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Abstract: In the Monte Carlo study of QCD at finite baryon density based upon the phase

reweighting method, the pion condensation in the phase-quenched theory and associated

zero-mode prevent us from going to the low-temperature high-density region. We propose

a method to circumvent them by a simple modification of the density of state method. We

first argue that the standard version of the density of state method, which is invented to

solve the overlapping problem, is effective only for a certain ‘good’ class of observables.

We then modify it so as to solve the overlap problem for ‘bad’ observables as well. While,

in the standard version of the density of state method, we usually constrain an observable

we are interested in, we fix a different observable in our new method which has a sharp

peak at some particular value characterizing the correct vacuum of the target theory. In

the finite-density QCD, such an observable is the pion condensate. The average phase

becomes vanishingly small as the value of the pion condensate becomes large, hence it is

enough to consider configurations with π+ ' 0, where the zero mode does not appear.

We demonstrate an effectiveness of our method by using a toy model (the chiral random

matrix theory) which captures the properties of finite-density QCD qualitatively. We also

argue how to apply our method to other theories including finite-density QCD. Although

the example we study numerically is based on the phase reweighting method, the same

idea can be applied to more general reweighting methods and we show how this idea can

be applied to find a possible QCD critical point.
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1 Introduction: importance sampling and un-importance sampling

The sign problem is a severe obstacle for Monte Carlo methods based on the importance

sampling, and it prevents us, for example, from studying lattice QCD at finite baryon den-

sity directly by Monte Carlo simulations, since the fermion determinant becomes complex

at a finite baryon chemical potential. (For an introductory review from lattice perspective,

see [1]. A review from the point of view of nuclear theory can be found in [2].) Several

methods have been proposed to overcome this difficulty (for various previous attempts, see

e.g. [3–15]), and some of them are based on the phase-reweighting technique, which, how-

ever, fail to work at high density due to the unphysical pion condensation. In this paper

we propose a new method to tame the pion condensation problem of reweighting methods,

whose basic idea can also be applied to some classes of sign problems. As a bonus, a zero

mode associated with the unphysical pion condensation is eliminated.

Let us begin with identifying the physical origin of the sign problem. We consider a

field theory on Euclidean spacetime with a complex action,

S = SR + iSI . (1.1)

Then the path-integral weight e−S is not real and positive anymore, and hence the impor-

tance sampling cannot be applied as it is. Therefore one performs the importance sampling

– 1 –
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by using a real and positive weight which ‘approximates’ the complex weight and take into

account the effect of the non-positivity by using so-called reweighting methods. The sim-

plest example is the phase-reweighting method, in which the phase-quenched weight e−SR

is adopted; the expectation value of an operator Ô in the full theory is obtained by using

an identity

〈Ô〉full =
〈eiSI · Ô〉P.Q.
〈eiSI 〉P.Q.

, (1.2)

where 〈 · 〉full and 〈 · 〉P.Q. stand for expectation values in the full and the phase-quenched

theories, respectively.1 Then the right hand side is calculable in principle. In practice,

however, both 〈eiSI 〉P.Q. and 〈eiSI · Ô〉P.Q. can become extremely small in some cases and

then the right hand side is essentially 0/0, which is not easy to evaluate numerically. This

is the sign problem.

The sign problem becomes even severer when the vacua of the full and phase-quenched

theories are different; this is so-called ‘overlap problem’. In order to understand it, let us

consider a certain observable Ô which characterizes the vacua of these two theories; the

vacua are characterized by 〈Ô〉full = Kfull and 〈Ô〉P.Q. = KP.Q., where Kfull 6= KP.Q. in

general. Let us denote the histogram of Ô in the phase-quenched theory as ρP.Q.(x). It

peaks around x = KP.Q.. The ‘histogram’ in the full theory is proportional to ρP.Q.(x) ·
〈eiSI 〉x, where 〈eiSI 〉x is the average phase factor with the value of Ô fixed to x. Since

ρfull(x) ∼ ρP.Q.(x) · 〈eiSI 〉x peaks around Kfull, the phase factor 〈eiSI 〉x ∼ ρfull(x)/ρP.Q.(x)

is vanishingly small around x = KP.Q. 6= Kfull. (This point is clearly demonstrated in [16]

by using a solvable model.) This means that, although most configurations sampled in

the phase quenched simulation are around x = KP.Q., their contribution vanishes due

to huge sign fluctuation, and the true peak of the full theory appears from the tail of

ρP.Q.(x). In other words the phase-quenched simulation is the un-importance sampling,

in the sense that the most of computational resources are wasted to sample un-important

configurations. In fact it is even worse — the sign fluctuation becomes violent in order to

erase un-important configurations, and unless one has huge amount of configurations so

that vanishingly small value of the phase factor can be measured precisely, the error bar

becomes large; essentially the only contribution of the un-important samples is to make

the error bar larger. Such a waste of computational resources, which arises due to the lack

of the overlap between vacua in full and phase-quenched theories, is the overlap problem.

