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Hairy and enhancer of split 1 (Hes1), a basic helix-loop-helix transcrip-

tional repressor protein, regulates the maintenance of neural stem/progeni-

tor cells by repressing proneural gene expression via Notch signaling.

Previous studies showed that Hes1 expression oscillates in both mouse

embryonic stem cells and neural stem cells, and that the oscillation contrib-

utes to their potency and differentiation fates. This oscillatory expression

depends on the stability of Hes1, which is rapidly degraded by the ubiqu-

itin/proteasome pathway. However, the detailed molecular mechanisms

governing Hes1 stability remain unknown. We analyzed Hes1-interacting

deubiquitinases purified from mouse embryonic stem cells using an Hes1-

specific antibody, and identified the ubiquitin-specific protease 27x

(Usp27x) as a new regulator of Hes1. We found that Hes1 was deubiquiti-

nated and stabilized by Usp27x and its homologs ubiquitin-specific prote-

ase 22 (Usp22) and ubiquitin-specific protease 51 (Usp51). Knockdown of

Usp22 shortened the half-life of Hes1, delayed its oscillation, and enhanced

neuronal differentiation in mouse developing brain, whereas mis-expression

of Usp27x reduced neuronal differentiation. These results suggest that these

deubiquitinases modulate Hes1 protein dynamics by removing ubiquitin

molecules, and thereby regulate neuronal differentiation of stem cells.

Introduction

Hairy and enhancer of split 1 (Hes1) is a member of

the basic helix-loop-helix family of transcriptional

repressor proteins, and is a downstream effecter of

canonical Notch signaling. Hes1 regulates many devel-

opmental events by repressing the expression of target

genes, including proneural genes that encode transcrip-

tional activators that promote neuronal differentiation

[1,2]. Hes1 expression oscillates with a period of 2–3 h

in cultured fibroblasts [3] and neural stem/progenitor

cells [4]. The expression dynamics of the Hes1 gene

Abbreviations

DUB, deubiquitinase; ES, embryonic stem; Hes1, hairy and enhancer of split 1; SVZ, sub-ventricular zone; TUJ-1, neuron-specific class III b-

tubulin; Usp/USP, ubiquitin-specific protease; VZ, ventricular zone.
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(Hes1) play crucial roles in proper developmental tim-

ings and fate determination steps in both embryonic

stem (ES) cells and neural stem cells [5–12]. Hes1 oscil-

lation dynamically changes the fate preference of ES

cells by controlling Notch signaling activity, and con-

tributes to heterogeneous responses of ES cells [5]. In

embryonic neural stem cells, Hes1 oscillation drives

the oscillatory expression of proneural factors. During

neural development, Hes1 expression disappears, while

proneural gene expression becomes sustained in differ-

entiating neurons but continues to oscillate in neural

stem cells [4]. Sustained Hes1 expression represses the

expression of genes involved in cell-cycle progression,

suggesting that Hes1 oscillation is important for the

proliferation of neural stem cells [4,9].

Hes1 oscillation is regulated by an auto-negative

feedback loop [3]. After activation of Hes1 transcrip-

tion via Notch signaling or serum stimulation, trans-

lated Hes1 represses the expression of its own gene by

directly binding to N-box sequences in its promoter.

The Hes1 gene products, both mRNA and protein, are

very unstable and degraded with a short half-life of

approximately 20 min, which enables Hes1 expression

to be restarted in a few hours. Previous reports dem-

onstrated that the instability of Hes1 gene products is

critical for its oscillation [3,13], but the detailed mecha-

nism of regulation of Hes1 stability remains to be

determined.

Ubiquitination and deubiquitination are well-regu-

lated processes that modulate protein stability and are

driven by specific ubiquitin ligases (E3 ligases) and de-

ubiquitinases (DUBs), respectively [14–18]. DUBs are

proteases that cleave ubiquitin moieties from ubiquiti-

nated substrates and regulate various cellular responses

by controlling substrate abundance and activity

[19,20]. Hes1 was shown to be rapidly degraded by the

ubiquitin/proteasome system [3], but neither the spe-

cific E3 ligases nor the DUBs have been identified.

Here, we identified DUBs regulating Hes1 stability by

affinity purification of Hes1 from ES cell lysates, fol-

lowed by LC/MS/MS, and analyzed the functional sig-

nificance of Hes1 protein stability with respect to its

oscillation and neuronal differentiation.

Results

Usp27x and its homologs deubiquitinate Hes1

We analyzed Hes1-interacting DUBs purified from

mouse ES cell lysates using Hes1-specific antibody,

and identified Usp19 and Usp27x, both of which are

ubiquitin-specific cysteine proteases (USPs) [17], by

LC/MS/MS. We examined their interactions with Hes1

in HEK293T cells. FLAG-tagged Usp19 and Usp27x,

together with hemagglutinin (HA)-tagged Hes1, were

expressed and immunoprecipitated using FLAG anti-

body. Both Usp19 and Usp27x interacted with Hes1

(Fig. 1A, lanes 8 and 9). To determine whether these

DUBs remove ubiquitin from Hes1, we co-transfected

His6-tagged Hes1 with both HA-tagged ubiquitin and

the corresponding Usp genes in C3H10T1/2 cells, and

then purified His6-tagged Hes1 after treatment with

the proteasome inhibitor MG132. Usp27x reduced the

amount of ubiquitinated Hes1 (Fig. 1C, lane 4), but

Usp19 and the catalytically inactive point mutants of

Usp27x, C87A (mt1) and H380A (mt2), did not

Fig. 1. Usp27x and its homologs interact with and deubiquitinate Hes1. (A) Interaction of USPs with Hes1. Each of the FLAG-tagged Usp

