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Abstract
The plant hormone auxin regulates many aspects of plant growth and development. Recent

progress in Arabidopsis provided a scheme that auxin receptors, TIR1/AFBs, target tran-

scriptional co-repressors, AUX/IAAs, for degradation, allowing ARFs to regulate transcription

of auxin responsive genes. The mechanism of auxin-mediated transcriptional regulation is

considered to have evolved around the time plants adapted to land. However, little is known

about the role of auxin-mediated transcription in basal land plant lineages. We focused on

the liverwortMarchantia polymorpha, which belongs to the earliest diverging lineage of land

plants.M. polymorpha has only a single TIR1/AFB (MpTIR1), a single AUX/IAA (MpIAA),
and three ARFs (MpARF1,MpARF2, andMpARF3) in the genome. Expression of a domi-

nant allele of MpIAA with mutations in its putative degron sequence conferred an auxin resis-

tant phenotype and repressed auxin-dependent expression of the auxin response reporter

proGH3:GUS. We next established a system for DEX-inducible auxin-response repression

by expressing the putatively stabilized MpIAA protein fused with the glucocorticoid receptor

domain (MpIAAmDII-GR). Repression of auxin responses in proMpIAA:MpIAAmDII-GR plants

caused severe defects in various developmental processes, including gemmaling develop-

ment, dorsiventrality, organogenesis, and tropic responses. Transient transactivation assays

showed that the three MpARFs had different transcriptional activities, each corresponding to

their phylogenetic classifications. Moreover, MpIAA and MpARF proteins interacted with

each other with different affinities. This study provides evidence that pleiotropic auxin re-

sponses can be achieved by a minimal set of auxin signaling factors and suggests that the

transcriptional regulation mediated by TIR1/AFB, AUX/IAA, and three types of ARFs might

have been a key invention to establish body plans of land plants. We propose thatM. poly-
morpha is a good model to investigate the principles and the evolution of auxin-mediated

transcriptional regulation and its roles in land plant morphogenesis.
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Author Summary

Auxin is an important plant hormone which regulates many aspects of plant growth and
development, such as embryogenesis and directional growth in response to light or gravity.
Recent molecular genetics advances in angiosperms revealed that transcriptional regula-
tion is critical for auxin response. Although auxin response was also observed in charo-
phytes, a class of green algae related to land plants, and bryophytes, little is known how
plants acquired auxin signaling components during evolution. Recently, it was reported
that a filamentous charophycean alga, Klebsormidium flaccidum, does not have auxin-
mediated transcriptional regulation, suggesting its evolution around land adaptation of
plants. Here, we revealed that a liverwort species,Marchantia polymorpha, has a simplified
but complete auxin-mediated transcription mechanism compared with other land plant
species. Despite the minimal auxin system,M. polymorpha exhibited pleiotropic auxin re-
sponses in morphogenesis including roles in organ differentiation and cell elongation.
Phylogenetic and experimental analyses revealed that the three ARF transcription factors
inM. polymorpha had different transcriptional activities and interacted in various combi-
nations with different affinities. This suggests that the auxin-mediated transcriptional reg-
ulation was established in the common ancestor of land plants, and might be correlated
with the change in body plans at this time in the evolution of land plants.

Introduction
In angiosperms, the plant hormone auxin regulates many aspects of growth and development
such as axis formation during embryogenesis [1], initiation of leaf primordia at the shoot apical
meristem [2], root development [3], and tropic responses to light or gravity [4,5]. A major auxin-
signaling pathway is transcriptional regulation mediated by a co-receptor consisting of TRANS-
PORT INHIBITOR RESPONSE1/AUXIN SIGNALING F-BOX (TIR1/AFB) and AUXIN/
INDOLE-3-ACETIC ACID (AUX/IAA). In addition, AUXIN BINDING PROTEIN 1 (ABP1),
which is evolutionarily conserved from charophyte green algae to seed plants, is known as an ex-
tracellular auxin receptor involved in rapid re-orientation of microtubules [6–9]. Studies in Ara-
bidopsis and other angiosperms have revealed that auxin perception by the TIR1/AFB-AUX/
IAA co-receptor triggers transcriptional regulation mediated by the AUXIN RESPONSE FAC-
TOR (ARF) transcription factors, which directly bind to cis-elements (auxin responsive elements,
or AuxREs) of auxin responsive genes and positively or negatively regulates the expression [10].
In the absence of auxin, AUX/IAAs bind to ARFs through their C-terminal regions, called do-
mains III/IV, of the respective proteins and the complex represses the expression of auxin re-
sponsive genes [11,12]. Auxin functions as “molecular glue” that stabilizes the interaction
between the F-box protein TIR1/AFB and the transcriptional repressor AUX/IAA [13,14]. This
interaction promotes ubiquitination of AUX/IAA by the ubiquitin ligase complex that contains
TIR1/AFB and subsequent degradation of AUX/IAA by the 26S proteasome [15], which liberates
the ARFs and allows them to play their roles in transcriptional regulation.

In Arabidopsis, an ensemble of 29 AUX/IAAs and 23 ARFs is believed to regulate various
auxin responses [16,17]. However, the high level of genetic redundancy of these transcription
factors and the complex body plan composed of various organs make it difficult to depict a
comprehensive picture of auxin regulatory events consisting of interactions and feedback
among multiple factors.

Auxin responses are also observed in basal land plant lineages, such as the bryophytes (liver-
worts, mosses, and hornworts), and green algal lineages related to land plants, the charophytes
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[18]. Whole genome sequencing approaches of the moss Physcomitrella patens and the lycophyte
Selaginella moellendorffii, a member of the basal lineage of vascular plants, have revealed that
these two species have orthologues of basic components for auxin-mediated transcriptional reg-
ulation with relatively lower redundancy than observed in flowering plants [19,20]. Additional-
ly, it was reported that P. patens possesses the auxin perception mechanismmediated by TIR1/
AFB and AUX/IAA, which regulates the chloronema-caulonema transition and rhizoid forma-
tion [21]. On the other hand, there is limited knowledge about auxin-mediated regulatory sys-
tems in green algae. It is generally accepted that the ancestor of land plants was closely related to
charophytes [22]. A recent study on the draft genome sequence of Klebsormidium flaccidum, a
filamentous charophyte lacking differentiation of specialized cells, reported the absence of
TIR1/AFB, AUX/IAA, and ARF genes in its genome [23], suggesting that auxin-mediated tran-
scriptional regulation evolved subsequent to the divergence of Klebsormidium and the lineage
leading to land plants.

Marchantia polymorpha is a liverwort species belonging to the earliest diverging clade of ex-
tant land plants [22] and has long history as an experimental organism.M. polymorpha is a
complex thalloid liverwort and spends most of its life cycle as a haploid flat thallus which
grows apically and has distinct dorsiventrality. On the dorsal side, air chambers are regularly
arranged [24], and asexual reproductive organs, gemma cups and gemmae, are repeatedly
formed [25]. On the ventral side of thallus, scales and rhizoids are produced [26,27].M. poly-
morpha is dioecious and produces gametangiophores (archegoniophores that produce egg cells
and antheridiophores that produce sperms) for sexual reproduction under certain environ-
mental conditions [28,29]. Following fertilization, a diploid zygote develops into a multicellular
sporophyte, or embryo, on archegoinophores, in which a set of cells undergo meiosis, resulting
in a sporangium producing single-celled haploid spores [30].