In terms of the above general argument, we consider the massless two-flavor QCD with

the finite baryon chemical potential (QCDB). In this theory, two quarks (up and down)

has the same value of the chemical potential µ, which coupled to the baryon number of

1

〈Ô〉full ≡
∫

[dφ]Ô[φ]e−S[φ]∫
[dφ]e−S[φ]

(1.3)

and

〈Ô〉P.Q. ≡
∫

[dφ]Ô[φ]e−SR[φ]∫
[dφ]e−SR[φ]

. (1.4)

– 2 –



J
H
E
P
0
5
(
2
0
1
5
)
0
7
1

quarks, +1/3. The partition function in Euclidean space-time is given by

Zfull =

∫
[dAµ]

[
det
(
γµDµ(A) + µγ4

)]2
e−SG(A) (1.5)

where Dµ is the gauge covariant derivative acting on quark fields ψ = u, d, Dµ(A)ψ =

(∂µ − iAµ)ψ with the gauge field Aµ, and SG(A) is the action for the gauge field. The

determinant factor satisfies[
det
(
γµDµ(A) + µγ4

)]∗
= det

(
γµDµ(A)− µγ4

)
, (1.6)

and hence it is complex at µ 6= 0, so that the sign problem exists in QCDB. The phase

quenched theory is described by the partition function,

ZP.Q. =

∫
[dAµ]

∣∣det
(
γµDµ(A) + µγ4

)∣∣2 e−SG(A)

=

∫
[dAµ] det

(
γµDµ(A) + µγ4

)
· det

(
γµDµ(A)− µγ4

)
e−SG(A). (1.7)

This theory is QCD with a finite isospin chemical potential (QCDI), in which up and down

quarks have chemical potential +µ and −µ, respectively. Hence this chemical potential

couples to the isospin number, +1/2 for up and −1/2 for down. In the full theory, nothing

happens until the nucleon, whose mass is about 1 GeV, condenses. On the other hand, in

the phase quenched theory, the massless charged pion π+ = d̄γ5u condenses as soon as µ

is turned on. Therefore the overlapping problem arises due to the pion condensation.

In this paper we propose a simple way to tame the sign problem caused by the over-

lap problems associated with the pion condensation in the phase quenched theory. We

first notice that, if one eliminates the pion condensate by hand (for example by adding

delta-function like potential), two theories, QCDB and QCDI , become equivalent when

the number of colors Nc is sent to infinity [17–19] (Nc = 3 is the usual QCD), which means

that the overlap problem is just a 1/Nc effect if we fix the pion condensate.2,3 This consid-

eration leads to our main idea that the overlap problem can be avoided by pinning down an

appropriate observable, which characterizes the difference between full and phase quenched

theories (in the case of the finite density QCD, the pion condensate), to the right value (zero

pion condensation in QCDB), and the sign fluctuation becomes milder there. Away from

the correct vacuum, the sign fluctuation becomes severer. This is not drawback anymore,

because the severe sign fluctuation is simply telling us that such configurations are not im-

portant. When the sign fluctuation becomes severer, we do not have to measure the average

sign. Rather, we can safely omit such configurations. The sign fluctuation is not a problem

anymore, rather it reduces numerical costs of our simulations. Furthermore, this methods

2The equivalence at Nc = ∞ holds if one takes the massless limit after taking the large-Nc. Strictly

speaking, at very large µ, other isospin-charged particles like the rho-meson would condense and lead to

the overlap problem, and then their condensates must be fixed to be zero.
3The remaining overlap problem is due to the gas of pions. The overlap problem is mild as long as

the pion does not condensate, and even the phase quench is exact at large-Nc. We will comment on this

point later.

– 3 –
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automatically avoids a zero mode associated with the unphysical pion condensation, since

we do not have to consider the large-π+ region, where the zero mode appears.

Our method is a natural generalization of the density of state method. In order to

illustrate the advantage of our method, we first review the traditional density of state

method, explain what is good and what is insufficient, and then introduce our method.

(Our method could be regarded as a simplified version of the multi-parameter factorization

method [26], which has been applied for a supersymmetric matrix model.4 We also explain

how our method can be combined with the multi-parameter factorization.)

In this paper, we demonstrate our idea taking the chiral random matrix theory (RMT)

as a simpler example. Because RMT is analytically solvable and computationally much

cheaper than QCD, we can test the method thoroughly. We explain basic ideas in section 2

using the chiral RMT. Note that our main idea does not rely on the detail of the theory and

the method can be generalized to QCD and other theories. In section 3 we give simulation

results of the chiral RMT to show how our method works. In section 4 we briefly discuss

strategies for the finite-density QCD using our method, and give more generic reweighing

method in section 5. Our conclusion and discussion are given in section 6.

2 Methodology

In this section we explain our method using the chiral RMT as a concrete example.

2.1 β = 2 RMT

The action of the β = 2 RMT [20, 21] with chemical potential [22] is given by

Z =

∫
dΦdΨ e−S , S = SB + SF , (2.1)

where

SB = N tr ΦΦ†, SF =

Nf∑
f=1

Ψ̄fDfΨf , (2.2)

and

Df =

(
mf1N Φ + µf1N

−Φ† + µf1N mf1N

)
. (2.3)

Here Φ is N × N complex matrix. From now on we take the number of flavors Nf to

be two (up and down quarks). We assign µ1 = µ2 = µ for the full theory (finite baryon

chemical potential) and µ1 = +µ, µ2 = −µ for the phase-quenched theory (isospin chemical

potential). We call these matrix models as RMTB and RMTI , respectively. Hereafter we

will take a massless limit (mu = md = 0). Therefore ‘chiral condensate” 〈ūu+ d̄d〉 will not

be discussed in this paper.

