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The cylindrical Couette flow of a rarefied gas between a rotating inner cylinder and a stationary outer cylinder
is investigated under the following two kinds of kinetic boundary conditions. One is the modified Maxwell-type
boundary condition proposed by Dadzie and Méolans [J. Math. Phys. 45, 1804 (2004)] and the other is the
Cercignani-Lampis condition, both of which have separate accommodation coefficients associated with the
molecular velocity component normal to the boundary and with the tangential component. An asymptotic analysis
of the Boltzmann equation for small Knudsen numbers and a numerical analysis of the Bhatnagar-Gross-Krook
model equation for a wide range of the Knudsen number are performed to clarify the effect of each accommodation
coefficient as well as of the boundary condition itself on the behavior of the gas, especially on the flow-velocity
profile. As a result, the velocity-slip and temperature-jump conditions corresponding to the above kinetic boundary
conditions are derived, which are necessary for the fluid-dynamic description of the problem for small Knudsen
numbers. The parameter range for the onset of the velocity inversion phenomenon, which is related mainly to the
decrease in the tangential momentum accommodation, is also obtained.

DOI: 10.1103/PhysRevE.92.013013 PACS number(s): 47.45.Gx, 51.10.+y, 05.20.Dd

I. INTRODUCTION

The cylindrical Couette flow is one of fundamental prob-
lems in fluid mechanics. If the inner cylinder is rotating
at constant speed whereas the outer one is at rest, the
circumferential flow speed will usually take its maximum on
the inner cylinder and decrease monotonically to its minimum
on the outer cylinder. In the case of a rarefied gas, however, the
velocity slip on the boundaries may induce a nonmonotonic
velocity profile; as the accommodation of the gas to the
outer cylinder becomes weak, the slip on the outer cylinder
grows and the velocity profile between the cylinders may have
an inverted gradient. This phenomenon was first recognized
in Ref. [1] and has been studied by subsequent analyses
based on the Boltzmann equation with the Maxwell-type
(diffuse-specular) boundary condition [2–4], those based on
the (incompressible) Navier-Stokes equation [5–10] where
the effect of rarefaction was taken into account via various
velocity-slip models, and so forth [11,12].

In the present study, we investigate the same problem
on the basis of kinetic theory employing the following two
boundary conditions on the cylinders: we employ (i) a modified
Maxwell-type condition [13] (see also Refs. [14,15]) and (ii)
the Cercignani-Lampis (CL) condition [16]. Both of those con-
ditions have the flexibility to adjust the tangential momentum
accommodation coefficient (TMAC) independently of another
accommodation coefficient concerning the molecular velocity
component normal to the boundary. By using them, we aim
to distinguish the effect of each accommodation coefficient on
the behavior of the gas, especially on the flow-velocity profile,
more clearly than in the case of the (standard) Maxwell-type
condition employed in the previous studies [2–4].

The paper is organized as follows. After the formulation of
the problem in Sec. II, we first carry out an asymptotic analysis

*kosuge.shingo.6r@kyoto-u.ac.jp

of the Boltzmann equation for small Knudsen numbers in
Sec. III. The velocity-slip and temperature-jump conditions
on the cylinders corresponding to the above two kinetic
boundary conditions are derived, which are necessary to the
fluid-dynamic equation in Ref. [3]. Numerical solutions of
the fluid-dynamic system thus obtained are shown, and the
linearization (in the case of slow rotation of the cylinder)
is performed to derive the exact solutions. Then in Sec. IV,
we carry out a numerical analysis of the Bhatnagar-Gross-
Krook (BGK) model equation [17,18] (instead of the original
Boltzmann equation) to investigate the problem for a wide
range of the Knudsen number. The profiles of the macroscopic
quantities and the parameter range for the onset of the velocity
inversion are obtained, which confirm our expectation that the
onset is related mainly to a decrease in the TMAC. Finally, the
paper is concluded in Sec. V. This paper is the follow-up of
Ref. [19] reported in the conference proceedings.

II. FORMULATION

A. Problem and assumptions

Let us consider a rarefied gas between two coaxial cylinders.
The inner cylinder with radius rI and temperature TI rotates
at a constant surface speed VI , whereas the outer cylinder
with radius rO and temperature TO is at rest. We investigate
the steady behavior of the gas on the basis of the Boltzmann
equation, restricting ourselves to an axially and circumfer-
entially uniform case [the BGK model equation [17,18] is
employed in the numerical analysis in Sec. IV]. As for the
boundary condition on the cylinders, we assume (i) a modified
Maxwell-type condition [13] or (ii) the Cercignani-Lampis
(CL) condition [16].

B. Basic equation

We first introduce the cylindrical coordinate system (r,θ,z),
where the z axis corresponds to the common axis of the
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cylinders. Let ξ denote the molecular velocity and ξr , ξθ , and
ξz denote, respectively, the r , θ , and z component of ξ ; f (r,ξ )
denotes the velocity distribution function (VDF) of molecules.
The macroscopic quantities of the gas, such as the density ρ,
flow velocity v, pressure p, and temperature T , are defined
by Eq. (1) below in terms of moments of the VDF; vr , vθ ,
and vz denote, respectively, the r , θ , and z component of v

(vr = vz = 0 in the present study),

ρ =
∫

f dξ , v = 1

ρ

∫
ξf dξ , (1a)

p = RρT = 1

3

∫
|ξ − v|2f dξ , (1b)

where R is the specific gas constant and dξ = dξrdξθdξz. The
domain of integration is the whole space of ξ .