The most common endogenous auxin, indole-3-acetic acid has been detected inM. poly-
morpha [31]. Application of exogenous auxin has revealed that auxin is involved in rhizoid ini-
tiation and elongation [32–34], thallus growth [34,35], regeneration from excised thalli [36],
and apical dominance [37] inM. polymorpha and in dormancy of gemma in Lunularia, a relat-
ed liverwort genus [38].

Recently,M. polymorpha has received attention for its critical evolutionary position [39].
Molecular genetic tools including transformation techniques [40,41], homologous recombina-
tion [42], and CRISPR/Cas9-mediated genome editing [43] have been developed. By applying
molecular techniques, we demonstrated that the auxin response reporter which expresses β-
glucuronidase under the soybean-derived GH3 promoter (proGH3:GUS) specifically responds
to auxin in a dose-dependent manner [34], suggesting a possible conservation of regulatory
machinery for auxin-mediated transcriptional activation inM. polymorpha.

In this study, we performed an in silico search for auxin signaling factors inM. polymorpha,
and demonstrate that it has a minimal but complete auxin-mediated transcriptional system.
We also describe critical roles of AUX/IAA-mediated auxin signaling inM. polymorpha devel-
opment throughout its life cycle. Moreover, we investigated protein interactions and functional
diversities of ARFs inM. polymorpha. From these results, we discuss how various auxin re-
sponses are regulated using the minimal set of auxin signaling factors inM. polymorpha.

Results

Identification of auxin signaling factors inM. polymorpha
To investigate whetherM. polymorpha has basic components of auxin signaling, genes for
known auxin signaling factors were surveyed by BLAST searches againstM. polymorpha tran-
scriptome and genome databases.
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For AUX/IAA, only a single gene was found in theM. polymorpha genome (MpIAA), that
contains four conserved domains (domains I to IV). In the N-terminus, the predicted
MpIAA protein has a domain I motif (LxLxL), which is predicted to bind directly to the tran-
scriptional co-repressor TOPLESS (TPL; Figs 1A and S1) [44]. In the C-terminus, MpIAA
contains a domain II sequence, the AUX/IAA degron, and domains III and IV, which

Fig 1. Auxin signaling factors inM. polymorpha. (A) Diagrams of domain structures of MpIAA and
MpARFs. DBD: DNA-binding domain, Q-rich: glutamine-rich region, Roman numbers: domains I through IV.
(B-D) Phylogenetic positions of MpIAA (B), MpARFs (C) and MpTIR1 (D) using the amino acid sequences
fromM. polymorpha (red), P. patens (green), S.moellendorffii (blue), and Arabidopsis (black). See S2 Table
for sequence information. Numbers on the branches indicate bootstrap values. Bar in (A): 100 amino acid
residues in length. Bars in (B-D): number of amino acid changes per branch length.

doi:10.1371/journal.pgen.1005084.g001
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comprise a protein-protein interaction domain (Figs 1A and S1). In the domains III/IV of
MpIAA, invariant lysine and acidic residues, which are shown to be important for AUX/
IAA-ARF oligomerization in Arabidopsis, are conserved (S1 Fig) [45,46]. The amino acid se-
quence of MpIAA is considerably longer (825 amino acid residues) as compared to AUX/
IAA proteins of vascular plants, and contains an additional glutamine-rich stretch between
domains I and II. To understand if this structure is evolutionarily conserved, we obtained
partial sequence of AUX/IAA homologues from two other Marchantiales species, Conoce-
phalum conicum and C. japonicum, via degenerate RT-PCR. The Conocephalum sequences
also contain long glutamine-rich regions in their N-termini, implying that this region has a
conserved function among at least the Marchantiales (S1 Fig). In phylogenetic analyses,
MpIAA resided in a clade with P. patens and S.moellendorffii distinct from the clade of Ara-
bidopsis AUX/IAA sequences (Fig 1B).

TheM. polymorpha genome encodes three ARFs (MpARF1, MpARF2, and MpARF3).
The three MpARFs have a structure common to typical ARFs, containing a B3-like DNA
binding domain (DBD) and a protein-protein interaction motif, called domains III and IV
(Figs 1A and S2). Between the DBD and domain III, MpARF1 harbors a glutamine-rich re-
gion (Fig 1A), which is known as a feature of activator ARF members [10]. Finet et al. (2013)
classified 224 ARF proteins across diverse land plants into three clades: clade A, clade B and
clade C [47]. Phylogenetic analysis showed that MpARF1 belonged to the clade A, which rep-
resents activator ARF proteins such as ARF5/MONOPTEROS (MP) of Arabidopsis (Fig 1C).
MpARF2 resided in clade B (Fig 1C). In Arabidopsis, some ARF members in this clade have
been shown to function as transcriptional repressor [10,48]. MpARF3 has a relatively longer
DBD, and its domains III and IV show lower similarity to ARFs in the clades A and B (Figs
1A, S2A, and S2B).MpARF3mRNA contains the possible target sequence of microRNA160
(S2C Fig). These features are common with Arabidopsis ARF10 and ARF16, which possibly
function as repressors [49]. Phylogenetic analysis supported the placement of MpARF3 in
the clade C including Arabidopsis ARF10, ARF16, and ARF17 (Fig 1C). In summary,
MpARF1, MpARF2, and MpARF3 were phylogenetically classified into the clades A, B, and
C, respectively, suggesting that three functionally diverged types of ARFs existed in the com-
mon ancestor of extant land plants.

BLAST searches revealed thatM. polymorpha genome harbors two genes that, respectively,
exhibit high similarity to TIR1/AFB and a jasmonic acid receptor, CORONATINE INSENSI-
TIVE1 (COI1), of Arabidopsis. One encodes a protein with 54% identity to Arabidopsis TIR1
and is phylogenetically classified in the TIR1/AFB clade (named MpTIR1, Figs 1D and S3).
The other sequence is 44% identical to COI1, and phylogenetic analysis supported that this se-
quence belonged to the COI1 clade (Fig 1D). These results suggest thatM. polymorpha has
only one TIR1/AFB auxin receptor.

Taken together,M. polymorpha has all required components for auxin-mediated transcrip-
tional regulation with minimal genetic redundancy. We also performed BLAST and HMMER
searches using another auxin receptor, ABP1, as query. ABP1 is broadly conserved in the green
lineage including charophytes green algae [7]. However, to our surprise, no homologue of
ABP1 was found in theM. polymorpha genome.

