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Japan; *Department of Radiation Genetics, Kyoto University Graduate School of
Medicine, Japan; *Division of the National Toxicology Program, National Institute
of Environmental Health Sciences, USA

0 Quantitative high-throughput screenings (QHTSs) for genotoxicity are conducted as
part of comprehensive toxicology screening projects. The most widely used method is to
compare the dose-response data of a wild-type and DNA repair gene knockout mutants,
using modelfitting to the Hill equation (HE). However, this method performs poorly
when the observed viability does not fit the equation well, as frequently happens in qHTS.
More capable methods must be developed for qHTS where large data variations are
unavoidable. In this study, we applied an isotonic regression (IR) method and compared
its performance with HE under multiple data conditions. When dose-response data were
suitable to draw HE curves with upper and lower asymptotes and experimental random
errors were small, HE was better than IR, but when random errors were big, there was no
difference between HE and IR. However, when the drawn curves did not have two asymp-
totes, IR showed better performance (p < 0.05, exact paired Wilcoxon test) with higher
specificity (65% in HE vs. 96% in IR). In summary, IR performed similarly to HE when
dose-response data were optimal, whereas IR clearly performed better in suboptimal con-
ditions. These findings indicate that IR would be useful in qHTS for comparing dose-
response data.
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INTRODUCTION

Over the last few decades, the number of chemical compounds in
commercial use has grown rapidly, as indicated in the increase in CAS
registry numbers from 40 million in 2008 to 75 million in 2013. However,
comprehensive toxicological profiles for many of these compounds are
lacking (NRC, 2007). In response to this deficiency of toxicological infor-
mation, the original members of the U.S. Tox21 community have been
evaluating the utility of quantitative high-throughput screening (qHTS)
(Collins et al., 2008; Shukla et al., 2010; Inglese et al., 2006; Thomas et al.,
2009). They have focused on various types of toxicity including repro-
ductive and developmental toxicity, and immunotixicity. One of the toxi-
cological endpoints of interest to U.S. Tox21 is genotoxicity.
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Traditional toxicological evaluation has largely relied on animal mod-
els. They are, however, expensive, low-throughput, and sometimes incon-
sistently predictive of human biology and pathophysiology (Shukla et al.,
2010). Recently, the NIH Chemical Genomics Center (NCGC) conduct-
ed evaluations of a novel qHTS approach for identifying genotoxicity
potential based on the detection of increased cytotoxicity in isogenic
DT40 DNA repair-deficient cell lines, compared to that exhibited by the
repair-proficient parental cell line under the same exposure conditions
(Yamamoto et al., 2011; Ji et al.,, 2009). Miniaturized assay volumes (< 10
uL/well) in a 1536 well-plate format provide the high-throughput
required to generate dose-response data for every compound library
member tested. The premise behind this strategy is that a decrease in
DNA repair competency will increase the sensitivity of cells to being killed
by genotoxic chemical compounds. The DNA repair-proficient parental
cell line serves as a control in this screening, providing high sensitivity
and specificity (Evans et al., 2010). Furthermore, the use of a panel of
DNA repair-deficient cell lines allows for characterization of the nature of
DNA lesions caused by genotoxicants (Mizutani et al., 2004; Nojima et al.,
2005; Wu et al., 2006).

There is much room for improvement in analyzing dose-response
data from qHTS, even though it gives us a large amount of information
on compounds. In a previous qHTS study (Yamamoto et al, 2011),
screening was conducted for 2864 compounds from the phase I library
provided by the National Toxicology Program (Tice et al., 2012). Dose-
response data were obtained from one wild-type clone and seven mutant
clones deficient in different DNA repair factors. The dose-response data
were analyzed by fitting to Hill equation (HE) sigmoid curves, according
to the standard NCGC protocol (NTP, 2010). This protocol classified the
estimated curves for their genotoxic evidence and the quality of the esti-
mated curves. The qualities of the curves were assessed by the presence
of asymptotes and inflection, indicating their appropriateness as HE
curves. Further details are provided in Figure 1. The curves were called
“complete” if they had upper and lower asymptotes and an inflection;
otherwise, they were classified as “incomplete” (Figure 1BC, Inglese et al.,
2006). Based on these criteria, complete curves were obtained for only
6.72% of all records (1539/22912). This situation was considered likely to
produce false judgments of genotoxicants. One reason for this low rate of
“complete” curves was that no experimental condition could be designed
compatible with allowing a large number of compounds to be screened
together at a high-throughput scale due to the heterogeneity of the com-
pounds. Another reason was that dose-response data did not always fit to
the theoretical Hill equation due to the wide differences in chemical
characteristics of the compounds (Jiang et al., 2011).
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FIGURE 1. Theoretical and estimated dose-response curves and classification of estimated curves.
(A) The theoretical HE curve has two asymptotes at 0 (0%) and 1 (100%) viabilities, and the inflec-
tion in the middle of the slope. The y-coordinates of the two asymptotes, the coordinates of the inflec-
tion, and the equation of the tangent line at the inflection, are indicated using the parameters in
equation (1). (B) When observing concentrations covered by the range including the two asymp-
totes, the HE estimation curve (solid line) had two asymptotes and an inflection, so the estimated
curve was called “complete” based on the NCGC classification criteria. Both HE and IR estimation
curves (solid and dotted, respectively) were close to the theoretical curve (grey). Only one curve is
drawn for simplicity. (C) On the other hand, when observing concentrations that only partially cov-
ered the range, the HE estimation curve had only one asymptote with an inflection, and the esti-
mated curve was called “incomplete” based on the criteria. The estimated IR curve (dotted) had only
one asymptote as well, but it fit better to the theoretical curve than the HE curve.

