Codons in mRNA that are Recognized
- 386 by Plant NMD. Plant Cell Physiol 48:1072–1078
- Huang CF, Miki D, Tang K, Zhou HR, Zheng Z, Chen W, Ma ZY, Yang L, Zhang H, Liu R, He XJ,
- 388 Zhu JK (2013) A Pre-mRNA-splicing factor is required for RNA-directed DNA methylation in
- 389 Arabidopsis. PLoS Genet 9:e1003779
- 390 Inacio A, Silva AL, Pinto J, Ji X, Morgado A, Almeida F, Faustino P, Lavinha J, Liebhaber SA,
- 391 Romao L (2004) Nonsense mutations in close proximity to the initiation codon fail to trigger full
- 392 nonsense-mediated mRNA decay. J. Biol. Chem 279:32170–32180
- Jiang N, Bao Z, Zhang X, Hirochika H, Eddy SR, McCouch SR, Wessler SR (2003) An active DNA
- transposon family in rice. Nature 421:163-167
- 395 Kikuchi K, Terauchi K, Wada M, Hirano HY (2003) The plant MITE *mPing* is mobilized in anther
- 396 culture. Nature 421:167-170
- 397 Kolesnik T, Szeverenyi I, Bachmann D, Kumar CS, Jiang S, Ramamoorthy R, Cai M, Ma ZG,

- 398 Sundaresan V, Ramachandran S (2004) Establishing an efficient *Ac/Ds* tagging system in rice:
- 399 large-scale analysis of *Ds* flanking sequences. Plant J 37:301–314
- 400 Kornblihtt AR, Schor IE, Alló M, Dujardin G, Petrillo E, Muñoz MJ (2013) Alternative splicing: a
- 401 pivotal step between eukaryotic transcription and translation. Nat Rev Mol Cell Biol 14:153-165
- 402 Kuang H, Padmanabhan C, Li F, Kamei A, Bhaskar PB, Ouyang S, Jiang J, Buell CR, Baker B
- 403 (2009) Identification of miniature inverted-repeat transposable elements (MITEs) and biogenesis
- 404 of their siRNAs in the *Solanaceae*: new functional implications for MITEs. Genome Res
- 405 19:42-56
- 406 Lee BH, Kapoor A, Zhu J, Zhu JK (2006) STABILIZED1, a stress-upregulated nuclear protein, is
- 407 required for pre-mRNA splicing, mRNA turnover, and stress tolerance in *Arabidopsis*. Plant Cell
- 408 18:1736-1749
- 409 Lin X, Long L, Shan X, Zhang S, Shen S, Liu B (2006) In planta mobilization of *mPing* and its
- 410 putative autonomous element *Pong* in rice by hydrostatic pressurization. J Exp Bot 57:2313-2323
- 411 Lytle JR, Yario TA, Steitz JA (2007) Target mRNAs are repressed as efficiently by
- 412 microRNA-binding sites in the 5' UTR as in the 3' UTR. Proc Natl Acad Sci USA 104:9667-9672
- 413 Mangone M, Manoharan AP, Thierry-Mieg D et al (2010) The landscape of *C. elegans* 3'UTRs.
- 414 Science 329:432-435
- 415 Marquez Y, Brown JW, Simpson C, Barta A, Kalyna M (2012) Transcriptome survey reveals

increased complexity of the alternative splicing landscape in Arabidopsis. Genome Res

417 22:1184-1195

- 418 Mastrangelo AM, Marone D, Laidò G, De Leonardis AM, De Vita P (2012) Alternative splicing:
- 419 Enhancing ability to cope with stress via transcriptome Plant Sci 185-186:40-49

420 plasticity.

