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We study the μ → eγ decay in the Z3-invariant next-to-minimal supersymmetric (SUSY) Standard Model 
(NMSSM) with superheavy right-handed neutrinos. We assume that the soft SUSY breaking parameters 
are generated at the GUT scale, not universally as in the minimal supergravity scenario but in such a 
way that those soft parameters which are specific to the NMSSM can differ from the soft parameters 
which involve only the MSSM fields while keeping the universality at the GUT scale within the soft 
parameters for the MSSM and right-handed neutrino fields. We call this type of boundary conditions 
“semi-constrained”. In this model, the lepton-flavor-violating off-diagonal elements of the slepton mass 
matrix are induced by radiative corrections from the neutrino Yukawa couplings, just like as in the 
MSSM extended with the right-handed neutrinos, and these off-diagonal elements induce sizable rates of 
μ → eγ depending on the parameter space. Since this model has more free parameters than the MSSM, 
the parameter region favored from the Higgs boson mass can slightly differ from that in the MSSM. We 
show that there is a parameter region in which the μ → eγ decay can be observable in the near future 
even if the SUSY mass scale is about 4 TeV.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

It is now clear that the lepton flavor number is not a conserved 
quantity because of experimental observations of neutrino oscilla-
tions [1]. In the minimal extensions of the Standard Model (SM) 
with the Majorana neutrino mass terms, the branching ratios for 
charged lepton-flavor violating (LFV) processes are extremely small 
since they are suppressed by at least a factor of m2

ν/m2
W , which 

makes it very difficult for near-future experiments to detect LFV 
signals. On the other hand, in more general extensions of the SM, 
which are motivated by several reasons, it is known that sizable 
LFV rates are predicted depending on parameter region. If LFV pro-
cesses are discovered, it directly means an indirect signature of 
physics beyond the SM (BSM). Recently, the MEG experiment re-
ported a new upper limit of Br(μ → eγ ) < 5.7 × 10−13 [2]. This 
already gives a strong constraint on models beyond the SM, and 
hence it is very important to keep updating these upper bounds 
on the LFV processes.

* Corresponding author.
E-mail addresses: knakamura@tuhep.phys.tohoku.ac.jp (K. Nakamura), 

dnomura@yukawa.kyoto-u.ac.jp (D. Nomura).

Supersymmetry (SUSY) is still a promising candidate for physics 
beyond the SM [3]. Lots of effort has been devoted to the discovery 
of SUSY at the LHC, but only in vain so far. The most studied model 
of SUSY is the minimal SUSY SM (MSSM). Even in the framework 
of the MSSM, there are some unsolved problems such as the μ
problem. Next-to-the MSSM (NMSSM) is an extension of the MSSM 
with a SM-singlet Higgs chiral superfield Ŝ . The NMSSM could give 
a hint to solve the μ problem since in this model the μ term 
is induced by the vacuum expectation value (VEV) of the scalar 
component S of Ŝ . In this sense the NMSSM is a natural extension 
of the MSSM.

One of the difficulties in the MSSM is the Higgs boson mass. 
In the MSSM, the tree-level lightest Higgs boson mass is bounded 
from above as,

m2
h,MSSM

∣∣∣∣
tree

< M2
Z cos2 2β , (1.1)

and has to rely on large radiative corrections to reproduce the 
observed Higgs boson mass of 126 GeV [1]. The main contribu-
tion to the radiative corrections comes from the top Yukawa cou-
pling [4–6], and to maximize this effect one needs a top-squark 
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mass much larger than the top-quark mass. In the NMSSM, the 
lightest Higgs boson mass reads [7]:

m2
h,NMSSM ≈ M2

Z cos2 2β + λ2 v2 sin2 2β + �m2
h,1Loop , (1.2)

where v ∼ 174 GeV. As is seen from this equation, the contribu-
tion from the new parameter λ, which is the coupling among the 
new singlet S and the MSSM Higgs doublets Hu and Hd , makes 
the tree-level Higgs boson mass larger, in particular for small tan β . 
We have to note that the mixings between S and the MSSM Higgs 
doublets can make a negative contribution to the lightest Higgs bo-
son mass, and the NMSSM does not always predict a larger Higgs 
boson mass. We will discuss this issue in details later in this paper.