Repression of auxin responses by domain II-modified MpIAA
Studies in angiosperms, including Arabidopsis, have shown AUX/IAA as the key component
in auxin perception and signaling. Dominant mutations in domain II of AUX/IAA inhibit its
auxin-dependent degradation and results in auxin resistance [50]. BecauseM. polymorpha has
only the single AUX/IAA, we focused onMpIAA to investigate the mechanism and function of
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auxin signaling inM. polymorpha. To examine ifMpIAA is involved in auxin signaling inM.
polymorpha, we generated transgenic plants which expressed MpIAA with or without substitu-
tions of two conserved proline residues in the domain II degron sequence into serines under
the control of theMpELONGATION FACTOR 1α constitutively active promoter (proMpEF1α:
MpIAAmDII and proMpEF1α:MpIAA; Fig 2A) [51] and analyzed their responses to exogenous
auxin. In the absence of auxin, proMpEF1α:MpIAA plants were indistinguishable from wild
type (WT). In contrast, in the absence of exogneous auxin proMpEF1α:MpIAAmDII plants dis-
played morphological defects such as dwarfism and curling of the thallus. In the presence of
high concentrations of exogenous naphthaleneacetic acid (NAA), a synthetic auxin, proM-
pEF1α:MpIAA plants exhibited growth arrest and produced many rhizoids as reported for WT
previously [34,52–55], while proMpEF1α:MpIAAmDII plants were insensitive to NAA treatment
(Fig 2B). Thus, we conclude that MpIAA conveys auxin signaling through domain II function
in a similar manner as that demonstrated in angiosperms.

We observed that the expression level of transgenes in the lines obtained was significantly
lower in proMpEF1α:MpIAAmDII than that of proMpEF1α:MpIAA (S4 Fig), suggesting that high
levels of expression ofMpIAAmDII driven by theMpEF1α promoter might be deleterious.
Therefore, we utilized an inducible system in which protein nuclear localization is modulated
by a glucocorticoid receptor (GR) domain [56,57], to investigate in more detail the function of

Fig 2. Effects of mutations in domain II of MpIAA on auxin sensitivity. (A) Diagram of proMpEF1α:MpIAA
and proMpEF1α:MpIAAmDII. Two conserved proline residues in domain II were substituted with serine. (B)
Resistance to auxin by domain II-modified MpIAA expression. Photographs of WT, proMpEF1α:MpIAA and
proMpEF1α:MpIAAmDII plants cultured with exogenous 3 μMNAA or under mock conditions for 2 weeks. Bars:
5 mm. The values indicate area ratios of 2-week-old thallus grown in the presence of NAA to that grown under
mock conditions with SE (n = 12).

doi:10.1371/journal.pgen.1005084.g002
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MpIAA and to determine developmental processes where auxin-mediated transcriptional regu-
lation is involved in the life cycle ofM. polymorpha. We generated transgenic plants expressing
a chimeric protein ofMpIAAmDII C-terminally fused with GR under the control of theMpIAA
promoter (proMpIAA:MpIAAmDII-GR). In these transgenic plants auxin signaling should be re-
pressed upon treatment with dexamethasone (DEX). To confirm that this experimental strate-
gy works in plants, we first introduced proMpIAA:MpIAAmDII-GR into theM. polymorpha lines
harboring the auxin response reporter proGH3:GUS [34]. Twelve hours of exogenous auxin
treatment increased GUS activity in proGH3:GUS control plants. DEX treatment applied to

proMpIAA:MpIAAmDII-GR/proGH3:GUS plants completely repressed auxin-dependent expres-
sion of the GUS reporter gene, whereas DEX treatment did not affect auxin-induced GUS activ-
ity in proGH3:GUS plants (Fig 3). These results suggest that the presumable accumulation of
MpIAAmDII protein in the nucleus represses an auxin-dependent transcriptional response as
has been shown in Arabidopsis [58]. Taken together, the mechanism of AUX/IAA-mediated
auxin response is conserved inM. polymorpha.

Regulation of cell expansion byMpIAA-mediated auxin signaling
We next examined the significance ofMpIAA-mediated auxin signaling in the regulation of
cellular morphology inM. polymorpha. We first analyzed the morphological and cellular re-
sponses ofM. polymorpha thalli to exogenously supplied auxin. In the WT thallus, NAA treat-
ment caused epinasty of thalli (Fig 4A and 4B), protrusion of air chambers (Fig 4D and 4E),
and elongation of gemma cups (Fig 4G and 4H). Quantification of cell parameters revealed di-
rectional expansion of dorsal epidermal cells (S5 Fig), which therefore may be responsible for
the above phenotypes. In the absence of DEX, proMpIAA:MpIAAmDII-GR plants responded to
NAA as did WT (Fig 4J, 4K, 4M, 4N, 4P, and 4Q). Treatment of proMpIAA:MpIAAmDII-GR
plants with DEX alleviated the NAA-induced phenotypes (Figs 4L, 4O, 4R, and S5), whereas
the same treatment to WT thallus did not (Figs 4C, 4F, 4I, and S5). These results suggest that
cell expansion in dorsal epidermal tissue is promoted by auxin throughMpIAA-mediated
transcriptional regulation.

Expression specificity ofMpIAA in the life cycle
The results described thus far suggest the central role of the sole AUX/IAA,MpIAA, in the
auxin-mediated transcriptional regulation inM. polymorpha. To investigate spatiotemporal ex-
pression pattern ofMpIAA, we generated transgenic plants expressing GUS reporter gene
under the regulation ofMpIAA promoter (proMpIAA:GUS). High levels of GUS activity was ob-
served throughout proMpIAA:GUS thalli including the gemma cups (Fig 5A). Cross-sections of
the proMpIAA:GUS thallus revealed that GUS staining was observed in all layers of thallus tis-
sue, including dorsal air chambers, gemma cups and developing gemmae, internal parenchy-
matous tissue, and ventral scales and rhizoids (Fig 5B and 5C).

We also observed expression during the reproductive phase. Antheridiophores showed
strong GUS staining (Fig 5D), including GUS signal in antheridia and surrounding tissues
(Fig 5E). Compared with antheridiophores, archegoniophores showed relatively weak GUS
staining, which was observed in the tips of digitate rays (Fig 5F). Cross-sectional analysis re-
vealed that intensive GUS activity was observed in archegonia including the egg cells (Fig 5G).

We also observed expression in the diploid sporophyte generation following fertilization
of the haploid gametes. Strong GUS staining was observed in young sporophytes (Fig 5H and
5I), and during sporophyte development, a gradient of GUS activity was evident along apical-
basal axis. GUS staining of apical sporogenous tissue was relatively weaker, and diminished
as sporophyte matured, whereas that of the basal region consisting of the foot and seta
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remained (Fig 5I–5K). These GUS staining patterns in the sporophyte were observed in re-
ciprocal crosses between proMpIAA:GUS and WT.

These results suggest thatMpIAA is widely expressed in both gametophyte and sporophyte
generations with some tissue specificity, and thatMpIAA-mediated auxin signaling would
function in various tissues and organs in both generations of the life cycle.