- 421 Matsukura S, Mizoi J, Yoshida T, Todaka D, Ito Y, Maruyama K, Shinozaki K, Yamaguchi-Shinozaki
- 422 K (2010) Comprehensive analysis of rice DREB2-type genes that encode transcription factors
- 423 involved in the expression of abiotic stress-responsive genes. Mol Genet Genomics 283:185-196
- 424 Mazumder B, Sampath P, Fox PL (2005) Regulation of macrophage ceruloplasmin gene expression:
- 425 one paradigm of 3'-UTR-mediated translational control. Mol Cells 20:167-172
- 426 Maunakea AK, Chepelev I, Cui K, Zhao K (2013) Intragenic DNA methylation modulates
- 427 alternative splicing by recruiting MeCP2 to promote exon recognition. Cell Res 23:1256-1269
- 428 Mayr C, Bartel DP (2009) Widespread shortening of 3'UTRs by alternative cleavage and
- 429 polyadenylation activates oncogenes in cancer cells. Cell 138:673-684
- 430 McClintock B (1950) The origin and behavior of mutable loci in maize. Proc Natl Acad Sci USA

431 36:344-355

- 432 McCouch SR (2008) Gene nomenclature system for rice. Rice 1:72-84
- 433 Misquitta CM, Chen T, Grover AK (2006) Control of protein expression through mRNA stability in

- 434 calcium signalling. Cell Calcium 40:329-346
- 435 Miyao A, Tanaka K, Murata K, Sawaki H, Takeda S, Abe K, Shinozuka Y, Onosato K, Hirochika H
- 436 (2003) Target site specificity of the *Tos17* retrotransposon shows a preference for insertion within
- 437 genes and against insertion in retrotransposon-rich regions of the genome. Plant Cell 15:1771–
- 438 1780
- 439 Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic
- 440 Acids Res 8:4321-4325
- 441 Naito K, Cho E, Yang G, Campbell MA, Yano K, Okumoto Y, Tanisaka T, Wessler SR (2006)
- 442 Dramatic amplification of a rice transposable element during recent domestication. Proc Natl
- 443 Acad Sci USA 103:17620-17625
- 444 Naito K, Zhang F, Tsukiyama T, Saito H, Hancock CN, Richardson AO, Okumoto Y, Tanisaka T,
- 445 Wessler SR (2009) Unexpected consequences of a sudden and massive transposon amplification
- 446 on rice gene expression. Nature 461:1130-1134
- 447 Nakazaki T, Okumoto Y, Horibata A, Yamahira S, Teraishi M, Nishida H, Inoue H, Tanisaka T
- 448 (2003) Mobilization of a transposon in the rice genome. Nature 421:170-172
- 449 Ngezahayo F, Xu C, Wang H, Jiang L, Pang J, Liu B (2009) Tissue culture-induced transpositional
- 450 activity of mPing is correlated with cytosine methylation in rice. BMC Plant Biol 9:91
- 451 Nilsen TW, Graveley BR (2010) Expansion of the eukaryotic proteome by alternative splicing.

452 Nature 463:457-463

- 453 Nishida H, Inoue H, Okumoto Y, Tanisaka T (2002) A novel gene *ef1-h* conferring an extremely long
- 454 basic vegetative growth period in rice. Crop Sci 42:348–354
- 455 Oki N, Yano K, Okumoto Y, Tsukiyama T, Teraishi M, Tanisaka T (2008) A genome-wide view of
- 456 miniature inverted-repeat transposable elements (MITEs) in rice, *Oryza sativa* ssp. *japonica*.
- 457 Genes Genet Syst 83:321-329
- 458 Ortiz DF, Strommer JN (1990) The *Mu1* maize transposable element induces tissue-specific aberrant
- 459 splicing and polyadenylation in two *Adh1* mutants. Mol Cell Biol 10:2090-2095
- 460 Pan Q, Shai O, Lee LJ, Frey BJ, Blencowe BJ (2008) Deep surveying of alternative splicing
- 461 complexity in the human transcriptome by high-throughput sequencing. Nat Genet 40:1413-1415
- 462 Saito H, Yuan Q, Okumoto Y, Doi K, Yoshimura A, Inoue H, Teraishi M, Tsukiyama T, Tanisaka T
- 463 (2009) Multiple alleles at *Early flowering 1* locus making variation in the basic vegetative growth
- 464 period in rice (*Oryza sativa* L.). Theor Appl Genet 119:315-323
- 465 Schnable P, Ware D, Fulton R et al (2009) The B73 maize genome: complexity, diversity, and
- 466 dynamics. Science 326:1112–1115
- 467 Shan X, Liu Z, Dong Z, Wang Y, Chen Y, Lin X, Long L, Han F, Dong Y, Liu B (2005) Mobilization
- 468 of the active MITE transposons *mPing* and *Pong* in rice by introgression from wild rice (*Zizania*
- 469 *latifolia* Griseb.). Mol Biol Evol 22:976-990

