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Universal jump in the helicity modulus of the two-dimensional quantum XY model

Kenji Harada
Division of Applied Systems Science, Kyoto University, Sakyo-ku, Kyoto 606-01, Japan
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Department of Physics, Toho University, Miyama 2-2-1, Funabashi 274, Japan
(Received 11 February 1997

The helicity modulus of th&=1/2 XY model is precisely estimated through a world-line quantum Monte
Carlo method enhanced by a cluster update algorithm. The obtained estimates for various system sizes and
temperatures are well fitted by a scaling form witmeplaced by lod(/L), which is inferred from the solution
of the Kosterlitz renormalization group equation. The validity of the Kosterlitz-Thouless theory for this model
is confirmed[S0163-182807)50422-X

The nature of the phase transition of the quantdMm The helicity modulus is known to exhibit the universal
model in two dimensions has not been fully clarified while jump at the critical temperatufd.This quantity corresponds
the existence of a transition at a finite temperature wa$0o the superfluid density when the model is regarded as a
suggestet? some years ago. Ding and Makiviexamined Boson system with hard cores. In the world-line quantum
this problem systematically by a large scale Monte CarloVonte Carlo method? the helicity modulus is related to the
simulation for the first time and concluded that a phase tranfluctuation in the total winding number of world lines by the
sition of the Kosterlitz-Thoules¢KT) (Ref. 4 type takes following equation.
place afTr=0.350(4)(Ref. 3 or 0.3533).° In their calcu-
lation, the. temperature Qt?pendence of the correlation Igngth Y = (T/2)(W2), 1)
and the linear susceptibility were studied. However, it is
technically difficult to distinguish an exponential divergence ) ) L
from an algebraic one. Because of this difficulty, the validity""herew%(WX Wy) with W, (W,) being éhe total winding
of their conclusion on the nature of the phase transition wa§umPer in thex (y) direction. Makivic® computed this

questioned.For the same reason, Gupta and Bdiltiéd not quantity by means of a conventipnal Worlgj(—%iine quantum
conclude, in spite of their very extensive Monte Carlo calcu-'vlonte Carlo method. The method is not ergodiowever,

. I . in that it does not allow the winding number to vary. There-
lation, that the phase transition C.Jf the classial model is fore, Makivic resorted to an alternative definition of the
exactly what the KT theory predicts.

) : _ guantity although it does not result in exactly the same an-
In previous studies, to our knowledge, a systematic study e o5 the conventional definition does. Another difficulty
of the system size dependence of various quantities W3S the conventional Monte Carlo method is its long autocor-
missing for the quantunX’Y model. On the other hand, for rg|ation time near and below the critical temperature. These
other models with a KT phase transition, there are a numbejficulties limited the accuracy and the precision of the
of reports on this size dependence. For example,dolgnd  Makivic's estimates and narrowed the temperature range of
Zimarf studied size dependence of the first excitation gap inhe simulation. To overcome these difficulties, we use the
the S=1/2 anisotropicXXZ model in one dimension, which cluster Monte Carlo methdglin the present paper, in which
is exactly solvable and known to have a transition of the KThoth the number of particles and the winding number can
type at the antiferromagnetic isotropic point. They found thatvary. Another advantage of the method is its autocorrelation
the exact estimates for finite systems do not fit into the stantime which is often shorter than that of the conventional
dard form of the finite-size scaling at the critical point. In- method by several orders of magnitude.
stead of using the ordinary finite-size scaling form, Weber In the present paper, we attempt a detailed and precise
and Minnhageh used the Kosterlitz renormalization group comparison between the model and the theory by Kost&tlitz
equatior® for the data analysis in their study of the classicalthrough an accurate estimation of the thermal fluctuation in
XY model in two dimensions. They verified the KT-type the winding number near and below the critical temperature.
phase transition by comparing the size dependence of th&/e will see that such an estimation allows us to examine a
helicity modulus,Y, with the solutions of the renormaliza- new scaling form which is different from the ordinary finite-
tion group equation at the critical temperature. They found &ize scaling. In this scaling form, the distance from the criti-
remarkable agreement extending even to the prefactor of theal point, i.e., K—Kyr appears in the form of K
logarithmic correction. Following the same idea, Olsgon —Ky7)[log(L/Lo)J? in contrast to T— Ty7)LYT in the ordi-
performed a more detailed analysis of the classical modetary finite-size scaling. At the same time, the quantity
with a more extensive Monte Carlo simulation. He found thex=((m/2)W?)—2 scales aslog(L/L,).
resulting data including off-critical ones consistent with the The S=1/2 quantumXY model is defined by the follow-
Kosterlitz renormalization group equation. ing Hamiltonian:
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XY model into the(2+1)-dimensional Ising model with four
~32 (S'S+99), spin plaquette interactions. The partition function is de-
i scribed as
where(ij ) runs over all nearest-neighbor pairs on the square
lattice. As for the spin operators, we here use the convention
in which (S%)2=1/4 (u=x.y,2). z=2 1:,[ @ (Sp),
In comparing the numerical result with the renormaliza-
tion group theory, the squared winding number is a usefuwhereS is the set of state§/, on the (2+1)-dimensional
quantity since it can be regarded as the renormalized codattice, S, is a state of spins in a plaqueteformed by four
pling constant and therefore its size dependence can be dipins Slzt, it St J-Z'Hl, and o(S;) is the two-spin

)

(10

rectly predicted by the following renormalization equatiGn:

2

dx dy
-y5 = —XY.