4We would like to thank J. Nishimura for a comment on this point.

– 4 –



J
H
E
P
0
5
(
2
0
1
5
)
0
7
1

The pion condensate is identically zero unless we introduce a source term. We introduce

a source term to RMTI as

D̃ =


0 Φ + µ1N c1N 0

−Φ† + µ1N 0 0 −c1N
−c1N 0 0 Φ− µ1N

0 c1N −Φ† − µ1N 0

 ≡
(
D(µ) cγ5
−cγ5 D(−µ)

)
, (2.4)

where c is a real number, and

γ5 =

(
1N 0

0 −1N

)
. (2.5)

Then the ‘pion condensate’ is real and satisfy

π+ ≡ Tr
[
γ5 ·

(
D̃−1

)
21

]
/N = −Tr

[
γ5 ·

(
D̃−1

)
12

]
/N = −π− (2.6)

As an observable we will measure the baryon density νB, which is defined by 〈νB〉B =

〈ūγ4u〉B + 〈d̄γ4d〉B = 2〈ūγ4u〉B = 2〈Tr(γ4D−1(+µ))〉B, where

γ4 =

(
0 1N
1N 0

)
. (2.7)

In QCD, we have

ψ̄cD(Ac, µ)ψc = ψ̄D(A,−µ)ψ, D(A,µ) = γµDµ(Aµ) + µγ4, (2.8)

where the charge conjugations are defined by

ψc = Cψ̄T , ψ̄c = −ψTC−1, Acµ = −ATµ , (2.9)

C is the charge conjugation matrix satisfying C−1γµC = −(γµ)T , and T stands for the

transpose. This also implies

C−1D(Ac, µ)C = D(A,−µ) (2.10)

Using these we see that

〈d̄γ4d〉P.Q. = Z−1
∫

[dAµ] det[D(A,µ)D(A,−µ)] tr
[
γ4D−1(A,µ)

]
= −Z−1

∫
[Acµ] det[D(Ac,−µ)D(Ac, µ)] tr

[
γ4D−1(Ac,−µ)

]
= −〈d̄γ4d〉I .

(2.11)

Therefore

〈νB〉P.Q. = 〈ūγ4u〉P.Q. + 〈d̄γ4d〉P.Q. = 〈ūγ4u〉I − 〈d̄γ4d〉I = 〈νI〉I , (2.12)

which means νB in the phase quenched theory can be regarded as the isospin density νI in

QCDI . It is easy to see explicitly that these properties also hold in the RMT.

– 5 –
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2.2 Standard density of state method: when it works and when it fails

First let us explain the standard density of state method (in the context of the finite-density

QCD, see e.g. [23–25]), in order to illustrate the essence of our method explained in the

next subsection.

Suppose we want to measure a certain quantity Ô, for example Ô = νB. In the

density of state method, one first classifies configurations obtained from the phase-quenched

simulation in terms of values of Ô. Let the number of configurations (or equivalently, the

height of the histogram) at xi < Ô < xi+1 be ρ
(Ô)
i , and the average sign be 〈eiSI 〉(Ô)

i .

(Here we have assumed the Ô takes only real values for simplicity.) Then we have a trivial

relation,

〈eiSI 〉P.Q. =

∑
i〈eiSI 〉

(Ô)
i · ρ(Ô)

i∑
i ρ

(Ô)
i

. (2.13)

In the same manner,

〈eiSI · Ô〉P.Q. =

∑
i〈eiSI · Ô〉

(Ô)
i · ρ(Ô)

i∑
i ρ

(Ô)
i

. (2.14)

Therefore the phase reweighting can be done as

〈Ô〉full =
〈eiSI · Ô〉P.Q.
〈eiSI 〉P.Q.

=

∑
i〈eiSI · Ô〉

(Ô)
i · ρ(Ô)

i∑
i〈eiSI 〉

(Ô)
i · ρ(Ô)

i

. (2.15)

In a naive phase-quenched simulation, the configurations are generated with the weight

ρ
(Ô)
i , which is different from the weight in the full theory 〈eiSI 〉(Ô)

i ·ρ
(Ô)
i . (This is the overlap

problem.) In order to avoid this overlap problem, one performs a constrained simulation5

at xi < Ô < xi+1 for all i’s and evaluates (2.15). This is the density of state method. Note

that the sign problem still remains, because one has to measure 〈eiSI 〉(Ô)
i and 〈eiSI · Ô〉(Ô)

i .

This method works when this remaining sign problem is under control. For example, if

〈eiSI 〉(Ô)
i and 〈eiSI · Ô〉(Ô)

i do not have clear peaks and are vanishingly small, the remaining

sign problem is still serious.