vectors was co-transfected with HA-tagged Hes1 into HEK293T cells. Cell lysates were immunoprecipitated using FLAG antibody. The

whole-cell extracts (input) and immunoprecipitates (IP) were blotted using FLAG antibody (FLAG) and HA antibody (Hes1). Asterisks indicate

degradation products of Usp proteins. (B) Interaction between endogenous Hes1 and Usp22. C3H10T1/2 cells were subjected to

immunoprecipitation with control rabbit IgG (IgG) or Hes1 antibody (Hes1). The whole-cell extracts (input) and immunoprecipitates (IP) were

blotted with Usp22 and Hes1 antibodies. (C) Usp27x and its homologs deubiquitinate Hes1. His6-tagged Hes1 and HA-tagged ubiquitin were

co-transfected with FLAG-tagged USPs into C3H10T1/2 cells. The transfection efficiencies were approximately 20% in all samples. Cells

were cultured in the presence of MG132 for 2 h, and lysed in denaturing buffer for purification. His-tagged Hes1 was purified with Ni-NTA

agarose beads and detected by western blotting using HA and Hes1 antibodies. (D) Lack of deubiquitination of the Hes1 homolog Hes7.

His6/FLAG-tagged Hes7 was co-transfected with both HA-tagged ubiquitin and each of the USPs into C3H10T1/2 cells, purified with Ni-NTA

beads, and blotted with FLAG and HA antibodies. (E) Deubiquitination of endogenous Hes1 by Usp27x. Plasmid encoding Usp27x or shRNA

was co-transfected with HA-tagged ubiquitin into C3H10T1/2 cells. Cells were cultured in the presence of 10 lM MG132 (proteasome

inhibitor) for 2 h and lysed. Hes1 was immunoprecipitated using Protein A beads cross-linked with Hes1 antibody, and analyzed by western

blotting. Rabbit IgG was used as a negative control. (F) Deubiquitination of endogenous Hes1 in Usp22 knockdown cells. C3H10T1/2 cells

were transfected with control or Usp22-specific siRNAs. Endogenous Hes1 was immunoprecipitated using Hes1 antibody and analyzed by

western blotting. The amount of polyubiquitinated Hes1 was quantified using an LAS3000mini luminescent image analyzer, in which the HA

signals were in the linear range, and normalized against that of precipitated Hes1 (bottom). nd, not detected. (G) Deubiquitination of

endogenous Hes1 by Usp22. Usp22 plasmid or control vector was co-transfected with HA-tagged ubiquitin into C3H10T1/2 cells, and

endogenous Hes1 was analyzed by immunoprecipitation. The molecular masses of Hes1, HA-tagged Hes1, His6-tagged Hes1 and His6/

FLAG-tagged Hes7 are 29.7, 30.8, 30.7 and 26.9 kDa, respectively.
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(Fig. 1C, lanes 3, 5 and 6). We also examined the

activities of the Usp27x homologs Usp22, Usp51 and

Usp3, which have homologous USP domains (Fig. 2C,

D). Immunoprecipitation analyses showed that all of

these homologs interacted with Hes1 (Fig. 1A, lanes

10–12). Furthermore, Usp22 and Usp51 reduced the

amount of ubiquitinated Hes1 (Fig. 1C, lanes 7 and

10). However, a high level of ubiquitinated Hes1

remained in Usp3-expressing cells (Fig. 1C, lane 11).

The catalytically inactive point mutants of Usp22,

C185A (mt1) and H479A (mt2), were also unable to

remove ubiquitin from Hes1 (Fig. 1C, lanes 8 and 9).

These results indicate that Usp27x, Usp22 and Usp51,

but not Usp19 or Usp3, act as Hes1 DUBs, and that

their catalytic activities are required to remove poly-

ubiquitin from Hes1.

We next examined whether Usp27x, Usp22 and

Usp51 have DUB activity specific to Hes1 or also act

on other Hes family proteins. FLAG-tagged Hes7 and

HA-tagged ubiquitin were co-expressed with or with-

out the various DUBs. Neither Usp27x nor its homo-

logs reduced the large amount of ubiquitinated Hes7,

a homolog of Hes1 (Fig. 1D, lanes 3–6), compared

with the control (lane 2). We further analyzed ubiquiti-

nation of endogenous Hes1 by immunoprecipitation

from C3H10T1/2 cells transfected with HA-tagged

ubiquitin. Over-expression of Usp27x reduced the level

of ubiquitinated endogenous Hes1 (Fig. 1E, lane 8).

However, knockdown of Usp27x by shRNA (79.5%

efficiency of knockdown as determined by quantitative

PCR) did little to alter the amount of ubiquitinated

Hes1 (lane 4), suggesting that Usp27x activity is com-

pensated for by its homologs. These results indicate

that Usp27x, Usp22 and Usp51 are able to specifically

deubiquitinate Hes1, and suggest that these Usp27x

homologs compensate for the functions of one

another.

We next sought to determine the region in Usp27x

that is required for the interaction with Hes1. Co-

immunoprecipitation of Hes1 with Usp27x deletion

mutants revealed that Usp27x interacts with Hes1 at

the conserved USP domain (Fig. 2A,B, lanes 13–16)
[17]. Because Usp22 and Usp51 also contain the USP

domain (Fig. 2D), these DUBs may recognize poly-

ubiquitinated Hes1 and interact with Hes1 via this

domain.

