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Universal jump in the helicity modulus of the two-dimensional quantumXY model

Kenji Harada
Division of Applied Systems Science, Kyoto University, Sakyo-ku, Kyoto 606-01, Japan
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Department of Physics, Toho University, Miyama 2-2-1, Funabashi 274, Japan

~Received 11 February 1997!

The helicity modulus of theS51/2 XY model is precisely estimated through a world-line quantum Monte
Carlo method enhanced by a cluster update algorithm. The obtained estimates for various system sizes and
temperatures are well fitted by a scaling form withL replaced by log(L/L0), which is inferred from the solution
of the Kosterlitz renormalization group equation. The validity of the Kosterlitz-Thouless theory for this model
is confirmed.@S0163-1829~97!50422-X#

The nature of the phase transition of the quantumXY
model in two dimensions has not been fully clarified while
the existence of a transition at a finite temperature was
suggested1,2 some years ago. Ding and Makivic´3 examined
this problem systematically by a large scale Monte Carlo
simulation for the first time and concluded that a phase tran-
sition of the Kosterlitz-Thouless~KT! ~Ref. 4! type takes
place atTKT50.350(4)~Ref. 3! or 0.353(3).5 In their calcu-
lation, the temperature dependence of the correlation length
and the linear susceptibility were studied. However, it is
technically difficult to distinguish an exponential divergence
from an algebraic one. Because of this difficulty, the validity
of their conclusion on the nature of the phase transition was
questioned.6 For the same reason, Gupta and Baillie7 did not
conclude, in spite of their very extensive Monte Carlo calcu-
lation, that the phase transition of the classicalXY model is
exactly what the KT theory predicts.

In previous studies, to our knowledge, a systematic study
of the system size dependence of various quantities was
missing for the quantumXY model. On the other hand, for
other models with a KT phase transition, there are a number
of reports on this size dependence. For example, Soly´om and
Ziman8 studied size dependence of the first excitation gap in
theS51/2 anisotropicXXZmodel in one dimension, which
is exactly solvable and known to have a transition of the KT
type at the antiferromagnetic isotropic point. They found that
the exact estimates for finite systems do not fit into the stan-
dard form of the finite-size scaling at the critical point. In-
stead of using the ordinary finite-size scaling form, Weber
and Minnhagen9 used the Kosterlitz renormalization group
equation10 for the data analysis in their study of the classical
XY model in two dimensions. They verified the KT-type
phase transition by comparing the size dependence of the
helicity modulus,Y, with the solutions of the renormaliza-
tion group equation at the critical temperature. They found a
remarkable agreement extending even to the prefactor of the
logarithmic correction. Following the same idea, Olsson11

performed a more detailed analysis of the classical model
with a more extensive Monte Carlo simulation. He found the
resulting data including off-critical ones consistent with the
Kosterlitz renormalization group equation.

The helicity modulus is known to exhibit the universal
jump at the critical temperature.12 This quantity corresponds
to the superfluid density when the model is regarded as a
Boson system with hard cores. In the world-line quantum
Monte Carlo method,13 the helicity modulus is related to the
fluctuation in the total winding number of world lines by the
following equation:14

Y5~T/2!^W2&, ~1!

whereW[(Wx ,Wy) with Wx (Wy) being the total winding
number in thex (y) direction. Makivić15 computed this
quantity by means of a conventional world-line quantum
Monte Carlo method. The method is not ergodic,16 however,
in that it does not allow the winding number to vary. There-
fore, Makivić resorted to an alternative definition of the
quantity although it does not result in exactly the same an-
swer as the conventional definition does. Another difficulty
of the conventional Monte Carlo method is its long autocor-
relation time near and below the critical temperature. These
difficulties limited the accuracy and the precision of the
Makivić’s estimates and narrowed the temperature range of
the simulation. To overcome these difficulties, we use the
cluster Monte Carlo method16 in the present paper, in which
both the number of particles and the winding number can
vary. Another advantage of the method is its autocorrelation
time which is often shorter than that of the conventional
method by several orders of magnitude.

In the present paper, we attempt a detailed and precise
comparison between the model and the theory by Kosterlitz10

through an accurate estimation of the thermal fluctuation in
the winding number near and below the critical temperature.
We will see that such an estimation allows us to examine a
new scaling form which is different from the ordinary finite-
size scaling. In this scaling form, the distance from the criti-
cal point, i.e., K2KKT appears in the form of (K
2KKT)@ log(L/L0)#

2, in contrast to (T2TKT)L
yT in the ordi-

nary finite-size scaling. At the same time, the quantity
x[^(p/2)W2&22 scales asxlog(L/L0).

TheS51/2 quantumXY model is defined by the follow-
ing Hamiltonian:
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H52J(̂
i j &

~Si
xSj

x1Si
ySj

y!, ~2!

where^ i j & runs over all nearest-neighbor pairs on the square
lattice. As for the spin operators, we here use the convention
in which (Si

m)251/4 (m5x,y,z).
In comparing the numerical result with the renormaliza-

tion group theory, the squared winding number is a useful
quantity since it can be regarded as the renormalized cou-
pling constant and therefore its size dependence can be di-
rectly predicted by the following renormalization equation:10

dx

dl
52y2,

dy

dl
52xy. ~3!