470	Shen S, Wang Z, Shan X, Wang H, Li L, Lin X, Long L, Weng K, Liu B, Zou G (2006) Alterations
471	in DNA methylation and genome structure in two rice mutant lines induced by high pressure. Sci
472	China C Life Sci 49:97-104
473	Shen Y, Ji G, Haas BJ, Wu X, Zheng J, Reese GJ, Li QQ (2008) Genome level analysis of rice
474	mRNA 3'-end processing signals and alternative polyadenylation. Nucleic Acid Res
475	36:3150-3161
476	Strayer C, Oyama T, Schultz TF, Raman R, Somers DE, Más P, Panda S, Kreps JA, Kay SA (2000)
477	Cloning of the Arabidopsis clock gene TOC1, an autoregulatory response regulator homolog.
478	Science 289:768-771
479	Syed NH, Kalyna M, Marquez Y, Barta A, Brown JW (2012) Alternative splicing in plantscoming

- 480 of age. Trends Plant Sci 17:616-623
- 481 Tanisaka T, Inoue H, Uozu S, Yamagata H (1992) Basic vegetative growth and photoperiod
- 482 sensitivity of heading-time mutants induced in rice. Japan J Breed 42: 657-668.
- 483 Teramoto S, Tsukiyama T, Okumoto Y, Tanisaka T (2014) Early embryogenesis-specific expression
- 484 of the rice transposon Ping enhances amplification of the MITE mPing. PLoS Genet
- 485 10(6):e1004396

- 486 Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of
- 487 progressive multiple sequence alignment through sequence weighting, position-specific gap

- 488 penalties and weight matrix choice. Nucleic Acids Res 22:4673-4680
- 489 Tsuchiya T and Eulgem T (2013) An alternative polyadenylation mechanism coopted to the
- 490 Arabidopsis RPP7 gene through intronic retrotransposon domestication. Proc Natl Acad Sci USA
- 491 110:E3535-3543
- 492 Tsukiyama T, Teramoto S, Yasuda K, Horibata A, Mori N, Okumoto Y, Teraishi M, Saito H, Onishi A,
- 493 Tamura K, Tanisaka T (2013) Loss-of-function of a ubiquitin-related modifier promotes the
- 494 mobilization of the active MITE *mPing*. Mol Plant 6:790-801
- 495 Turcotte K, Srinivasan S, Bureau T (2001) Survey of transposable elements from rice genomic
- 496 sequences. Plant J 25:169-179
- 497 Wang H, Chai Y, Chu X, Zhao Y, Wu Y, Zhao J, Ngezahayo F, Xu C, Liu B (2009) Molecular
- 498 characterization of a rice mutator-phenotype derived from an incompatible cross-pollination
- 499 reveals transgenerational mobilization of multiple transposable elements and extensive epigenetic
- 500 instability. BMC Plant Biol 9:63
- 501 Wessler SR (1991) The maize transposable *Ds1* element is alternatively spliced from exon sequences.
- 502 Mol Cell Biol 11:6192-6196
- 503 Wessler SR, Baran G, Varagona M (1987) The maize transposable element *Ds* is spliced from RNA.
- 504 Science 237:916-918
- 505 Wu L, Ueda T, Messing J (1995) The formation of mRNA 3'-ends in plants. Plant J 8:323-329

