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Using the quark eigenmodes computed on the lattice with the overlap-Dirac operator, we investigate the
spatial distribution of the chiral condensate around static color sources corresponding to quark-antiquark
and three-quark systems. A flux structure of chromo fields appears in the presence of such color charges.
The magnitude of the chiral condensate is reduced inside the color flux, which implies partial restoration of
chiral symmetry inside hadrons. Taking a static baryon source in a periodic box as a toy model of nuclear
matter, we estimate the magnitude of the chiral symmetry restoration as a function of baryon matter density.
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I. INTRODUCTION

The low-energy dynamics of QCD is characterized by
two prominent properties, i.e., chiral symmetry breaking
and confinement. In the QCD vacuum, chiral symmetry of
quark fields is spontaneously broken, as probed by an order
parameter hq̄qi, the vacuum expectation value of the scalar
density operator q̄q. Through the Banks–Casher relation
[1], this chiral condensate Σ ¼ −hq̄qi can be related to the
spectral density of the low-lying Dirac eigenvalues. In the
presence of valence quarks, or color sources, some modi-
fication of the vacuum is expected around them. Strictly
speaking, it is no longer the vacuum, i.e., the lowest energy
state of the system, but we use this terminology having in
mind an application to the study of finite density QCD.
Although the static color sources as considered in this work
are only a crude approximation to the finite density system,
the study of the vacuum modification may shed light on the
states of finite-density QCD, which has been a subject of
active research (see, for instance, Ref. [2]).
The other interesting property of low-energy QCD is

the confinement of quarks, which is characterized by the
linearly rising potential between static color sources.
Putting a pair of a static quark and antiquark in the vacuum,
a color flux tube emerges between them and leads to a
linear increase of the energy as a function of the separation.
This flux-tube structure has been observed in lattice QCD
calculations by monitoring the action density or chromo-
electric (or chromomagnetic) field [3–5]. We expect that
such a flux-tube structure is reflected in the low-lying
fermion eigenmodes because the Dirac eigenmodes carry
the information of their background gauge field configu-
ration. Indeed, the QCD field-strength tensor can be
reconstructed using the fermion eigenmodes [6].

In this paper, we present a lattice study of the spatial
distribution of the chiral condensate in the presence of
static color charges. We consider quark-antiquark and
three-quark systems represented by Wilson loops to mimic
the mesonic and baryonic states, respectively. We use the
lattice data of the Dirac eigenmodes calculated on the gauge
configurations generated with 2þ 1-flavor dynamical over-
lap fermions [7]. With the overlap fermion formulation
[8,9], chiral symmetry is exactly realized on the lattice,
which is important in the study of the low-lying Dirac
eigenmodes, as they are very sensitive to any small
violations of chiral symmetry. The lattice data used in this
work have this nice property and indeed were successfully
applied to the extraction of the chiral condensate in the
vacuum [10–13].
The organization of this paper is as follows. In Sec. II, we

describe the method to construct the local chiral conden-
sate q̄qðxÞ by using the overlap-Dirac eigenmodes and
show its distribution in the vacuum. In Secs. III and IV, we
investigate the spatial distribution of the local chiral
condensate around the static color sources. Section V is
devoted to a summary. Preliminary reports of this work are
found in Refs. [14–16].

II. TOPOLOGICAL STRUCTURE OF
THE QCD VACUUM

We investigate the topological structure of the non-
perturbative QCD vacuum in terms of the eigenmodes of
the overlap-Dirac operator. It preserves exact chiral sym-
metry, and the relation to the topological charge of back-
ground gauge field configuration is manifest, i.e., the index
theorem, at least for smooth enough backgrounds [17].
In this paper, we use the 2þ 1-flavor dynamical overlap-

fermion configurations generated by the JLQCD
Collaboration [7]. Their lattice volumes are 163 × 48 and*iritani@yukawa.kyoto‑u.ac.jp
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243 × 48 at a single inverse lattice spacing a−1 ¼
1.759ð10Þ GeV. The dynamical quark masses are mud ¼
0.015a−1 and ms ¼ 0.080a−1. The global topological
charge is fixed at Q ¼ 0 to avoid the problem of divergent
molecular dynamics force in the simulations [18]. It
induces finite-volume effects [19], which would not be
significant for the relatively local observables considered in
this study. Most of the results are obtained on the larger
lattice (243 × 48) where the number of independent con-
figurations is 50.
In the following, we describe the profile of the low-lying

eigenmodes on these lattices.