Usp27x and its homologs stabilize Hes1

To examine whether Usp27x and its homologs stabilize

Hes1 by deubiquitinating it, we monitored protein levels

of HA-tagged Hes1 in the presence of the translation

inhibitor cycloheximide. Over-expression of wild-type

Usp27x stabilized HA-tagged Hes1 (Fig. 3A, lanes 4–6),
but the inactive mutants of Usp27x did not increase the

half-life of HA-tagged Hes1 (lanes 7–9 and 10–12).
Usp22 stabilized HA-tagged Hes1, but the catalytica-

lly inactive mutants of Usp22 did not (Fig. 3B, lanes

1–3 and lanes 4–9). Usp51 stabilized HA-tagged Hes1,

but Usp3 did not (Fig. 3C, lanes 5–8 and lanes 9–12).
These results indicate that the catalytic activities of

Usp27x, Usp51 and Usp22 are important for stabilizing

Hes1 protein, and that Usp3 does not affect the stability

of Hes1. The catalytically inactive point mutants

Usp27x mt1 and Usp27x mt2 slightly decreased the

half-life of HA-tagged Hes1 compared with the control,

suggesting that these mutants may destabilize Hes1 by

inhibiting interaction with the endogenous DUBs

(Fig. 3A).
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domain. Hes1 binds to the region between signatures 1 and 2

(asterisks) in the USP domain. n.d., not detected. (B) Co-

immunoprecipitation of Hes1 with Usp27x deletion mutants. HA-

tagged Hes1 was co-transfected with FLAG-tagged Usp27x and its

deletion mutants into HEK293T cells; their interactions were then

analyzed by immunoprecipitation with FLAG antibody and western

blotting using FLAG and HA antibodies. (C) Sequence alignment of

Usp27x homologs. Part of the phylogenetic tree generated by

ClustalW [39] from all deubiquitinases in mouse, with their identity

scores relative to Usp27x in parentheses (%). (D) Schematic
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We next examined the effects of DUB knockdown

on the protein stability of endogenous Hes1. We ana-

lyzed the knockdown of Usp27x, and its homologs

Usp22, Usp51 and Usp3. Knockdown of Usp22 using

two distinct siRNA sequences (KD1 and KD2) signifi-

cantly shortened the half-life of endogenous Hes1 from

24.4 min to 19.3 min (KD1) and 15.9 min (KD2)

(Fig. 3E). The shortened half-lives correlated with the

knockdown efficiency (79% in KD1 and 85% in

KD2). However, knockdown of Usp27x, Usp51 and

Usp3 using two siRNA sequences each did not have

any significant effect on the half-life of endogenous

Hes1, although the knockdowns were highly effective:

93.8% (KD1) and 89.8% (KD2) for Usp27x, 80.6%

(KD1) and 93.9% (KD2) for Usp51, and 97.3%

(KD1) and 94.2% (KD2) for Usp3 (Fig. 3D–G). We

found that C3H10T1/2 cells expressed abundant

Usp22 but little Usp27x or Usp51 (an approximately

100-fold difference between Usp22 and the others,

Fig. 3H). Endogenous Hes1 interacted with endoge-

nous Usp22 (Fig. 1B, lane 3), and Usp22 knockdown

increased the amount of polyubiquitinated endogenous

Hes1 (Fig. 1F, lanes 2 and 4). Over-expression of

Usp22 reduced the level of ubiquitinated endogenous

Hes1 (Fig. 1G, lanes 2 and 4). These results suggest

that Usp27x, Usp22 and Usp51 are able to stabilize

Hes1 protein, and that Usp22 is the main enzyme sta-

bilizing endogenous Hes1 in C3H10T1/2 fibroblast

cells.

Usp22 depletion modulates Hes1 protein

oscillation

To examine whether Usp22 modulates Hes1 oscillation

in C3H10T1/2 fibroblast cells, we analyzed temporal

changes in endogenous Hes1 mRNA and protein every

30 min after serum stimulation (Fig. 4A,B). Hes1

mRNA first peaked 1 h after serum treatment

(Fig. 4A), and Hes1 protein peaked at 1.25 h (Fig. 4B,

C, lane 3), which is 15 min after the peak of Hes1

mRNA, as described previously [3]. Knockdown of

Usp22 did not change the timings of the first peaks of

either mRNA or protein, indicating that the rates of

both transcription and translation of Hes1 are unaf-

fected in Usp22 knockdown cells. On the other hand,

the second peaks of both mRNA and protein were

affected in Usp22 knockdown cells. The second peak

of Hes1 mRNA occurred at 3 h in control cells and
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3.5 h in Usp22 knockdown cells (Fig. 4A). The second

peak of Hes1 protein was observed at 3.25 h in control

cells, but Usp22 depletion weakened the oscillation

such that no clear second peak of protein was

observed (Fig. 4B,C, lane 7 and lanes 16–20). Usp22

was stably expressed after serum treatment (Fig. 4B,

C). Although Usp22 is reported to regulate gene tran-

scription by removing ubiquitin from histones H2B,

H2A and others [21–26], we found that level of Hes1

mRNA was unaffected by Usp22 knockdown before

serum stimulation (t = 0). After the first peak

(t = 1 h), the level of Hes1 mRNA was higher in

Usp22 knockdown cells than in control cells (Fig. 4A).

However, Hes1 protein levels were lower in Usp22

knockdown cells (Fig. 4B,C). These findings suggest

that Usp22 knockdown decreases the level of Hes1

protein and thereby weakens its own auto-inhibition,

which results in delay and up-regulation of the second

peak of Hes1 mRNA, and dampening of Hes1 oscilla-

tion at the population level.

