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ABSTRACT: A Monte Carlo study is made of the intrinsic viscosity [η] of semiflexible ring

polymers by the use of a discrete version of the Kratky–Porod (KP) wormlike ring without

excluded volume. The values of [η] are evaluated in the Kirkwood–Riseman approximation.

The ratio of [η] of the rings of the trivial knot to that of the rings without the topological

constraint is found to become a function only of the reduced contour length λL, where λ−1 is

the stiffness parameter of the KP chain and L is the total contour length. It is then shown

that the ratio is almost equal to unity for λL ≲ 10 and increases monotonically with increasing

λL for λL ≳ 10.

KEYWORDS: Monte Carlo simulation; intrinsic viscosity; ring polymer; semiflexible polymer;

wormlike chain model

RUNNING HEADS: [η] of semiflexible rings
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INTRODUCTION

We have recently made Monte Carlo (MC) studies1–3 of effects of chain stiffness on dilute

solution properties of unperturbed ring polymers by the use of a discrete version4 of the

Kratky–Porod (KP) wormlike chain model5,6 without excluded volume. The behavior of the

second virial coefficient A2 in the unperturbed (Θ) state, which is proportional to the effective

intermolecular excluded volume arising only from the topological interaction,1 and that of the

scattering function P (k) with k the magnitude of the scattering vector2 were examined as

functions of the reduced contour length λL, where λ−1 is the stiffness parameter of the KP

ring and L is the total contour length. Furthermore, effects of the intramolecular topological

constraint, which works to preserve a given knot type of a single ring polymer, on A2 and

P (k) and also on the mean-square radius of gyration ⟨S2⟩ 1 were examined by comparing the

MC results for the following two kinds of the equilibrium ensembles of configurations of the

KP rings: one is the ensemble composed of configurations only of the trivial knot, called the

trivial-knot ensemble, and the other is that composed of configurations of all kinds of knot

with the Boltzmann weight of the configurational potential energy, called the mixed ensemble.

Hereafter, the subscripts “t.k.” and “mix” are used to denote the values for the trivial-knot

and mixed ensembles, respectively. It was shown that the difference between the two kinds

of ensembles becomes large with increasing λL for large λL, while both the ensembles are,

of course, identical with each other in the rigid-ring limit λL → 0. Specifically, the ratio

⟨S2⟩t.k./⟨S2⟩mix (both the values being for the same λ−1 and L) was found to be almost equal

to unity for λL ≲ 10 and increase monotonically with increasing λL for λL ≳ 10. However,

the range of λL ≤ 103 so investigated was still far from the random-coil limit of λL → ∞. We

note that in this limit there holds the asymptotic relation ⟨S2⟩t.k./⟨S2⟩mix ∝ (λL)0.2 derived

from the relations ⟨S2⟩mix ∝ λL 7–9 and ⟨S2⟩t.k. ∝ (λL)2ν with ν ≃ 0.6.10,11

As a continuation of the previous studies, the present study adresses the intrinsic viscosity

[η] of semiflexible ring polymers. The quantity [η] works as a measure of average chain

dimension of polymers in solution and is strongly affected by the primary structure of polymers

as well as by the chain stiffness, since [η] is related to the effective hydrodynamic volume of
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polymers in solution (in shear flow) by the Einstein formula for [η] of rigid spheres.9 For

a deeper understanding of the effects of the topological constraint and also chain stiffness

on the conformational properties of ring polymers, it is necessary to clarify the behavior of

[η]t.k./[η]mix (both the values being for the same λ−1 and L) as a function of λL in the range

of the crossover from the rigid-ring limit to the random-coil one. We note that in the random-

coil limit there holds the asymptotic relation [η]t.k./[η]mix ∝ (λL)3ν−3/2 (3ν − 3/2 ≃ 0.3)

considering the fact that [η] is proportional to ⟨S2⟩3/2 in this limit along with the asymptotic

relations for ⟨S2⟩ described above. Such a study may contribute to the progress in the fine

characterization of novel ring polymer samples, for example, well-purified ring polystyrene12

and cyclic amylose tris(alkylcarbamate)s.13

As in the cases of the previous studies,1,2 we resort to the MC method for evaluating [η]

of the KP rings because of the formidable difficulty in analytical treatment of the topological

constraint. We evaluate [η]mix and [η]t.k. of the KP rings for various values of λ−1 and L in the