The Boltzmann equation for the present problem is written
as

ξr

∂f

∂r
+ ξ 2

θ

r

∂f

∂ξr

− ξrξθ

r

∂f

∂ξθ

= J, (2)

where J is the collision term, the explicit form of which is
omitted here (see, e.g., Refs. [20–22]). In the case of the BGK
model,

J = Aρ(fe − f ), (3a)

fe = ρ

(2πRT )3/2
exp

(
−|ξ − v|2

2RT

)
, (3b)

where A is a constant and Aρ corresponds to the molecular
collision frequency.

C. Boundary conditions

The boundary condition (BC) is expressed in terms of the
scattering kernel K (see, e.g., Refs. [20,22]) as

f (ri,ξ ) =
∫

ξ̄r ni<0

∣∣∣∣ ξ̄r

ξr

∣∣∣∣K(ξ̄ ,ξ )f (ri,ξ̄ )d ξ̄

for ξrni > 0. (4)

Here and in the following, the subscript i represents I (the inner
cylinder) or O (the outer cylinder); nI = 1, nO = −1, and
d ξ̄ = dξ̄rdξ̄θdξ̄z. The explicit forms of K for BCs employed
in the present study are given below.

1. Scattering kernel of the modified Maxwell-type condition

For i = I or O,

K(ξ̄ ,ξ ; αi,βi,Ti,Vi)

=
[

(1 − αi)δ(ξr + ξ̄r ) + αi

|ξr |
RTi

exp

(
− ξ 2

r

2RTi

)]

×
[

(1 − βi)δ(ξθ − ξ̄θ )δ(ξz − ξ̄z)

+βi

1

2πRTi

exp

(
− (ξθ − Vi)2 + ξ 2

z

2RTi

)]
, (5)

where δ is the Dirac delta function and VO = 0. The coef-
ficients αI and βI (or αO and βO) of the inner (or outer)
cylinder have the following physical meanings: αi ∈ [0,1]

is the energy accommodation coefficient (EAC) associated
with the normal velocity component and βi ∈ [0,1] is the
TMAC. In terms of the notation introduced in Appendix A,
where an accommodation coefficient ac(ψ) for an arbitrary
function ψ(ξ ) is defined, those are written as αi = ac(ξ 2

r ) and
βi = ac(ξθ ) = ac(ξz).

Incidentally, the EAC associated with the tangential ve-
locity is also given by βi (more precisely, ac[(ξθ − Vi)2] =
ac(ξ 2

z ) = βi ; see Appendix A for a definition of ac(·)). In
Appendix B, we show the expression of the above kernel (5)
as a convex combination of the scattering kernel for the CL
condition [Eq. (6) below] and an extension to βi ∈ (1,2].

2. Scattering kernel of the CL condition

For i = I or O,

K(ξ̄ ,ξ ; αi,βi,Ti,Vi) = Kn(ξ̄r ,ξr ; αi,Ti)

×Kt (ξ̄θ − Vi,ξθ − Vi ; βi,Ti)

×Kt (ξ̄z,ξz; βi,Ti), (6)

where

Kn(c̄,c; α,T ) = |c|
αRT

I0

(
(1 − α)1/2

αRT
c̄c

)

× exp

(
−c2 + (1 − α)c̄ 2

2αRT

)
, (7a)

Kt (c̄,c; β,T ) = 1

[2πβ(2 − β)RT ]1/2

× exp

(
− [c − (1 − β)c̄ ]2

2β(2 − β)RT

)
, (7b)

I0(y) = 1

2π

∫ 2π

0
exp(y cos φ)dφ. (7c)

Here I0 is the modified Bessel function of the first kind
and zeroth order. The coefficient αi ∈ [0,1] in Eq. (6) has
the same physical meaning as in Eq. (5); βi ∈ [0,2] is again
the TMAC, whereas the EAC associated with the tangential
velocity is given by βi(2 − βi) in the case of the CL condition
(i.e., ac[(ξθ − Vi)2] = ac(ξ 2

z ) = βi(2 − βi); see Appendix A
for a definition of ac(·)). When βi > 1, more than half of
the impinging molecules experience backscattering (i.e., the
scattering where the change in the direction of tangential
velocity is larger than π/2).

D. Dimensionless parameters

Rewriting the Boltzmann equation (2) and the BC (4) [with
the scattering kernel (5) or (6)] in an appropriate dimensionless
form, we see that the present problem is characterized by the
following dimensionless parameters:

rO/rI , TO/TI , UI [≡VI/(2RTI )1/2],

αI , βI , αO, βO, Kn (≡�I /rI ).

The Knudsen number Kn, which indicates the degree of
rarefaction, is defined as the ratio of the mean free path �I

of molecules in an equilibrium state at rest with density ρav

and temperature TI to the radius rI of the inner cylinder.