We also examined Hes1 oscillation periods in indi-

vidual cells by real-time imaging, using a destabilized

luciferase reporter gene under the control of the Hes1

promoter in NIH3T3 fibroblast cells (Fig. 5A). This
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reporter is able to monitor the timing of Hes1 tran-

scription [27]. As found for C3H10T1/2 cells, NIH3T3

cells expressed abundant Usp22 but little Usp27x and

Usp51 (Fig. 5E). We found that the oscillation periods

of individual cells were elongated by approximately

25 min, with greater variations in Usp22 knockdown

cells compared with those in control cells (Fig. 5B–D).

The knockdown efficiency of Usp22 was 81.8% in this

cell line. These results suggest that Hes1 was destabi-

lized by Usp22 knockdown, resulting in the delay of

Hes1 oscillation in Usp22 knockdown cells, and that

Usp22 contributes to control of the post-translational

delay in Hes1 oscillation by inhibiting its rapid degra-

dation. Elongated periods with greater variations

probably make the oscillation out of synchrony

between cells and thereby dampen Hes1 oscillation at

the population level (Fig. 4).

Usp22 and Usp27x regulate neuronal

differentiation of stem cells in the developing

mouse neocortex

Hes1 is highly expressed in neural stem cells, and its

oscillation plays a crucial role in neuronal differentia-

tion of the developing brain [1,4,9]. Neural stem cells

and intermediate progenitors exist in the ventricular

zone (VZ) and the sub-ventricular zone (SVZ), respec-

tively, while differentiated neurons migrate out into

the cortical plate via the intermediate zone during neu-

ral development. Previous studies showed that mis-

expression of Hes1 in neural stem cells inhibits neuro-

nal differentiation, and the transfected cells are

retained in the VZ [28]. We examined the function of

Hes1 DUBs in vivo following in utero electroporation

of knockdown or mis-expression vectors. This was per-

formed by co-electroporation with nuclear-localizing

GFP into neural stem cells of the VZ in embryonic

day (E)13.5 mouse brain. The electroporated cells were

examined at E15.5. In control samples, the majority of

GFP-positive cells were present in the VZ or the SVZ.

Approximately 20% of GFP-positive cells had

migrated and were present in the intermediate zone

and the cortical plate, which were positive for the neu-

ronal marker neuron-specific class III b-tubulin (TUJ-

1) (Fig. 6A–E). Usp22 knockdown led to a significant

increase in the number of electroporated cells in the

intermediate zone and the cortical plate (42.2%, repre-

senting a 24.1% absolute increase compared with the

control), but a significant decrease in the progenitor

cell population in the VZ and SVZ (Fig. 6A,B,E).

However, mis-expression of Usp22 did not have signifi-

cant effects on neuronal differentiation (data not

shown), probably because Usp22 was abundantly

expressed in the developing brain (Fig. 6F). On the

other hand, mis-expression of Usp27x, which was not

expressed in the developing brain (Fig. 6F), signifi-

cantly reduced the number of electroporated cells in

the intermediate zone and the cortical plate (1.7%, rep-

resenting a 17.9% decrease compared with the control),

and most GFP-positive cells remained in the VZ and

SVZ as undifferentiated cells (negative for TUJ-1)

(Fig. 6C–E). These data suggest that both Usp22 and

Usp27x negatively regulate neuronal differentiation

in vivo.

Discussion

In this study, we identified new regulators of Hes1 sta-

bility and function. We found that Hes1 was deubiqui-

tinated and stabilized by the DUBs Usp27x, Usp22

and Usp51. These DUBs physically interact with Hes1

and remove ubiquitin molecules from Hes1 by their

catalytic activities. Over-expression of these DUBs sta-

bilizes Hes1 and increases its half-life. Knockdown of

Usp22 significantly shortens the half-life of endogenous

Hes1, suggesting that Usp22 is the main DUB for

Hes1. Moreover, Usp22 knockdown affects Hes1 oscil-

lation and enhances neuronal differentiation in the

mouse developing brain, while Usp27x mis-expression

maintains the progenitor state. These results suggest

that deubiquitination regulates Hes1 functions by sta-

bilizing it in vivo.

We first identified Usp27x as an interacting partner

of Hes1 in ES cells. However, Usp27x knockdown did

not significantly alter either the half-life or the poly-

ubiquitination level of endogenous Hes1 in fibroblasts

(Figs 1E and 3D), and we did not detect any signifi-

cant phenotypes in Usp27x knockout mouse embryos

(data not shown). Usp22 is required for embryonic

development and is strongly expressed in the mouse

embryonic brain (Fig. 6F) [23,29]. We observed that

the levels of both Usp27x and Usp51 were much lower

than that of Usp22 in fibroblast cells and the mouse

developing brain. These results suggest that Usp22

may compensate for the loss of its homologs.

Hes1 is reported to be important for maintenance of

the undifferentiated state of both tumor cells and qui-

escent cells [30,31]. Usp22 has been identified as a

member of an 11-gene cancer stem cell signature, and

may stabilize Hes1 levels in cancer stem cells and inhi-

bit their differentiation in malignant tumors [32,33].

Recently, Usp22 was reported to be the transcriptional

repressor of the SRY (sex-determining region Y)-box 2

gene (Sox2) in ES cells, whereby Usp22 is required for

efficient differentiation into all three germ layers [25].

Sox2 is also expressed in neural stem cells and is
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required for maintenance of neural stem/progenitor

cells and their neuronal differentiation [34]. It is possi-

ble that Usp22 also regulates expression of other genes

required for neural stem cell maintenance at the tran-

scriptional and post-translational levels, and maintains

the stem cell pool. Further studies are required to clar-

ify the mechanisms of the detailed regulation by

Usp22 for neuronal differentiation in the developing

brain.