It is commonly believed that the density of state method solves the overlap problem

completely, because all the values of Ô are scanned. In fact this is not really true, because

this method is not based on the idea of the importance sampling. As we have explained in

the introduction, the role of the sign fluctuation is to erase contributions from the wrong

vacuum (the vacuum of the phase quenched theory) and to realize the correct vacuum of the

full theory. Hence the sign fluctuation should be mild around the true vacuum. Therefore,

if the correct vacuum can be characterized by tuning the value of Ô (e.g. Ô is the pion

condensate in QCDB), 〈eiSI 〉(Ô)
i and 〈eiSI · Ô〉(Ô)

i can have a sharp peak at a particular

value of i. On the other hand, if the correct vacuum cannot be specified by simply tuning

Ô, their distributions do not show a peak structure and hence the remaining sign problem

is not under control.

5In the following sections we explain how to perform a constrained simulation in the case when Ô is the

pion condensate. One can constrain other quantities in the same manner.
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In summary, the standard density of state method is effective when the quantity of

interest characterizes the vacuum of the full theory. It is unlikely, however, that a quan-

tity one takes without considering properties of the full theory correctly characterizes its

vacuum. Therefore there exists a danger that one has to spend a lot of computational

resources to determine a small value of the average for the remaining sign precisely. It has

been sometimes reported that the remaining sign problem can spoil the density of state

method, due to this inappropriate choice of observables fixed [26].

2.3 Our method

As we have seen in the previous subsection, the traditional density of state method is

effective only when the quantity of interest characterizes the vacuum of the full theory,

since otherwise the overlap problem still exists. We solve this problem by slightly changing

the viewpoint; we do not fix the quantity we want to measure. We fix an observable which

characterizes the correct vacuum, called a good observable (If more than one quantities are

needed to be specified in order to characterize the vacuum, we must fix all of them.) In the

case of the finite-density QCD, pion condensate is such a good observable, since the phase

quenched theory becomes exact at large Nc as long as the pion condensate is forbidden by

hand [17–19]. Note that we have to understand the physics of the full and phase quenched

theories in order to find an appropriate observable which characterizes the correct vacuum.

Let us explain the detail of our idea by using the finite-density QCD. We first classify

the configurations in the phase-quenched simulation by the values of the pion condensate

π+. (Here π+ is defined in terms of QCDI , i.e. the chemical potentials for up and down

quarks in the operator are +µ and −µ, respectively, rather than +µ and +µ.) Let the

height of the histogram at xi < π+ < xi+1 be ρi. We also calculate the average sign at

xi < π+ < xi+1, which we denote 〈eiSI 〉i. Then we have a trivial relation,

〈eiSI 〉P.Q. =

∑
i〈eiSI 〉i · ρi∑

i ρi
, (2.16)

where ρi is the relative weight factor of xi < π+ < xi+1 in the phase quenched simulation.6

In the same manner,

〈eiSI · Ô〉P.Q. =

∑
i〈eiSI · Ô〉i · ρi∑

i ρi
, (2.17)

where Ô is an arbitrary operator we are interested in other than π+. Therefore the phase

reweighting can be done as

〈Ô〉full =
〈eiSI · Ô〉P.Q.
〈eiSI 〉P.Q.

=

∑
i〈eiSI · Ô〉i · ρi∑
i〈eiSI 〉i · ρi

. (2.18)

We can expect that
∑

i〈eiSI 〉i · ρi and
∑

i〈eiSI · Ô〉i · ρi takes non-negligible values only

around the vacuum of the full theory, π+ = 0. Therefore we only have to study there;

when
∑

i〈eiSI 〉i · ρi and
∑

i〈eiSI · Ô〉i · ρi become so small that the precise determination

6Note that we need only relative weight factor in the region where the phase fluctuation is not very

violent. Indeed the normalization factor does not play any role in (2.18).
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Figure 1. A histogram of π+.

is difficult, they do not affect the results and hence we can simply omit them. (In fact,

unless we have extremely large statistics with which we can determine the small average

phase at nonzero π+, adding such configurations just increases the error. Therefore, by

throwing away un-important configurations we can make the result more precise.) Note

again that this method is not purely numerical; we know the important samples based on

physics. The huge sign fluctuation then tells us that we do not have to measure them, so

that it does not increase the simulation cost. Instead it reduces the cost. Therefore the

sign problem turns into the sign blessing in this situation.

The actual simulation for RMT goes as follows.7 We add a deformation term

∆S = γ|π+ − x|2 (2.19)

for |π+ − x| ≥ ε. The constraint parameter γ is taken sufficiently large so that all samples

lie in |π+ − x| < ε during the simulation.

Note that there are two options:

• Introduce the source both for S and ∆S. In this case we have to make the zero source

extrapolation in the end.

• Introduce the source only for ∆S. In this case we do not need to take the zero source

extrapolation. We take this option in this paper.

It is important to stress that π+ ≥ 0 as long as c > 0, so that 〈π+〉 ' 0 implies that only

π+ ' 0 configurations contribute in the full theory.

7For QCD, more sophisticated method is needed because the simulation cost is larger. See section 4.
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Figure 2. How to obtain the full histogram by gluing partial histograms.

Firstly we have to determine the distribution of the histogram of the pion condensate

in the phase quenched simulation precisely. By introducing the deformation and tuning

x and ε we can sample the tail effectively. The histograms obtained are ‘partial’ ones

restricted at [x − ε, x + ε]. This situation is like the leftmost panel in figure 2; here the

simulation has been done for x = x0 (left), x = x0 + ε (center) and x = x0 + 2ε, with

the common value of ε, the number of configurations in the partial histograms are Ai for

π+ < x and Bi for π+ > x. In order to obtain the full histogram, we rescale them as in

the second panel, and then glue them as in the third panel.