There are more than one-hundred free parameters in the 
MSSM. Usually, we assume an underlying scenario for SUSY break-
ing, and it allows us to reduce the number of free parameters. 
In this paper we assume the minimal supergravity (mSUGRA)-like 
boundary conditions that the SUSY breaking parameters m0, M1/2, 
A0 are universal at the GUT scale. The parameters at the SUSY 
scale are obtained by evolving these parameters according to 
the renormalization group equations (RGE). These mSUGRA-like 
boundary conditions are very effective for avoiding constraints 
from the SUSY-induced flavor changing neutral current (FCNC) pro-
cesses. This is also true for the charged LFV processes, and in the 
mSUGRA, also known as the constrained MSSM (cMSSM), there 
are essentially no charged LFV. This is similar in the case of the 
constrained NMSSM.

The neutrino masses are exactly zero in the framework of the 
SM, which clearly needs modifications in view of the observation 
of neutrino oscillations. One of the most natural mechanisms to 
explain the tiny neutrino masses is the (type-I) seesaw mecha-
nism [8–10], which we consider in this paper. The extension of the 
original seesaw mechanism to SUSY models is straightforward. In 
the MSSM extended with the right-handed neutrinos νR , which we 
call the MSSM + νR model, even if one assumes the mSUGRA-like 
boundary conditions at the GUT scale, off-diagonal elements in the 
slepton mass matrices are induced via radiative corrections from 
the neutrino Yukawa couplings, which can predict sizable rates 
for the LFV processes like μ → eγ . This mechanism also works in 
the NMSSM extended with the right-handed neutrinos, which we 
call the NMSSM + νR model and which we consider in this paper, 
but since there are more free parameters than in the case of the 
MSSM + νR model, the predicted LFV rates can slightly differ from 
those in the MSSM + νR model in the parameter region favored 
from the Higgs boson mass.

The contents of this paper are as follows. In Section 2, we in-
troduce the model we work with, and in Section 3 we explain the 
origin of the LFV (off-diagonal) elements of the slepton mass ma-
trices. In Section 4, we discuss constraints on the parameters of 
the model. We introduce the results of numerical calculations in 
Section 5, and in Section 6 we summarize this paper.

2. Model

2.1. Z3-invariant NMSSM

The NMSSM is an extension of the MSSM, and it has an ex-
tra Higgs chiral superfield Ŝ which is singlet under the SM gauge 
group. In the Z3-invariant NMSSM [7], the μ term μĤu · Ĥd in the 
superpotential of the MSSM is replaced by the term λ Ŝ Ĥu · Ĥd , and 
the μ-parameter is determined from the singlet VEV s as μeff = λs. 
Namely, the superpotential of the Z3-invariant NMSSM is given as

WNMSSM = WMSSM
∣∣
μ=0 + λ Ŝ Ĥu · Ĥd + 1

3
κ Ŝ3 , (2.1)

Table 1
The Z3-charge assignment in the Z3-invariant NMSSM extended with the right-
handed neutrinos. In the table, ω ≡ e2π i/3.

Q̂ Û c D̂c L̂ Êc N̂c Ĥu Ĥd Ŝ

Z3 charges ω2 1 1 ω2 1 1 ω ω ω

where the dot in the term λ Ŝ Ĥu · Ĥd represents the SU(2)-invariant 
product of two SU(2) doublets, and the hats on the fields stand for 
the superfields corresponding to the fields.1 We assume that the 
R-parity is conserved, and assign the even R-parity to Ŝ . The soft 
SUSY breaking terms are

V soft = V MSSM
∣∣
μ=B=0 +

(
λAλ S Hu · Hd + 1

3
κ Aκ S3 + h. c.

)

+ m2
S |S|2 . (2.2)

In the case of the constrained NMSSM, the gaugino masses, 
sfermion soft SUSY breaking masses, and the A-parameters take 
the values which are “universal” at the GUT scale, similarly to the 
case of the cMSSM:

Mα = M1/2 (2.3)

m2
Hu

= m2
Hd

= m2
0 , (2.4)

(m2
f )i j = m2

0δi j ( f = Q , U , D, L, E) , (2.5)

(A f )i j = A0δi j ( f = U , D, E) , (2.6)

where α (α = 1, . . . , 3) labels the gauge groups of the SM, and i
and j are the indices for generations, i, j = 1, . . . , 3. As for the pa-
rameters Aλ , Aκ and m2

S which are specific to the NMSSM, we 
assume that the values of Aλ and Aκ at the GUT scale are not 
necessarily equal to A0, and that m2