Our results demonstrate that Usp22 regulates the

oscillation period of Hes1. Usp22 knockdown elon-

gates the period of Hes1 oscillation in fibroblast cells.

The first peaks of Hes1 mRNA and protein occur at

the same time points in both control and Usp22
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knockdown cells after serum stimulation, indicating

that the rates of Hes1 transcription and translation are

not affected by Usp22 depletion. However, the second

peak of Hes1 mRNA was delayed, and Hes1 protein

gradually decreased, resulting in damped oscillation

(Fig. 4A,B). Single cell imaging revealed that the oscil-

lation periods of individual cells were elongated with

greater variations by Usp22 knockdown compared

with those of control (Fig. 5C,D). These results sug-

gest that Usp22 depletion destabilizes Hes1 protein

and leads to more rapid degradation, which elongates

the delay of auto-repression and slows or dampens

oscillation. Thus, deubiquitination of Hes1 modulates

auto-regulation of its own gene expression and thereby

regulates the dynamics of oscillatory expression.

In the developing central nervous system, stable

Hes1 oscillation is required to maintain neural stem

cells; Hes1 oscillation represses the proneural genes

required to promote neuronal differentiation, expres-

sion of some of which has been reported to oscillate in

neural stem cells [4,9]. During neuronal differentiation,

Hes1 oscillation is damped, which causes up-regulation

of proneural genes and directs the neural stem cells

toward neuronal differentiation. Usp22 depletion elon-

gates the Hes1 oscillation period or dampens its oscil-

lation, which may give neural stem cells more

opportunity to express proneural genes continuously,

resulting in a significant increase in differentiating

cells. On the other hand, Usp27x mis-expression inhib-

ited neuronal differentiation of progenitor cells, sug-

gesting that deubiquitination of Hes1 allows Hes1 to

suppress proneural genes continuously. To our knowl-

edge, this is the first report demonstrating that post-

translational modification of Hes1 modulates its oscil-

lation and function in vitro and in vivo.

Experimental procedures

Cell culture and transfection

C3H10T1/2 mouse fibroblast cells, NIH3T3 cells and

HEK293T cells were grown in Dulbecco’s modified Eagle’s

medium with 10% fetal bovine serum. To examine Hes1

oscillation, C3H10T1/2 cells cultured in Dulbecco’s modified

Eagle’s medium with 5% fetal bovine serum were stimulated

with the same medium (5% fetal bovine serum) at t = 0 as

described previously [35]. For half-life measurement, 20 lg/
mL cycloheximide (Sigma, St. Louis, MO, USA) was added

to the culture medium at t = 0. Plasmids and siRNA were

transfected with polyethyleneimine (Polysciences, Inc., War-

rington, PA, USA) and Lipofectamine RNAiMAX (Invitro-

gen, Life Technologies, Carlsbad, CA, USA), respectively,

according to the manufacturers’ instructions. siRNA

duplexes of negative control, Silencer� Select Validated

siRNA and MISSION� predesigned were purchased from

Ambion (Life Technologies) or Sigma.

Plasmids

We cloned DUBs from cDNA of mouse MG1.19 ES cells

into the expression vector under the control of the human

elongation factor promoter. HA-tagged Hes1, His6-tagged

Hes1, His6/FLAG-tagged Hes7 and HA-tagged ubiquitin

were cloned into the pCI vector (Promega, Madison, WI,

USA). Expression of Usp27x shRNA was driven by the

h7SK promoter in the puromycin resistance plasmid [35].

The knockdown sequence for Usp27x shRNA was 50-
GGCGCAAGATCACTACGTACATT-30.

Measurement of Hes1 protein and mRNA

For protein analysis, each sample was lysed in lysis buffer

(0.5% Nonidet P-40 (Nacalai Tesque, Kyoto, Japan),

100 mM NaCl, 5 mM MgCl2, 10 mM imidazole, 50 mM

Tris/HCl, pH 8.0) at the time points indicated in figures,

and 10–20 lg total protein at each time point was analyzed

by western blotting with Hes1 antibody (1:2000; a kind gift

from Tetsuo Sudo, TORAY Industries Inc., Tokyo, Japan),

Usp22 antibody (1:2000; Novus Biologicals, Littleton, CO,

USA) and actin antibody (1:2000; Sigma); actin was used

as a loading control. The bands of Hes1, actin and Usp22

were quantified using a LAS3000mini luminescent image

analyzer (GE Healthcare UK Ltd, Buckinghamshire, UK),

and the intensities of Hes1 and Usp22 were divided by that

of actin to calculate relative levels. For mRNA analysis,

total RNA was extracted using RNeasy Plus mini kits (Qia-

gen GmbH, Hilden, Germany), and analyzed by real-time

PCR (Applied Biosystems, Life Technologies) as described

previously [35]. Primer sequences are available upon

request.