DT40 DNA repair-deficient cell lines have been studied in detail as a
method to measure the genotoxicity of chemical compounds by compar-
ing the dose-survival curves of damaged cell lines with the curves of intact
cell lines under refined experimental conditions. The cell culture condi-
tions, the dose of each compound, and time points of observation are
optimized for individual chemicals and cell lines. The experiments are
performed on a small scale at a regular lab bench and are repeated as
necessary. Expansion of this system to a Tox21 high-throughput setting,
where 1536-well plates were used and the experimental conditions for the
wells and plates were unified, meant both that the experimental condi-
tions were not optimized for individual chemicals and that the repetition
number was fixed and limited. This produced two major statistical prob-
lems that need to be solved: (1) the dose-survival curves did not always fit
within the dosage range, and (2) the random errors were not always
appropriate to allow dose-survival curves to be generated. The conven-
tional sigmoid curve fitting method, i.e., the HE method, is a parametric
method that assumes the presence of two horizontal asymptotes with a
symmetric slope between them. It performs well when the data fit with
the parametric assumptions, but it is not reliable when data deviate sig-
nificantly from the assumptions. In contrast, nonparametric methods are
much more adaptable to variable data in general. Besides of data vari-
ability, monotonicity should be assumed for our dose-response curves.
Actually, there are two types of monotonicity. One is the monotonic
decrease in viability both of wild-type and mutant cell lines with an
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increase in chemical concentration. The other is that the curve for the
wild-type cell should be higher than the curve for the mutant at any con-
centration. Therefore, a nonparametric method that could incorporate
those two monotonic restrictions should be appropriate for these data.
The isotonic regression method (IR) meets these conditions.
Consequently, we compared the performance of HE and IR on simulated
qHTS data using the DT40 system.

We examined the problems in evaluating genotoxicity with dose-
response data from the high-throughput system and divided them into
the following three components: (1) the magnitude of random errors in
observed viability and their effect size of genotoxicity, (2) the inadequate
coverage of the curves by the experimental concentrations used and (3)
the variations in the gradients of the curves (i.e., two dose-response
curves are not necessarily parallel in the real data).

We compared our new method, based on isotonic regression (IR),
with a conventional method based on the HE, for their performance in
terms of these three problems using simulation data.

METHODS
Experimental design of qHTS

With qHTS, chemical compounds were screened for their genotoxic-
ity by comparing dose-response curves of multiple DNA repair gene
mutants, m, against the curve of one wild-type, w. Any compound for
which any one of the mutant curves indicated a higher death rate com-
pared with the wild-type curve was judged to be a genotoxicant. In later
parts of this report, we focus on comparisons between one mutant and
one wild-type for simplicity.

The wild-type and mutant were exposed to a compound at multiple
concentrations evenly spaced on a logarithmic scale ¢ = (¢, = ¢,7™"); i ={1,
2, ..., n} (Figure 2A). We observed cell viability at each ¢, for the two cell
lines. The viabilities were standardized to range from 0 to 1 (0% to 100%)
based on the experimental signal intensity of positive and negative con-
trols (Xia et al., 2008). Because the strength of the genotoxicity of chem-
ical compounds varied and ¢ was fixed for all compounds in the qHTS sys-
tem, the dose-response curves of some compounds were not adequately
covered by this concentration range (Figure 2B). The nomenclature and
variables used in this paper are summarized in Supplementary Data.