013013-2
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Here ρav denotes the average density of the gas between the
cylinders; �I = m/(21/2πd2ρav) in the case of the hard-sphere
(HS) molecular gas (m and d are the molecular mass and
diameter) and �I = (8RTI/π )1/2/(Aρav) in the case of the
BGK model.

III. ASYMPTOTIC ANALYSIS FOR SMALL
KNUDSEN NUMBERS

In this section, we carry out an asymptotic analysis of
the boundary-value problem (2) and (4) for small Knudsen
numbers, in the case where the TMAC βi is also small [the
actual analysis is performed for dimensionless versions of
Eqs. (2) and (4)]. More precisely, we consider the following
two cases:

Case 1: αi = α̂iε, βi = β̂iε,
Case 2: αi = O(1), βi = β̂iε,

where ε ≡ (π1/2/2)Kn. Since the procedure of the analysis is
essentially the same as in Ref. [3] (see also Refs. [21,22]), we
show its outline only (notice the difference in the definitions
of αi and βi here and those in Ref. [3]).

A. Fluid-dynamic equation

Let ε be small. First, putting aside the boundary condition,
we seek a solution of the Boltzmann equation [dimensionless
version of Eq. (2)] varying moderately in space in a power
series of ε. This solution is called the Hilbert solution.
According to Ref. [3], the Hilbert solution at the leading order
(the order of ε0) is a local Maxwellian. From the solvability
conditions for the solution at the order of ε1 and ε2, the
following fluid-dynamic set of equations for the macroscopic
quantities at the leading order is derived:

dp̂0

dr̂
− 2ρ̂0u

2
θ0

r̂
= 0, (8a)

d

dr̂

[
γ1r̂

2T̂
1/2

0

(
duθ0

dr̂
− uθ0

r̂

)]
= 0, (8b)

5

4

d

dr̂

(
γ2r̂ T̂

1/2
0

dT̂0

dr̂

)
+ γ1r̂ T̂

1/2
0

(
duθ0

dr̂
− uθ0

r̂

)2

= 0, (8c)

p̂0 = ρ̂0T̂0,

(8d)

where r̂ = r/rI . The dependent variables in Eq. (8) are the
dimensionless macroscopic quantities defined as ρ̂ = ρ/ρav,
uθ = vθ/(2RTI )1/2, T̂ = T/TI , and p̂ = p/(RρavTI ) at the
order of ε0: i.e., the leading term in the power series,

h = h0 + h1ε + h2ε
2 + · · · (h = ρ̂,uθ ,T̂ ,p̂).

γ1 and γ2 are functions of T̂0, whose functional forms are
determined by the intermolecular force: γ1 = 1.270 042 and
γ2 = 1.922 284 in the case of the HS molecules and γ1 = γ2 =
T̂

1/2
0 in the case of the BGK model equation. Since γ1T̂

1/2
0 and

γ2T̂
1/2

0 correspond, respectively, to the dimensionless viscosity
and thermal conductivity, the above set of equations (8) is
equivalent to the compressible Navier-Stokes set. We should
note again that the above set (8) has been derived in Ref. [3];

the explicit form of the Hilbert solution up to O(ε1) is shown
in the same reference.

B. Boundary conditions for the fluid-dynamic equation

Next we take into account the kinetic boundary condition
(KBC) [dimensionless version of Eq. (4)]. Let us first consider
the case of βi = O(1). In this case, the Hilbert solution at the
leading order (i.e., a local Maxwellian) will satisfy the KBC if
the boundary values of uθ0 and T̂0 coincide with the velocity
and temperature of the cylinders. That is, as a BC for the
fluid-dynamic set (8), the nonslip condition is required:

Ui − uθ0 = 0, T̂wi − T̂0 = 0 at r̂ = r̂i , (9)

where i = I (or i = O) on the inner (or outer) cylinder, r̂I = 1,
r̂O = rO/rI , UO = 0, T̂wI = 1, and T̂wO = TO/TI .

In the case of βi = O(ε1) [and αi = O(ε1)], however, the
KBC at the leading order puts no restrictions on the boundary
values of uθ0 (and T̂0). To determine those boundary values,
we need to proceed to the next order.

1. Case 1

In this case, the KBC at the leading order reduces to
the specular reflection, which is satisfied unconditionally.
At the next order, however, the Hilbert solution cannot satisfy
the KBC. Thus we need to introduce a correction (called the
Knudsen-layer correction) in a thin layer [with a thickness of
O(�I )] adjacent to the boundary. The total solution (Hilbert
solution + Knudsen-layer correction) will solve the original
boundary-value problem at O(ε1).