Kirkwood–Riseman (KR) approximation.9,14 On the basis of the values of [η]mix and [η]t.k. so

obtained, the behavior of [η]t.k./[η]mix is examined. Furthermore, the Flory–Fox factor9,15 Φ

defined from [η] and ⟨S2⟩ by

[η] = 63/2Φ
⟨S2⟩3/2

M
(1)

with M the molecular weight is calculated both for the mixed and trivial-knot ensembles using

with the MC values of [η] along with those of ⟨S2⟩ obtained in the previous study, and then,

the behavior of Φmix, Φt.k., and Φt.k./Φmix as functions of λL is also examined.

It is pertinent to note here the theoretical study of [η] of the (continuous) KP ring by Fujii

and Yamakawa.16 They have already obtained an analytical expression for [η]mix of the KP

ring along with that of the rigid ring in the KR approximation by the use of the hydrodynamic

cylinder model.6 Their expression has been given as a function not only of λL but also λd

with d the hydrodynamic diameter of the cylinder. Unfortunately, however, the expression

is available only in a limited range of large λL. In anticipation of results, we note that the

present MC study may cover the range of small λL, although only in part and numerically.
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MODEL AND METHODS

Model and MC sampling

The MC model and method used in this study are the same as those in the previous study

of A2,
1 so that we here give a brief description. The (ideal) discrete KP ring4 is composed

of n (junction) points connected by n infinitely thin bonds of length l. Let li (i = 1, 2, · · · ,

n − 1) be the ith bond vector from the ith point to the (i + 1)th. The nth bond vector ln

completes the ring,
∑n

i=1 li = 0. The configuration of the ring may then be specified by the set

{ln} = [l1, l2, · · · , ln−1(, ln)] apart from its position and orientation in an external Cartesian

coordinate system, ln being a dependent variable for the ring. Let θi (i = 2, 3, · · · , n) be the

angle between li−1 and li and θ1 between ln and l1. The configurational potential energy U of

the ring may be given by

U({ln}) =
α

2

n∑
i=1

θ 2
i , (2)

where α is the bending force constant. The stiffness parameter λ−1 of the chain may be given

by

λ−1 = l
1 + ⟨cos θ⟩
1− ⟨cos θ⟩

, (3)

where ⟨cos θ⟩ is defined by

⟨cos θ⟩ =
∫ π

0

e−αθ2/2kBT cos θ sin θ dθ

/∫ π

0

e−αθ2/2kBT sin θ dθ (4)

with kB the Boltzmann constant and T the absolute temperature. The discrete KP ring so

defined becomes identical with the continuous KP ring of total contour length L and of stiffness

parameter λ−1 in the limit of n → ∞ under the conditions of Equation (3) with Equation (4)

and of nl = L.4,17 Note that the MC model reduces to the freely jointed chain in the limit of

α → 0. We adopt an n-sided regular polygon of side length l as the initial configuration and

sequentially generate configurations without consideration of the topological constraint by the

use of the Deutsch procedure18 along with the Metropolis method of importance sampling,19

its detail being described in the previous paper.1

An ensemble of configurations so obtained is a mixed ensemble. Following the procedure of

Vologodskii et al.20 to distinguish the trivial knot from the others by the use of the Alexander
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polynomial,21 we extract configurations with the trivial knot from not a few mixed ensembles

and construct the trivial-knot ensemble.

All of the numerical work was done using a personal computer with an Intel Core i7-

3770 CPU. A source program coded in C was compiled by the GNU C compiler version 4.8.4

with real variables of double precision. For the generation of pseudorandom numbers, the

subroutine package MT19937 supplied by Matsumoto and Nishimura22 was used instead of

the subroutine RAND included in the standard C library.