Fig 3. DEX-inducible system for repressing auxin responses. (A, B) GUS staining (A) and quantitative
fluorometric assays (B) of proGH3:GUS and proMpIAA:MpIAAmDII-GR/proGH3:GUS transgenic plants. Each
plant was treated with 10 μMNAA and/or 10 μMDEX for 12 h. Error bars: SE (n = 3).

doi:10.1371/journal.pgen.1005084.g003
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Pleiotropic roles ofMpIAA-dependent auxin signaling throughout life
cycle
In proMpIAA:MpIAAmDII-GR plants, auxin responses could be repressed in a DEX-dependent
manner (see above). In order to investigate tissue- or stage-specific functions of MpIAA-
mediated auxin signaling, we analyzed morphological phenotypes of proMpIAA:MpIAAmDII-GR

Fig 4. Effects of exogenous auxin on the morphology and cell shape.WT (A-I) and proMpIAA:
MpIAAmDII-GR plants (J-R) were grown for 12 days in the absence of both NAA and DEX, then grown under
mock condition (A, D, G, J, M, P), with 10 μMNAA (B, E, H, K, N, Q), or with 10 μMNAA and 10 μMDEX (C,
F, I, L, O, R). At day 7 post treatment, photographs (A-C, J-L; bars: 10 mm) and scanning electron
micrographs (D-I, M-R; bars: 500 μm) were taken.

doi:10.1371/journal.pgen.1005084.g004
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plants caused by repression of auxin responses during various developmental stages. Without
DEX treatment, proMpIAA:MpIAAmDII-GR plants developed normal thalli with gemma cups
and regularly-arranged air pores on their dorsal sides (Fig 6A). Gemma cups formed serrated
structures on their rims and produced many gemmae from their bases (Fig 6B and 6C). On the
ventral side of thallus, ventral scales and numerous rhizoids were observed (Fig 6D).

Compared to the control condition, gemmalings grown in the presence of 10 μMDEX for
14 days showed severe growth inhibition (Fig 6A and 6E). The eight gemmalings observed ex-
hibited some or all of the following morphological abnormalities: five produced a cellular mass
lacking dorsiventrality (Fig 6F), four formed air pores ectopically, and five produced serrated
structures, which were reminiscent of the gemma cup rim (Fig 6G). Adventitious gemma-like
multicellular bodies were frequently (six of the eight) formed as clusters on the surface of gem-
malings (Fig 6H). We could not find any ventral scales in the apical regions of gemmalings
treated with DEX. These results suggest critical roles ofMpIAA-mediated auxin signaling in
gemmaling growth and differentiation, especially with respect to ventral structures.

We then applied DEX treatment to 7-day-old thallus precultured in the absence of DEX. At
this stage, gemmalings had developed into mature thalli with organogenesis in a proper dorsi-
ventral topology. DEX treatment for 7 subsequent days conferred hyponasty resulting in V-
shaped thalli (Fig 6I). Although gemma cups were observed on dorsal side of the DEX-treated
thalli, the cups were shallow and elongated along with the apical-basal axis, generating many
serrated structures (Fig 6J). At the bottom of gemma cups, in spite of the normal development
of gemma primordia, mature gemmae did not develop (Fig 6K). On the ventral side, the num-
ber of rhizoids was decreased, especially smooth rhizoids (Fig 6L). These results suggest in-
volvement of endogenous auxin andMpIAA-mediated transcriptional regulation in the
harmonized growth of dorsal and ventral thallus tissues.MpIAA-mediated auxin response also
functions in the development of gemma cups, gemmae and rhizoids.

Fig 5. Expression pattern ofMpIAA throughout the life cycle.GUS staining of proMpIAA:GUS plants. (A)
3-week-old thallus. Arrow: gemma cup. (B) Longitudinal section of gemma cup. (C) Magnified view of the
region shown by dotted line in (B). Arrows: developing gemmae. (D, E) Overview (D) and longitudinal section
(E) of antheridiophore. The arrows represent antheridia. (F, G) Overview (F) and longitudinal section (G) of
archegoniophore. Arrows: archegonia. (H-K) Sporophytes generated by crossingWT female and proMpIAA:
GUSmale. (H) Overview of fertilized archegoniophore containing developing sporophytes (arrows). (I-K)
Isolated developing sporophytes. The apices of the sporophytes are directed downward. Scale bars: 2 mm
(A, H), 0.5 mm (B, I-K), 0.1 mm (C, E, G), 5 mm (D, F).

doi:10.1371/journal.pgen.1005084.g005
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To investigate the role ofMpIAA-mediated auxin signaling in gametangiophore growth, we
started periodical DEX treatment to gametangiophores after they became visible (smaller than
5 mm in height). DEX treatment resulted in short stalks, while, in the control condition, male
and female gametangiophores had vertically elongated stalks (Fig 6M–6P). Additionally, DEX
treatment to proMpIAA:MpIAAmDII-GR plants compromised the tropic growth of gametangio-
phore stalks (Figs 6M–6P and S6). These results suggest involvement ofMpIAA-mediated
auxin signaling in both tropic and differential growth, which was reported as responses in
gametangiophores to exogenous auxin application [59].

Fig 6. Morphological defects of proMpIAA:MpIAAmDII-GR plants. (A-D) proMpIAA:MpIAAmDII-GR plants grown for 14 days without DEX. (A) SEM of the
dorsal side of the thallus. Air pores are visible as black dots. (B, C) SEM (B) and longitudinal section (C) of a gemma cup. (D) SEM of the ventral side of the
thallus. Arrow: ventral scale. (E-H) proMpIAA:MpIAAmDII-GR gemmalings grown in the presence of 10 μMDEX for 14 days. SEM images are shown. Arrows:
serrated structures reminiscent of gemma cup. Arrowheads: air pores. (I-L) proMpIAA:MpIAAmDII-GR plants grown in the absence of DEX for 7 days and then
subsequently in the presence of 10 μMDEX for 7 days. (I, J) SEM images of the dorsal side of the thallus (I) and a gemma cup (J). (K) Longitudinal section of
a gemma cup. (L) SEM image of the ventral side of the thallus. (M-P) Antheridiophores (M, N) and archegoniophores (O, P) of male and female plants,
respectively, grown for 2 weeks under mock (M, O) or DEX-treated (N, P) conditions. (Q-T) Fertilized archegoniophores at 4 weeks (Q, R) or 2 weeks (S, T)
after crossing without (Q, S) or with DEX treatment (R, T). DEX treatment was performed every one or two days, beginning the day after crossing. Arrows:
developing sporophytes. Scale bars: 1 mm (A, D, E, I, L), 0.5 mm (B, F-H, J), 0.1 mm (C, K), 5 mm (M-R), 0.2 mm (S, T).

doi:10.1371/journal.pgen.1005084.g006
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Finally, we investigatedMpIAA-mediated auxin signaling in sporophyte development. With-
out DEX treatment, sporophytes developed on archegoniophores, producing yellow sporangia
in approximately 4 weeks after crossing (Fig 6Q and 6S). Periodical DEX treatment that was ini-
tiated on the day following crossing conferred developmental arrest of the sporophyte (Fig 6T).
We did not observe any mature sporangia 4 weeks after crossing (Fig 6R). These results suggest
that properMpIAA-mediated auxin signaling is critical for sporophyte development.