As in Ref. [3], the problem for the Knudsen layer is
formulated as a half-space boundary-value problem of the
linearized Boltzmann equation, which in general can be solved
only numerically. By solving it, one obtains the Knudsen layer
at O(ε1) and, at the same time, the BCs for uθ0 and T̂0. In the
present study, however, we need the latter BCs only. Thus we
follow the procedure in Refs. [23–25], by which one can derive
the latter only without solving the Knudsen-layer problem
explicitly. The result for the modified Maxwell-type condition
[Eq. (4) with (5)] is given as follows: at r̂ = r̂i ,

π1/2γ1

(
duθ0

dr̂
− uθ0

r̂i

)
+ β̂i ρ̂0(Ui − uθ0)ni = 0, (10a)

5

4
π1/2γ2

dT̂0

dr̂
+ α̂i + β̂i

2
ρ̂0(T̂wi − T̂0)ni

+ 1

2
β̂i ρ̂0(Ui − uθ0)2ni = 0. (10b)

Note that Eq. (10) with α̂i = β̂i is essentially the same as
the corresponding result in Ref. [3] derived for the (standard)
Maxwell-type condition. In the case of the CL condition
[Eq. (4) with (6)], one obtains Eq. (10a) and

5

4
π1/2γ2

dT̂0

dr̂
+ α̂i + 2β̂i

2
ρ̂0(T̂wi − T̂0)ni = 0, (11)

instead of Eq. (10b). The above BCs (10) and (11) approach
the nonslip BC (9) as β̂i → ∞.
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2. Case 2

In this case, the KBC at the leading order reduces to the
specular reflection with respect to the tangential velocity only
[corresponding to the limit βi → 0 of Eq. (5) or (6)]. The
Hilbert solution at the leading order (a local Maxwellian) can
satisfy this condition if the boundary value of T̂0 coincides
with temperature of the cylinder. That is, the nonslip condition
for T̂0 is required. To determine the boundary value of uθ0, we
again consider the Knudsen layer at O(ε1) and follow the same
procedure as before. Finally, we obtain the following BCs for
uθ0 and T̂0: at r̂ = r̂i ,

π1/2γ1

(
duθ0

dr̂
− uθ0

r̂i

)
+ β̂i ρ̂0(Ui − uθ0)ni = 0, (12a)

T̂wi − T̂0 = 0 (12b)

for both the modified Maxwell-type and CL conditions. The
above BC (12) is derived also as the limit α̂i → ∞ of the
BC (10) [or (11)] in Case 1.

C. Numerical solutions of the fluid-dynamic equation

Numerical solutions of the fluid-dynamic equation (8) for
the HS molecules with the BC (10), (11), or (12) are shown
below. Incidentally, Eq. (8) for the BGK model (with γ1 =
γ2 = T̂

1/2
0 ) gives similar results (see Fig. 9 appearing later).

For simplicity, we assume that both cylinders have common
accommodation coefficients, i.e., α̂I = α̂O (≡ α̂) and β̂I = β̂O

(≡β̂).
Figure 1 shows results with the BC (10) (corresponding to

the modified Maxwell-type condition) or (12) (to both KBCs)
in the case of rO/rI = 2, TO/TI = 1, and UI = 0.5. The
profile of the velocity uθ0 is inverted for β̂ � 0.5 in this case.
Since α̂ appears only in the BC (10b) for the temperature, the
velocity profile is almost independent of α̂. Figure 2 shows
results with the BC (10a) and (11) (corresponding to the
CL condition) for the same case as in Fig. 1(a). Comparing
Figs. 1(a) and 2, we see that the velocity profiles for both KBCs
are almost identical.

Figures 3 and 4 show the dependence of the velocity profile
on UI and rO/rI , respectively. As in Figs. 1 and 2, the inverted
velocity profile occurs for sufficiently small β̂. The velocity
slips (or |Ui − uθ0|) on both cylinders increase with decreasing
β̂, whereas the slip on the inner cylinder grows faster, resulting
in the inverted profile. This is because the torque exerted on
the gas by the cylinder is proportional to r̂2

i |Ui − uθ0|. To be
more specific, let us denote the magnitude of the torque (per
unit length in z direction) as 2πr2

I (RρavTI )N̂i , where i = I (or
i = O) for the inner (or outer) cylinder. Then N̂i up to O(ε) is
given as

N̂i = π−1/2r̂2
i β̂i ρ̂0(r̂i)T̂

1/2
0 (r̂i)|Ui − uθ0(r̂i)|ε. (13)

If we ignore the differences between ρ̂0(1)T̂ 1/2
0 (1) and

ρ̂0(r̂O)T̂ 1/2
0 (r̂O) (they are less than 3 % when β̂ < 2 in

Figs. 1–4), we deduce from N̂O = N̂I that uθ0(r̂O) � uθ0(1)
when

uθ0(r̂O) � UI

1 + r̂2
O(β̂O/β̂I )

. (14)

1 1.5 20

0.1

0.2

0.3

1 1.5 2

1

1.05

(a) α̂ = 1

r/rI

u
θ
0

β̂ = 10

5

2
1

0.1 0.2 0.5

r/rI

T̂
0

β̂ = 10

52
1
0.5
0.2
0.1

1 1.5 2

1

1.05

1 1.5 20

0.1

0.2

0.3

(b) α̂ = 10

r/rI

u
θ
0

β̂ = 10

5

2
1

0.1 0.2 0.5

r/rI

T̂
0

β̂ = 105

2
1

0.1 0.2 0.5

1 1.5 2

1

1.005

1.01

1 1.5 20

0.1

0.2

0.3

(c) α̂ → ∞
r/rI

u
θ
0

β̂ = 10

5

2
1

0.1 0.2 0.5

r/rI

T̂
0

β̂ = 10

5

2 1

0.50.1,0.2

FIG. 1. Solutions uθ0 and T̂0 of the fluid-dynamic equation (8)
(for the HS molecules) with the boundary condition (10) [in panel (a)
and (b)] or (12) [in panel (c)] for rO/rI = 2, TO/TI = 1, UI = 0.5,
and various values of α̂ (≡ α̂I = α̂O ) and β̂ (≡ β̂I = β̂O ). The dashed
lines in panel (a) indicate the corresponding results of the linearized
set (15) with (16).