Intrinsic viscosity

We consider the touched-bead KP ring model composed of n identical spherical beads of

hydrodynamic diameter db = l, whose centers are located at the n junctions of the discrete KP

rings. If the model is immersed in a solvent having a simple shear flow field in the direction of

the x axis in the external Cartesian coordinate system (ex, ey, ez), [η] (without consideration

of a frictional force distribution on the surface of each bead) may be written in terms of the

(total) frictional force F T
i = (Fix, Fiy, Fiz) exerted by the ith bead (i = 0, 1, 2, · · · , n− 1) on

the surrounding solvent and the position vector r T
i = (rix, riy, riz) of the center of ith bead,

with the superscript T indicating the transpose, as follows,9

[η] = − NA

2Mη0g

n−1∑
i=0

⟨Fixriy + Fiyrix⟩ , (5)

where NA is the Avogadro constant, η0 is the viscosity coefficient of the solvent, g is the

velocity gradient of the flow field, and ⟨· · · ⟩ denotes the equilibrium ensemble average. The

frictional force Fi satisfies the following simultaneous equations,

Fi = ζ(ui − v0
i )− ζ

n−1∑
j=0
̸=i

Tij · Fj , (6)

where ζ is the friction coefficient of the bead given by the Stokes relation ζ = 3πη0db, ui is

the velocity of the ith bead, v0
i is the unperturbed velocity of the solvent at the center of the

ith bead, and Tij is the Oseen tensor representing the hydrodynamic interaction between the

ith and jth beads.

In the KR approximation,9,14 the polymer chain in the simple shear flow field is assumed

to move with the translational velocity equal to that of the flow field at the center of mass of
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the chain and to rotate around its center of mass with the angular velocity −1
2
ez. Under this

assumption, the center of mass of the chain may be considered to be fixed at the origin of the

external Cartesian coordinate system. Thus, ri becomes identical with the vector distance Si

of the center of the ithe bead from the center of mass of the chain and we may put

ui − v0
i =

1

2
g(exey + eyex) · Si . (7)

Further, Tij is replaced by ⟨Tij⟩ given by

⟨Tij⟩ =
1

6πη0
⟨R −1

ij ⟩I , (8)

where Rij is the distance between the centers of the ith and jthe beads and I is the 3× 3 unit

tensor. This is the so-called preaveraging approximation for Tij.

In practice, the values of [η] for each kind of the ensembles are evaluated as follows: First,

⟨R −1
ij ⟩ is calculated for each kind of the ensembles. Then, the simultaneous equations (6) with

Equation (7) (and ri = Si) are solved by the use of ⟨Tij⟩ given by Equation (8) with ⟨R −1
ij ⟩ so

obtained in place of Tij for each sample configuration with randomizing its orientation with

respect to the external system. Finally, [η] is calculated from Equation (5).

RESULTS AND DISCUSSION

We carried out MC simulations for the (ideal) discrete KP touched-bead rings (db = l) with

n = 10, 20, 50, 100, and 200 and with α/kBT = 0, 0.3, 1, 3, 10, 30, 100; the α/kBT values

correspond to λ−1/l = 1, 2.575, 6.421, 20.36, 60.34, and 200.3, respectively, as calculated

from Equation (3) with Equation (4). Extra MC simulations were carried out for the rings

with α/kBT = 0 (freely jointed chain) and for n = 500 and 1000. To keep the mean number

of (real) configurational changes at every Mnom (nominal) steps nearly equal to n, we set

Mnom = n for α/kBT = 0, Mnom ≃ 2n for α/kBT = 0.3 and 1, Mnom ≃ 5n for α/kBT = 3

and 10, and Mnom ≃ 10n for α/kBT = 30 and 100. Five mixed ensembles and five trivial-knot

ones were then constructed for each case of α/kBT and n, each of which are constituted of

105 configurations except for α/kBT = 0 and n = 1000. For that case, each ensemble was

constituted of 104 configurations.
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Table 1

The values of M [η]mix/NAn
3/2l3 and their statistical errors, which are the mean and the

standard deviation, respectively, of five independent MC runs for given values of α/kBT and

n, are given in the second column of Table 1. In the fourth column are given the values of

M [η]t.k./NAn
3/2l3 and their statistical errors evaluated in the same manner as above. (Recall

that both of [η]mix and [η]t.k. have been evaluated for db = l.) In the third and fifth columns are

also given the corresponding values of ⟨S2⟩mix/nl
2 and ⟨S2⟩t.k./nl2, respectively, reproduced

from Table 2 of ref 1.