- -
Here,x andy are renormalized parameters after a renormal-
ization operation up to the length scale=Ly(T)e' where

)

Lo(T) is some characteristic length of the order of the lattice

constant and has no singularity & Tyxt. The parameter

x is related to the renormalized coupling constant, i.e., the

helicity modulus, by the following equatior

_TY T w2 4
X= T - 2< > . ( )
In what follows, we regard the estimate af/R){W?)— 2 for
a system of the sizeL at the temperatureT as
x(1=log[L/Lo(T)]T).

Equation(3) has an integral

AM=x3()—yA(I) ©)
which does not depend dr=log[L/Ly(T)]. As a function of
T, this integral is nonsingular atT=Tgy, i.e.,
A(K)=a(K—Ky7) +b(K—Kg)2+---  where K=J/T.
The solution of Eq(3) is given by

. VIAlcothVIAID (K> Kr) ©
X(T,L)=

VIAJco (VAT  (K<Kgp).

Note that the ordinary finite-size scaling form

X(T,L)=L“g(ALY) (7

cannot be consistent with E¢). Instead, the solutio(b) is

propagator defined below. We apply periodic boundary con-
ditions in all directions to preserve the translational invari-
ance and to satisfy the trace requirements.

By numbering four local states on a bond as 1),
2=(7]), 3=(l1), and 4=(] ), the two-spin propagator
can be written explicitly as

1 0
0 cosr( ) sm){%) 0
"’ 0 sm%{ ) cosi‘(A—T) 0 | "
2
0 0 1

where A 7=J/(mkgT) with the Trotter numbem, and the
temperatureT. In what follows, we will setJ=1 and
kg=1 for simplicity.

We have carried out a Monte Carlo simulation using a
cluster algorithm called the loop algorithtfiin this algo-
rithm, four spins in each plaquette are connected pairwise.
The pairs are chosen stochastically. The connected spins
form loops which are units of flipping. A world line is a path
connecting sites with up spins which may wind around the
system with periodic boundary conditions. The winding
numbersW, (or W,) are defined as the sum of the numbers
of such windings of all world lines in the (or y) direction.

For exampleW, can be rewritten as

1
T2 (S, (12)
X P

whereL, is the lattice size in thex direction. The symbol

a special case of the following form that one can obtain fromax(Sp) stands for the function which takes the valugat

the ordinary finite-size scaling form by replacirg by
I =log[L/Lo(T)],

x(T,L)=1"1f(Al?). (8

When expressed in the form of E@), the solution(6) cor-

responds to a “scaling” functiorfi(X) which is nonsingular
atX=0 in spite of the singularity in/[A] at T=Tyr. To be

more specific, the solutio(6) corresponds to

f(X)=1+0(X). 9

Note that the fitting functions used by Ols$bfEgs.(113—
(110 with (16) and(18) in his papet are consistent with this

scaling form. Olsson’s fitting function corresponds to oursbetween

with a temperature-independeng(T).
For our Monte Carlo simulation, using Suzuki-Trotter de-

—1) if a world line passes through the plaquetén the
positive (or negative x direction and the value 0, otherwise.
The other winding numbeW, is defined in the same man-
ner.

In order to reduce the statistical error, we have used an
improved estimator for the squared winding number of world
lines. It simply equals one-fourth of the sum of squared
winding numbers of loops formed by a clustering procedure
(i.e., a graph assignment proceduie the cluster Monte
Carlo method. A more detailed discussion will be given
elsewheré! In the present simulation, we have found that
the new estimator reduces errors by about twenty percent.

In our simulations, we have taken various temperatures
0.22 and 0.60 and wused lattices with
L=8, 16, 32, and 64. As the Trotter numbe, we have
usedm=38, 16, and 32. When the systematic error due to the

composition, we transformed the two-dimensional quantunTrotter discretization exceeds the statistical error, we have
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FIG. 1. The helicity modulugor superfluid density Y =(T/
2){W?) as a function of temperature. The universal jump is ex-
pected at the point whefé=2T/ 7. Error bars are drawn but most
of them are so small that they cannot be recognized.