A. Local chiral condensate q̄qðxÞ
The massless overlap-Dirac operator is given by [8,9]

Dovð0Þ ¼ m0½1þ γ5sgnHWð−m0Þ�; ð1Þ

with the Hermitian Wilson–Dirac operator HWð−m0Þ ¼
γ5DWð−m0Þ. Here, sgn denotes the matrix sign function.
Introducing the quark mass mq, the overlap-Dirac operator
is modified as

DovðmqÞ ¼
�
1 −

mq

2m0

�
Dovð0Þ þmq: ð2Þ

This form cancelsOðaÞ discretization effects, together with
a proper rotation of the fermion fields in the observables.
We define the eigenfunction ψλðxÞ associated with an

eigenvalue λ of the massless overlap-Dirac operator

Dovð0ÞψλðxÞ ¼ λψλðxÞ; ð3Þ

where the eigenfunction ψλðxÞ is normalized asP
x ψ

†
λðxÞψλðxÞ ¼ 1. Using the eigenfunctions, we may

expand the “local chiral condensate” q̄qðxÞ in terms of the
eigenmodes, i.e.,

q̄qðxÞ ¼ −
X
λ

ψ†
λðxÞψλðxÞ

mq þ ð1 − mq

2m0
Þλ ð4Þ

for a valence quark mass mq. This relation represents a
self-contracting fermion loop contribution from and to the
scalar density operator. If the measured observables do not
include other light quark fields to be contracted, then the
substitution (4) is justified. The correlation functions of
q̄qðxÞ with the Wilson loop are in this class of observables.
The chiral condensate hq̄qi is given by an ensemble

average of q̄qðxÞ without insertions of other operators. By
averaging over space-time, this quantity is simply written in
terms of only the eigenvalues because of the normalization
condition for ψλðxÞ. Thus, the relation between the chiral
condensate and the spectral density ρðλÞ of the Dirac

eigenvalues is established. In the chiral limit, it reads
Σ ¼ πρð0Þ, i.e., the Banks–Casher relation [1].

B. Action and topological charge densities in
terms of the Dirac eigenmode

Since the gauge field-strength tensor Fμν is defined
through the covariant derivative Dμ as Fμν ¼ ½Dμ; Dν�, it
can also be related to the Dirac operator [6]. Here, we
briefly reproduce the derivation.
The square of the Dirac operator D≡ γμDμ is decom-

posed as

½DðxÞ�2 ¼
X
μ

D2
μðxÞ þ

X
μ<ν

γμγνFμνðxÞ: ð5Þ

By multiplying γμγν and taking a trace with respect to the
Dirac indices, the field-strength tensor is expressed as

FμνðxÞ ¼ −
1

4
tr½γμγνD2ðxÞ�: ð6Þ

Therefore, by expanding the Dirac operator in terms of
its eigenvectors ψλðxÞ, an expansion of the field strength is
obtained:

FμνðxÞ ¼
X
λ

λ2fμνðxÞλ; fμνðxÞλ ≡ i
2
ψ†
λðxÞγμγνψλðxÞ:

ð7Þ
Using this decomposition, the action and topological
charge densities are expressed as

ρðxÞ ¼ trc½FμνFμν� ¼ trc
X
λ;λ0

λ2λ02fμνðxÞλfμνðxÞλ0 ; ð8Þ

qtopðxÞ ¼ trc½Fμν
~Fμν� ¼ trc

X
λ;λ0

λ2λ02fμνðxÞλ ~fμνðxÞλ0 ; ð9Þ

respectively. Here, trc denotes the trace with respect to the
color indices, and ~fμνðxÞλ ¼ 1

2
εμνρσfρσðxÞλ.