Figure 1

Figure 1 shows double-logarithmic plots of λ3/2M [η]/NAL
3/2 against λL. The open and

closed circles represent the MC values of the mixed ([η]mix) and trivial-knot ensembles ([η]t.k.),

respectively, for α/kBT = 0 (pip up), 0.3 (pip right-up), 1 (pip right), 3 (pip right-down), 10

(pip down), 30 (pip left-down), and 100 (pip left). The dashed curves connect smoothly the

MC values of λ3/2M [η]mix/NAL
3/2 for each α/kBT .

The quantity λ3/2M [η]mix/NAL
3/2 increases monotonically with increasing λL for α/kBT ≥

1, while for α/kBT ≤ 0.3 it decreases monotonically, in the range of λL investigated. In the

cases of α/kBT ≤ 1, λ3/2M [η]mix/NAL
3/2 seems to approach, although slowly, the random-coil

limiting value16,23,24 of 0.3078, as indicated by the solid horizontal line segment in Figure 1,

with increasing λL. The MC values of λ3/2M [η]mix/NAL
3/2 becomes larger with increasing λdb

at constant λL, where λdb is the reduced hydrodynamic diameter and is equal to 1, 0.7102,

0.3883, 0.1557, 0.04912, 0.01657, and 0.004993 for α/kBT = 0, 0.3, 1, 3, 10, 30, and 100,

respectively.

In Figure 1, the solid curves represent the corresponding theoretical values of [η]mix of the

KP cylinder ring model of the hydrodynamic diameter d calculated from16

λ3/2M [η]mix

L3/2
= ϕ∞F (λL, λd) , (9)
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where ϕ∞ = 1.854× 1023 mol−1 and

F (L, d) =

[
1 +

4∑
i=1

Ci(d)L
−i/2

]−1

(10)

with Ci(d) given by

C1(d) = 0.809231− 40.8202d− 483.899d2 − (2.53944 + 339.266d2) ln d

C2(d) = −13.7690 + 380.429d+ 5197.48d2 + (0.818816 + 3517.90d2) ln d

C3(d) = 35.0883− 1079.70d− 14530.3d2 − (1.44344 + 9855.73d2) ln d

C4(d) = −28.6643 + 927.876d+ 12010.0d2 + (0.571812 + 8221.82d2) ln d

for 0.001 ≤ d ≤ 0.1 (11)

and

C1(d) = −2.17381− 11.3578d+ 249.523d2 − 729.371d3

+ 489.172d4 − (3.58885− 74.3257d2 + 335.732d4) ln d

C2(d) = 112.769− 851.870d− 21390.1d2 + 56909.8d3

− 34787.5d4 + (41.8243− 9944.26d2 + 22067.0d4) ln d

C3(d) = −1680.23 + 24753.1d+ 498848d2 − 1314310d3

+ 792477d4 − (526.628− 244353d2 + 497280d4) ln d

C4(d) = 7043.32− 142907d− 2883470d2 + 7668650d3

− 4648720d4 + (2177.01− 1407520d2 + 2937180d4) ln d

for 0.1 < d < 1 (12)

using with the relation d = 0.74db.
25 We note that the application of Equation (9) with

Equations (10)—(12) is limited to the following ranges of λL and λd: λL ≥ 3.480 for 0.001 ≤

λd ≤ 0.1 and λL ≥ 90 for 0.1 < λd < 1. We also note that the relation between d and db is

proposed for the linear KP chain and is, strictly speaking, applicable for 0.01 ≤ db ≤ 0.8.25

The behavior of the present MC data is consistent with the KP theory prediction, although

the MC values for α/kBT ≤ 1 are slightly larger than the corresponding theoretical values.
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In Figure 1, it is seen that λ3/2M [η]t.k./NAL
3/2 deviates upward gradually and slightly

with increasing λL, although such behavior is visible only for α/kBT = 0 on this scale. Such

a deviation may be recognized clearly by examining the behavior of [η]t.k./[η]mix as a function

of λL.