Here,x andy are renormalized parameters after a renormal-
ization operation up to the length scaleL[L0(T)e

l where
L0(T) is some characteristic length of the order of the lattice
constant and has no singularity atT5TKT . The parameter
x is related to the renormalized coupling constant, i.e., the
helicity modulus, by the following equation:12

x5
pY

T
225

p

2
^W2&22. ~4!

In what follows, we regard the estimate of (p/2)^W2&22 for
a system of the sizeL at the temperatureT as
x„l5 log@L/L0(T)#,T….

Equation~3! has an integral

D~T![x2~ l !2y2~ l ! ~5!

which does not depend onl[ log@L/L0(T)#. As a function of
T, this integral is nonsingular atT5TKT , i.e.,
D(K)5a(K2KKT)1b(K2KKT)

21••• where K[J/T.
The solution of Eq.~3! is given by

x~T,L !5HAuDucoth~AuDu l ! ~K.KKT!

AuDucot~AuDu l ! ~K,KKT!.
~6!

Note that the ordinary finite-size scaling form

x~T,L !5Lvg~DL1/n! ~7!

cannot be consistent with Eq.~6!. Instead, the solution~6! is
a special case of the following form that one can obtain from
the ordinary finite-size scaling form by replacingL by
l5 log@L/L0(T)#,

x~T,L !5 l21f ~D l 2!. ~8!

When expressed in the form of Eq.~8!, the solution~6! cor-
responds to a ‘‘scaling’’ functionf (X) which is nonsingular
atX50 in spite of the singularity inAuDu atT5TKT . To be
more specific, the solution~6! corresponds to

f ~X!511O~X!. ~9!

Note that the fitting functions used by Olsson11 @Eqs.~11a!–
~11c! with ~16! and~18! in his paper# are consistent with this
scaling form. Olsson’s fitting function corresponds to ours
with a temperature-independentL0(T).

For our Monte Carlo simulation, using Suzuki-Trotter de-
composition, we transformed the two-dimensional quantum

XYmodel into the~211!-dimensional Ising model with four
spin plaquette interactions. The partition function is de-
scribed as

Z5(
S

)
p

v~Sp!, ~10!

whereS is the set of statesSi ,t
z on the ~211!-dimensional

lattice,Sp is a state of spins in a plaquettep formed by four
spins Si ,t

z , Sj ,t
z , Si ,t11

z , Sj ,t11
z , and v(Sp) is the two-spin

propagator defined below. We apply periodic boundary con-
ditions in all directions to preserve the translational invari-
ance and to satisfy the trace requirements.

By numbering four local states on a bond as 15(↑↑),
25(↑↓), 35(↓↑), and 45(↓↓), the two-spin propagator
can be written explicitly as

v5S 1 0 0 0

0 coshS Dt

2 D sinhS Dt

2 D 0

0 sinhS Dt

2 D coshS Dt

2 D 0

0 0 0 1

D , ~11!

whereDt5J/(mkBT) with the Trotter numberm, and the
temperatureT. In what follows, we will set J51 and
kB51 for simplicity.

We have carried out a Monte Carlo simulation using a
cluster algorithm called the loop algorithm.16 In this algo-
rithm, four spins in each plaquette are connected pairwise.
The pairs are chosen stochastically. The connected spins
form loops which are units of flipping. A world line is a path
connecting sites with up spins which may wind around the
system with periodic boundary conditions. The winding
numbersWx ~orWy) are defined as the sum of the numbers
of such windings of all world lines in thex ~or y) direction.
For example,Wx can be rewritten as

Wx5
1

Lx
(
p

ax~Sp!, ~12!

whereLx is the lattice size in thex direction. The symbol
ax(Sp) stands for the function which takes the value 1~or
21) if a world line passes through the plaquettep in the
positive~or negative! x direction and the value 0, otherwise.
The other winding numberWy is defined in the same man-
ner.

In order to reduce the statistical error, we have used an
improved estimator for the squared winding number of world
lines. It simply equals one-fourth of the sum of squared
winding numbers of loops formed by a clustering procedure
~i.e., a graph assignment procedure! in the cluster Monte
Carlo method. A more detailed discussion will be given
elsewhere.17 In the present simulation, we have found that
the new estimator reduces errors by about twenty percent.

In our simulations, we have taken various temperatures
between 0.22 and 0.60 and used lattices with
L58, 16, 32, and 64. As the Trotter numberm, we have
usedm58, 16, and 32. When the systematic error due to the
Trotter discretization exceeds the statistical error, we have
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reduced the systematic error by the extrapolation tom5`
using three data for different Trotter numbers. The length of
a typical run onL564 at a temperature is more than
23105 Monte Carlo Sweeps~MCS!. To make use of the
vector processors, we have developed the efficient vectorized
code for the cluster identification. The underlying idea for
this vectorization was proposed by Mino18 and it is based on
the ‘‘divide-and-conquer’’ strategy. In his algorithm, one
firstly divides the lattice into small sublattices and, at the
same time, identifies clusters in each sublattice neglecting
the connectivity outside of the sublattice. One then deals
with twice as large sublattices formed by a pair of previous
sublattices. By repeating this procedure, one can eventually
get clusters identified correctly in the whole lattice. Using
this algorithm, we have achieved the efficiency of 1.5 million
site updates per second on the Fujitsu’s VPP500.