This inequality gives a rough estimate for the velocity slip
on the outer cylinder when the inverted profile arises, which
is actually satisfied in Figs. 1–4. The above inequality can
naturally be derived also from the exact solution of the

1 1.5 20

0.1

0.2

0.3

1 1.5 2

1

1.04

r/rI

u
θ
0

β̂ = 10

5

2
1

0.1 0.2 0.5

r/rI

T̂
0

β̂ = 10
5

2
1

0.50.20.1

FIG. 2. Solutions uθ0 and T̂0 of the fluid-dynamic equation (8)
(for the HS molecules) with the boundary conditions (10a) and (11)
for rO/rI = 2, UI = 0.5, TO/TI = 1, and α̂ = 1.
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1 1.5 20

0.02

0.04

0.06

(a) UI = 0.1

r/rI

u
θ
0

β̂ = 10

5

2
1

0.1 0.2 0.5

1 1.5 20

0.1

0.2

(b) UI = 0.3

r/rI

u
θ
0

β̂ = 10

5

2
1

0.1 0.2 0.5

FIG. 3. Solutions uθ0 of the fluid-dynamic equation (8) (for the
HS molecules) with the boundary condition (10) for rO/rI = 2,
TO/TI = 1, and α̂ = 1. (a) UI = 0.1 and (b) UI = 0.3.

linearized equation shown in the next section (see also
Appendix C).

D. Linearization

We next linearize the fluid-dynamic equation (8) and the
BCs (10), (11), and (12) under the assumption that |UI | � 1
and |T̂wO − 1| � 1 (but |UI | � Kn). If we put ρ̂0 = 1 + ω,
uθ0 = u, T̂0 = 1 + τ , and p̂0 = 1 + P with |ω| � 1, |u| � 1,
|τ | � 1, and |P | � 1, and neglect the higher-order terms, then
the fluid-dynamic equation (8) reduces to

dP

dr̂
= 0,

d

dr̂

[
r̂2

(
du

dr̂
− u

r̂

)]
= 0, (15a)

d

dr̂

(
r̂
dτ

dr̂

)
= 0, P = ω + τ. (15b)

The BCs (10) and (11) in Case 1 are rewritten as follows: at
r̂ = r̂i ,

π1/2γ ∗
1

(
du

dr̂
− u

r̂i

)
+ β̂i(Ui − u)ni = 0, (16a)

5

4
π1/2γ ∗

2
dτ

dr̂
+ α̂i + cβ̂i

2
(τwi − τ )ni = 0, (16b)

where c = 1 for the modified Maxwell-type condition, c = 2
for the CL condition, τwI = 0, τwO = T̂wO − 1, and γ ∗

1 and γ ∗
2

denote, respectively, γ1 and γ2 at T̂0 = 1. The BC in Case 2 is

1 1.1 1.2

0.2

0.3

(a) rO/rI = 1.2

r/rI

u
θ
0

β̂ = 10

5
2

1

0.1
0.2

0.5

1 2 30

0.1

0.2

0.3

(b) rO/rI = 3

r/rI

u
θ
0

β̂ = 10

5

2
1

0.5
0.2

0.1

FIG. 4. Solutions uθ0 of the fluid-dynamic equation (8) (for the
HS molecules) with the boundary condition (10) for TO/TI = 1,
UI = 0.5, and α̂ = 1. (a) rO/rI = 1.2 and (b) rO/rI = 3.

given by Eq. (16a) and τwi − τ = 0 instead of Eq. (16b). Note
again that Eq. (16) with c = 1 and α̂i = β̂i is essentially the
same as the corresponding result in Ref. [3] for the (standard)
Maxwell-type condition.

The flow velocity u is decoupled from the temperature
τ in the above linearized system (15) and (16). Thus u is
independent of α̂i but depends only on β̂i corresponding to
the TMAC. The above system can be solved analytically
and gives the velocity field u corresponding to the solution
of the incompressible Navier-Stokes equation. As indicated
by dashed lines in Fig. 1(a), the solution u does not differ
much from the result of the compressible Navier-Stokes set
even when UI = 0.5. In Appendix C, the explicit form of the
analytical solution is shown and two kinds of criterion for
the occurrence of the velocity inversion, one of which will be
compared with numerical results of the BGK model in Fig. 10
later, are derived from it.
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FIG. 5. Profiles of the flow velocity vθ for the BGK model
equation in the case of rO/rI = 2, UI = 0.5, and TO/TI = 1.
(a) Kn = 0.02, (b) Kn = 0.1, (c) Kn = 1, and (d) Kn = 10. The
solid lines indicate the results of the modified Maxwell-type BC, and
the dashed lines (for β � 0.05) those of the Cercignani-Lampis BC.
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IV. NUMERICAL ANALYSIS FOR A WIDE RANGE
OF THE KNUDSEN NUMBER

A numerical analysis of the BGK model equation [i.e.,
Eq. (2) with (3)] via a finite-difference method is carried out
to investigate the behavior of the gas for a wide range of
the Knudsen number. Essentially the same finite-difference
scheme as that devised in Ref. [26] is employed, where the
discontinuity of the VDF appearing in a gas around a convex
body [27] is correctly taken into account.