Generation of simulation datasets

Theoretical dose-response data for the wild-type and mutant were
generated from a log-logistic sigmoid curve function (Ritz, 2010; Finney,
1979) on the logarithmic scale x = log, .
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FIGURE 2. Simulation designs. (A) For the theoretical dose-response curves, we fixed two parame-
ters, p;and p,, out of the four parameters in equation (1) and rewrote equation (2) with two param-
eters, a= p, and b= p, The viability was a function of concentration provided on a logarithmic scale.
When the compound was a typical genotoxicant via the mutated gene function, the two dose-
response curves of wild-type (solid) and mutant (dotted) were parallel with a horizontal shift. The
horizontal shift of the mutant line to the left meant that the mutant cells were less viable as lower con-
centrations of the compound. The effect size of the genotoxicity was defined as the horizontal shift,
0= a, - a,which is indicated as “Effect size” on the graph. The experimentally observed viabilities
deviated from the curve with random errors, as indicated by filled circles (wild-type) and rectangles
(mutant). Random errors are indicated by a box plot in the panel. This dataset was generated with 6
/ 0 =0.167. (B) This plot describes suboptimal conditions where the experimental concentrations
did not cover the dose-response curves well. When the coverage was suboptimal, the estimated curve
did not have two asymptotes and it was classified as “incomplete”. The parameter 6 controlled the
location of the experimental concentrations relative to the theoretical curves. Each dotted rectangle
corresponds to 6 =0, 8, and 14 as it shifts to the left. We observed cell viability from the minimum
concentration to the maximum concentration for each simulation. Zone X, Y, and Z are described in
Figure 5. (C) This panel describes a compound whose dose-response curves in wild-type and mutant
were not parallel and had an intersection in the middle of the slopes. This indicated that the com-
pound had a greater effect lowering the viability of the mutant cells when its concentration was low,
but when its concentration was high, the viability of wild-type cells was lower. Although it is not easy
to explain this phenomenon by simple biological models, the estimated curves based on observation
sometimes fit this pattern. (D) This panel describes how v changed the shapes of curves. When v =
0, the wild-type and mutant curves were parallel, but when v > 0, the slope of the mutant curve was
steeper, and when v < 0, the slope of the wild-type curve was steeper. The two mutant curves repre-
sented the largest and smallest v, from -3 to 1, which was the range we evaluated in this report.
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Ps—Ds *

f*(x)=p3+m’

tw,m. (1)

The parameters p, and p, stand for the horizontal asymptotes (Figure
1A). For our models, p, and p, were fixed at 0 and 1, respectively. The
parameter p, indicated the concentration of inflection (log, EC)) and
parameter p, determined the gradient of the slope (Figure 1A). We
replaced p,, p,, py and p, with a, b, 0 and 1, respectively, to express the the-
oretical curve function and to distinguish between wild-type and mutant,
and a and b were indicated by the subscripts w and m. Subsequently,
experimental data were generated with random Gaussian errors € as
shown in equation (2).

1
ﬁ(x>~w+8, *w,m. (2)

In this system, genotoxicity was defined as an increased death rate of
the mutant cell line. Genotoxicity was measured as the shift of the mutant
curve to the left. The size of the shift was expressed as 0 = a —a, (Figure

2A).
Conditions to generate simulated data for method comparison

We parameterized equation (2) for the compounds according to the
experimental conditions as shown in Figure 2. As shown in Figure 2A, the
observed viability deviated from the theoretical curves. The deviation was
given as random errors following a normal distribution, ¢~ N(0, 0%). The
effect size of genotoxicity of the positive control compounds, 0 =a - a ,
was also parameterized as shown in Figure 2A. We selected the values of
oand Otobe 0=1{3,6, ..., 18} and 0 ={0.2, 0.4, ..., 2} based on a previous
study by Yamamoto et al. (2011). The dataset in Figure 2A was generated
with 6 =1 and 0 = 6. As shown in Figure 2B, the experimental concen-
tration window sometimes covered the theoretical curves well, while
sometimes the coverage was inadequate. To parameterize the coverage,

(aw+am)/2—(x1 +x,)/2
log,,r

we introduced a parameter, § = that determined
the relative location of the curves in the experimental window. We set 6 =
{-14,-13, ...,-1, 0, 1, ..., 14}. The last parameter we generated was the dif-
ference between the gradients of the curves, v =0 -0 (Figure 2C). For
the majority of the simulations, we set v =0, and when we specifically eval-
uated the effect of v, we set vin the range from -3 to 1 (Figure 2D).

With these parameters, six 0, ten 6, twenty nine 6, and twenty one v
were combined, providing 36540 conditions in total. For each condition,
we generated 1000 simulation datasets.

6
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Statistics to measure genotoxicity

We compared two methods, the conventional HE-based method and
our proposed IR-based method, for their ability to detect genotoxicity.
The differences in the statistics between wild-type and mutant, AS,,. =
SHb o™ SHE m rflnd AS= Sz - Sip » Were used as the measure of genotox-
icity as described below.

Hill equation and the difference between EC,, values

As shown in Figure 3A, two curves were drawn using dose-response
datasets of wild-type and mutant cell lines. Each curve was expressed as
equation (1), and its four parameters (p,, p,, p5, and p,) were estimated,
so that the difference between the observed values and the values on the
estimated curve should be a minimum (Hill, 1910). For the estimation of
one curve, the dataset of the corresponding cell line was used to estimate
the four parameters of one curve and the dataset of the other cell line was
used separately to estimate the parameters of the other curve. In techni-
cal terms, the parameters were estimated using the “drm” function in the
“drc” package in R (http://cran.r-project.org/). These function estimat-
ed parameter values were identified by maximizing their likelihood using
the Limited-memory BFGS optimization procedure (Byrd et al., 1994).