- 506 Xing D, Li QQ (2011) Alternative polyadenylation and gene expression regulation in plants. Wiley
- 507 Interdiscip Rev RNA 2:445-458
- 508 Wu X, Liu M, Downie B, Liang C, Ji G, Li QQ, Hunt AG (2011) Genome-wide landscape of
- 509 polyadenylation in *Arabidopsis* provides evidence for extensive alternative polyadenylation. Proc
- 510 Natl Acad Sci USA 108:12533–12538
- 511 Yano M, Katayose Y, Ashikari M, Yamanouchi U, Monna L, Fuse T, Baba T, Yamamoto K, Umehara
- 512 Y, Nagamura Y, Sasaki T (2000) *Hd1*, a major photoperiod sensitivity quantitative trait locus in
- 513 rice, is closely related to the *Arabidopsis* flowering time gene *CONSTANS*. Plant Cell
- 514 12:2473-2484
- 515 Yasuda K, Ito M, Sugita T, Tsukiyama T, Saito H, Naito K, Teraishi M, Tanisaka T, Okumoto Y
- 516 (2013) Utilization of transposable element *mPing* as a novel genetic tool for modification of the
- 517 stress response in rice. Mol Breed 32:505-516
- 518 Zemach A, Kim MY, Silva P, Rodrigues JA, Dotson B, Brooks MD, Zilberman D (2010) Local DNA
- 519 hypomethylation activates genes in rice endosperm. Proc Natl Acad Sci USA 107:18729-18734

521 Figure legends

- 522 **Fig. 1** Schematic representation of *hd1* allele and its transcripts.
- 523 White, black, and gray boxes indicate exon, *mPing*, and retained intron, respectively. *hd1* allele is
- 524 composed of two exons (nucleotides 1-987, 2058-2627), one intron (nucleotides 988-2057) and
- 525 *mPing* (nucleotides 1583-2012) inserted in the intron. Horizontal line and black inverted triangle
- 526 indicate intron and PTC, respectively. *hd1-s2* was generated by alternative 3' splicing of intron and
- 527 alternative 5' splicing of exon 2 having the *mPing* sequence. *hd1-s3* was generated by alternative 3'
- 528 splicing of intron and alternative polyadenylation.
- 529
- 530 **Fig. 2** Schematic representation of *rurm1* allele and its transcripts.
- 531 White, black, and gray boxes indicate exon, *mPing*, and retained intron, respectively. Horizontal
- 532 lines and black inverted triangle indicates intron and PTC, respectively. *rurm1* allele is composed of
- 533 four exons (nucleotides 1-240, 352-430, 553-635, 1317-2077), three introns (nucleotides 241-351,
- 534 431-552, 634-1316) and *mPing* (nucleotides 1343-1772) inserted in the 4th exon. *rurm1-s2* and *-s3*
- 535 are generated by alternative polyadenylation occurred at different position within *mPing* sequence.
- *rurm1-s4* has retained intron generated by alternative 3' splicing of intron 3.
- 537
- 538 **Fig. 3** Schematic representation of *ehd1* allele and its transcripts.