So far, the expressions are exact, but in the numerical
studies, we introduce a truncation of the summation over
the eigenmodes. This truncation acts as a filter to cut
UV fluctuations above λmax. On the ensembles of
163 × 48 and 243 × 48 lattices, we calculated 160 and
240 pairs of eigenvalues and eigenvectors of Dov, respec-
tively. Then, the eigenvalues after correcting the OðaÞ
effect, Imλ=ð1 − Reλ=2m0Þ, cover the region between
�300 MeV, as shown in Fig. 1. In the measurements
of the correlation between q̄qðxÞ and the Wilson loops, we
monitor the dependence on the number N of the eigenm-
odes included and confirm that the results saturate at least
above 200 MeV. Some examples will be shown later.
Before presenting the results, we show some snapshots

of the eigenmodes. The index theorem dictates that exact
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zero modes are associated with topological excitations of
the gauge field. This suggests that the near-zero modes are
superpositions of such local topological objects. Using a
truncation at N ¼ 20, we visualize the low-mode contri-
butions to the local chiral condensate q̄qðxÞ (4), the action
density ρðxÞ (8), and the topological charge density qtopðxÞ
(9) in the panels (a), (b), and (c) of Fig. 2, respectively.
They show tomographic images on a certain T-X slice of
the four-dimensional lattice extracted from a given gauge
configuration of size 243 × 48.
As one can see in Fig. 2(a), the local condensate q̄qðxÞ

forms a cluster structure. At the same space-time points of
the cluster, the action density shows peaks [panel (b)]. More
importantly, the topological charge density has positive and

negative islands stretching over several lattice spacings at
the same space-time points. Such observation is not new;
indeed, there are lattice studies using the overlap-Dirac
operator [20,21] showing the similar profile of the low-lying
eigenmodes.

III. CHIRAL CONDENSATE IN
QUARK-ANTIQUARK SYSTEM

In the presence of color charges, there appears a flux tube
of chromoelectric fields, which has been observed on the
lattice by measuring the spatial distribution of the field
strength tensor [3–5]. In this section, we investigate the
spatial distribution of the local chiral condensate q̄qðxÞ (4)
around the static color sources. Previously, a related
analysis has been made, but on a single color source,
i.e., a Polyakov line [22–24], or at finite temperature at
which the flux tube is expected to be suppressed [25].

A. Partial restoration of the chiral symmetry
in the flux tube

We investigate the spatial distribution of the local chiral
condensate q̄qðxÞ around the static color sources by
calculating a correlation,

hq̄qð~xÞiW ≡ hq̄qð~xÞWðR; TÞi
hWðR; TÞi − hq̄qi; ð10Þ

where WðR; TÞ denotes a Wilson loop of size R × T.
It represents a pair of a static quark and antiquark separated
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FIG. 2 (color online). Snapshots of (a) the local chiral condensate, (b) the action density, and (c) the topological charge distributions
observed with the sum of 20 lowest-lying eigenmodes. These pictures show the same T-X slice of a 243 × 48 lattice on a representative
gauge configuration. The chiral condensate local fluctuations are correlated with the local topological charge measurements.
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FIG. 1 (color online). Eigenvalue (in MeV) of the low-lying
eigenmodes on the 243 × 48 lattice. By including 240 eigenm-
odes, we can cover the range of λ ≲ 300 MeV.
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by a distance R. The origin of the coordinate is chosen at
the center of the loop, which stretches along the X axis, and
the Y and Z axes correspond to the transverse directions.
Figure 3 shows a schematic picture of the measurement.
As mentioned in the previous section, we truncate the

sum over the eigenmodes in (4) at the Nth eigenvalue and
denote the corresponding local condensate as q̄qðNÞðxÞ. In
the final analysis, we chose N ¼ 160, after confirming that
the result is unchanged once a sufficient number of low-
lying modes are included.
Reflecting the ultraviolet divergences of the scalar

density operator, the expectation value of q̄qðNÞðxÞ contains
quadratic and logarithmic divergences. The strong quad-
ratic divergence is associated with a mixing with the
identity operator and has the form mq=a2. Because of
the exact chiral symmetry of the overlap-Dirac operator, the
strongest divergence of 1=a3 is absent, and the leading term
is of 1=a2 and proportional to mq. Since the truncation at a
fixed mode number N can be considered as a certain
regularization scheme, the regularized operator q̄qðNÞðxÞ
can be parametrized as