o o
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100 *  -t.;B- mutant 100 oo o fp(x)
- WA i Bee ... o
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FIGURE 3. The estimated curves obtained using the Hill equation and isotonic regression methods,
and the statistics for the genotoxicity results. (A) The filled circles and rectangles represent observed
viability values for the wild-type and mutant cell lines, respectively. Two curves were estimated with
HE. The solid curve is of the wild-type cell line and the dotted curve is of the mutant cell line. The
statistics for the genotoxicity results, AS,,, is the distance between the horizontal coordinates of p,
(log, EC,,) of the two curves. (B) For the same dataset, isotonic regression (IR) provided two lines,
the wild-type line (solid) and the mutant line (dotted). The points g (x) are on the solid line and the
points g (x) are on the dotted line. Both solid and dotted lines decreased monotonically, and the
solid line was above the dotted line throughout. Four inequality restrictions for x,,and x,, are indi-
cated. The statistics for the genotoxicity results, AS,,, is the area between two lines, which is shadowed.
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Because the theoretical genotoxicitywas 0 =p,  -p, , =a,-a, its est-
mate 6 was given as shown below using the estimated p, values of two
lines, Sm o and Sy, . This is in accordance with the conventional index
of genotoxicity (Yamamoto et al., 2011) (Figure 3A) and is related to the

EC;, of the two cell lines.
Syps = Ds =0 1 w,m. (3)

N EC
Oue = Sue =Sug. = Sug,m =108 _— 4
ECS(),m ( )

Isotonic regression and the area between two estimated lines

As shown in Figure 3B, two lines were drawn, one for each of the two
cell lines. The two lines met two restrictions: (1) both lines were com-
posed of line segments and both decreased monotonically and (2) the
wild-type line (solid) was above the mutant line (dotted) for all the con-
centrations tested. IR generated two lines at the same time using the dose-
response datasets of the two cell lines together. IR searched the two lines
so that they met the two restrictions and so that the deviations between
the observed values and the estimated values were minimal. Specifically,
IR is a nonparametric approach for building models whose fits are
monotonic. In the dose-response curve scenario, an observed viability
vector, [{(x), to another estimated viability vector, G(x), carries a weight
vector, h, that imposes inequality restrictions over the values of G(x), such
as G(x) = G(x].). Thus, to solve equation (5),

minimize.)zzfl,.{l"()cl.)—G()C,»)}2 (5)

subject to the inequality restrictions (Best and Chakravarti, 1990). This is
a very powerful method to analyze a monotonic trend in nonlinear data.
In our case, F(x) consisted of the observed viabilities of both cell lines,
where F(x) ={f (x), f (x)}. Similarly, G(x) consisted of the estimates of the
viabilities of two cell lines, where G(x) ={g (x), g (x)}. See Figure 3B for
fw(x), J,,(x) and g (x), g, (x). There were two types of constraints on G(x)
={g (x), g,(x)}. First, viability should monotonically decrease in the range
from 0 to 1 both in the wild-type and in the mutant (g.(x) = g‘(x) X; < X,
for all i pairs, where * stands for w or m). Second, the wild- type v1ab111ty
should be equal to or greater than the mutant viability at the same con-
centration (g (x,) = g (x,); for all 7). In our case, all data points were given
equal weight (4, =1).
We used the area between the two estimated g (x) and g (x) lines
(trapezoidal rule for approximating an integral, Figure S2 in
Supplementary Data) as the index of genotoxicity.
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Q log,,r
SIR,* =E{g*(xi+l)+g*(xi)}%’*:W’ m. (6)
=1

i

ASIR = SIR, w SIR,m‘ (7)

We performed IR using the “quadprog” package in R and the “cvx-
opt” module in Python (Martin et al., 2012, 2013) (Figure 3B).

Assessment of performance via receiver operating characteristic curves

As we described in the Introduction, there were two problems with
the qHTS data from the genotoxicity screening system: (1) the dose-sur-
vival curves did not always fit within the dosage range, and (2) the ran-
dom error variations were not always appropriate to allow drawing of the
dose-survival curves. In order to compare the two sets of statistics based
on HE and IR for datasets with these problems, we generated simulation
data using four parameters: (i) the difference in the magnitude of geno-
toxicity between the two cell lines, 0, (ii) the size of the random errors, o,
(iii) the observation window, 0 and (iv) the difference between the gra-
dient of the curves from the two cell lines, v. The main objective of our
study was to evaluate which factor(s) affects the performance of the two
methods in genotoxicity screening.

Basically, the performance of the two methods in terms of discrimi-
nating genotoxicants from non-genotoxicants was evaluated by sensitivity
and specificity. The changes in sensitivity and specificity, along with vari-
ous cut-off values, were evaluated using the receiver operating character-
istic (ROC) curve, and the area under the receiver operating character-
istic curve (ROC-AUC) was used to quantitate their performance of
screening (Swets, 1988). The relations between the conditional parame-
ters and ROC-AUC or sensitivity/specificity were evaluated. Actually, the
effects of (i) the true effect size of genotoxicity between the two cell lines,
0, and (ii) the size of the random errors, o, on the performance of the
two methods, were better interpreted using their ratio 6 / o, as is the case
with the majority of statistical tests. We tested the relation between 6 / o
and ROC-AUC using the DeLong test (Delong et al., 1988) when testing
individual 6 / o, and we used the exact paired Wilcoxon test when testing
forasetof 6/ o.