539	White, black, and gray boxes indicate exon, <i>mPing</i> , and retained intron, respectively. <i>ehd1</i> allele is
540	composed of five exons (nucleotides 1-109, 1370-1955, 3797-4198, 4348-4424, 5396-5680), four
541	introns (nucleotides 110-1369, 1956-3796, 4199-4347, 4425-5395) and mPing (1383-1812) inserted
542	in the 2nd exon. Horizontal lines and black inverted triangle indicates intron and PTC, respectively.
543	ehd1-s1 is generated by alternative 3' splicing of intron 1. ehd1-s2 is generated by exon skipping of
544	exon 2. <i>ehd1-s3</i> has retained intron generated by reading through the 5' splicing site of intron 1.
545	Dark gray box in <i>ehd1-s3</i> indicates sequences spliced out in <i>ehd1-s4~s8</i> .
546	
547	Fig. 4 PTCs and polyadenylation signals on the plus strand of <i>mPing</i> .
548	Black, gray and light gray boxes indicate TAA, TGA, and TAG, respectively. Polyadenylation
549	signals detected by using PLACE database are underlined with dotted lines. Polyadenylation signals
550	reported by Shen et al. (2008) are underlined with bold lines.
551	
552	Fig. 5 Cytosine methylation of the <i>Hd1/hd1</i> locus in EG4 and HS110
553	a Dot plots of cytosine methylation in the <i>mPing</i> -body region and the <i>mPing</i> -flanking regions of the
554	Hd1/hd1 locus. Red, blue, and green circles indicate cytosine in the CG, CHG, and CHH sites,
555	respectively. Filled and empty circles indicate methylated and ummethylated cytosines, respectively.
556	b , c , d Comparison of cytosine methylation degree between EG4 and HS110. Red, blue, and green

557	columns in the histograms represent the collective methylation degree of CG, CHG, and CHH sites,
558	respectively, at the 5' <i>mPing</i> -flanking region (b), the <i>mPing</i> -body region (c), and the 3'
559	<i>mPing</i> -flanking region (d).
560	
561	
562	EMS Fig. 1 Schematic representation of the <i>Hd1</i> allele and its transcripts.
563	White boxes and horizontal line indicate exon and intron, respectively. <i>Hd1-s1</i> is a normal transcript.
564	
565	EMS Fig. 2 Schematic representation of the <i>Rurm1</i> allele and its transcripts.
566	White boxes and horizontal lines indicate exon and intron, respectively. Rurm1-s1 is a normal
567	transcript.
568	
569	EMS Fig. 3 Schematic representation of the <i>Ehd1</i> allele and its transcripts.
570	White and gray boxes indicate exon and retained intron, respectively. Horizontal lines and black
571	inverted triangle indicate intron and PTC, respectively. <i>Ehd1-s1</i> is a normal transcript. <i>Ehd1-s2</i> and
572	<i>Ehd1-s3</i> are alternative spliced isoforms generated by generated by reading through the 5' splicing
573	site of intron 2.

575	EMS Fig. 4 PTCs and	polyadenylation	signals on the minus	strand of <i>mPing</i> .
-----	---------------------	-----------------	----------------------	--------------------------

- 576 Black, gray and light boxes indicate TAA, TGA, and TAG, respectively. Polyadenylation signals
- 577 detected by using PLACE database are underlined with a dotted line. Polyadenylation signals
- 578 reported by Shen et al. (2008) are underlined with bold lines.
- 579
- 580 EMS Fig. 5 Deduced amino acid sequences of proteins translated from transcript isoforms of the
- 581 *Hd1/hd1* allele.
- 582 Amino acid sequences of proteins translated from transcript isoforms of the *Hd1/hd1* allele are
- 583 deduced by ORF finder. Asterisks represent stop codon.
- 584
- 585 EMS Fig. 6 Deduced amino acid sequences of proteins translated from transcript isoforms of the
- 586 *Rurm1/rurm1* allele.
- 587 Amino acid sequences of proteins translated from transcript isoforms of the *Rurm1/rurm1* allele are
- 588 deduced by ORF finder. Gray boxes indicate glycine residues which are necessary for the function.
- 589 Asterisks represent stop codon.
- 590
- 591 EMS Fig. 7 Deduced amino acid sequences of proteins translated from transcript isoforms of the
- 592 Ehd1/ehd1 allele.

593 Amino acid sequences of proteins translated from transcript isoforms of the *Ehdle/hdl* allele are

594 deduced by ORF finder. Asterisks represent stop codon.