Protein-protein interaction between MpIAA and MpARFs
Phenotypic analysis of proMpIAA:MpIAAmDII-GR plants demonstrated thatMpIAA-mediated
auxin signaling regulates many aspects of growth and development ofM. polymorpha. Therefore,
our next question was howM. polymorpha generates various auxin responses using the simpli-
fied components for auxin-mediated transcriptional regulation. To tackle this question, we fo-
cused on the three ARF genes ofM. polymorpha. We speculated that each MpARF might have a
different specificity in protein-protein interactions and/or transcription activities. In Arabidopsis,
interactions between AUX/IAA and ARF proteins have been examined by yeast two-hybrid
(Y2H) assays and bimolecular fluorescence complementation (BiFC) [5,16]. To investigate if
MpIAA andMpARFs have ability to form homo- or hetero-dimers, we first performed Y2H as-
says using C-terminal regions of MpIAA andMpARFs. Our Y2H assay showed that MpIAA
could interact with all three MpARFs (Fig 7). Interactions between MpARFs were observed in
all combinations except for MpARF3 homotypic interaction (Fig 7). We also examined the
strengths of the observed Y2H interactions by quantitative measurements of 0β-galactosidase re-
porter activities (S1 Table). MpIAA showed high β-galactosidase activities with all MpARFs, but
there were significant differences among the combinations. MpARF1 showed a notably higher
activity in combination with MpARF1 than with the other MpARFs, while MpARF2 did with
MpARF3, suggesting different affinities in the interactions among the three MpARFs.

The interactions between MpIAA and MpARFs in planta were also examined by BiFC assay
in Nicotiana benthamiana leaves. We analyzed all combinations of interactions between pro-
teins fused to N-terminal and C-terminal halves of YFP under the condition where negative
control experiments with empty vectors yielded no fluorescent signal. BiFC assays revealed
that MpIAA interacted with MpIAA itself and all MpARFs. All combinations of MpARF-
MpARF except for MpARF3-MpARF3 produced signal (Fig 8). These results confirmed pro-
tein interactions between MpIAA and MpARFs, as well as between MpARFs.

Transcription activity of MpARFs
To characterize the transcription activity of each MpARF, we performed transient transactiva-
tion assays using cultured tobacco BY-2 cells. The effector constructs carried full-length or the
middle region sequences of MpARFs fused with the Gal4 DNA binding domain. The reporter
vector expressed firefly luciferase (F-Luc) under the control of a promoter containing six repeats
of the Gal4 binding site. As a transformation control, we prepared the plasmid carrying the
Renilla luciferase (R-Luc) gene driven by the cauliflower mosaic virus 35S promoter (Fig 9A).
These constructs were simultaneously introduced into BY-2 cells by particle bombardment.
Transcriptional activity was evaluated by the relative activity of F-Luc to R-Luc. Both the middle
region and full-length sequences of MpARF1 showed approximately two-fold higher activity
than the effector expressing only Gal4 DBD. In the case of MpARF2, luciferase activity was
lower than the control (Fig 9B). These results suggest that MpARF1 andMpARF2 can function
as a transcriptional activator and repressor, respectively. We could characterize MpARF3 as nei-
ther an activator nor a repressor from this experiment, as the middle region and full-length se-
quences of MpARF3 showed just slightly lower and higher luciferase activities, respectively,
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Fig 7. Protein-protein interactions betweenMpIAA and MpARFs in yeast. Yeast two-hybrid assays with
theHIS3 reporter. Ten-fold serial dilutions of overnight cultures were spotted on either nonselective +His
(-Trp/-Leu) or selective-His (-His/-Trp/-Leu) media and grown for 2 days at 22°C. AD: proteins fused to VP16
activation domain. BD: proteins fused to lexA DNA-binding domain.

doi:10.1371/journal.pgen.1005084.g007
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than the control (Fig 9B). Taken together, our results suggest thatM. polymorpha has three
types of ARFs with different characteristics in their transcriptional activities.

Discussion

The origin and evolution of auxin-mediated transcriptional regulation in
plants
Our results revealed that the liverwortM. polymorpha has a single TIR1/AFB, a single AUX/
IAA, and three phylogenetically and functionally diverged ARF homologues. In Arabidopsis, it
has been shown that AUX/IAA functions as a repressor through the interaction via domain I
with the co-repressor TPL [44]. MpIAA has a conserved LxLxL motif in domain I (S1 Fig). The
M. polymorpha genome encodes a homologue of TPL, and it is suggested that MpTPL is

Fig 8. Protein-protein interactions between MpIAA andMpARFs in planta. BiFC assays of MpIAA and MpARF usingN. benthamiana leaves. Confocal
images of YFP (yellow) and chloroplast auto-fluorescence (red) were merged with bright-field images. Vectors containing only nYFP or cYFP was used as
negative controls. Bars: 50 μm.

doi:10.1371/journal.pgen.1005084.g008
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involved in auxin-mediated transcription (in an accompanying paper). In the present study,
we showed that expression of domain II-modified MpIAA conferred an auxin-resistant pheno-
type and suppressed the transcriptional response to exogenously supplied auxin as monitored
by proGH3:GUS (Figs 3 and 4). Additionally, it was reported that knock-down ofMpIAA re-
sulted in auxin hypersensitivity (in an accompanying paper). These results suggest that auxin-
mediated degradation of MpIAA, presumably promoted by MpTIR1, is critical for transcrip-
tional regulation. Our results also showed interaction between MpIAA and MpARFs through
domains III/IV (Figs 7 and 8, S1 Table). Loss- and gain-of-function mutants ofMpARF1 show
auxin-resistance and hypersensitivity, respectively (in an accompanying paper) [43]. Taken to-
gether, these results suggested thatM. polymorpha possesses an auxin-mediated transcriptional
regulation system that involves AUX/IAA and ARFs. Previous genomic analyses revealed that

Fig 9. Tranactivation assay for MpARFs. (A) Diagrams of the constructs for dual luciferase assay. (B)
Relative luciferase activity elicited by effector plasmid. The vector expressing only Gal4 DBD was used as a
control. A virus-derived activation domain, VP16, was used for a positive control. See Materials and Methods
for effector vectors. Error bars: SE (n = 3).

doi:10.1371/journal.pgen.1005084.g009
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the lycophyte S.moellendorffii and the moss P. patens have all the basic components for auxin-
mediated transcription [19,20], and that the filamentous charophyte alga K. flaccidum has
none of the components [23]. Expressed sequences showing high similarity to the DBD and
domains III/IV of ARFs were found in two other charophyte species, Coleochaete orbicularis
and Spirogyra pratensis, respectively, that in some analyses represent the sister lineage to extant
land plants [60,61]. Although it is still controversial whether aquatic ancestors of land plants
had acquired the auxin-mediated transcriptional regulation, these data suggest that the origin
of auxin responses using the three types of ARFs dates back to at least the last common ances-
tor of extant land plants.