Figure 2

Figure 2 shows double-logarithmic plots of [η]t.k./[η]mix against λL. The open circles rep-

resent the MC values calculated from the M [η]/NAn
3/2l3 values given in Table 1, the various

directions of the pips having the same meaning as those in Figure 1. The data points for

various α/kBT seem to form a single composite curve, indicating that [η]t.k./[η]mix is a func-

tion only of λL, although [η]mix and [η]t.k. themselves depend not only on λL but also on λdb.

The ratio [η]t.k./[η]mix is almost equal to unity for λL ≲ 10 and then increases monotonically

with increasing λL for λL ≳ 10. This is due to the fact that the average chain dimension of

the rings of the trivial knot is larger than that of the rings of the non-trivial knot (having

the same λL) and the ratio of the number of configurations of the trivial knot included in a

given mixed ensemble is almost equal to unity for λL ≲ 10 and it decreases monotonically

to zero with increasing λL.1 As mentioned in the INTRODUCTION, [η]t.k./[η]mix becomes

proportional to (λL)0.3 in the random-coil limit (λL → ∞). However, the range λL ≤ 103

investigated is still far from the limit as in the case of ⟨S2⟩ shown in Figure 4 of Ref 1.

Figure 3

Figure 3 shows double-logarithmic plots of 10−23Φ (in mol−1) against λL. The symbols

and dashed curves have the same meaning as those in Figure 1. The MC values are calculated

from the defining equation 1, which may be rewritten in the following form

Φ = NA

(
M [η]

NAn3/2l3

)(
nl2

6⟨S2⟩

)3/2

, (13)

using with the MC values of M [η]/NAn
3/2l3 and ⟨S2⟩/nl2 given in Table 1. The dashed and

solid horizontal segments represent the asymptotic values for Φmix and Φt.k., respectively, in

the limit of λL → ∞ described below.
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For 1 ≤ α/kBT ≤ 30, Φmix initially decreases and then increases after passing through a

minimum with increasing λL in the range of λL examined. In the case of α/kBT = 100, Φmix

decreases monotonically with increasing λL. For α/kBT ≤ 0.3, Φmix decreases monotonically

and approaches the random-coil limiting value given by16,23,24

lim
λL→∞

Φmix = 5.234× 1023 mol−1 , (14)

as indicated by the dashed horizontal segment in Figure 3. The quantity Φ depends, of course,

not only on λL but also on λdb and becomes larger with increasing λdb at constant λL.

It is seen from Figure 3 that Φt.k. deviates downward gradually from Φmix for α/kBT ≤ 1,

while Φt.k agrees almost completely with Φmix for α/kBT ≥ 3. Before proceeding to further

examination of the behavior of Φt.k., it is necessary to estimate the asymptotic value of Φt.k.

in the limit of λL → ∞. For such a purpose, the MC values of Φt.k. for α/kBT = 0 are

extrapolated to the limit of n → ∞ (λL → ∞).

Figure 4

Figure 4 shows plots of 10−23Φt.k. (in mol−1 ) against n−1/2 for the discrete KP ring of

α/kBT = 0 and n ≥ 50 with the MC data of Φt.k. (for db/l = 1) reproduced from Figure 3,

which are represented by the closed circles. In the figure, the Φt.k. values for db/l = 0.1, 0.15,

0.2, 0.3, 0.4, and 0.5, which are evaluated in the same manner as in the case of db/l = 1 (the

details being omitted here), are also plotted. The dashed curves connect smoothly the data

points for each db/l and the thin solid lines represent the initial tangents of the corresponding

curves. The data for each db/l seem to converge to a constant independent of db/l in the limit

of n−1/2 → 0 (n → ∞), and also, the data for db/l = 0.15 have a good linearity in the range

of small n−1/2, which allows us a linear extrapolation to n−1/2 = 0. The asymptotic value of

Φt.k. may then be estimated as follows,

lim
λL→∞

Φt.k. = 3.5 × 1023 mol−1, (15)

as indicated by the solid horizontal line segment in Figure 4 and also in Figure 3.
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Figure 5