595

597	ESM Table	1 Primer	list for	3'-RACE
571	Loni Iuoic		1150 101	5 10101

Target gene		Sequence	Annealing
			temperature
			(°C)
Hd1/hd1	1st	CGACAACCGCATCGAAAAC	60
	2nd	GAACAGCAAGAGCAGCAG	54
Ehd1/ehd1	1st	GGCCTTATGGACTAAGAGTTCTGG	58
	2nd	GACGACTGTTCATACTTGTCAGTCA	58
Rurm1/rurm1	1st	CACCATGCATCTAACCCTCGAATTCG	54
	2nd	GTCGTGATGAAAGGGTTGCTCG	54

Fig. 1

Fig. 3

- GGCCAGTCACAATGGGGGGTTTCACTGGTGTGTCATGCACATT**TAA**TAGGG
- 51
- 101 AGGAAAGAGTTTCATCCTGGTGAAACTCGTCAGCGTCGTTTCCAAGTCCT
- 151

251 CCGGATTTTGGGTACAAATGATCCCAGCAACTTGTATCAATTAAATGCTT

301 TGCTTAGTCTTGGAAACGTCAAAGTGAAACCCCTCCACTGTGGGGGATTGT

401 GTGCAATGACACTAGCCATTGTGACTGGCC

TTCA**TAA**AAGATTTCATT**TGA**GAGAAGATGGTA**TAA**TATTTTGGGTAGCC

- 201

Fig. 5

301

TTGCTGGGATCATTTGTACCCAAAATCCGGCGCGCGCGGGGAGAATGCGG

1 GGCCAGTCACAATGGCTAGTGTCATTGCACGGCTACCCAAAATATTATAC

51 CATCTTCTCTCAAATGAAATCTTTTATGAAACAATCCCCACAGTGGAGGG

- 201

ACGAGTTTCACCAGGATGAAACTCTTTCCTTCTCTCTCATCCCCATTTCA

351 TGCAAATAATCATTTTTTTTTTTCAGTCTTACCCCTATTAAATGTGCATGAC

251 GGCCTCAACGGGGGTTTCACTCTGTTACCGAGGACTTGGAAACGACGCTG

101 GTTTCACTTTGACGTTTCCAAGACTAAGCAAGCATTTAATTGATACAAG

401 ACACCAGTGAAACCCCCATTGTGACTGGCC

	1 60	
Hd1-s1	M N Y N F G G N V F D Q E V G V G G E G G G G G G G G G C P W A R P C D G C R A A P S V V Y C R A D A A Y L C A S C D A	
hd1-s1	M N Y N F G G N V F D Q E V G V G G E G G G G G G G G G C P W A R P C D G C R A A P S V V Y C R A D A A Y L C A S C D A	
hd1-s2	M N Y N F G G N V F D Q E V G V G G E G G G G G G G G G C P W A R P C D G C R A A P S V V Y C R A D A A Y L C A S C D A	
hd1-s3	M N Y N F G G N V F D Q E V G V G G E G G G G G G G G G C P W A R P C D G C R A A P S V V Y C R A D A A Y L C A S C D A	
	61 120	
Hd1-s1	R V H A A N R V A S R H E R V R V C E A C E R A P A A L A C R A D A A A L C V A C D V Q V H S A N P L P A I T I P A T S	
hd1-s1	R V H A A N R V A S R H E R V R V C E A C E R A P A A L A C R A D A A A L C V A C D V Q V H S A N P L P A I T I P A T S	