In comparison with AUX/IAAs of vascular plants, the predicted amino-acid sequence of
MpIAA, is much longer, and contains a long glutamine-rich region between domains I and II,
which is conserved at least in the Marchantiales (Figs 1A and S1). Glutamine-rich domains are
known to activate transcription in eukaryotes [62]. Activator ARFs, including MpARF1, also
contain a glutamine-rich domain (Fig 1A) [10]. Since ARFs and AUX/IAAs also exhibit simi-
larity in their C-terminal interaction domains, these genes likely evolved from a common an-
cestral gene. It is possible that the glutamine-rich domain of Marchantiales AUX/IAAs might
be a remnant of the ancestral gene and may retain an unknown function in this lineage.

We previously demonstrated that proGH3:GUS activity could reflect the sites of endogenous
auxin responses [34]. Expression ofMpIAA was observed in various tissues including those
showing high proGH3:GUS activities, such as the base of gemma cups, stalks and lobes of arche-
goniophores, antheridia and developing sporophytes (Fig 5). The significance ofMpIAA ex-
pression in these tissues was supported by observation of phenotypes of proMpIAA:
MpIAAmDII-GR plants (Fig 6J, 6K, and 6M–6T). These results suggest that auxin responses
monitored by proGH3:GUS can be accounted for by MpIAA function. Interestingly, develop-
mental defects of DEX-treated proMpIAA:MpIAAmDII-GR plants were also observed where no

proGH3:GUS activity was detected, such as gemmalings and rhizoids (Fig 6E–6I and 6L). This
could be possibly due to a high threshold of proGH3:GUS expression in response to auxin, or
limitation of this reporter only representing the transcriptional activity mediated by activator-
type ARF (MpARF1). If the latter is the case, non-activator-type ARFs (MpARF2 and
MpARF3) could have important developmental roles inM. polymorpha.

Evolutionarily conserved roles of auxin-mediated transcription in land
plants
Auxin regulates many aspects of plant growth and development via modulating cell differentia-
tion and expansion. In Arabidopsis, ARF10 belonging to the same clade asMpARF3 regulates
cell totipotency in cultured cells [63]. In the moss P. patens, gain-of-function AUX/IAAmutants
showed delayed caulonema differentiation from chloronema [21]. The present study showed
that gemmaling produced undifferentiated cell mass by repression ofMpIAA-mediated auxin
signaling (Fig 6), suggesting that auxin-mediated transcription regulates cell differentiation inM.
polymorpha. Consistently, transgenic plants expressing a bacterial auxin inactivating enzyme
produced undifferentiated cell mass (in an accompanying paper). With respect to cell elongation,
various mutants of AUX/IAA, ARF, and TIR1/AFB genes in Arabidopsis show defects in cell ex-
pansion and tropic responses [4,5,64–67]. Our study revealed thatMpIAA-dependent auxin sig-
naling regulated directional elongation of epidermal cells and tropic responses (Figs 4, 6M–6P,
S5, and S6). These results suggest that regulation of cell differentiation and expansion by auxin-
mediated transcription was already present in the common ancestor of land plants.

In Arabidopsis, it is reported that early-phase auxin-induced hypocotyl elongation occurs
independently of TIR1/AFB-mediated transcription [68]. ABP1 has been proposed to be
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another auxin receptor that rapidly activates cell expansion in transcription-independent man-
ner in angiosperms [6,69–72]. ABP1 is also found in green algae, although its function in these
taxa remains to be elucidated [7,23,60]. To our surprise, no homologue of ABP1 was found in
theM. polymorpha genome, suggesting thatM. polymorpha lost ABP1 during evolution. This
brings up new open questions, such as when was ABP1 function in auxin-mediated cell elonga-
tion established and what is the ancestral role of ABP1 in the plant and land plant lineages?

One of the important roles of auxin in plant development is axis formation. The present study
revealed that the expression pattern ofMpIAA exhibited a gradient along the apical-basal axis in
the sporophyte, similar to the auxin-response reporter proGH3:GUS (Fig 5I–5K). Repression of
MpIAA-mediated auxin signaling caused arrest of sporophyte development (Fig 6Q–6T). In the
moss P. patens, it has been reported that the expression pattern of proGH3:GUS changes dynami-
cally along apical-basal axis during sporophyte development, and that defects in auxin transport
causes abnormal morphology of sporophyte [73,74]. In Arabidopsis, IAA12/BODENLOS and
ARF5/MP are involved in formation of apical-basal axis in embryogenesis [75,76]. These results
suggest that land plants would have common auxin-mediated mechanism for apical-basal axis
formation during embryogenesis after fertilization.

Past studies showed that inM. polymorpha excessive exogenous auxin treatment promoted
of rhizoid formation both dorsal and ventral sides of gemmalings, and thus proposed involve-
ment of auxin into dorsiventral patterning of thallus [32,34,35,55]. The present study revealed
that repression ofMpIAA-mediated auxin signaling inhibited development of rhizoids and
ventral scales (Fig 6). These results at least suggestMpIAA-mediated auxin signaling promotes
the development of ventral tissues. It would be intriguing to clarify whether auxin mediates it
directly or through dorsiventral axis formation.

Diverse auxin responses by minimum components
In Arabidopsis, it is thought that the complex transcriptional regulation using 29 AUX/IAAs
and 23 ARFs underlies robust auxin responses [16]. In addition, various combinations of TIR1
and AUX/IAA proteins form co-receptor complex with a wide range of auxin-binding affinities
and show various auxin sensitivity of AUX/IAA degradation, which also contributes to complex
auxin responses in angiosperms [77,78]. In this study, we demonstrated that the liverwortM.
polymorpha regulates various developmental processes with a minimized auxin-mediated tran-
scription system. BecauseM. polymorpha has only one AUX/IAA and one TIR1/AFB orthologue
(Fig 1), it was expected that the variation in auxin responses could be attributed to the functional
diversification of the three MpARFs. Our results showed that the three ARFs inM. polymorpha
are phylogenetically diverged and have different transcriptional activities (Figs 1C and 9B). Fur-
thermore, different binding affinities of MpIAA observed with the three MpARFs (S1 Table)
suggest different auxin responsiveness, and MpARF-MpARF interactions (Figs 7 and 8) could
add a higher level of regulation. This is also supported by the analyses of chimeric protein of
TPL fused with domains III/IV of MpIAA andMpARFs (in an accompanying paper). Recently,
crystal structure analyses revealed that AUX/IAA and ARF proteins multimerize through do-
main III/IV, and that the DBDs of ARFs dimerize and function as a “molecular caliper” when
they bind to palindromically orientated AuxREs [45,46,79]. Although the physiological signifi-
cance of interactions between MpARFs thorough domains III/IV and potentially between DBDs
is unclear, it is possible thatM. polymorpha can regulate diverse auxin responses via a combina-
tion of protein interactions of functionally diverged ARFs.