q̄qðNÞ ¼ q̄qðsubtÞ þ cðNÞ
1 mq=a2 þ cðNÞ

2 m3
q; ð11Þ

with q̄qðsubtÞ the operator for which the power divergences
are subtracted. The second and third terms represent a
mixing with the identity operator; the mass dimension is
compensated by mq=a2 and m3

q, respectively. These coef-

ficients cðNÞ
1 and cðNÞ

2 can be obtained by fitting the vacuum
expectation value hq̄qðNÞi as a function of the valence quark
massmq [26]. When the correlation with the Wilson loop is
considered as in (10), the contribution from the identity

operator with the divergent coefficient cðNÞ
1 mq=a2 þ

cðNÞ
2 m3

q cancels on the right-hand side, and the measure-
ment is free from the power divergences.
Figure 4 shows the spatial distribution of hq̄qðNÞð~xÞiW on

the XY plane with a separation R ¼ 8. The locations of
color sources are shown by the circles. To improve the

signal of the Wilson loop, we apply the APE smearing for
the spatial link variables [27], and the temporal extent is
fixed at T ¼ 4 for which the ground state becomes
dominant. In this plot, q̄qð~xÞ is set at t ¼ 0, and the
valence quark mass is mq ¼ 0.015a−1.
To improve the signal, the lattice data are averaged over

space-time. Namely, assuming the translational invariance
of the expectation value, we shift the whole system
including the Wilson loop and the local chiral condensate
and take an average. This can be done without additional
computational cost to solve quark propagators by using the
low-lying eigenmodes. This is one of the advantages of the
construction (4).
As Fig. 4 demonstrates, there appears a tubelike structure

between the color sources, where the change of the
condensate becomes positive, i.e., hq̄qðNÞð~xÞiW > 0. It
means that the magnitude of the chiral condensate is
reduced between the color charges, since hq̄qi is negative
in the vacuum.
Peak structures at the position of the charges are shown

in the flux-tube measurements [3,4] due to the strong
enhancement of the action/energy density around the color
charges. In terms of the low-mode truncated local chiral
condensate shown in Fig. 4, no such characteristic struc-
tures around the color charges can be observed. The
absence of peaks will be discussed later.
The remaining logarithmic divergence in q̄qðsubtÞ can be

canceled by taking a ratio

rð~xÞ≡ hq̄qðsubtÞð~xÞiW
hq̄qðsubtÞi ¼ hq̄qðsubtÞð~xÞWðR; TÞi

hq̄qðsubtÞihWðR; TÞi ; ð12Þ

where hq̄qðsubtÞi is obtained by fitting the vacuum expect-
ation value hq̄qi to (11) as a function of the valence quark
massmq. As there are no remaining ultraviolet divergences,
the ratio rð~xÞ has a proper continuum limit. Hereafter, we
mainly use this quantity to quantitatively estimate the
restoration of chiral symmetry.

time WILSON LOOP

Quark
Anti-Quark

local chiral condensate

X

Y

FIG. 3 (color online). Schematic picture of the flux-tube
measurement. The static quark and antiquark are located at
ðR=2; 0Þ and ð−R=2; 0Þ on the XY plane.
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FIG. 4 (color online). Spatial profile of the local chiral con-
densate hq̄qðNÞð~xÞiW around a Wilson loop WðR; TÞ with R ¼ 8
and T ¼ 4. The positions of color sources are at ðX; YÞ ¼ ð4; 0Þ
and ð−4; 0Þ, which are shown in the plot by white circles.
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Figure 5 shows the ratio rð~xÞ for the separation between
the color sources fixed at R ¼ 8. The plots Fig. 5(a) and
Fig. 5(b) correspond to the cross sections of Fig. 4 along
the X axis and the transverse Y axis. The locations of color
sources are shown by black dots in Fig. 5(a).
These plots provide a quantitative measure of the

reduction of the chiral condensate. The region in which
the chiral condensate is reduced forms a structure that
resembles the color flux tube. In other words, chiral
symmetry is partially restored inside the flux tube. The
restoration becomes stronger around the center of the flux,
which is about 20% when R ¼ 8.
The close relationship between the flux tube is suggested