hd1-s2	R V H A A N R V A S R H E R V R V C E A C E R A P A A L A C R A D A A A L C V A C D V Q V H S A N P L P A I T I P A T S	
hd1-s3	R V H A A N R V A S R H E R V R V C E A C E R A P A A L A C R A D A A A L C V A C D V Q V H S A N P L P A I T I P A T S	
	121 180	
Hd1-s1	V L A E A V V A T A T V L G D K D E E V D S W L L L S K D S D N N N N N N N N N N D N D N N N N	
hd1-s1	V L A E A V V A T A T V L G D K D E E V D S W L L L S K D S D N N N N N N N N N N D N D N N N N	
hd1-s2	V L A E A V V A T A T V L G D K D E E V D S W L L S K D S D N N N N N N N N N N D N D N N N N	
hd1-s3	V L A E A V V A T A T V L G D K D E E V D S W L L S K D S D N N N N N N N N N N D N D N N N N	
	181 240	
Hd1-s1	EVDEYFDLVGYNSYYDNRIENNQDRQYGMHEQQEQQQQQQEMQKEFAEKEGSECVVPSQI	
hd1-s1	EVDEYFDLVGYNSYYDNRIENNQDRQYGMHEQQEQQQQQEMQKEFAEKEGSECVVPSQI	
hd1-s2	EVDEYFDLVGYNSYYDNRIENNQDRQYGMHEQQEQQQQQEMQKEFAEKEGSECVVPSQI	
hd1-s3	EVDEYFDLVGYNSYYDNRIENNQDRQYGMHEQQEQQQQQQEMQKEFAEKEGSECVVPSQI	
	300	
Hd1-s1	TMLSEQQHSGYGVVGADQAASMTAGVSAYTDSISNSISFSSMEAGIVPDSTVIDMPNSRI	
hd1-s1	TML SEQQHSGYGVVGADQAASMTAGVSAYTDSISNSISFSSMEAGIVPDSTVIDMPNSRI	
hd1-s2	TMLSEQQHSGYGVVGADQAASMTAGVSAYTDSISNSGL*	
hd1-s3	IMLSEQQHSGYGVVGADQAASMIAGVSAYIDSISNSGL "	
	201	
1144 - 4		
HOI-SI		
hd1-S1	LIPAGAINLFSGPSLQMSLHFSSMDREARVLRIREKKKARKFEKIIRIEIRKATAEARPR	
hd1 o2		
101-55		
	361	
Hd1.c1	IKCREAKRSDVOLEVDOMESTAALSDOSVOTVDWE*	
hd1-c1		
hd1-s2		_
hd1-s2	EMS Fia.	5
1101-00		

	1	60
Rurm1-s1	MHLTLEFGGGLELLLEKSTKVHKVDLQPNDGDGKVVMKGLLAWVKSNLIKERPEMFLKG	D
rurm-s1	MHLTLEFGGGLELLLEKSTKVHKVDLQPNDGDGKVVMKGLLAWVKSNLIKERPEMFLKO	D 6
rurm1-s2	MHLTLEFGGGLELLLEKSTKVHKVDLQPNDGDGKVVMKGLLAWVKSNLIKERPEMFLKO	5 D
rurm1-s3	MHLTLEFGGGLELLLEKSTKVHKVDLQPNDGDGKVVMKGLLAWVKSNLIKERPEMFLKO) D
rurm1-s4	MHLTLEFGGGLELLLEKSTKVHKVDLQPNDGDGKVVMKGLLAWVKSNLIKERPEMFLKO) D
	61	
Rurm1-s1	SVRPGVLVLINDCDWELCGGLDAELEEKDVVVFISTLHGG*	
rurm-s1	SVRPGVLVLIRPVTMGVSLVCHAHLIGVRLNKK*	