Note that, if the difference of two theories are characterized by many observables,

we must fix all of them. In the case of finite density QCD, for example, as the isospin

chemical potential becomes larger, not just pion but also other fields such as the ρ-meson

can condense. Then we should add deformation terms to fix them.

Our method could be regarded as an improved version of the multi-parameter factor-

ization method [26], which has been applied for a supersymmetric matrix model. (The

‘factorization method’ is essentially the same as the density of state method.) For this

improvement, a good understanding about the physics under consideration is crucial. In

the multiple-parameter factorization method, one labels the configurations by values of a

set of multiple observables, Ô1, Ô2, · · · , Ôn, and

〈eiSI 〉P.Q. =

∑
i1,i2,··· ,in〈e

iSI 〉(Ô1,··· ,Ôn)
i1,i2,··· ,in · ρ

(Ô1,··· ,Ôn)
i1,i2,··· ,in∑

i1,i2,··· ,in ρ
(Ô1,··· ,Ôn)
i1,i2,··· ,in

, (2.20)

and similarly for 〈Ô〉full. One can expect that 〈eiSI 〉(Ô1,··· ,Ôn)
i1,i2,··· ,in has a single peak by intro-

ducing sufficiently many observables. In other words, the overlap problem can be solved

by fixing sufficiently many observables. Suppose the quantity in consideration, say Ô1,

does not characterize the vacuum. Then the overlap problem is not solved. In the case of

QCD, the overlap problem can be solved by taking Ô2 to be the pion condensate. (When

necessary one should also add ρ-condensate as Ô3 etc.) But then we do not even have to

fix Ô1, because it is not the source of the overlap problem anyways. Then, by letting Ô1

take any value, we arrive at our method. The point is that we only have to fix the quan-

tities characterizing the correct vacuum, and for that purpose we have to understand the

difference between physics of full and phase quenched theories. For that, nonperturbative

arguments like the large Nc equivalence [17–19] play important roles. (In the supersym-

metric matrix model studied in [26], they identified the observables which characterize the
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vacuum by using another numerical method, and then applied the multi-parameter factor-

ization method.) Whether one has to fix multiple observables or not is a problem-specific

issue, which depends on theories and parameter regions.

A good understanding about the vacuum structure of the full and phase-quenched

theories is very important for this method to work. In the case of QCD, we already know

the right quantity to fix. (We could also choose other quantities, but then we would have

to fix multiple quantities, which makes actual calculation more difficult.) We know that

only π+ ∼ 0 is important, and can safely neglect the parameter region with small average

sign. We do not even have to study large π+ region. If we didn’t know the right quantity

to fix, we would have to measure the small sign rather precisely, in order to make sure that

such parameter region is not important.

If we consider other theories for which the physical interpretation of the phase quenched

theory is not clear, the simplest way to find ‘good’ observables would be to calculate various

observables in the phase-quenched theory whose counterparts in the full theory trivially

vanish due to symmetries. In case that the full theory is not understood well, one has to

try purely numerical method: fix various quantities, scan the parameter space and find a

nice peak structure of the average phase, as suggested in [26].

2.3.1 A comment on ‘silver-blaze’ region µ < µc

In QCDB, at zero temperature and at the ‘silver blaze’ region µ < µc, νB must be zero.

Therefore, at µ < µc, it is possible to reduce the overlapping problem by setting νB, rather

than the pion condensate, to zero. To demonstrate this in the RMT, however, we should

take νB to be some negative value, since νB becomes negative in this region due to an

RMT-artifact. In the RMTI , the observable νB corresponds to the isospin density νI ,

which is positive. In section 3.1, we also consider the behavior of the average phase as a

function of νB.

3 Simulation results

In this section we show the simulation results of Nf = 2 RMT. In order to see the effect

of the pion condensate, let us start with a nonzero mass. (When mass is zero, µ = 0 is

already at the border of the pion condensation.) In figure 3 we show the distribution of

the condition number, |(minimum eigenvalue of Df )/(maximum eigenvalue of Df )|, and

the pion condensate π+, for N = 4, m = 0.35, and c = 0.02 , µ = 0 and µ = 0.7. (Note

that the source c is introduced only for the constraint term ∆S.) At µ = 0, pion does

not condense, and hence π+ takes small values. At µ = 0.7, the distribution of π+ has a

long tail, which is the signature of the pion condensation. We can see that the condition

number becomes smaller as π+ increases, as expected from the fact that the pion condensate

is caused by near zero-mode in the Dirac spectrum.

In figure 4 we show the average phase 〈eiSI 〉i, relative weight ρi, and the reweighted

relative weight ρi · 〈eiSI 〉i for µ = 0.7. The weight in the phase-quenched simulation has

a long tail reflecting the pion condensation. The average phase becomes small as π+

becomes large, so that this fat tail is removed in the reweighted relative weight ρi · 〈eiSI 〉i.
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Figure 3. Distribution of the inverse of the condition number (|(maximum eigenvalue)

/(minimum eigenvalue)|) and π+. N = 4, m = 0.35, µ = 0 (left) and µ = 0.7 (right).