S at the GUT scale can be dif-
ferent from m2

0. We call the NMSSM with this class of boundary 
conditions the semi-constrained NMSSM.

2.2. Z3-invariant NMSSM extended with right-handed neutrinos

In this paper we take the simplest extension of the Z3-invariant 
NMSSM with the right-handed neutrinos, in which the (type-I) 
seesaw mechanism [8–10] is at work. The superpotential is 
given by

W = WNMSSM + (Y N) ji Ĥu · L̂i N̂
c
j + 1

2
(MN)i j N̂

c
i N̂c

j , (2.7)

where the Z3-charges are assigned as in Table 1 [11]. This charge 
assignment excludes the term (λν)i j Ŝ N̂c

i · N̂c
j from the superpoten-

tial.2

1 If we are to consider more general NMSSM, not the Z3-invariant NMSSM, we 
will have more terms in the superpotential, such as the terms linear and quadratic 
in Ŝ [7], and also the soft SUSY breaking terms associated with them. To reduce the 
number of free parameters, in this paper we only consider the Z3-invariant version 
of the NMSSM + νR model.

2 It is possible to derive the (left-handed) neutrino masses via the type-I see-

saw mechanism from the Majorana masses which emerge from term (λν )i j Ŝ N̂c
i · N̂c

j
after replacing S with its VEV. In this case, since the singlet VEV 〈S〉 is at most 
O(1–100 TeV), the Majorana masses must be about the same order, which forces 
us to assume a very small neutrino Yukawa coupling (Y N ) in order to explain the 
tiny neutrino masses. This makes the LFV rates extremely small and hence we do 
not consider this scenario in this paper. We should also note that in some of ex-
tended seesaw schemes such as the inverse seesaw mechanism [12], it is possible 
to have the neutrino Yukawa couplings of O(0.01) and the right-handed neutrinos 
of the mass of the order of the EW scale simultaneously. It is known in literature 
that in the SUSY inverse seesaw models the predicted LFV rates can be sizable [13].
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The neutrino masses in this model is

(mν)i j = v2 sin2 β(Y N)ki((MN)−1)kl(Y N)l j

= (U	
MNS)ikmν,k(UMNS)kj , (2.8)

where UMNS is the MNS matrix [14] and mν,k (k = 1, . . . , 3) are the 
eigenvalues of the left-handed neutrino mass matrix (mν)i j . In the 
standard representation of the PDG, the matrix reads:

UMNS

=
⎛
⎝ c12c13 s12c13 s13e−iδ

−s12c23 − c12s13s23eiδ c12c23 − s12s13s23eiδ c13s23

s12s23 − c12s13c23eiδ c12s23 − s12s13c23eiδ c13c23

⎞
⎠

× diag(1, eiα21/2, eiα31/2) , (2.9)

where ci j = cos θi j , si j = sin θi j . The mixing angles θi j (i, j =
1, . . . , 3, i < j) describe the mixing between the mass eigenstates 
νi and ν j , and the factors δ, α21, α31 are complex phases, and rep-
resent the Dirac phase and the two Majorana phases, respectively. 
According to the latest data [1] the values of the angles are:

sin2 2θ12 = 0.846 ± 0.021 (2.10)

sin2 2θ23 =
{

0.999+0.001
−0.018 (normal mass hierarchy)

1.000+0.000
−0.017 (inverted mass hierarchy)

(2.11)

sin2 2θ13 = 0.093 ± 0.008 . (2.12)

The mass-squared differences, which are also important parame-
ters, are:

�m2
21 = 7.53 ± 0.18 (10−5 eV2) (2.13)

�m2
32 =

{
2.52 ± 0.07 (10−3 eV2) (normal mass hierarchy)

2.44 ± 0.06 (10−3 eV2) (inverted mass hierarchy) .

(2.14)

In this paper, we assume the normal hierarchy scenario for the 
neutrino masses, and take the values

mν,1 = 10−6 eV (2.15)

mν,2 =
√

m2
ν,1 + �m2

21
∼= 0.0087 eV (2.16)

mν,3 =
√

m2
ν,2 + �m2

32
∼= 0.050 eV (2.17)

and, for the mixing angles,

s12 = 0.55, s23 = 0.66, s13 = 0.15 . (2.18)

Concerning the complex phases, we take

δ = α21 = α31 = 0 , (2.19)

for simplicity. Another free parameters are the 3 × 3 elements of 
MN . Although it is known that the structure of this matrix gives 
an influence to the predicted LFV rates [15–19], in this paper we 
assume