in Fig. 6. We compare the cross section of both the chiral
condensate hq̄qðsubtÞð~xÞiW and the action density defined by
(8) with a cutoff on the mode number hρðNÞð~xÞiW around
the Wilson loop using 160 low-lying eigenmodes. The
latter is calculated by inserting the action density ρð~xÞ in
place of q̄qð~xÞ in Eq. (10), which is used for the flux-tube
measurement [3–5]. To compare the profile, both quantities

are normalized to unity at the origin. Apart from their
normalization coefficients, the spatial profile of the chiral
condensate shows a good agreement with UV Dirac mode
truncated action density. As mentioned above, the action
density is strongly enhanced around the color charges as
reported in Refs. [3,4]. However, neither UV filtered
density has such structures. Our conclusion is that such
peak mainly comes from the ultraviolet divergent part and
thus cannot be seen in Fig. 6(a) within our cutoff scale.
Figure 7 shows the same plot as Fig. 5 but with different

values of N, the number of eigenmodes included in the sum
(4). As expected from the construction that cancels the
ultraviolet divergences, there is no significant difference
between N ¼ 120 and 240. Our choice N ¼ 160 is there-
fore sufficiently conservative to estimate the local chiral
condensate inside the tube. Up to the largest eigenmode in
our calculation at N ¼ 240, we have confirmed such a
saturation for other quantities considered in this paper
except for the magnitude of the action density ρðNÞð~xÞ
and topological charge density qðNÞ

top ð~xÞ. The value of these
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FIG. 5 (color online). Ratio of the chiral condensate rðxÞ for a separation R ¼ 8. The color sources are separated along the X axis and
set at ðX; YÞ ¼ ð4; 0Þ and ð−4; 0Þ. The plots show the cross section (a) along the X axis at Y ¼ 0 and (b) along Y axis at X ¼ 0.
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FIG. 6 (color online). The spatial profile of both the local chiral condensate hq̄qðsubtÞð~xÞiW and UV Dirac mode truncated action
density hρðNÞð~xÞiW around the color sources with a separation R ¼ 8 using 160 low-lying eigenmodes. For a comparison of their shape,
both quantities are normalized at the origin. (a) cross section at Y ¼ 0. (b) cross section at X ¼ 0.
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quantities strongly depends on the cutoff scale λmax as
expected from the definition in Eqs. (8) and (9). However,
the spatial profiles of both hρðNÞð~xÞiW and hq̄qðsubtÞð~xÞiW
are rather stable, and there are no signatures of peaks within
our truncation as in Fig. 7(a).
The partial restoration of chiral symmetry is in accor-

dance with the chiral bag model picture for the quark-
antiquark system [28]. In the naive bag model, chiral
symmetry is completely restored inside the bag, while
Fig. 5 suggests a smooth boundary with a reduced but
nonzero condensate inside the bag.

B. Chiral symmetry restoration as a function
of the separation

Next, we study the chiral symmetry restoration depend-
ing on the separation of the color sources.
Figure 8 compares the cross section of rðxÞ along the X

axis with R ¼ 4, 8, and 10. By increasing the separation,
we observe that the region of partial restoration stretches
between the color sources, which are located at X ¼ R=2
and −R=2. This supports the picture of the tube structure.

The magnitude of the reduction increases with R.
For instance, at the origin, the reduction of about 15%
at R ¼ 4 grows up to about 25% at R ¼ 10. Beyond
R ¼ 10, the statistical signal becomes much worse, and
the effect of spatial boundary would become important as
R approaches L=2.
In Fig. 9, we plot the value of the ratio at the center rð0Þ,

where the magnitude becomes minimum, as a function of
R. As the separation R increases, the ratio of the chiral
condensate decreases monotonically until the maximum
distance we could explore. At larger distances, the effect of
string breaking should manifest itself in dynamical QCD,
and the local chiral condensate would stop decreasing.
As far as we can observe, the reduction of the chiral
condensate inside the color flux tube is of the size of
20%–25% at the distance of 1 fm, assuming that the string
breaking does not occur in this scale [29], since it is
difficult to observe the breaking state using the Wilson loop
as a color source.
By increasing the separation between color sources, the