SVRPGVLVLIRPVTMGVSLVCHAHLIGVRLNKK*

SVRPGVLVLIRPVTMGVSLVCHAHLIGVRLNKK*

SVYDFPFPSHGLCA*

rurm1-s2

rurm1-s3

rurm1-s4

Ehd1-s1 Ehd1-s2 Ehd1-s3 ehd1-s1 ehd1-s2 ehd1-s3 ehd1-s4 ehd1-s5 ehd1-s6 ehd1-s7 ehd1-s8) H) H) H) H) H) H) H) H) H) H	RREEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE		WP WP WP WP WP WP WP	Y 6 Y 6 Y 6 Y 6 Y 6 Y 6 Y 6 Y 6 Y 6 Y 6	; L ; L	R		V I V I V I V I V I V I V I V I V I V I				S Y S Y S Y S Y S Y S Y S Y S Y S Y S Y		S S S S S S S S S S S S S S S S S S S								Y Y Y Y Y Y Y Y Y	K K K K K K K K K K K K K K K K K K K		T T T G S F F F F F F F F F F F F F F F F F F	Y K Y K Y K Y K Y K Y K Y K Y K Y K Y K	N C G I E E E E	V R V R D T D V S Y S Y S Y S		A V G A V G A V F V R R * * * R R * *	PPR	F F F R (IL IL GR YV	DI DI MI AI	N P N P R R N G		V V G = D	D L D L G G F L	60 V V G L
Ehd1-s1 Ehd1-s2 Ehd1-s3 ehd1-s1 ehd1-s2 ehd1-s3 ehd1-s4 ehd1-s5 ehd1-s6 ehd1-s7 ehd1-s8	61 S R R K F	8 D / 8 D / 8 D / 8 D / 8 C / 8 C / 9 V /	A F A F S G R I	FFFEE	PT PT * EL	E D E D S N	GG	L L L L W Q	1 1 1 1		E E R	V T V T K Q	S S M	K F K F Q D	GGH	і і і і к і	P T P T N N	V V V	IN SH SH	// A < * < *	S N	S (∋D	P	N T G H	I P	M ł	K Y 6 I	Ľ	A N	I A I	A F	D T	F I	L L	KI TI	P V	T	I E	E L	120 S
Ehd1-s1 Ehd1-s2 Ehd1-s3 ehd1-s1 ehd1-s2 ehd1-s3 ehd1-s4 ehd1-s5 ehd1-s6 ehd1-s7 ehd1-s8	121 N I	I W	QH	I I	F R	K C	1 D I	Q D	N,	K N Y N	IGI	N M	TI	g n d i	R	DI	K P	G	H F	P P	S	I L	. A	Q	A F	≀ A I R	Q I	P A = 1	A	T R	S	T A	G	EI	A S	A	A P	'LE	E N	E V	180 R
Ehd1-s1 Ehd1-s2 Ehd1-s3 ehd1-s1 ehd1-s2 ehd1-s3 ehd1-s4 ehd1-s5 ehd1-s6 ehd1-s7 ehd1-s8	181 D D M K	0 M 1	VN	I Y	N G	ΕI	T I	D I	RI	DL	GI €K	K S	R	L T	w к	K :	т a s i	P	ΗF	r s	F	н	A A	V T	NH	ΗL SS	G E	E D	D	A V K T	Q	к к	I P	L (G I R S	Q.	K V Y F	N (۹L	T R G C	240 E
Ehd1-s1 Ehd1-s2 Ehd1-s3 ehd1-s1 ehd1-s2 ehd1-s3 ehd1-s4 ehd1-s5 ehd1-s6 ehd1-s7 ehd1-s8	241 Q V E I	I M	S H	S	QK	Y R	D	QL	S	K S D S	; []	РТ	T:	S K	:H	G /	A T D Y	S	S E	S T	F	L [) K	R	QC)H	P S	S R	E	Q Y Y G	F	N Q	D:	G (CK	E	IN	וסו	ſS	LP	300 R
Ehd1-s1 Ehd1-s2 Ehd1-s3 ehd1-s1 ehd1-s2 ehd1-s3 ehd1-s4 ehd1-s5 ehd1-s6 ehd1-s7 ehd1-s8	301 D D	DL	S S	G	SE	CM	ILI	EE	: L	ND	ιY:	S S	E	G F	Q	DI	FR	W	D	S D	к	QE	ΞY	G	PC	F	1 W	N F													