Evaluation of the effect of 6 on sensitivity and specificity when screening
thresholds were fixed

In the qHTS system, one threshold value is applied to all compounds,
which separates the compounds into two groups: genotoxicity-positives
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and genotoxicity-negatives. We therefore applied a fixed threshold value
for each method and evaluated the effect of 6 on their sensitivity and
specificity with 0 =18, 8 =1, and v = 0. Sensitivity and specificity were test-
ed using a binomial test. We determined the threshold value for each
method by applying Youden’s | statistic (Perkins and Schisterman, 2006;
Youden, 1950) to our ROC-AUC for datasets with =18, =1, 6= 0, and
v=0 (“pROC” package in R. Robin et al., 2011).

RESULTS
Effects of ratio of the true effect size of genotoxicity to random errors (6 / 0)

We evaluated the effects of the variance of random errors and of the
effect size of genotoxicity on the performance of HE and IR because the
efficiency to detect meaningful genotoxicity depended on the relative
size of the genotoxicity value to the random errors, as is true for statisti-
cal methods in general. As shown in Figure 2A, the effect size was the
length between two theoretical curves; the data points deviated from the
theoretical curves due to the random errors. When the random errors
were bigger, the precision of the estimated curves was lower. Because we
considered the compound positive for genotoxicity when the length
between the wild-type and mutant curves was larger than a threshold
value, the sensitivity of the test was lower when the random errors were
bigger. When the true effect size was bigger, the effect of random errors
on the sensitivity was smaller. Therefore, we adopted the ratio of the true
effect size of genotoxicity to random errors as a parameter to evaluate the
performance of HE and IR. We compared the two methods when the
curves were parallel (v = 0) and largely within the experimental concen-
trations (0 =0).

The ratio of genotoxicity to the variance of the random errors, 6 / o,
and ROC-AUC showed a strong relationship, as shown in Figure 4. In the
right half of Figure 4, the ROC-AUC of HE and IR was almost 1, indicat-
ing that both methods could effectively detect genotoxicity when the
ratio of the strength of genotoxicity to the variance of the random errors
was large. On the other hand, in the left half of Figure 4, the ROC-AUC
of both methods was positively correlated with the ratio, and the ROC-
AUC of HE was higher than that of IR. The overall ROC-AUC of the two
methods differed significantly (p < 0.05, exact paired Wilcoxon test). The
difference was due to HE’s better performance 6 / o< 0.067 (the left half
of Figure 4). Most of this difference was statistically significant (p < 0.05,
Delong test).

Effects of the coverage of dose-response curves with observation windows ()

We evaluated the effects of the observation windows on the perform-
ance of HE and IR. Figure 2B shows the dose-response curves for the con-

10
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FIGURE 4. The relationship between 6 / 0 and ROC-AUC. When the ratio of the true effect sizes to
the variance of the random errors was smaller than the vertical dotted line (the left side of Figure),
the ROC-AUC of HE was better than that of IR. On the other right side, the performance of the two
methods was not different. The two methods were tested for differences for all 6 / o values as a set,
which was statistically significant (p < 0.05, exact paired Wilcoxon test). The majority of 6 / o on the
left side were also significant when compared individually (p < 0.05, DeL.ong test). The vertical dot-
ted line corresponds to 6 / o= 0.067. The asterisk (*) and an arrow indicate 6 / o = 0.056, used in
the data generation of Figure 5 (o0 =18, 0=1).

ditions at 6 = 0, 8, and 14, and we evaluated for 6 = {-14, -13, ..., -1, 0, 1,
..., 14}. ROC-AUC, sensitivity and specificity were plotted along with
(Figure 5). The horizontal axis was zoned into three segments according
to curve classes: in zone X, the asymptotes of both curves were covered by
the observation window. Therefore, it was likely that the estimation using
HE was easy and was thus classified as “complete”. In zone Y, one of the
two asymptotes was included in the window, and the slope was only par-
tially covered. In this zone, the estimation with HE was likely to be
“incomplete” but the estimation using IR could be informative. In zone
Z, the observation window did not cover the slope and neither method
was useful. Please see the top panel of Figure 5. In zone X, the ROC-AUC
was over 0.85 for both HE and IR. IR barely decreased ROC-AUC, where-
as HE slightly decreased ROC-AUC. In zone Z, the ROC-AUC of both
methods was 0.5, indicating that both methods were not informative. In
zone Y, the ROC-AUC obtained for the two methods showed different
behavior, namely, HE decreased more rapidly than IR as § increased. Of
note, the ROC-AUC curve of HE in zone Y decreased irregularly (an
increase in ROC-AUC at 6 = 9) (Figure 5 top). This point corresponded
to the condition where the edge of the observation window was very close
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zone X . zone Y . zone Z