(MN )i j = Mν × δi j , (2.20)

where Mν is a real number.
Under the assumption of Eq. (2.20), we can determine the neu-

trino Yukawa coupling matrix Y N from Eq. (2.8) by using the input 
data Eqs. (2.10)–(2.19). How exactly to do this is well known in 

literature (see e.g. [20]), and below is a brief summary of the pro-
cedure. First, in the basis where the charged-lepton Yukawa cou-
pling matrix is diagonal, Y N can be expressed by using two unitary 
matrices U and V and a diagonal matrix Y D

N as

(Y N)i j = V ik(Y D
N )kU j . (2.21)

When the right-handed neutrino Majorana mass matrix is diago-
nal, by a suitable redefinition of the right-handed neutrino super-
fields, we can take the matrix V to be a unit matrix without loss 
of generality:

(Y N)i j = (Y D
N )i U i j , (2.22)

where (Y D
N )i (i = 1, . . . , 3) are the diagonal entries of the matrix 

(Y D
N )i j , namely, (Y D

N )i j = (Y D
N )iδi j . By substituting this into Eq. (2.8), 

we can identify U as UMNS and determine (Y D
N )i to be

(Y D
N )i =

√
Mνmν,i

v2 sin2 β
, (2.23)

that is,

(Y N)i j =
√

Mνmν,i

v2 sin2 β
(UMNS)i j . (2.24)

Later in this paper we use this expression to calculate Br(μ → eγ ).

3. Lepton flavor violation

In this section we discuss charged lepton flavor violation, tak-
ing the NMSSM + νR model as an example of new physics beyond 
the SM.

3.1. μ → eγ in the Standard Model with νR

Within the SM, the neutrinos are strictly massless and lepton 
flavor number is exactly conserved. The experimental observations 
of neutrino oscillations [1], however, make it clear that we have to 
extend the SM in such a way that it can accommodate the neutrino 
masses and mixings. One of the simplest extensions is to introduce 
right-handed neutrinos (νR ) which are singlet under the SM gauge 
group, which allows us to introduce Dirac mass terms for the neu-
trinos in the Lagrangian.

Once we introduce the right-handed neutrinos in the SM, in 
general, charged lepton flavor number is no longer conserved. This 
is similar to the case in the quark sector, and the mismatch be-
tween the gauge eigenstates and the mass eigenstates violates the 
lepton flavor number conservation. The branching ratio of μ → eγ
in this model is given by [21–23]

Br(μ → eγ ) = α

32π

∣∣∣∣∣∣
∑

i=2,3

(UMNS)
∗
ei(UMNS)μi

m2
ν,i − m2

ν,1

M2
W

∣∣∣∣∣∣
2

.

(3.1)

The suppression factor (m2
ν,i − m2

ν,1)
2/M4

W makes the branching 
ratio extremely small, and it is very difficult for near future ex-
periments to detect μ → eγ in this model. On the contrary, in 
the non-minimal extensions of the SM such as the (N)MSSM + νR , 
sizable LFV rates can be predicted depending on the parameter re-
gion, and this makes the LFV searches very important as a probe 
of new physics beyond the SM.
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3.2. μ → eγ in NMSSM + νR model

In the NMSSM + νR model, there are two diagrams which give 
dominant contributions to the li → l jγ decays (where i and j are 
the generation indices which run from 1 through 3 with i > j). 
One is the diagram with the neutralino and the charged slepton in 
the loop, and the other is the diagram which involves the chargino 
and the sneutrino. In general, the amplitude T for the li → l jγ
decay can be written as

T = emli ε
α∗ū j(p − q)

[
iσαβqβ

(
AL

2 P L + AR
2 P R

)]
ui(p) , (3.2)

where e is the positron charge, εα is the polarization vector of the 
photon, ui and u j are the spinors for the initial- and final-state 
leptons, respectively. The momenta p and q are the incoming mo-
mentum of the initial state lepton li and the outgoing momentum 
of the final state photon, respectively. The operators P L,R stand 
for the chiral projection operators. The dependence of the am-
plitude on the models is included in the coefficients AL

2 and AR
2 . 