Figure 4. The average phase 〈eiSI 〉i and relative wight with and without phase, ρi and 〈eiSI 〉i · ρi.
N = 4, m = 0.35, µ = 0.7 and c = 0.02. The peaks of ρi and ρi · 〈eiSI 〉i are normalized to be 1.

Therefore the large-π+ region gives only a negligible contribution; in fact, as shown in

figure 5,
∑

π+<x ρi · 〈eiSI 〉i and
∑

π+<x ρi · 〈eiSI · νB〉i calculated at limited range of π+

quickly converges. We can terminate the sum at around π+ ∼ 0.15, so that we will not see

small condition numbers.

Next let us consider the massless limit, where the sign problem is severe. At each N ,

the value of the baryon density νB can be calculated analytically [27]. For example,

νB =
−180µ+ 1440µ3 − 5760µ5 + 15360µ7 − 24960µ9 + 24576µ11 − 14336µ13 + 4096µ15

45− 360µ2 + 1440µ4 − 3840µ6 + 7680µ8 − 9984µ10 + 8192µ12 − 4096µ14 + 1024µ16

(3.1)

for N = 4.

Let us consider N = 4, µ = 0.7 and c = 0.02 as an example. We take ε = 0.01,

x = 0.01, 0.02, 0.03, · · · . For each bin, we collected 1, 000, 000 configurations. In figure 6

we show the average phase 〈eiSI 〉i, relative weight ρi, and the reweighted relative weight
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Figure 5.
∑
π+<x ρi · 〈eiSI 〉i and

∑
π+<x ρi · 〈eiSI · νB〉i calculated at limited range of π+. N = 4,

m = 0.35, µ = 0.7 and c = 0.02. The normalization is the same as in figure 4, i.e. the peak of

ρi · 〈eiSI 〉i is normalized to be 1.

Figure 6. The average phase 〈eiSI 〉i and relative wight with and without phase, ρi and 〈eiSI 〉i · ρi.
N = 4, m = 0, µ = 0.7 and c = 0.02. The peaks of ρi and ρi · 〈eiSI 〉i are normalized to be 1.

ρi · 〈eiSI 〉i. The weight in the phase-quenched simulation has a long tail reflecting the pion

condensation. However the average phase is extremely small at this tail and the reweighted

relative weight does not have a fat tail. Also the peak is shifted to a small-π+ region. In

figure 7, ρi · 〈eiSI · νB〉i and 〈eiSI · νB〉i are plotted. 〈eiSI · νB〉i behaves similarly to 〈eiSI 〉i:
it approaches zero very quickly. As a result, ρi · 〈eiSI · νB〉i does not have a fat tail either.

From figure 6 and figure 7, we can see that π+ & 0.08 is negligible. It can be explicitly

seen from
∑

π+<x ρi〈eiSI 〉i and
∑

π+<x ρi · 〈eiSI · νB〉i shown in figure 8. In figure 9, we

plot νB|π+<x as a function of x. We can see a good convergence to the analytic value. In
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Figure 7. 〈νB · eiSI 〉i and relative wight with and without phase, ρi and 〈νB · eiSI 〉i · ρi. N = 4,

m = 0, µ = 0.7 and c = 0.02. The normalization is the same as in figure 6.

Figure 8.
∑
π+<x ρi · 〈eiSI 〉i and

∑
π+<x ρi · 〈eiSI · νB〉i calculated at limited range of π+. N = 4,

m = 0, µ = 0.7 and c = 0.02. The normalization is the same as in figure 6 and figure 7, i.e. the

peak of ρi · 〈eiSI 〉i is normalized to be 1.

a usual phase-reweighting method, most computational resources are wasted to evaluate

a very small average sign at π+ & 0.08, in order to prove that this region is not impor-

tant. But from the beginning, we knew it is irrelevant. Then why do we have to waste

resources there?

Let us also see the plots at µ = 0.4, which is below µc. As shown in figure 10, the

average phase, though small, seems to remain finite. However ρi in the phase-quenched

ensemble approaches zero faster than at µ = 0.7 at large π+, and the distribution after the
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Figure 9. 〈νB〉π+<x calculated at limited range of π+. N = 4, m = 0, µ = 0.7 and c = 0.02. We

can see a nice convergence to the exact analytic value.

Figure 10. The average phase 〈eiSI 〉i and relative wight with and without phase, ρi and ρi · 〈eiSI 〉i.
N = 4, m = 0, µ = 0.4 and c = 0.02. 〈eiSI 〉i seems to have a long tail (though the value is not

very large).

reweighting is similar to that at µ = 0.7. As for the baryon density, the behavior is very

different from the counterpart at µ = 0.7. As shown in figure 11, 〈νB eiSI 〉i seems to take

a nonzero value at large π+. However ρi · 〈νB eiSI 〉i goes to zero rather quickly because

ρi becomes zero. (Note that the baryon density takes a negative value here because of an

artifact of RMT.)