Still, would it be possible to explain such various auxin-response outputs only by the protein
interaction variations? Recent work shows that functionally diverged ARF proteins from Arabi-
dopsis have little differences in their DNA-binding specificity [79], raising the idea that the

Transcriptional Auxin Responses in a Liverwort

PLOS Genetics | DOI:10.1371/journal.pgen.1005084 May 28, 2015 17 / 26



variation of ARFs may not contribute much to target specificities. Given the single-copy exis-
tence of the activator ARF inM. polymorpha, it might be more plausible that outputs are pre-
determined depending on the respective cell types and that auxin just modulates switches via
MpARF1. This idea is consistent with the recently proposed model, where auxin is viewed as a
signal that provides “impetus” to processes [80]. It is expected that investigation on how three
MpARFs regulate pleiotropic auxin responses will provide insights into the mechanisms of elic-
iting the variety of auxin responses observed in land plants.

Perspectives
The present study demonstrated thatM. polymorpha has minimal but complete, relative to
that known in flowering plants, auxin-mediated transcription system, regulating diverse mor-
phological events including both cell expansion and differentiation. In addition to transcrip-
tional regulation, various auxin responses can be generated by regulating auxin biosynthesis,
metabolism, and transport. It is also necessary to investigate the regulation of these factors in
M. polymorpha. We propose thatM. polymorpha with a low genetic redundancy is a good
model for investigating the evolution and mechanisms of morphogenesis controlled by auxin.

Materials and Methods

Plant material and growth condition
Male and female accessions ofM. polymorpha, Takaragaike-1 (Tak-1) and Tak-2, respectively
[28], were maintained asexually. F1 spores generated by crossing Tak-1 to Tak-2 or proGH3:
GUS #21 [34], were used for transformation.

Gametangiophore formation was induced by far-red irradiation as described previously
[28].M. polymorpha was cultured on half strength Gamborg’s B5 medium [81] containing 1%
agar under 50–60 μmol photons m-2 s-1 continuous white fluorescent light at 22°C unless
otherwise defined.

Gene identification and phylogenetic analysis
A similarity search forM. polymorpha genes was performed using BLAST against transcriptome
and genome databases from on-going project by US Department of Energy Joint Genome Insti-
tute (http://www.jgi.doe.gov/). The transcriptome data contained 3.0 × 106 reads by Roche 454
GS FLX and>1010 reads by Illumina Hi-Seq from>18 conditions/tissues in different growth
stages. The genomic DNA was sequenced under the coverage of 26.7× and 54.0× by Roche 454
GS FLX and Illumina Hi-Seq, respectively. The protein sequences of MpIAA, MpARFs and
MpTIR1 were aligned with sequences listed in S2 Table. Partial cDNA sequences of AUX/IAAs
in C. conicum and C. japonicum were amplified by degenerate RT-PCR using the primer set, de-
generate-IAA_L2 and degenerate-IAA_R1. Primers used in this study are listed in S3 Table.
PCR fragments were subcloned into pBC-SK+ and sequenced. These sequences were aligned
using the MUSCLE program [82] implemented in Geneious software version 6.1.6 (Biomatters;
http://www.geneious.com/) with default parameters. For phylogenetic analysis we used the C-
terminal region (domain II-stop) of AUX/IAA, the DNA-binding domain of ARFs, and full
length sequences of TIR1/AFBs. Phylogenic trees were generated by PhyML program version
2.1.0 [83] implemented in the Geneious software using the LGmodel and four categories of rate
substitution. Tree topology, branch length, and substitution rates were optimized, and the tree
topology was searched using the nearest neighbor interchange method. Bootstrap values were
computed from 1000 trials. HMMER search for ABP1 homologues was performed against a da-
tabase of six-frame translation products derived from theM. polymorpha transcript database,
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using the hmmscan program in HMMER3.1 (http://hmmer.org) with the raw HMM file for
ABP1 downloaded from the Pfam database (http://pfam.xfam.org; ID: PF02041).

Construction of plasmids for plant transformation
The coding sequence ofMpIAA was amplified by RT-PCR using the primer set MpIAA_entry
and MpIAA_stop, and cloned into pENTR/D-TOPO vector using the Gateway TOPO cloning
kit (Life Technologies). Mutations in domain II were introduced by PCR using the primer set
mDII_L3 and mDII_R3. Then theMpIAA andMpIAAmDII cassettes were transferred into
pKIGWB2 using LR Clonase II (Life Technologies) according to the manufacture’s protocol,
which generated proMpEF1α:MpIAA and proMpEF1α:MpIAAmDII constructs, respectively.

To generate a construct for proMpIAA:GUS, the genomic fragment covering from 5.2 kb
upstream of putative start codon to the 52nd codon was amplified using the primer set
MpIAA_usEntry and MpIAA_R9, and cloned into pENTR/D-TOPO vector. The resultant
genomic fragment was transferred into pGWB3 [84] by LR Clonase II and translationally
fused with GUS reporter gene.

To generate a construct for proMpIAA:MpIAAmDII-GR, the genomic fragment covering 5.2
kb upstream region and the coding sequence ofMpIAA was amplified using the primer set
MpIAA_usEntry and MpIAA_nonstop, and cloned into pENTR/D-TOPO vector. Mutations
in domain II were introduced as described above. The glucocorticoid receptor hormone bind-
ing domain (GR) was amplified from pOpOn2.1 [85], and cloned into the AscI site of pENTR/
D-TOPO vector. The resultant cassette containing genomic fragment ofMpIAA fused with GR
was transferred into pGWB1 [84] or pMpGWB201.

Transformation ofM. polymorpha
Transformation ofM. polymorpha was performed as described previously [40]. Independent
T1 lines were isolated, and single G1 lines from independent T1 lines were established by sub-
cultivating single gemmae which arose asexually from single initial cells [25,86]. Plants grown
from gemmae of G1 lines (termed the G2 generation) were used for experiments.

Histochemical assay for GUS activity
Histochemical assays for GUS activity were performed as described previously [34]. GUS
stained gemma cups and gametangiophores were embedded in 6% agar block and sectioned
into ~100-μm-thick slices with LinearSlicer PRO 7 (DOSAKA EM, Kyoto, Japan).

Quantitative measurement of GUS activity
NAA and DEX treatments were performed by submerging plants into half-strength Gamborg’s
B5 liquid medium [81] containing 10 μMNAA and/or 10 μMDEX for 12 h. GUS activity was
then measured by monitoring cleavage of the β-glucuronidase substrate 4-methylumbelliferyl
β-D-glucuronide (MUG) as described previously [29] with some modifications. After adjusting
the concentration of extracted protein to 10 μg/70 μl extraction buffer, 20 μl of methanol and
10 μl of 10 mMMUG were added. After incubation at 37°C for 30 min, 900 μl of 200 mM sodi-
um carbonate was added to stop the reaction. Fluorescence (460 nm emission/360 nm excita-
tion) of liberated 4-methylumbelliferone (MU) was measured on Powerscan4 (DS Pharma
Biomedical, Osaka, Japan).
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Phenotypic analysis of proMpIAA:MpIAAmDII-GR plants
In the vegetative phase, NAA and DEX treatments of proMpIAA:MpIAAmDII-GR plants were
performed by growing on half-strength Gamborg’s B5 medium [81] containing 10 μMNAA
and/or 10 μMDEX. In the reproductive phase, DEX treatment was performed by spraying
10 μMDEX solution every 1 or 2 days. For scanning electron microscopy, plant samples were
frozen in liquid nitrogen and directly observed on a Miniscope TM3000 (HITACHI, Japan).
Measurement of size and aspect ratio of epidermal cells, and curvature of gametangiophores
were performed using ImageJ (http://imagej.nih.gov/ij/) from SEM and photographic
images, respectively.