Immunoprecipitation

For identification of DUBs, proteins associated with endog-

enous Hes1 in mouse ES cells (MG1.19) were immunopre-

cipitated using rabbit Hes1 antibody described previously

[5] and identified by LC/MS/MS as described previously

[36]. The antibody or control IgG was cross-linked to Pro-

tein A beads (GE Healthcare) by treatment with dithiobis

(succinimidyl propionate), and Hes1 knockdown cells were

used as negative controls [5]. After washing the beads, five

times with binding buffer (1% Nonidet P-40, 150 mM

NaCl, 1 mM EDTA, 20 mM Tris/HCl, pH 8.0) and then

three times with washing buffer (150 mM NaCl, 1 mM

EDTA, 20 mM Tris/HCl, pH8.0) at 4� immunoprecipitated

proteins were eluted with guanidine hydrochloride buffer

(7 M guanidine hydrochloride, 10 mM dithiothreitol,

50 mM Tris/HCl, pH 8.0) and analyzed by LC/MS/MS
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[36]. To detect the interaction of DUBs with Hes1,

HEK293T cells were transfected with plasmids encoding

FLAG-tagged DUBs and HA-tagged Hes1, and lysed in

binding buffer containing both protease inhibitors

[Complete Protease Inhibitor Cocktail, Roche, (Basel, Swit-

zerland) and 1mM phenylmethylsulfonyl fluoride, Nacalai

Tesque] and phosphatase inhibitors (10mM beta-Glycero-

phosphate, 1mM Sodium Orthovanadate, 1mM Sodium

Fluoride, 1mM Sodium Pyrophosphate, Nacalai Tesque).

Proteins immunoprecipitated with FLAG M2 agarose

(Sigma) were washed three times with binding buffer and

twice with washing buffer, and then eluted using 3 9

FLAG� peptide (Sigma) and analyzed by western blotting

using horseradish peroxidase-conjugated FLAG� M2 anti-

body (1:5000; Sigma) and HA antibody (3F10, 1:2000;

Roche). To detect interaction between endogenous Hes1

and Usp22, the nuclear fraction was extracted from

C3H10T1/2 cells and subjected to immunoprecipitation

with Hes1 antibody [5] using a Nuclear Complex Co-IP kit

(Active Motif, Carlsbad, CA, USA) according to the manu-

facturer’s instructions, and analyzed by western blotting

using Hes1 and mouse monoclonal Usp22 antibodies

(1:1000, Santa Cruz Biotechnology Inc., Dallas, TX, USA).

All signals obtained in western blotting experiments are in

the linear range of the LAS3000mini quantification.

Ubiquitination assay

Plasmids encoding DUB, His6-tagged Hes1 or His6/FLAG-

tagged Hes7 and HA-tagged ubiquitin were co-transfected

into C3H10T1/2 cells, which were lysed in guanidine hydro-

chloride lysis buffer (0.5% NP-40, 100 mM NaCl, 5 mM

MgCl2, 10 mM imidazole, 6 M guanidine hydrochloride,

50 mM Tris/HCl, pH 8.0) and sonicated in an ice-cold

water bath to decrease viscosity. His6-tagged Hes1 or Hes7

were purified using Ni-NTA agarose beads (Qiagen),

washed three times with guanidine hydrochloride lysis buf-

fer and twice with lysis buffer, and then eluted using SDS

sample buffer. To detect ubiquitinated endogenous Hes1,

proteins were immunoprecipitated using rabbit Hes1 anti-

body-conjugated Protein A beads or control rabbit IgG-

conjugated Protein A beads from C3H10T1/2 cells that

were co-transfected with both HA-tagged ubiquitin and the

corresponding USPs, or both HA-tagged ubiquitin and

shRNA or siRNA. For shRNA knockdown and Usp over-

expression, transfected cells were selected using 2 lg/mL

puromycin. Cells were lysed in binding buffer containing

2 mM N-Ethylmaleimide after MG132 treatment for 2 h.

Precipitated proteins were washed five times with binding

buffer and twice with washing buffer, and eluted using

SDS sample buffer. Purified samples were analyzed by wes-

tern blotting using the following antibodies: rabbit Hes1

antibody, horseradish peroxidase-conjugated HA antibody

and FLAG M2 antibody at the same dilutions as described

above.

Real-time imaging

We used NIH3T3 cells carrying two reporters, ubiquitin–
nuclear localization signal (NLS)–luc2 under the control of

the Hes1 promoter to monitor Hes1 transcription, and

mCherry–NLS under the control of the human elongation

factor promoter to track single cells. The Notch intracellular

domain (NICD) was expressed under the control of the tetra-

cycline-responsive promoter (Tet-On�, Takara Bio Inc.,

Shiga, Japan) to induce Hes1 expression. These transgenes

were incorporated into NIH3T3 cells using the Tol2 transpo-

son system [37]. Cells were cultured in Dulbecco’s modified

Eagle’s medium, 10% fetal bovine serum, 1 mM luciferin,

1 lg/mL doxycycline. Bioluminescence was measured for

20–24 h as described previously [9]. Oscillation periodicity

was estimated by the maximum entropy method of spectrum

analysis using ImageJ software (http://rsb.info.nih.gov/ij/

index.html) [5]. Samples with very low signals, short periods

of less than 30 min, or long periods of more than 400 min

were excluded as experimental noise and outliers. This cell

line exhibited robust Hes1 oscillation in individual cells

because of exogenous Notch intracellular domain expression.

Our previous report demonstrated that the oscillation period

of Hes1 in C3H10T1/2 cells was more variable among cells

and oscillation cycles without serum stimulation, because

cell–cell interaction probably induces unpredictable activa-

tion of Notch signaling, resulting in unstable and fragile

Hes1 oscillation in individual cells [27]. The NIH3T3 cell line

was much better than C3H10T1/2 cells for the purpose of

accurately evaluating the change in oscillation periods by

Usp22 knockdown in individual cells.

In utero electroporation, immunohistochemistry

and quantification

In utero electroporation was performed as described previ-

ously [4]. siRNA (50 lM) or 2 lg/lL plasmid encoding

Usp27x with 0.5 lg/lL reporter plasmid encoding Histone

H2B (H2B)–green fluorescent protein (GFP) under the con-

trol of the CAG promoter (chicken beta-actin promoter

with CMV enhancer) was electroporated into neural stem

cells after it was injected into the lateral ventricle of E13.5

mouse embryos. Approximately five embryos were electro-

porated for each sample, and all embryos were sectioned.