thickness of the flux is expected to grow logarithmically as
a function of its length [30,31]. Such behavior has indeed
been observed in quenched lattice QCD calculations [32]
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FIG. 7 (color online). Same as Fig. 5 but with different numbers of eigenmodes included:N ¼ 120, 160, 200, and 240.(a) cross section
at Y ¼ 0. (b) cross section at X ¼ 0.
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FIG. 8 (color online). Chiral condensate ratio rðxÞ along the
X axis. The results with increasing separation R: R ¼ 4, 8, and
10. Color sources are located at ðR=2; 0Þ and ð−R=2; 0Þ.
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FIG. 9 (color online). Ratio at the center of the flux rð0Þ as a
function of the separation R.

TAKUMI IRITANI, GUIDO COSSU, AND SHOJI HASHIMOTO PHYSICAL REVIEW D 91, 094501 (2015)

094501-6



(see also Ref. [33] for a study at finite temperature), for
which one can increase the statistics more easily. In this
work, we try to observe the thickness through the chiral
condensate ratio rðxÞ.
Figure 10 shows the cross section of rðxÞ along the Y

axis for some combinations of R and X. It is clear that for a
fixed X the flux is thicker when the separation R is larger.
More interestingly, the curve for R ¼ 8 at X ¼ 0 almost
coincides with that for R ¼ 10 at X ¼ 2. Similarly, the
curve for R ¼ 4 at X ¼ 0 coincides with that for R ¼ 6 at
X ¼ 2. Because of the reflection symmetry, these behaviors
are also observed at X ¼ −2. This indicates that the
thickness of the flux is highly correlated with the magni-
tude of the reduction. We also note that these corresponding
cross sections have the same distance from the color
charge, which is given by R=2 − jXj for jXj ≤ R=2.
In fact, such a coincidence is expected from an effective

string model [34,35]. According to that model, the ratio
rðYÞ is written as

rðYÞ ¼ 1 − ~r
μ2

α

K0ððμ2Y2 þ α2Þ1=2Þ
K1ðαÞ

; ð13Þ

where K0ðxÞ and K1ðxÞ are modified Bessel functions. The
parameter μ has a physical interpretation as the inverse
penetration length of the flux from the perpendicular
direction, and α is the thickness of the core. The parameter
~r represents the strength of the condensate reduction.
The function (13) reproduces the lattice data quite well,

as shown by the curves in Fig. 10. The fit results are
summarized in Table I. The penetration length is in the
range of 1=μ≃1.0–1.6, which corresponds to 0.11–0.18 fm
in physical units. The core size α is 1.4–3.6 in lattice units
and is in the range 0.15–0.4 fm. We observe an increase of
α as R increases while X is fixed at zero, but with the large
statistical error, we are not able to claim the clear evidence
of the string fattening.

IV. CHIRAL CONDENSATE IN THE
THREE-QUARK SYSTEM

A. Partial restoration of chiral symmetry
in the three-quark system

Next, we consider a system consisting of three color
charges that represents a baryon system, which we call the
3Q system in this paper.
Using the path-ordered product Uk ≡Q

Γk
eiagAk along a

path Γk, the 3Q Wilson loop is given by

W3Q ≡ 1

3
εabcεa0b0c0Uaa0

1 Ubb0
2 Ucc0

3 ; ð14Þ

which is made color singlet by the totally antisymmetric
tensor εabc of color indices a, b, and c [36,37]. Similar to
the Q̄Q system, the spatial distribution of the chiral
condensate for the 3Q system is measured as

hq̄qð~xÞi3Q ≡ hq̄qð~xÞW3Qi
hW3Qi

− hq̄qi; ð15Þ

with the 3Q Wilson loop W3Q. The ratio of the chiral
condensate in the 3Q system r3Qð~xÞ, for which the ultra-
violet divergences cancel, is then constructed by