- --I--D--D-{-o--p_

sensitivity and specificity

FIGURE 5. ROC-AUC (top), and sensitivity and specificity (bottom) with various 6, with =18, 6 =
land v=0. 6 / oof this experiment is provided in Figure 4. s were divided into 3 zones, Zone X, Y,
and Z, as described in the main text. (Top) In zone X, both methods had similar performance, but
HE was more subject to 8. In zone Y, the reliability of both methods decreased, but the decrease in
HE was more rapid than that of IR. In zone Z, both ROC-AUCs were 0.5. (Bottom) Sensitivity and
specificity. In zone Z, the sensitivity and specificity of HE were 0.5, while the sensitivity and specifici-
ty of IR were almost 0 and 1, respectively. Both plots share the horizontal axis, 6. Abbreviations: Sn =
sensitivity, Sp = specificity.

to the inflection point of the theoretical curves (data not shown). In zone
Y, the superior performance of IR over HE was confirmed for all 6 / o (p
< 0.05, exact paired Wilcoxon test).

Effects of the difference in gradients of curves (v)

We evaluated the situations where v = 0, or where the dose-response
curves were not parallel and thus intersected with each other. We used
datasets with 0 ={3, 6, ..., 18}, 8 ={0.2, 0.4, ..., 2}, and 6 = 0 so that the
curves should be “complete”. The parameter indicating the difference of
the curve gradients between the wild-type and the mutant, v, varied in
this evaluation (Figure 2D).

The following are some facts regarding the genotoxicity indices, AS,,.
and AS,,. Supplementary Data and Figure S1 provides the proofs.

(a) When v =0, AS,;, = a, —a,, was the same as the area between two the-
oretical curves. This is because the height of the area between the
curves was 1, the curves were parallel, and the area between the
curves was the same. The area of the rectangle (or parallelogram) had
awidth of @ - a, and a length of 1 (Figure 6A).
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FIGURE 6. The effect of v on the statistics of HE and IR (A) When dose-survival curves of the wild-
type and the mutant were parallel (v = 0), the area between the two curves was identical to 6 = a_ -

indicated as a grey rectangle. (B) When the two curves were not parallel (v= 0), the area between

a, .,
m
name-

the two curves was divided into " and §. In this case, the area was also identical to 6=a_- a ,

ly, AS,,;- (C) IR estimated the area § to be zero because of the restriction of g (x) = g, (x). (D) The
effect of v on AS,. and AS,. The ratio of AS, (*: HE, IR) to AS, at v =0 was plotted. v did not affect

AS,,. while it affected A i (E) The relationship between 6 / 0and ROC-AUC at v= 1. In contrast to
Figure 4, the overall ROC-AUC of IR was better than that of HE (p < 0.05, exact paired Wilcoxon test)
and the majority of 8 / o on the left side were also significant when compared individually (p < 0.05,

DeLong test).

(b) When v = 0 and when the number of observing points was large, the
lines obtained using IR could be identical with their theoretical
curves. In this case, the area between the lines of IR, AS,,, was the
same as the area between the theoretical curves, which was the same
as AS,. = a, —a as described in (a) (Figure 6A).

(c) When v = 0, the area between the theoretical curves was again the
same as AS,;,. = a —a . Note that the curves had the intersected when
v = 0 and the area between the curves was divided into two parts: one
was the area where the wild-type curve was higher than the mutant
curve (the area S"), and the other was the area where the wild-type
curve was lower than the mutant curve (the area S; Figure 6B). The
area which was the same as AS,,,. = a, — a, was the sum of the areas §
and §.

(d) When v = 0, the area between the theoretical curves was divided into
two parts as mentioned above. At concentrations where the wild-type
curve was higher than the mutant curve, the IR method estimated two
lines that should fit to the theoretical curves. In contrast, at concen-

trations where the wild-type curve was lower than the mutant curve,
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the IR estimated two lines as the same line, because the line for the
wild-type should not be below the line for the mutant (Figure 6C).
This meant that AS,, tended to be larger than the area between the
theoretical curves, which is the difference between the areas S" and S,
as explained in (c). Therefore, when v = 0, AS,, tended to be larger
than AS,,.

Figure 6D shows the effect of v on AS,,,. and AS,, under the condition
where the observational points were adequate and with no random
errors. v did not affect AS,,, as described in (c), while it did affect AS,,,
AS,, became larger both when v < 0 and when v > 0 than the value when
v =0.

Because of this phenomenon, ROC-AUC behaved differently when v
# 0. Figure 6E showed the relation between 6 / 0 and ROC-AUC when v
=1 and with zone X condition. When 6 / o was big (in the right half of
Figure 6E), the ROC-AUCs of HE and IR were almost identical, but when
0 / owas small (in the left half of Figure 6E), the ROC-AUCs of IR were
bigger than those of HE. This was contrary to the results when v = 0
(Figure 4). The difference was statistically significant (p < 0.05, exact
paired Wilcoxon test). For all v = 0.8, the ROC-AUCs of IR were better
than those of HE (p < 0.05, exact paired Wilcoxcon test; data not shown).