Each run is divided into several bins. The length of a bin
is taken so that bin averages are statistically independent
from each other at least approximately. We have measured
integrated autocorrelation times forW2 at low temperatures

T,0.35J by the standard binning analysis for a run of 105

MCS withL564. They turn out to be smaller than 2 MCS in
all cases. Since the smallest bin length used in the main
calculation is 1500 MCS, the statistical independence among
bins is assured. The statistical errors of various observables
have been calculated from the standard deviation of the bin-
average distribution.

In Fig. 1, the raw data for̂W2&[^Wx
21Wy

2& are plotted.
Figure 2 is its ‘‘scaling plot’’ using the the form of Eq.~8!
assuming thatL0(T) does not depend on the temperature,
which was a reasonably good approximation judging from
Olsson’s observation11 ~see Fig. 14! for the classical model.
@L0(T) in the present paper corresponds to ‘‘const’’ in Eq.
~18! in Olsson’s paper.# The enlarged view around the criti-
cal point is shown as the inset. The scaling plot in Fig. 2 is a
reasonably good one, considering the fact that we have only
two adjustable parameters,KKT andL0, while there are three
such parameters in the ordinary finite-size scaling plot. The
value ofKKT is determined so that the resulting plot gives the
‘‘best’’ scaling plot. To quantify the ‘‘goodness’’ of the scal-
ing plot, a cost functionS(KKT ,L0) is defined,19 which is
essentially the deviation from the local linear fitting. We
used the data in the range 0,^W2&24/p,0.25, which
roughly corresponds to the temperature range
0.330,T,0.375. The best fitting is obtained with the tran-
sition temperature

TKT5J/KKT50.342~2!J ~13!

which is significantly lower than Ding and Makivic´’s
estimates.3,5 We confirmed that other choices of the range
result in the estimates of the critical temperature consistent
with the value quoted above. The best scaling plot is shown
in Fig. 2. It should be noted that the estimated scaling func-
tion takes the value of 1 atK2KKT50 as is predicted by the
Kosterlitz renormalization group equation@see Eq.~9!#. Of
course, an ordinary finite-size scaling does not predict the
value of the scaling function at this particular point. Consid-
ering the fact that we have not used this information while
making the scaling plot, the agreement between the scaling

FIG. 1. The helicity modulus~or superfluid density! Y5(T/
2)^W2& as a function of temperature. The universal jump is ex-
pected at the point whereY52T/p. Error bars are drawn but most
of them are so small that they cannot be recognized.

FIG. 2. A rescaled plot of the winding number fluctuation. The
inset is an enlarged view of the critical point.

FIG. 3. The helicity modulus divided by the magnitude of its
universal jump. The dashed vertical line indicates the critical tem-
perature at which the solid line crosses the dashed horizontal line
(A51). The solid line is determined by a linear fitting.
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theory and the numerical result is hardly understandable un-
less we assume the validity of the KT theory.~Note that the
criterion we have adopted in choosing the value ofKKT is
simply that all points should fall onto a single curve.! There-
fore, we consider that the present result is a strong confirma-
tion of the validity of Kosterlitz’s scaling theory in the quan-
tum XY model in two dimensions.

We have also tried another analysis following Weber and
Minnhagen.9 At each temperature, we assumed the following
system size dependence of the helicity modulus:

pY

2T
5

p

4
^W2&5A~T!S 11

1

2log@L/L0~T!# D . ~14!

This fitting form is correct at the critical point with
A(TKT)51 @Eqs. ~8! and ~9!#. Since the number of data at
each temperature is small, the critical temperature cannot be
determined as the one at which the fitting is best. Instead, we
plot the coefficientA(T) as a function of temperature~Fig.
3!. The critical temperature, then, is estimated as the point at
which A(T) takes on the value 1. Linear fitting of the data

yields

TKT50.3423~3!J, ~15!

which is consistent with Eq.~13!. @It is natural that here we
have a more precise value than Eq.~13!, since we have as-
sumed Eq.~14!, a more specific fitting function than Eq.~8!.#

To summarize, the loop algorithm has proven to be very
efficient in studying the winding number particularly at low
temperatures, and we have confirmed that the phase transi-
tion in the quantumS51/2 XY model is of the KT type
avoiding the subtle and technically difficult comparison be-
tween an exponential divergence and an algebraic one. We
have demonstrated that not only the magnitude of the jump
but also very fine points in the Kosterlitz-Thouless-Nelson
theory are realized in the present model.

The authors would like to thank K. Nomura for useful
comments and discussions. The computations in the present
work were performed on Fujitsu’s VPP500 at Kyoto Univer-
sity Data Processing Center and partially at ISSP, the Uni-
versity of Tokyo.
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