In this section, we restrict ourselves to the case of
rO/rI = 2 as well as αI = αO(≡ α) and βI = βO(≡ β) as
in Sec. III C. The computations are performed mainly for the
modified Maxwell-type condition [Eq. (4) with (5)], whereas
some auxiliary computations for the CL condition [Eq. (4)
with (6)] are also performed for comparison; this is because
the former condition is easier to compute in the case of a
finite-difference method. Some data for the computation are
given in Appendix D.
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FIG. 6. Profiles of the density ρ for the BGK model equation in
the case of rO/rI = 2, UI = 0.5, and TO/TI = 1. (a) Kn = 0.1, (b)
Kn = 1, and (c) Kn = 10. The solid lines indicate the results of the
modified Maxwell-type BC, and the dashed lines (for β = 0.1, 0.5,
and 1) those of the Cercignani-Lampis BC.
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FIG. 7. Profiles of the temperature T for the BGK model equation
in the case of rO/rI = 2, UI = 0.5, and TO/TI = 1. (a) Kn = 0.1,
(b) Kn = 1, and (c) Kn = 10. The solid lines indicate the results of
the modified Maxwell-type BC, and the dashed lines (for β = 0.1,
0.5, and 1) those of the Cercignani-Lampis BC.

A. Profiles of the macroscopic quantities

Figures 5–7 show profiles of the flow velocity vθ , density
ρ, and temperature T for various values of α, β, and Kn in the
case of rO/rI = 2, UI = 0.5, and TO/TI = 1. Note that when
α = β = 1, both the modified Maxwell-type BC and the CL
condition reduce to the diffuse reflection condition and give
exactly the same profiles.

The profile of vθ for small Kn is almost independent of
α and practically depends on β (or the TMAC) only. Thus
only the results for α = 1 are shown in Figs. 5(a) and 5(b).
The results of the modified Maxwell-type condition and those
of the CL condition with the same β are indistinguishable in
Figs. 5(a) and 5(b), since the TMAC is the same for both BCs.
As Kn increases, however, the dependence of vθ on α as well
as on the type of BC appears [Figs. 5(c) and 5(d)], since the
gas behavior becomes sensitive to details of BC (details of the
velocity distribution of molecules reflected on the boundary).
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FIG. 8. Comparison of results for the BGK model equation
with the modified Maxwell-type BC (with α = β) and those with
the standard Maxwell-type BC (with the same accommodation
coefficient) in the case of rO/rI = 2, UI = 0.5, and TO/TI = 1.
(a) Kn = 1 and (b) Kn = 10. The solid lines (or the dashed lines)
indicate results with the modified (or standard) Maxwell-type BC.

On the other hand, as seen in Figs. 6 and 7, the profiles
of ρ and T depend on both α and β. Those for the modified
Maxwell-type condition do not agree well with those for the
CL condition with the same α and β (except when α = β = 1),
even when Kn is small. This is because the EAC is different;
as mentioned in Sec. II C, ac[(ξθ − Vi)2] = β for the modified
Maxwell-type condition, whereas ac[(ξθ − Vi)2] = β(2 − β)
for the CL condition [ac(ξ 2

r ) = α for both BCs].
Figure 8 shows a comparison of the results of the modified

Maxwell-type condition with α = β and those of the (stan-
dard) Maxwell-type condition with the same accommodation
coefficient. In this case, both BCs have common TMAC and
EAC. Thus all the profiles of vθ , ρ, and T show good agreement
when Kn � 1. Naturally, the disagreement appears as Kn
increases, since the profiles become sensitive to details of BC.

The profiles of the flow velocity for small Kn in Figs. 5(a)
and 5(b) and those of the temperature in Fig. 7(a) are similar
to the results of the asymptotic analysis shown in Fig. 1. More
direct comparisons when ε [=(π1/2/2)Kn] = 0.02 are shown
in Fig. 9. The results of the BGK model are well reproduced by
the fluid-dynamic set (8) with the BC (10) even when β = 1
and/or α = 1. The results obtained with the nonslip BC (9),
which correspond to the limit β̂ → ∞, are also shown for
comparison. As seen in panel (b), the temperature profiles
obtained with the BC (12) (corresponding to the limit α̂ →
∞) are less accurate, whereas they are consistent because the
differences from the results of the BGK model are smaller
than ε.
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FIG. 9. Comparison of the flow-velocity and temperature profiles
for the BGK model equation with the modified Maxwell-type BC and
the corresponding uθ0 and T̂0 of the fluid-dynamic equation (8) (with
γ1 = γ2 = T̂

1/2
0 ) in the case of rO/rI = 2, UI = 0.5, TO/TI = 1, and

ε [=(π 1/2/2)Kn] = 0.02. The solid lines indicate results of the BGK
model for α = 0.01 (or α = 1) and β = 0.01, 0.05, 0.1, and 1 in
panel (a) [or in panel (b)]. The dashed lines indicate results of the
fluid-dynamic equation with the BC (10) for α̂ = 0.5 (or α̂ = 50) and
β̂ = 0.5, 2.5, 5, and 50 in panel (a) [or in panel (b)]; the dashed-dotted
lines for T̂0 in panel (b) indicate results with the BC (12) for the same
β̂’s; the dotted lines indicate results with the nonslip BC (9).