Sensitivity and specificity with various observation windows ()

We observed the relationship between 6 and the sensitivity and speci-
ficity of the two methods (Figure 5 bottom). In zone X, the specificity of
HE decreased with an increase in 6, and appeared to be the main source
of the decrease in ROC-AUC in HE. In zone Z, ROC-AUC was approxi-
mately 0.5 for both methods, but the sensitivity and specificity behaved
differently. In HE, both the sensitivity and specificity were close to 0.5,
indicating that HE judgments would not be useful. On the other hand,
the IR specificity was very high but with very low sensitivity. IR thus pro-
vided high false negatives but low false positives, even in zone Z. Zone Y
had features intermediate between zones X and Y. In zone Y, the sensitiv-
ity of HE and IR decreased, with IR showing some advantages over HE
based on ROC-AUC. In contrast, the specificity of HE and IR differed sig-
nificantly: HE specificity became smaller, but IR specificity remained
high. Atd =8 (Figure 2B), the specificity of HE and IR was 65% and 96%,
respectively (p < 0.05, binomial test) (Figure 5 bottom). Thus, the differ-
ence in specificity between the two methods appeared to be the source of
the difference in ROC-AUC.

DISCUSSION

We found that quantitative high-throughput systems used to screen
compounds by comparing two dose-response curves were affected by the
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screening conditions. Specifically, considerable parts of the dose-
response curve data were not analytically optimal because of random
errors or shifts in the informative parts of the curves. These inevitable
phenomena mean that that the utility of HE is limited for qHTS. This is
in agreement with a previous study showing that only 6.72% of all records
were appropriate for HE curve fitting (Yamamoto et al, 2011).
Accordingly, we applied IR and compared its performance with HE.

First, IR performed comparably with HE when the two curves were
completely observed within the experimental concentrations; the ran-
dom errors were acceptable compared with effect sizes. In contrast, when
random errors were very large, the performance of IR was slightly worse
than that of HE. However, such data may not allow conclusions to be
drawn since the effect size of the variables in question is very small.
Consequently, the utility of the data for practical genotoxicity is limited,
since the random errors appear to be too large to be acceptable from the
standpoint of experimental quality control.

Besides the random errors, we frequently observed suboptimal dose-
response data which poorly fit the HE curve within the experimental con-
centrations. The accuracy of HE was affected by the poorfitness when the
slope part of one of the two curves was at the boundary of the experi-
mental concentrations used. This is because the accuracy of HE depends
on the estimation of a (log EC,;), which corresponds to the inflection
point of the curve. Indeed, inclusion of this point critically affected the
performance of HE (data not shown). This indicated that the effect of
partial observation of the informative part of the curves was critical. In
contrast, IR was not affected by these particular points. We demonstrated
that partial observation of the informative parts of the curves did not
affect the performance of IR as much as that of HE. When the experi-
mental concentrations were almost outside the informative part of the
curves, the sensitivity and specificity of HE were close to 0.5, indicating
that it would be inadequate for judging compounds. In the same condi-
tions, IR showed very low sensitivity, but its specificity was very high. This
indicates that the results from IR may be useful for screening, although
their use should be further evaluated in the context of the particular pur-
pose of each individual screening system.

In addition to the conditions where the two curves are parallel, in this
study we also simulated compounds for which the dose-response curve of
the mutant was not parallel to the curve of the wild-type. This issue is
related to the definition of genotoxicity, as described in Supplementary
Data 2. When two dose-response curves are parallel, the two curves do not
intersect (Figure 2A) and the area between them is equal to the differ-
ence of the logarithmic scale of EC, (following appropriate scale and
unit adjustments). This equality means that the performance of the two
methods is similar for compounds with parallel curves. On the other
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hand, when the two curves are not parallel, the mutant curve is at least
partially above the wild-type curve (Figure 2C). This means that the com-
pounds cause a higher death rate of the mutant when their concentration
is below the concentration at the intersection, and a higher death rate of
the wild-type when their concentration is above the concentration, or vice
versa. It would be useful to detect any compound that may cause a high-
er death rate of mutants that are susceptible to DNA damage, even at a
limited range of concentrations, particularly in the screening settings.
This is because the biological effects of chemical compounds may differ
completely depending on the concentration of the chemical compound.
Such chemical compounds can be successfully detected by IR, since IR
does not measure the amount of horizontal shift of the two curves but
rather measures the area representing the increased death rate of the
cells. Additionally, we simulated various effects of the genotoxicants on
the mutant cell line, such as the non-horizontal shift of the dose-response
curves. The evaluation of the potential correlation between the patterns
of the shifts and the physico-chemical features of the compounds might
produce new insights into the mechanism of genotoxicity, although we
have not studied the real compounds with our method.