In the case of the MSSM + νR model, the explicit forms of AL
2

and AR
2 are given, for example, in Refs. [20,24,25]. In the case 

of the NMSSM + νR model, they are essentially the same as the 
MSSM+νR model, except that there are five neutralinos, instead of 
four, at low energies, and we can use the expressions in Refs. [20,
24,25] with small modifications. By using the formulas mentioned 
above, the decay branching ratio Br(li → l jγ ) can be calculated 
from the amplitudes to be

Br(li → l jγ ) = e2

16π

m5
li

�li
(|AL

2|2 + |AR
2 |2) , (3.3)

where �li is the total decay width of the lepton li .
A comment on the singlino (i.e., the fermionic component of 

the singlet Higgs chiral superfield Ŝ) is in order here. The neu-
tralino mass matrix Mχ̃0 in the NMSSM is [7]:

Mχ̃0 =

⎛
⎜⎜⎜⎝

M1 0 −g1 vd/
√

2 g1 vu/
√

2 0
0 M2 g2 vd/

√
2 −g2 vu/

√
2 0

0 −μeff −λvu

0 −λvd
(symm.) 2κs

⎞
⎟⎟⎟⎠ ,

(3.4)

where “symm.” means that this matrix is symmetric, M	
χ̃0 =

Mχ̃0 , and μeff ≡ λs, vu ≡ v sin β and vd ≡ v cos β where β ≡
arctan(〈Hu〉/〈Hd〉). The parameters M1 and M2 are the U (1)Y and 
SU(2)L gaugino masses, respectively, and g1 and g2 the U (1)Y and 
SU(2)L gauge couplings, respectively. Since for our sample param-
eters discussed in Section 5 the value of λ is taken to be as small 
as 0.1, and since the value of the (5, 5) component of Mχ̃0 for our 
sample parameters is O(1–10) TeV, which is much larger than λvu
and λvd , the mixing between the singlino and the other compo-
nents of the neutralinos are suppressed by the small values of the 
(3,5), (4,5), (5,3) and (5,4) entries of Mχ̃0 . In addition, since the 
singlino does not couple to the MSSM matter fields at tree level, 
the contribution from the singlino component to the LFV rate is 
negligible for our sample parameters.

In order to have a non-vanishing LFV rate, we must have off-
diagonal elements in the slepton mass matrices. The mass matrices 
are given as,

M2
l̃

=
(

M2
LL M2

LR

M2
RL M2

R R

)
, (3.5)

(
M2

ν̃

)
i j

= m2
L,i j + 1

2
M2

Z cos 2βδi j , (3.6)

where M2
LL , M2

R R , M2
LR , M2

RL are the 3 × 3 matrices whose (i, j)
elements are given as(

M2
LL

)
i j

= m2
L,i j + v2

d

(
Y †

E Y E

)
i j

+ M2
Z cos 2β(−1

2
+ sin2 θW )δi j ,

(3.7)(
M2

R R

)
i j

= m2
E,i j + v2

d

(
Y †

E Y E

)
i j

− M2
Z cos 2β sin2 θW δi j , (3.8)(

M2
LR

)
i j

= vd

((
A∗

E

)
i j + μ tanβ

)
(Y E)i j , (3.9)(

M2
RL

)
i j

=
(
(M2

LR)†
)

i j
. (3.10)

In this paper, we assume mSUGRA-like boundary conditions, in 
which all the SUSY breaking parameters that have flavor indices 
do not have flavor mixings at the GUT scale. This means that there 
are no off-diagonal elements in the matrices M2

l̃
and M2

ν̃
. However, 

off-diagonal elements in these mass matrices are induced by radia-
tive corrections at the energy scale higher than MN , which can be 
seen in the RGE,

16π2 d

dt
(mL)

2
i j

=
(

16π2 d

dt
(mL)

2
i j

)
NMSSM

+ (Y †
N Y Nm2

L)i j + (m2
L Y †

N Y N)i j + 2(Y †
N(m2

N)	Y N)i j

+ 2(Y †
N Y N)i jm

2
Hu

+ 2(T †
N T N)i j , (3.11)

where t = ln Q with Q being the renormalization scale and (T N )i j
(i, j = 1, . . . , 3) are the trilinear coupling among the right-handed 
sneutrino ν̃R , the left-handed slepton L̃ , and the Higgs field Hu ,

Lneutrino trilinear = −(T N ) ji Hu · L̃i ν̃
∗
R j . (3.12)

The RGE above directly means that both M2
l̃

and M2
ν̃

have off-
diagonal elements at low energies. The size of these off-diagonal 
elements can be roughly estimated as [20,24,25],

(�m2
L)i j = − 1

16π2
ln

MGUT

Mν
(6m2

0 + 2A2
0)(Y †

N Y N)i j , (3.13)

where i �= j. As is clear from Eq. (3.13), the slepton off-diagonal 
elements in this model comes from the neutrino Yukawa cou-
plings, Y N . The branching ratio can be estimated in terms of the 
off-diagonal elements to be [20]

Br(li → l jγ ) ∼ α3

G2
F

((m2
L)i j)

2

M8
SUSY

. (3.14)

At this moment, the most stringent experimental constraint on the 
μ → eγ is given by the MEG experiment and the upper limit is 
5.7 × 10−13 [1,2]. This bound will be further improved by the 
upgraded MEG experiment to ∼ 6 × 10−14 [26], and this makes 
the experiment very important as a probe of new physics beyond 
the SM.