B. Critical value of β for onset of the inverted velocity profile

As seen in Fig. 5, the inversion of the flow velocity profile
occurs when β is sufficiently small. The critical value βc of
β for the onset of the inversion varies depending on Kn, α,
and the other parameters. Figure 10 shows βc of the modified
Maxwell-type BC as a function of Kn for several pairs of α

and TO/TI . Here βc is defined to be the maximum value of β

when a positive gradient of vθ appears in the gap between the
cylinders [thus vθ (rO) > vθ (rI ) may not be achieved].

/ =

=
.

.

=

/ = .

FIG. 10. Critical value βc vs Kn for the BGK model equation
with the modified Maxwell-type BC in the case of rO/rI = 2 and
UI = 0.5. (a) TO/TI = 1 and (b) α = 1. In panel (a), the filled
circles indicate the critical values for the (standard) Maxwell-type
BC reported in Ref. [3] and the dashed line those determined by
Eq. (C3).
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The βc takes its maximum at an intermediate Kn. When
Kn � 1, the velocity profile is insensitive to the type of BC
as seen in Figs. 5(a), 5(b), and 8(a). Thus it is natural that, as
seen in Fig. 10(a), βc converges to the critical value for the
(standard) Maxwell-type BC as Kn decreases. In addition, βc

for TO/TI = 1 in panel (a) approaches the criterion (C3) as Kn
decreases, which is derived from the solution of the linearized
system (15) and (16) in Appendix C.

Finally, we should note that some of the previous experi-
ments reported rather small values of accommodation coeffi-
cients for well-controlled clean surfaces; see Refs. [28,29] for
the TMAC and Refs. [30,31] for the EAC. According to those
references, the values of βc in Fig. 10 (for intermediate Kn)
are within the reach of experimental verification.

V. CONCLUDING REMARKS

In the present study, the cylindrical Couette flow of a
rarefied gas between a rotating inner cylinder and a stationary
outer cylinder was investigated on the basis of kinetic theory.
Two kinds of kinetic boundary conditions, i.e., (i) the modified
Maxwell-type condition and (ii) the CL condition, were em-
ployed on the surface of the cylinder, both of which can adjust
the TMAC separately from another accommodation coefficient
associated with the normal velocity component. By using those
boundary conditions, we aimed to distinguish the effect of
each accommodation coefficient on the behavior of the gas,
especially on the profile of the circumferential flow velocity.

We carried out an asymptotic analysis of the Boltzmann
equation for small Knudsen numbers, showed the fluid-
dynamic equation describing the behavior of the macroscopic
quantities at the leading order, and derived the appropriate
boundary conditions on the assumption that the TMAC is small
(of the order of the Knudsen number). The numerical solutions
of the fluid-dynamic system indicate that the flow velocity pro-
file practically depends on the TMAC only. Further, when the
rotation of the inner cylinder was slow, we linearized the above
system and showed that the flow velocity is decoupled from the
temperature field and thus exactly depends on the TMAC only.

Then we carried out the numerical analysis of the BGK
model equation by means of a finite-difference method
and obtained profiles of the macroscopic quantities for a
wide range of the Knudsen number and the accommodation
coefficients. The dependence of those macroscopic profiles
on the accommodation coefficients and on the type of the
boundary condition is clarified. We also made a comparison
with the results of the asymptotic analysis and confirmed that
the numerical solutions of the BGK model for small Kn were
well reproduced by them. Finally, we obtained the critical
values of TMAC for the onset of the inverted velocity profile
in various cases. The results show that the critical value, as
a function of the Knudsen number Kn, has a maximum at an
intermediate Kn and converges to the previous result [3] for
the (standard) Maxwell-type condition as Kn decreases.

APPENDIX A: ACCOMMODATION COEFFICIENTS

Following Cercignani [20], we define an accommodation
coefficient ac(ψ) for an arbitrary function ψ(ξ ) of the

molecular velocity as

ac(ψ) = (ψ,f )− − (ψ,f )+
(ψ,f )− − (ψ,M)+

, (A1)

where f is the VDF on the boundary and

(ψ,φ)− =
∫

ξ ·n<0
|ξ · n|ψ(ξ )φ(ξ )dξ , (A2a)

(ψ,φ)+ =
∫

ξ ·n>0
|ξ · n|ψ(ξ )φ(ξ )dξ , (A2b)

M(ξ ) = (1,f )−
2π (RTw)2

exp

(
− |ξ − V w|2

2RTw

)
. (A2c)

Here n is the unit normal vector to the boundary pointing to the
gas; V w and Tw are, respectively, the velocity and temperature
of the boundary (V w · n = 0 is assumed).