Protein interaction analyses
For Y2H analyses the C-terminal regions of MpIAA (aa 627–825), MpARF1 (aa 783–928),
MpARF2 (aa 751–879) and MpARF3 (aa 730–821) were cloned into pBTM116SBEN and
pVP16PS, which were modified from pBTM116 and pVP16PS [87], using EcoRI/BamHI and
BamHI/NotI site, respectively. Resultant constructs were transformed into the L40 Saccharo-
myces cerevisiae reporter strain [87], and transformants were selected on SD medium lacking
tryptophan and leucine. Protein interactions were checked by histidine requirement or ONPG
assays in the conventional method [87].

For BiFC analyses, C-terminal regions of MpIAA and MpARFs described above were cloned
into pENTR/D-TOPO. Each insert fragment was introduced into pB4CY2 and pB4NY2 by the
LR reaction. pB4CY2 and pB4NY2 were obtained from S. Mano, National Institute of Basic Bi-
ology, Japan. Preparation and infiltration of Agrobacterium cultures were performed as de-
scribed previously [88]. Fluorescence from YFP (observation, 520 to 560 nm; excitation, 515
nm) was observed 20 to 21 h after infiltration. Fluorescent signals, chloroplast autofluorescence
and bright-field images were captured using a confocal laser scanning microscope, FluoView
1000 (Olympus).

Transient transactivation assay
cDNAs encoding full-length or middle region (MpARF1: aa 347–822, MpARF2: aa 388–764,
MpARF3: aa 448–628) sequences of MpARF proteins were amplified with specific primers
listed in S3 Table, and cloned into the vector to express them as a fusion protein with
Gal4-DBD driven by the cauliflower mosaic virus 35S promoter [89] using the In-Fusion HD
Cloning Kit (Clontech). A reporter plasmid containing six repeats of the Gal4 binding site and
F-Luc, and the transformation control plasmid carrying R-Luc driven by the 35S promoter
were described previously [89]. These constructs were introduced simultaneously into cultured
tobacco BY-2 cells by bombardment using Biolistic PDS-1000/He Particle Delivery System
(BIO-RAD). After 48 h incubation, F-luc and R-luc activities were assayed using the Dual-Lu-
ciferase Reporter Assay System (Promega) in accordance with the manufacture’s protocol. Lu-
minescence was detected by Centro XS3 LB 960 Microplate Luminometer (Berthold).
Luciferase activity was normalized by protein concentration.

Semi-quantitative RT-PCR
Total RNA was extracted from 2-week-old thalli using TRIZOL Reagent (Life Technologies).
First-strand cDNA was synthesized from 0.5 μg of total RNA with ReverTra Ace reverse tran-
scriptase (Toyobo) and oligo(dT) primer. PCR amplification of the transgene-specific sequence
was performed using the primer set MpIAA_dN2 and attB2_R. PCR amplification of the
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cDNA encoding the EF1α was performed as described before [90], and served as a control.
These reactions were performed using the C1000 Thermal Cycler (Bio-Rad).

Accession numbers
The genomic sequences from this article are available in DDBJ under the following accession
numbers: AB981316 (MpIAA), AB981317 (MpARF1), AB981318 (MpARF2), AB981319
(MpARF3), AB981320 (MpTIR1), and AB981321 (MpCOI1).

Supporting Information
S1 Fig. Multiple alignment of AUX/IAA family. Protein sequences of AUX/IAA inM. poly-
morpha, C. conicum, C. japonicum, P. patens, S.moellendorffii and Arabidopsis were aligned
using the MUSCLE program. Note that only partial sequences are shown for C. conicum and C.
japonicum. Color boxes indicate domains I to IV. Blue and red asterisks indicate conserved
basic or acidic residues, respectively.
(TIF)

S2 Fig. Sequence analysis of MpARFs. (A, B) Multiple alignment of the DNA-binding domain
(A) and C-terminal region (B) of ARF proteins. Protein sequences of ARFs inM. polymorpha
and Arabidopsis were aligned using the MUSCLE program. Blue and red asterisks indicate
conserved basic and acidic residues, respectively. (C) A possible target site of miR160 in
MpARF3 is shown with ARF10, ARF16, ARF17 andmiR160a of Arabidopsis. G-C and A-U
base pairs are shown as colons, and a G-U base pair is shown as a dot.
(TIF)

S3 Fig. Multiple alignment of TIR1/AFB family. Protein sequences of TIR1/AFBs inM. poly-
morpha, P. patens, S.moellendorffii and Arabidopsis were aligned using the MUSCLE program.
(TIF)

S4 Fig. Expression analysis of transgenes by semi-quantitative RT-PCR. Expression levels of
the transgenes in proMpEF1α:MpIAA and proMpEF1α:MpIAAmDII plants were analyzed by
semi-quantitative RT-PCR using the introducedMpIAA-specific primers. PCR amplification
of the cDNA encoding the EF1α was performed and served as a control. WT: wild type.
(TIF)

S5 Fig. Quantitative analysis of the effects of exogenous auxin on cell morphology.WT and

proMpIAA:MpIAAmDII-GR plants were grown for 12 days in absence of NAA and DEX, then
subsequently grown either under the mock condition, with 10 μMNAA, or with 10 μMNAA
and 10 μMDEX for 7 days. (A) SEM images of gemma cup. Bars: 0.5 mm. (B-C) The area
(B) and the aspect ratio (C) of epidermal cells were measured by imageJ from the SEM images
shown in (A). White broken lines indicate measured region. Error bars: SD (n = 50).
(TIF)

S6 Fig. Tropic responses of proMpIAA:MpIAAmDII-GR gametangiophore. (A-H) Male (A-D)
and female (E-H) thalli with visible gametangiophores of proMpIAA:MpIAAmDII-GR plants
were transplanted to new pots (jiffy-7). After 3 days cultivation, water without (A, B, E, F) or
with 10 μMDEX (C, D, G, H) was sprayed on the plants. After 3 h, the pots were orthogonally
rotated. The images of day 0 (A, C, E, G) and day 1 (B, D, F, H) after rotation were taken. Bars:
5 mm. (I-J) Curvature of gametangiophores was determined as angle between direction of the
stalk at day 0 and that at day 1, as shown in (J). Error bars: SD (n�8). �: P<0.01. g: gravity.
(TIF)
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S1 Table. Interaction between MpIAA and MpARFs in Y2H system.
(XLSX)

S2 Table. List of sequences used for phylogenetic analysis.
(XLSX)

S3 Table. List of primers used in the present study.
(XLSX)
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