In figure 12, we compare our results of 〈νB〉π+<x at x = 0.10 and 0.30 with exact

results at several values of µ. From this figure we conclude that our method reproduces

exact results quite well, though convergences are slower at µ < µc.
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Figure 11. 〈νB · eiSI 〉i and relative wight with and without phase, ρi and ρi · 〈νB · eiSI 〉i. N = 4,

m = 0, µ = 0.4 and c = 0.02. Although 〈νB · eiSI 〉i seems to take a nonzero value at large π+,

ρi · 〈νB · eiSI 〉i goes to zero rather quickly because ρi becomes zero. Note that the baryon density

takes a negative value here because of an artifact of RMT.

Figure 12. N = 4, m = 0 and c = 0.02, exact value vs. 〈νB〉π+<x, x = 0.10 and x = 0.30 for

several values of µ. Data points for x = 0.10 are shifted to x-direction slightly so that they do not

overlap with those for x = 0.30. The convergence to the exact value is slower at µ < µc, because of

a fatter tail.
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Figure 13. 〈eiSI 〉i. N = 4 and N = 8, m = 0, µ = 0.7 and c = 0.02.

Figure 14. ρi · 〈eiSI 〉i. N = 8, m = 0, µ = 0.7 and c = 0.02.

Next let us consider N = 8, m = 0, µ = 0.7 and c = 0.02. We take ε = 0.01,

x = 0.01, 0.02, 0.03, · · · . At x ≥ 0.05, we collected 10, 000, 000–13, 800, 000 configurations

for each bin. In the chiral limit, the phase fluctuation becomes severer as N increases:

see figure 13 in which the average phase for N = 8 and N = 4 are shown. Still, the sign

problem can be controlled by fixing π+ to be small. In figure 14 we show ρi ·〈eiSI 〉i. We can

see the dominant contribution comes from the small-π+ region. It is reasonable to omit

configurations with π+ & 0.12, and there we can evaluate the baryon density reasonably

well, as shown in figure 15.
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Figure 15. 〈νB〉π+<x calculated at limited range of π+. N = 8, m = 0, µ = 0.7 and c = 0.02.

Figure 16. Histogram of Re[νB ] and the average phase as a function of νB at N = 4, m = 0

and µ = 0.4.

3.1 Fixing νB

As we have mentioned in section 2.3.1, at µ < µc, the baryon density νB could be used

to pin down the correct vacuum. (More precisely, we fix the real part, Re[νB].) So let us

see the correlation between the average phase and νB at µ = 0.4, which is below µc, and

at µ = 0.7, which is above µc. In figure 16, the histogram of the real part of the baryon

density Re[νB], and average phase at µ = 0.4 are shown. The average phase is larger at

small Re[νB] region as expected. However, the average phase remain non-negligible even at
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Figure 17. Histogram of Re[νB ] and the average phase as a function of νB at N = 4, m = 0

and µ = 0.7.

Figure 18.
∑

Re[νB ]<x ρi · 〈eiSI 〉i and
∑

Re[νB ]<x ρi · 〈eiSI ·νB〉i calculated at limited range of ReνB .

N = 4, m = 0, µ = 0.7 and c = 0.02. The peak of ρi · 〈eiSI 〉i is normalized to be 1.

large Re[νB] region, which suggests the baryon density is not as good observable as the pion

condensate, though it could be used to make the corresponding density of states at µ < µc.

Moreover, as shown in figure 17, at µ = 0.7 the average phase oscillates around zero,

a very complicated cancellation takes place and hence one has to study whole the con-

figurations in order to estimate 〈νB〉 precisely. In order to make this point clearer, we

show
∑

Re[νB ]<x ρi · 〈eiSI 〉i and
∑

Re[νB ]<x ρi · 〈eiSI · νB〉i in figure 18. We can see a large

– 18 –



J
H
E
P
0
5
(
2
0
1
5
)
0
7
1

Figure 19. 〈νB〉Re[νB ]<x at N = 4, m = 0 and µ = 0.7. The right panel is the zoom-up of a part

of the left one.

x-dependence at 0 . x . 4. As a result, the convergence of 〈νB〉Re[νB ]<x is very slow, as

shown in figure 19. 〈νB〉Re[νB ]<x becomes close enough to the correct value of 〈νB〉 only at

x & 4, where almost all the configurations in the phase-quenched simulation are considered.

Therefore νB is not an appropriate observable to single out the correct vacuum at µ > µc.

4 Strategies for the full QCD simulations

In this section we discuss a few strategies to apply our idea to the full QCD simulations.

4.1 Low-T , large-µ region

In the low temperature and high density region, one has to overcome the pion condensate by

introducing the constraint term like (2.19). However since the simulation cost is not small,

one needs to choose the constraint term in a clever manner so that efficient algorithms e.g.

the Hybrid Monte Carlo (HMC) method are applicable. For that purpose, we introduce

the gaussian term

∆S = γ

∫
d4x|π+(x)− a|2 (4.1)

again, but this time we do not set it to zero near a. Instead we take the above Gaussian

form for all values of π+(x). (And, again, we introduce the source only for ∆S.) This

four-fermi term can be made fermion bi-linear by introducing an auxiliary field, which

allows us to apply the HMC method. A simple method for reconstructing the histogram

of π+ in the phase-quenched simulation with this deformation term can be found in [28].