Embryos at E15.5 were fixed in 4% paraformaldehyde,

cryoprotected, embedded in Tissue-Tek� O.C.T.TM Com-

pound (Sakura Finetek Japan Co., Ltd., Tokyo, Japan),

and cryosectioned at 16 lm. Fixed cryosections were

blocked using 5% normal goat serum and incubated with

the primary antibodies chicken GFP (1:500; Abcam, Cam-

bridge, UK), rabbit TUJ-1 (1:500; Covance Research Pro-

ducts Inc., Denver, PA, USA) and rat T-box brain protein

2 (Tbr2) (1:500; eBioscience, San Diego, CA, USA), and

then incubated with secondary antibodies conjugated with

Alexa488 or Alexa594 (1:500; Invitrogen) and 40,6-diamidi-
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no-2-phenylindole. GFP-positive cells were counted within

an area 200 lm wide perpendicular to the apical/basal axis

of the cortical layers in at least four sections in two

embryos. Tbr2 is a marker of intermediate progenitor cells,

and is expressed in the SVZ [38]. We considered that the

Tbr2-positive region represents the SVZ, and distinguished

two regions of the cortical layers: the apical region (the

inner 41.4% region of the brain wall), which includes the

VZ and the SVZ, and the basal region, which includes the

cortical plate and the intermediate zone.

Statistical analyses

Statistical analyses and curve fitting were performed using

Kaleidagraph software (Synergy Software, Reading, PA,

USA). Statistical differences were examined using Student’s

t test and two-way ANOVA, and P values < 0.05 was con-

sidered significant.

Acknowledgements

We thank Hiromi Shimojo for technical help with

in utero electroporation, Tetsuo Sudo (TORAY Indus-

tries) for Hes1 antibody, and Hiroshi Oue and Hikaru

Moriyama for technical assistance. This work was sup-

ported by Grants-in-Aid for Young Scientists (A) (JSPS

22687017), Grants-in-Aid for Scientific Research (C)

(JSPS 26440122) and Grants-in-Aid for Scientific

Research on Innovative Areas (JSPS 25112511), and by

the Takeda Science Foundation and the Naito Founda-

tion for Female Researchers (T.K.).

Author contributions

TK and RK planned the experiments; TK, YI, KT, AI

and TN performed the experiments and analyzed the

data; Koichi Kawakami and Kozo Kaibuchi contrib-

uted materials and equipment; YK discussed the

experiments; TK and RK wrote the paper.

References

1 Kageyama R, Ohtsuka T & Kobayashi T (2007)

The Hes gene family: repressors and oscillators

that orchestrate embryogenesis. Development 134,

1243–1251.
2 Kobayashi T & Kageyama R (2014) Expression

dynamics and functions of hes factors in development

and diseases. Curr Top Dev Biol 110, 263–283.
3 Hirata H, Yoshiura S, Ohtsuka T, Bessho Y, Harada T,

et al. (2002) Oscillatory expression of the bHLH factor

Hes1 regulated by a negative feedback loop. Science

298, 840–843.

4 Shimojo H, Ohtsuka T & Kageyama R (2008)

Oscillations in Notch signaling regulate maintenance of

neural progenitors. Neuron 58, 52–64.
5 Kobayashi T, Mizuno H, Imayoshi I, Furusawa C,

Shirahige K & Kageyama R (2009) The cyclic gene

Hes1 contributes to diverse differentiation responses of

embryonic stem cells. Genes Dev 23, 1870–1875.
6 Kobayashi T & Kageyama R (2010) Hes1 oscillation:

making variable choices for stem cell differentiation.

Cell Cycle 9, 207–208.
7 Kobayashi T & Kageyama R (2010) Hes1 regulates

embryonic stem cell differentiation by suppressing

Notch signaling. Genes Cells 15, 689–698.
8 Kobayashi T & Kageyama R (2011) Hes1 oscillations

contribute to heterogeneous differentiation responses in

embryonic stem cells. Genes 2, 219–228.
9 Imayoshi I, Isomura A, Harima Y, Kawaguchi K, Kori

H, et al. (2013) Oscillatory control of factors

determining multipotency and fate in mouse neural

progenitors. Science 342, 1203–1208.
10 Harima Y, Imayoshi I, Shimojo H, Kobayashi T &

Kageyama R (2014) The roles and mechanism of

ultradian oscillatory expression of the mouse Hes genes.

Semin Cell Dev Biol 34, 85–90.
11 Imayoshi I & Kageyama R (2014) bHLH factors in

self-renewal, multipotency, and fate choice of neural

progenitor cells. Neuron 82, 9–23.
12 Imayoshi I & Kageyama R (2014) Oscillatory control

of bHLH factors in neural progenitors. Trends Neurosci

37, 531–538.
13 Giudicelli F & Lewis J (2004) The vertebrate

segmentation clock. Curr Opin Genet Dev 14, 407–414.
14 Komander D & Rape M (2012) The ubiquitin code.

Annu Rev Biochem 81, 203–229.
15 Ventii KH & Wilkinson KD (2008) Protein partners

of deubiquitinating enzymes. Biochem J 414,

161–175.
16 Reyes-Turcu FE, Ventii KH & Wilkinson KD (2009)

Regulation and cellular roles of ubiquitin-specific

deubiquitinating enzymes. Annu Rev Biochem 78, 363–
397.