APPENDIX B: EXTENSION OF THE MODIFIED
MAXWELL-TYPE CONDITION

The scattering kernel (5) of the modified Maxwell-type
condition is expressed as a convex combination of the CL
kernel (6):

KM(ξ̄ ,ξ ; αi,βi) = (1 − αi)(1 − βi)KCL(ξ̄ ,ξ ; 0,0)

+αi(1 − βi)KCL(ξ̄ ,ξ ; 1,0)

+ (1 − αi)βiKCL(ξ̄ ,ξ ; 0,1)

+αiβiKCL(ξ̄ ,ξ ; 1,1). (B1)

Here KM (or KCL) denotes the kernel of the modified Maxwell-
type condition (or the CL condition), and the parameters Ti

and Vi are omitted. Now we extend Eq. (B1) to βi ∈ (1,2],
employing the following definition for βi > 1:

KM(ξ̄ ,ξ ; αi,βi) = (1 − αi)(βi − 1)KCL(ξ̄ ,ξ ; 0,2)

+αi(βi − 1)KCL(ξ̄ ,ξ ; 1,2)

+ (1 − αi)(2 − βi)KCL(ξ̄ ,ξ ; 0,1)

+αi(2 − βi)KCL(ξ̄ ,ξ ; 1,1). (B2)

Then, when βi > 1, the backscattering dominates as in the case
of the CL condition [see the text below Eq. (7)]. Equation (B2)
can also be expressed as

KM (ξ̄ ,ξ ; αi,βi)

=
[

(1 − αi)δ(ξr + ξ̄r ) + αi

|ξr |
RTi

exp

(
− ξ 2

r

2RTi

)]

×
[

(βi − 1)δ(ξθ + ξ̄θ − 2Vi)δ(ξz + ξ̄z)

+ (2 − βi)
1

2πRTi

exp

(
− (ξθ − Vi)2 + ξ 2

z

2RTi

)]
. (B3)

Using the above definition, we can derive the following
boundary condition for the fluid-dynamic equation (8) in the
case of αi = α̂iε and βi = 2 − β̂iε (ε � 1): at r̂ = r̂i ,

Ui − uθ0 = 0, (B4a)

5

4
π1/2γ2

dT̂0

dr̂
+ α̂i + β̂i

2
ρ̂0(T̂wi − T̂0)ni = 0. (B4b)
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Incidentally, Eqs. (B4a) and (11) [instead of (B4b)] are derived
for the CL condition in this case.

APPENDIX C: EXACT SOLUTION OF THE
LINEARIZED EQUATION

The linearized system (15) and (16) can be solved immedi-
ately. The flow velocity u is written as

u = C

r̂
+ Dr̂, (C1)

where C and D are constants given as

C = 1

E
r̂Oβ̂Oβ̂IUI , (C2a)

D = 1

Er̂2
O

(2π1/2γ ∗
1 − r̂O β̂O)β̂IUI , (C2b)

E =
(

r̂O − 1

r̂O

)
β̂Oβ̂I + 2π1/2γ ∗

1

(
r̂O β̂O + β̂I

r̂2
O

)
. (C2c)

One criterion for the occurrence of the velocity inversion
has been derived in Ref. [3] from the above solution as

max
r̂

(
du

dr̂

)
� 0 ⇒ β̂O � π1/2γ ∗

1

r̂O

. (C3)

This criterion is compared with the numerical results of
the BGK model equation in Fig. 10(a). Another more strict
criterion may be derived as

u(r̂O) � u(1) ⇒ β̂O � 2π1/2γ ∗
1

r̂O(r̂O + 1)
. (C4)

The inequality (14) can also be derived from Eqs. (C1)
and (C4).

APPENDIX D: DATA FOR THE COMPUTATION
OF THE BGK MODEL EQUATION

Before the computation, we transform the molecular veloc-
ities (ξr ,ξθ ) into (ξ,ψ) defined as

ξ = (ξ 2
r + ξ 2

θ )1/2, ψ = arctan(ξθ/ξr ). (D1)

Further, we eliminate ξz by introducing appropriate marginal
VDFs (by the integration with respect to ξz; see, e.g.,
Refs. [22,26]). In the computations in Sec. IV, we use 241
nonuniform grid points for r (1 � r/rI � 2), where the min-
imum interval is 4.3 × 10−5rI on the surface of the cylinders
and the maximum 6.5 × 10−3rI at the center of the gap; 145
nonuniform grid points are used for ξ in the range 0 � ξ � 6cI

[cI = (2RTI )1/2], where the minimum and maximum intervals
are 2.0 × 10−6cI at ξ = 0 and 0.12cI at ξ = 6cI , respectively;
272 nonuniform grid points are used for ψ (−π < ψ � π ),
where the minimum and maximum intervals are 8.4 × 10−4

(at |ψ | = 0, π/2, and π ) and 3.6 × 10−2 (at |ψ | = π/4 and
3π/4), respectively.
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