Note that we could also introduce a deformation of the form
∣∣(∫ d4xπ+(x)

)
− a
∣∣2, which

controls only the zero-mode. With the deformation (4.1) we can control soft excitations

of the pion condensate, which would introduce the overlap problem. More optimal choice

would be possible, when we have better understanding about the system. Note also that, as

the chemical potential becomes large, other particles such as the ρ meson would condense.

Then we have to add other deformations in order to remove them.
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4.2 High-T , small-µ region

The overlap problem is not severe at high-T , small-µ region. Still, at large volume, the

sign fluctuation becomes very violent and simulation cost increases.

The origin of the overlap problem in this region is the gas of charged pion. Since the

pion is light, the gas of pions can easily be excited with the isospin chemical potential, and

hence the isospin density νI takes non-negligible value. On the other hand, with the baryon

chemical potential, only the gas of baryons can be excited. Since baryons are heavy, the

baryon density νB must be small. By recalling νB in QCDB corresponds to νI in QCDI

(i.e. 〈νB〉B = 〈νI · eiSI 〉I/〈eiSI 〉I), it is natural to think that the overlap problem can be

suppressed by taking νI small.

Given that the overlap problem is not severe compared to the low-T , large-µ region,

important configurations with small νI would be contained to some extent in the phase-

quenched ensemble.

Therefore, with the re-analysis already existing configurations by calculating νI , clas-

sifying configurations in terms of the values of νI , and then applying our method, it would

be possible to overcome the sign and overlapping problems. Note that one does not even

have to calculate the determinant at large νI , and hence it may reduce the cost for the

reweighting, while increasing the accuracy.

5 More generic reweighting method

In principle, one can consider more generic reweighting in which the reweighting factor is

not just a phase. For example, one can use configurations generated with chemical potential

(µ′1, µ
′
2) to study (µ1, µ2),

〈Ô〉µ1,µ2 =
〈Ô · (det(µ1, µ2)/ det(µ′1, µ

′
2))〉µ′1,µ′2

〈det(µ1, µ2)/ det(µ′1, µ
′
2)〉µ′1,µ′2

. (5.1)

Our method can easily be generalized to such cases.

The fact that the pion condensate cause the overlap problem has been known for long

long time. Therefore, in order to step into the pion condensation, reweighting from small-µ

region has been performed. That is, one performed a simulation at µ0 < µc, where µc is

the critical value for the pion condensation, and tried to study µ > µ0 by

〈Ô〉+µ,+µ =
〈Ô(det(+µ,+µ)/ det(+µ0,−µ0))〉+µ0,−µ0
〈det(+µ,+µ)/ det(+µ0,−µ0)〉+µ0,−µ0

. (5.2)

However this method does not solve the overlap problem, because the pion condensation at

µ > µc takes place even in such reweighting calculation. In fact, the pion condensation has

been observed even in the quench simulation, in which the configurations are generated by

using pure Yang-Mills action without fermions. Therefore, configurations generated at µ0 <

µc are not necessarily important ones at µ > µc; what one should actually do is to calculate

the pion condensate π+ at (+µ,−µ) (not at (+µ0,−µ0)), classify the configurations and

apply our method by using configurations with small π+. Note again that one does not
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even have to calculate the determinant at large π+, and hence it is possible to reduce the

cost for the reweighting, while increasing the accuracy.

In the phase reweighting method, once the pion condensate is set zero the sign problem

is 1/Nc suppressed. For generic reweightings given in eq. (5.2), such a nice property does

not exist, and hence more violent cancellation is expected. It should become severer as

one goes deep inside the pion condensation. Still, however, it would be useful to study

the chiral and deconfinement transitions by stepping a little bit inside. This can be a very

important application practically, since the QCD critical point might be there.

6 Conclusion and future directions

In this paper, we have improved the density of state method which can make the sign prob-

lem milder. As a by-product, the problem of the zero-mode in the finite-density QCD, which

is associated with the pion condensation in the phase quenched theory, can be avoided. We

demonstrated our idea thoroughly by using numerically cheaper and analytically solvable

toy model, the chiral random matrix theory.

There are variety of directions for future studies. For the finite-density QCD, it is

important to study high-T low-µ region thoroughly. In addition to the confirmation of

the effectiveness of the method, it would provide us with better numerical understanding

about the nature of the QCD thermal transition. For this, we can use the simplified method

described in section 4.2 which does not require generation of new configurations. It is also

interesting to go a little bit into the pion condensation region in order to search the QCD

critical point, by using the method described in section 5. Again, we do not need new

configurations; re-analysis of existing configurations can provide us with better results.

Needless to say, the study of the low-temperature high-density region sketched in

section 4.1 is the most interesting thing to do. Although the remaining sign problem would

become severe at large volume with a simple constraint term (4.1), interesting phenomena

would be seen already at small volume. Note that even the phase quench simulation can

work up to the 1/Nc-correction, once the pion condensation is erased [17–19].

As the chemical potential increases, more particles such as the charged ρ meson would

condense, which forces us to fix more observables to control the overlap problem. Also,

because the sign fluctuation can become exponentially severe as the volume increases, (4.1)

might have to be improved. We hope a better input from physical intuition resolves this

problem, and in reverse, numerical experiments provide us with a better intuition.

Our method is quite general. We hope to report other applications, such as models in

condensed matter physics and supersymmetric gauge theory, in near future.
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