r3Qð~xÞ≡ hq̄qðsubtÞð~xÞW3Qi
hq̄qðsubtÞihW3Qi

: ð16Þ

Figure 11 shows a schematic picture of the construction
of the 3Q Wilson loop W3Q from the Wilson lines Uk. For
simplicity, we use an isosceles right triangle configuration
of the color charges on the XY plane, and the coordinate is
set as in Fig. 11. In this case, the junction point of the three
flux tubes (the Fermat point) corresponds to the origin
[36,37]. The measurement of the local chiral condensate
q̄qð~xÞ is done at a fixed time slice. The low-mode
truncation number N, the temporal extension T, and other
measurement setups are the same as in the QQ̄ system.
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 = 8,  = 0
 = 6,  = 2
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FIG. 10 (color online). Cross section of the ratio along the
Y axis with different separations R and cut points X.

TABLE I. Fit results for rðYÞ to (13) for each R and X, together
with χ2 per degrees of freedom. Note that μ and α are in lattice
units. The condensate ratio at the center rð0Þ is listed as well.

R X rð0Þ ~r μ α χ2=dof

10 0 0.757(10) 1.54(7) 0.66(11) 2.3(0.9) 0.40
10 1 0.762(10) 1.46(7) 0.72(14) 2.8(1.2) 0.46
10 2 0.778(10) 1.26(6) 0.71(14) 2.5(1.1) 0.66
10 3 0.805(9) 1.00(6) 0.75(18) 2.5(1.3) 1.00
8 0 0.786(5) 1.11(3) 0.71(7) 2.2(0.5) 0.43
8 1 0.792(5) 1.08(4) 0.72(8) 2.3(0.6) 0.25
8 2 0.813(5) 0.93(3) 0.75(11) 2.5(0.8) 0.58
8 3 0.855(5) 0.69(3) 0.83(17) 3.0(1.3) 1.42
6 0 0.815(3) 0.89(2) 0.66(4) 1.7(2) 0.38
6 1 0.827(3) 0.81(2) 0.65(4) 1.6(2) 1.01
6 2 0.865(3) 0.65(2) 0.61(4) 1.4(2) 2.36
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Figure 12 shows the ratio r3Qð~xÞ with color sources at
ðX; YÞ ¼ ð6; 0Þ, (0, 6), and (0, 0) denoted by circles in the
plot. As shown in Fig. 12, the magnitude of the chiral
condensate is reduced among the color sources, which
indicates the partial restoration of chiral symmetry inside
the 3Q system. Similar to the QQ̄ system in Sec. III, there
appear no peaks at the color charges within our truncation
scale. We note that the characteristic Y-type flux is not
clearly seen in this plot, probably because the thickness of
the flux is comparable to the color source separation.
Because of the statistical noise, we are not able to repeat the
calculations increasing the quark separations.
Like in the Q̄Q system, the magnitude of the restoration

depends on the separation of the sources. Figure 13 shows
the cross section of the ratio r3Qð~xÞ along the line of X ¼ Y
with the color sources at ðX; YÞ ¼ ðR; 0Þ, ð0; RÞ, and (0, 0).
In this setup, the measurement goes through one color
charge and the center of mass of the system. By comparing
the data for R ¼ 3 and 6, we find that the reduction is more
substantial for R ¼ 6, which is similar to the QQ̄ system
(see Fig. 8). The reduction of the local chiral condensate
becomes larger with the size of the loop and takes its
minimum value at around the center of gravity. With R ¼ 6,

the reduction is about 30%, which is also similar to that of
the QQ̄ system.

B. Partial restoration at finite density

Finally, using the observed modification of the local
chiral condensate around the color sources, we estimate the
size of the partial restoration of chiral symmetry in finite-
density QCD. We consider the system of a fixed number of
baryons in a finite-volume box so that the baryon number
density ρ is Nb=L3, where Nb is the number of baryons and
L3 is the spatial volume. As a toy example, we take Nb ¼ 1
and replace the baryon by the 3Q Wilson loop. This only
gives a crude approximation of the realistic system, but
given the difficulty of simulating QCD at finite chemical
potential, it may provide a useful clue to the understanding
of the finite-density QCD.
The net change of the condensate under such a system is