17 Komander D, Clague MJ & Urb�e S (2009) Breaking

the chains: structure and function of the

deubiquitinases. Nat Rev Mol Cell Biol 10, 550–563.
18 Todi SV & Paulson HL (2011) Balancing act:

deubiquitinating enzymes in the nervous system. Trends

Neurosci 34, 370–382.
19 Burrows JF & Johnston JA (2012) Regulation of

cellular responses by deubiquitinating enzymes: an

update. Front Biosci 17, 1184–1200.
20 Sowa ME, Bennett EJ, Gygi SP & Harper JW (2009)

Defining the human deubiquitinating enzyme

interaction landscape. Cell 138, 389–403.
21 Zhang XY, Varthi M, Sykes SM, Phillips C, Warzecha

C, et al. (2008) The putative cancer stem cell marker

2422 FEBS Journal 282 (2015) 2411–2423 ª 2015 The Authors. FEBS Journal published by John Wiley & Sons Ltd on behalf of FEBS.

Regulation of Hes1 stability and function T. Kobayashi et al.



USP22 is a subunit of the human SAGA complex

required for activated transcription and cell-cycle

progression. Mol Cell 29, 102–111.
22 Zhao Y, Lang G, Ito S, Bonnet J, Metzger E, et al.

(2008) ATFTC/STAGA module mediates Histone H2A

and H2B deubiquitination, coactivates nuclear

receptors, and counteracts heterochromatin silencing.

Mol Cell 29, 92–101.
23 Lin Z, Yang H, Kong Q, Li J, Lee SM, et al. (2012)

USP22 antagonizes p53 transcriptional activation by

deubiquitinating Sirt1 to suppress cell apoptosis and is

required for mouse embryonic development. Mol Cell

46, 484–494.
24 Atanassov BS & Dent SYR (2011) USP22 regulates cell

proliferation by deubiquitinating the transcriptional

regulator FBP1. EMBO Rep 12, 924–930.
25 Sussman RT, Stanek TJ, Esteso P, Gearhart JD,

Knudsen KE & McMahon SB (2013) The epigenetic

modifier ubiquitin-specific protease 22 (USP22)

regulates embryonic stem cell differentiation via

transcriptional repression of sex-determining region Y-

box 2 (SOX2). J Biol Chem 288, 24234–24246.
26 Gao Y, Lin F, Xu P, Nie J, Chen Z, et al. (2014)

USP22 is a positive regulator of NFATc2 on promoting

IL2 expression. FEBS Lett 588, 878–883.
27 Masamizu Y, Ohtsuka T, Takashima Y, Nagahara H,

Takenaka Y, et al. (2006) Real-time imaging of the

somite segmentation clock: revelation of unstable

oscillators in the individual presomitic mesoderm cells.

Proc Natl Acad Sci USA 103, 1313–1318.
28 Ohtsuka T, Sakamoto M, Guillemot F & Kageyama R

(2001) Roles of the basic helix-loop-helix genes Hes1

and Hes5 in expansion of neural stem cells of the

developing brain. J Biol Chem 276, 30467–30474.
29 Lee HJ, Kim MS, Shin JM, Park TJ, Chung HM &

Baek KH (2006) The expression patterns of

deubiquitinating enzymes, USP22 and Usp22. Gene

Expr Patterns 6, 277–284.
30 Ueo T, Imayoshi I, Kobayashi T, Ohtsuka T, Seno H,

et al. (2012) The role of Hes genes in intestinal

development, homeostasis and tumor formation.

Development 139, 1071–1082.
31 Sang L, Coller HA & Roberts JM (2008) Control of

the reversibility of cellular quiescence by the

transcriptional repressor HES1. Science 321, 1095–1100.
32 Glinsky GV, Berezovska O & Glinskii AB (2005)

Microarray analysis identifies a death-from-cancer

signature predicting therapy failure in patients

with multiple types of cancer. J Clin Invest 115,

1503–1521.
33 Sang L, Roberts JM & Coller HA (2010) Hijacking

HES1: how tumors co-opt the anti-differentiation

strategies of quiescent cells. Trends Mol Med 16,

17–26.
34 Pevnya LH & Nicolisb SK (2010) Sox2 roles in neural

stem cells. Int J Biochem Cell Biol 42, 421–424.
35 Yoshiura S, Ohtsuka T, Takenaka Y, Nagahara H,

Yoshikawa K & Kageyama R (2007) Ultradian

oscillations of Stat, Smad, and Hes1 expression in

response to serum. Proc Natl Acad Sci USA 104,

11292–11297.
36 Nishioka T, Nakayama M, Amano M & Kaibuchi K

(2012) Proteomic screening for Rho-kinase substrates

by combining kinase and phosphatase inhibitors with

14-3-3zeta affinity chromatography. Cell Struct Funct

37, 39–48.
37 Urasaki A, Morvan G & Kawakami K (2006)

Functional dissection of the Tol2 transposable element

identified the minimal cis-sequence and a highly

repetitive sequence in the subterminal region essential

for transposition. Genetics 174, 639–649.
38 Arnold SJ, Huang GJ, Cheung AFP, Era T, Nishikawa

SI, et al. (2008) The T-box transcription factor Eomes/

Tbr2 regulates neurogenesis in the cortical

subventricular zone. Genes Dev 22, 2479–2484.
39 Thompson JD, Higgins DG & Gibson TJ (1994)

CLUSTAL W: improving the sensitivity of progressive

multiple sequence alignment through sequence

weighting, position-specific gap penalties and weight

matrix choice. Nucleic Acids Res 22, 4673–4680.

2423FEBS Journal 282 (2015) 2411–2423 ª 2015 The Authors. FEBS Journal published by John Wiley & Sons Ltd on behalf of FEBS.

T. Kobayashi et al. Regulation of Hes1 stability and function