In this paper we are proposing a relatively new method based on IR
to quantitatively evaluate suboptimal dose-response data. We showed that
IR performed better than HE when dose-response data were not obtained
under optimal conditions. Although the utility of HE has been long estab-
lished, particularly in conventional small-scale experiments, the use of IR
along with HE would be highly beneficial for the evaluation of high-
throughput data. IR has been shown to be useful in microarray analyses,
where the dose-response data were regarded as nonlinear, monotonic
functions (Hu et al., 2005; Harrill et al., 2008). The results described
above provide another example showing that IR is useful for dose-
response evaluation.
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SUPPLEMENTARY DATA

Notation and parameter characteristics

Notation Description

HE Hill equation

IR Isotonic regression

w Wild-type

m Mutant

n Concentration number in the experiment

¢ The' i-th concentration in the experiment
r Base of concentration in the experiment
x Concentration log,,c
D1s Do Py Py Parameters for Hill equation
EC,, Efficacy concentration at 50% maximal
a Parameter for EC,. a = p,
b Parameter for Hill coefficient. b= p,
£ Experimental random errors
o Standard variation of random error
1 EC‘S() w
_a = _ —lo >
6 aw am - pl, w p], m_ glO ECSO
n
Shift of observation window
v b —-b
w m
AS Difference statistics S between S and S
ROC Receiver operating characteristic curve
ROC-AUC Area under the receiver operating characteristic

curve

The definition of genotoxicity and the area between curves.

Each compound, d, had dose-survival functions for the wild-type, w,
and the mutant, m, given by f (x) and f, (x), respectively. For the sake of

w
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1
simplicity, we used a two-parameter HE, f(yla,b)= 12007 We modeled

the dose-survival functions of two cell lines with HE as f = f(yla , b ) and
f,=JfWla,, b ). When b =b , the two curves were parallel and did not
intersect, and when b = b, a = a they had one intersection at
y _ awbw - ambm

Ccross bwbm

The qHTS system identified genotoxicity from a higher death rate of
the mutant compared with that of the wild-type. Therefore, when b =5 ,
the area between two curves,

JUf, )= £, (0} dx (S1)

represents the strength of genotoxicity, and this corresponds to 6= a -
a,. The area between two curves is identical, as shown by the rectangle on
the right side of Supplementary Figure SIA.

When b = b , there appeared to be two definitions of genotoxicity
strength.

One definition was the same as that provided by equation (S1), when
b =b,
[, (0= £, (x))dx . (S2)

where a compound resulting in the mutant-specific decrease in viability
was counted as a genotoxic compound, and the mutant-specific increase

100

100 | e—e~a-

0=ay-a, 5 ! ASpe=S*+S AASR=S">8"+S

@
S
L

50 N ,
IR estimation )

viability (%)

9 . '
4 intersection

viability (%)

—e— wild-type
\ -9- mutant
Theoretical curve Theoretical curve . Theoretical curve S -0
—e— wild-type —— wild-type AU wild-type <
0 -@- mutant o ly- € o -@- mutant G. 04 mutant
T 0 e 0 T T 0

concentration (log scale)

concentration (log scale) concentration (log scale)

FIGURE S1. The area between the wild-type and mutant curves. (A) When the two curves are paral-
lel, the area is indicated as a grey area. This is identical to the grey rectangle whose widthis 6=a, - a,,
located at the right side of the Figure. (B) When the two curves intersected, the area was divided into
S where the wild-type curve was higher than the mutant curve, and § where the wild-type curve was
lower than the mutant curve. Area $* corresponds to the mesh triangle and area S corresponds to the
dark grey triangle. $ has a negative value, but S increased by the same amount as S. That is, $* + S is
identical to 6= AS,,, (light grey rectangle). (C) One of the restrictions of IR, that the line for the wild-
type should not be below the line for the mutant, made the area S zero. S is shown as a dark grey tri-
angle in Figure S1B, while here, § is indicated as a line. That is, AS,, = " is larger than 0 = AS,,,.
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in viability was counted as an inverse effect. This condition is shown in
Supplementary Figure S1B. Again, the area can be transformed into sim-
ple shapes. The area is the upper bigger triangle minus the bottom small-
er triangle. This is the same rectangle as the one drawn in panel A that is
shadowed. When the upper white triangle is rotated and moved down, it
covers the part of the rectangle that was not covered by this triangle and
the lower, smaller, dark-shadowed triangle. This explains that the sum of
S and § is identical with 6=a —a, .

The other definition only counted the mutant-specific decrease in via-
bility and ignored the increase in viability, which can be expressed as:

f max {0, f, (x) - f, (x)}dx . (S3)

Because this only counts the positive triangle (Figure S1C), the area
is larger than 6=a - a,.

Calculation of the statistics for isotonic regression (IR) via the trapezoidal
rule.

The grey area under the broken lines after IR estimation, S, was cal-
culated by the trapezoidal rule and summed through to iteration i The
two parallel bases and height correspond to g(x), g(x.,,), and log,r,
respectively (Figure S2).

— IR
. . . g(x:)

100'0 .. Y H Y H .

Pt $i= {g(xur) +a(x)} 222
<
SN IEEEEEE
=90 ¢ g(xis1)
Ke] (R T N s N
>

concentration (log scale)

FIGURE S2. Calculation of the statistics for isotonic regression (IR) via the trapezoidal rule. The grey
area under the dashed lines after IR estimation, S, was calculated by the trapezoidal rule and
summed through to iteration i. The two parallel bases and the height correspond to g(x,), g(x;,,,), and
log,,r, respectively.
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