estimated by the spatial average of the condensate ratio
r3Qð~xÞ,

hq̄qiρ
hq̄qi0

≡ 1

L3

XL3

~x

r3Qð~xÞ; ð17Þ

where hq̄qiρ is the condensate at the finite baryon number
density ρ ¼ 1=L3. We use two lattice volumes, L3 ¼ 163

and 243, which correspond to ð16aÞ−3 ≃ 0.18 fm−3 and
ð24aÞ−3 ≃ 0.05 fm−3, respectively. The 163 lattice roughly
corresponds to the normal nuclear density ρ0 ≃ 0.18 fm−3.
Figure 14 shows hq̄qiρ=hq̄qi0 as a function of 1=L3. The

two symbols correspond to the different configurations of
the color sources, i.e., (0, 0), ðR; 0Þ, and ð0; RÞ with R ¼ 3
and 6 on the XY plane. The solid lines are the results of a
linear fit with fixed value of 1 at 1=L3 ¼ 0. The linear
dependence from unity at ρ ¼ 0 simply means that there is
a finite region where the chiral condensate is reduced from
its vacuum value. Since the region gets larger with
increasing R, the slope for larger R is steeper.
In our setup, the reduction of the chiral condensate at the

normal nuclear density is only ∼5%, which is much smaller

X

Y

0

3Q Wilson Loop

Wilson line

FIG. 11 (color online). A schematic picture of the construction
for three-quark system with an isosceles right triangle configu-
ration. Three Wilson lines Uk correspond to the static color
sources.
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FIG. 12 (color online). Condensate ratio r3Qð~xÞ with the color
sources at Q1 ¼ ð6; 0Þ, Q2 ¼ ð0; 6Þ, and Q3 ¼ ð0; 0Þ on the XY
plane.
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FIG. 13 (color online). Chiral condensate ratio r3Qð~xÞ along the
line of X ¼ Y with the color sources at ðR; 0Þ; ð0; RÞ, and
(0, 0) on the XY plane with R ¼ 3 and 6.
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than the phenomenological model estimate of the order of
30% [38]. Our estimate, however, assumes a fixed spatial
size of the baryon that is smaller than the realistic nucleon.
For instance, the mean root square radius of our setup in
Fig. 14 is 0.44 fm when R ¼ 6, while the charge radius of
proton is 0.88 fm. As the restoration of the chiral con-
densate is stronger for larger separation, this suggests that
hq̄qiρ in realistic finite-density QCD could be substantially
lower than our estimate.

V. SUMMARY

The Dirac eigenmodes carry the full information of the
background gauge field. Indeed, having the complete set of
the eigenvalue and eigenvectors, one can reconstruct the
field-strength tensor FμνðxÞ at any point x. They therefore
offer an interesting way of filtering out the ultraviolet modes
and investigating the low-energy dynamics of QCD by only
using the low-lying eigenmodes upon reconstruction. This is
a sound and well-defined regularization method of quantum
field theory.
We use this method to investigate the spatial profile of

the chiral condensate under the presence of external

sources. On the lattices generated with 2þ 1 flavors of
dynamical overlap fermions, we calculate the low-lying
eigenvalues and associated eigenvectors of the overlap-
Dirac operator and use them to reconstruct the chiral
condensate locally. Then, it is straightforward to measure
its correlation with the external color sources set up to
model the Q̄Q and 3Q systems.
We find that the local chiral condensate shows a structure

interpreted as a color flux tube between the Q̄Q color
sources, in which the condensate decreases significantly. It
indicates a partial restoration of chiral symmetry inside the
flux tube and suggests that it happens also inside hadrons.
The spatial profile is consistent with a string model of
the confinement potential, giving another support for the
presence of the color flux tube.
We perform a similar measurement in the 3Q system,

which is new as far as we have noticed. It again shows the
partial restoration of chiral symmetry among the color
sources. The reduction of the condensate is about 30% for
the separation between the color sources of∼1 fm. It can be
used to estimate the chiral condensate in the finite-density
system.
The method developed in this work may easily be

applied for the study of finite-temperature QCD, in which
Polyakov loops can be used for a static color source. Since
the eigenmodes can be applied to define various charges,
such as the axial charge density, the quark number density,
and the topological charge, it may provide an interesting
alternative to measure their spatial distribution.
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