FIG. 3. The helicity modulus divided by the magnitude of its
universal jump. The dashed vertical line indicates the critical tem-
perature at which the solid line crosses the dashed horizontal line
(A=1). The solid line is determined by a linear fitting.

reduced the systematic error by the extrapolatiomte>  T<(.35) by the standard binning analysis for a run of 10
using three data for different Trotter numbers. The length of\MCS with L =64. They turn out to be smaller than 2 MCS in

a typical run onL=64 at a temperature is more than g|| cases. Since the smallest bin length used in the main
2X10° Monte Carlo Sweep$MCS). To make use of the calculation is 1500 MCS, the statistical independence among
vector processors, we have developed the efficient vectorizesins is assured. The statistical errors of various observables
code for the cluster identification. The underlying idea forhave been calculated from the standard deviation of the bin-
this vectorization was proposed by Mi#f@nd it is based on average distribution.

the *“divide-and-conquer” strategy. In his algorithm, one | Fig. 1, the raw data qu2>z<wi+wi> are plotted.
firstly divides the lattice into small sublattices and, at theFigure 2 is its “scaling plot” using the the form of E¢8)
same time, identifies clusters in each sublattice neglectingssuming that.o(T) does not depend on the temperature,
the connectivity outside of the sublattice. One then deal§hich was a reasonably good approximation judging from
with twice as large sublattices formed by a pair of previousp|sson’s observatidh (see Fig. 14 for the classical model.
sublattices. By repeating this procedure, one can eventualMO(T) in the present paper corresponds to “const” in Eq.
get clusters identified correctly in the whole lattice. Using(lg) in Olsson’s papet.The enlarged view around the criti-
this algorithm, we have achieved the efficiency of 1.5 million o4 point is shown as the inset. The scaling plot in Fig. 2 is a
site updates per second on the Fujitsu's VPP500. _ reasonably good one, considering the fact that we have only
. Each run is d|V|dpd into several bins. .The Iength of a binyyo adjustable parametei§,; andL, while there are three

is taken so that bin averages are statistically independerfch parameters in the ordinary finite-size scaling plot. The

from each other at least approximaztely. We have measureghe ofK . is determined so that the resulting plot gives the
integrated autocorrelation times fov" at low temperatures «pagp scaling plot. To quantify the “goodness” of the scal-

ing plot, a cost functiorS(Kyr,L,) is defined:® which is

00— essentially the deviation from the local linear fitting. We
Fo L=8 A . used the data in the range<@W?)—4/7<0.25, which
Lo L=16 o ® . roughly corresponds to the temperature range
- Lo L=32 s . § 0.330<T<0.375. The best fitting is obtained with the tran-
5' L& L=64 f ] sition temperature
[ - -
E 0 | 2.0 [ T : T |A 1 | TKT: ‘]/KKT: O34Z Z)J (13)
~£ " j 15T . 1 7 which is significantly lower than Ding and Makivi
v i e Y A 4 1 estimates:® We confirmed that other choices of the range
S T e - 1 1 1 result in the estimates of the critical temperature consistent
= A0F L0 05 1 & 1 1 with the value quoted above. The best scaling plot is shown
- oo L—F1 1.1 1 in Fig. 2. It should be noted that the estimated scaling func-
-, A0 20 00 20 A0 tion takes the value of 1 & — K 7=0 as is predicted by the
20 0 20 40 Kosterlitz renormalization group equati¢see Eq.(9)]. Of
(K-K)(In UL course, an ordinary finite-size scaling does not predict the

value of the scaling function at this particular point. Consid-
FIG. 2. A rescaled plot of the winding number fluctuation. The ering the fact that we have not used this information while
inset is an enlarged view of the critical point. making the scaling plot, the agreement between the scaling
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theory and the numerical result is hardly understandable unyields

less we assume the validity of the KT theofMote that the

criterion we have adopted in choosing the valuekgf; is Tkr=0.34233)J, (15)

simply that all points should fall onto a single curv@here-  which is consistent with Eq13). [It is natural that here we

fore, we consider that the present result is a strong confirmérave a more precise value than E#3), since we have as-

tion of the validity of Kosterlitz's scaling theory in the quan- sumed Eq(14), a more specific fitting function than E).]

tum XY model in two dimensions. To summarize, the loop algorithm has proven to be very

We have also tried another analysis following Weber anckfficient in studying the winding number particularly at low
Minnhager® At each temperature, we assumed the followingtemperatures, and we have confirmed that the phase transi-
system size dependence of the helicity modulus: tion in the quantumS=1/2 XY model is of the KT type
avoiding the subtle and technically difficult comparison be-

ﬂ: z<W2)=A(T) 1+ (14) tween an exponential divergence and an algebraic one. We
2T 4 2logL/Lo(T)])" have demonstrated that not only the magnitude of the jump

This fiting form is correct at the critical point with but also very fine points in the Kosterlitz-Thouless-Nelson

A(Tk7)=1 [Egs. (8) and (9)]. Since the number of data at theory are realized in the present model.

each temperature is small, the critical temperature cannot be The authors would like to thank K. Nomura for useful
determined as the one at which the fitting is best. Instead, weomments and discussions. The computations in the present
plot the coefficientA(T) as a function of temperatut@ig.  work were performed on Fujitsu’'s VPP500 at Kyoto Univer-
3). The critical temperature, then, is estimated as the point aity Data Processing Center and partially at ISSP, the Uni-
which A(T) takes on the value 1. Linear fitting of the data versity of Tokyo.
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