Figure 5 shows double-logarithmic plots of Φt.k./Φmix against λL. The symbols have the

same meaning as those in Figure 2. The (thick) solid line segment represents the ratio 0.66

[= 3.5 × 1023/(5.234 × 1023)] of the asymptotic value of Φt.k. given by Equation (15) to that

of Φmix given by Equation (14). The data points seem to form a single composite curve

independent of λdb although Φt.k. and Φmix themselves depend on λdb. The ratio Φt.k./Φmix

is almost equal to unity for λL ≲ 10 and decreases monotonically with increasing λL. These

results are consistent with those for [η]t.k./[η]mix. The ratio Φt.k./Φmix is considered to become

the constant 0.66 independent of λL in the limit of λL → ∞. Unfortunately, it is difficult to

confirm such asymptotic behavior only on the basis of the present MC data for λL ≤ 103.

CONCLUSION

We have examined the effects of the chain stiffness and also the topological constraint on the

intrinsic viscosity [η] of semiflexible ring polymers by MC simulations using the discrete KP

ring. It has been found that the ratio of [η] for the rings of the trivial knot to that of the

rings without the topological constraint becomes a function only of λL, which is almost equal

to unity for λL ≲ 10 and increases monotonically with increasing λL for λL ≳ 10, although

[η]’s themselves depend not only on λL but also on λdb.
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Figure Legends

Figure 1 Double-logarithmic plots of λ3/2M [η]/NAL
3/2 against λL. The open and closed

circles represents the MC values of λ3/2M [η]mix/NAL
3/2 and λ3/2M [η]t.k./NAL

3/2,

respectively, for α/kBT = 0 (pip up), 0.3 (pip right-up), 1 (pip right), 3 (pip

right-down), 10 (pip down), 30 (pip left-down), and 100 (pip left). The dashed

curves connect smoothly the MC values of λ3/2M [η]mix/NAL
3/2 for each α/kBT .

The solid horizontal line segment represents the random-coil limiting value16,23,24

0.3078 of λ3/2M [η]mix/NAL
3/2. The solid curves represent the theoretical values

for λ3/2M [η]mix/NAL
3/2 of the KP cylinder ring16 (see text).

Figure 2 Double-logarithmic plots of [η]t.k./[η]mix against λL. The closed circles represent

the MC values with the various directions of the pips having the same meaning

as those in Figure 1.

Figure 3 Double-logarithmic plots of 10−23Φ (in mol−1) against λL. The open and closed

circles represents the MC values of Φmix and Φt.k., respectively, with the various

directions of the pips having the same meaning as those in Figure 1. The dashed

curves connect smoothly the MC values of Φmix for each α/kBT . The dashed

horizontal line segment represents the random-coil limiting value 5.234× 1023 of

Φmix
16,23,24 and the solid horizontal line segment represents the corresponding

value 3.5 × 1023 of Φt.k. (see text).

Figure 4 Plots of 10−23Φt.k. (in mol−1) against n−1/2 for the discrete KP ring of α/kBT =

0 in the range of n ≥ 50. The closed circles represents the MC values with

indicated values of db/l. The dashed curves connect smoothly the MC values

for each db/l and the solid line segments represent the initial tangents of the

corresponding curves. The (thick) solid horizontal line segment represents the

random-coil limiting value 3.5 × 1023 of Φt.k. (see text).

Figure 5 Double-logarithmic plots of Φt.k./Φmix against λL. The closed circles represent
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the MC values with the various directions of the pips having the same meaning

as those in Figure 1. The solid horizontal line segment represents the ratio 0.66

of the random-coil limiting value of Φt.k. to that of Φmix.
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Graphical Abstract:

The intrinsic viscosity [η] of the Kratky–Porod (KP) wormlike rings is evaluated by Monte

Carlo simulations. The behavior of the ratio of [η] of the rings of the trivial knot ([η]t.k.) to

that of the rings without the topological constraint ([η]mix) is examined as a function of the

reduced contour length λL, where λ−1 is the stiffness parameter of the KP ring and L is the

total contour length.
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