3.3. Other cLFV processes

In this paper we focus on μ → eγ in the later sections, but 
there are many other charged LFV processes [27]. Here we mention 
some of them.

There are two other li → l jγ processes, τ → μγ and τ → eγ . 
Their current experimental limits are Br(τ → eγ ) < 3.3 ×10−8 and 
Br(τ → μγ ) < 4.4 × 10−8 [1]. In the near future, these limits are 
expected to be improved to the level Br(τ → lγ ) < 1.0 × 10−9 at 
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Belle-II [28]. Under the assumptions we set out at Section 2, the 
μ → eγ decay is more sensitive to SUSY particles, and hence we 
focus on μ → eγ in this paper.

Other important cLFV processes include l+i → l+j l+j l−j and μ–e
conversion in nuclei. As for the former process, when the photon 
mediation diagram is dominant, the branching ratio can be related 
to that of the li → l jγ decay as [20]

Br(l+i → l+j l+j l−j ) ∼ α

8π

(
16

3
ln

mli

2ml j

− 14

9

)
Br(li → l jγ ) , (3.15)

and hence Br(l+i → l+j l+j l−j ) can be calculated once Br(li → l jγ )

is obtained. The current experimental limit for μ+ → e+e+e− is 
Br(μ+ → e+e+e−) < 1.0 × 10−12 [1], and this is expected to be 
improved to Br(μ+ → e+e+e−) < 1.0 × 10−16 at the Mu3e ex-
periment at PSI [29]. Concerning the μ–e conversion in nuclei, 
there is a simple relation between the conversion rate Bμe(N) and 
Br(μ → eγ ) when the photon mediation diagram gives the domi-
nant contribution [30],

Bμe(N) = R(Z)Br(μ → eγ ) , (3.16)

where Bμe(N) ≡ �(μ−N → e−N)/�(μ−N → capture) is the con-
version rate normalized to the muon capture rate �(μ−N →
capture), and R(Z) is a parameter which depends on the atomic 
number Z of the nucleus which captures the muon. The current 
limits are Bμe(Ti) < 4.3 × 10−12, Bμe(Au) < 7 × 10−13 [1]. The 
near future experiments are the COMET experiment at J-PARC [31], 
the Mu2e experiment at FNAL [32], and the PRISM/PRIME exper-
iment at J-PARC [33], which are expected to improve the bounds 
to Bμe(Al) ∼ 6 × 10−17 [34], Bμe(Al) ∼ 6 × 10−17 [35], Bμe(Al) ∼
10−18 [33], respectively. Since the R(Z) factors for these exper-
iments are R ∼ 0.0025 for Al and R ∼ 0.0040 for Ti [30], these 
experiments are expected to go beyond the corresponding limit of 
the μ → eγ decay by 1.5 ∼ 3 orders of magnitude, and this will 
be very useful to probe broader parameter region of new physics.

4. Constraints on the parameters in the model

In this section we discuss constraints on the parameters in the 
NMSSM + νR model. Some of the issues below are already dis-
cussed in literature [7].

Tadpole conditions
In the NMSSM, there are three tadpole conditions. At tree-level 

they read:

vu

(
m2

Hu
+ μ2

eff + λ2 v2
d + g2

1 + g2
2

4
(v2

u − v2
d)

)
− vdμeff Beff = 0 ,

(4.1)

vd

(
m2

Hd
+ μ2

eff + λ2 v2
u + g2

1 + g2
2

4
(v2

d − v2
u)

)
− vuμeff Beff = 0 ,

(4.2)

s
(

m2
S + κ Aκ s + 2κ2s2 + λ2(v2

u + v2
d) − 2λκvu vd

)
− λvu vd Aλ = 0 , (4.3)

where μeff = λs and Beff = Aλ + κs. We can use these relations to 
determine three parameters from other parameters. For example, 
we can use these relations to determine μeff , Beff and m2

S from 
the other parameters. Later we will discuss which parameters we 
use as input.

Maximal tree-level Higgs mass condition
One of the advantages of the NMSSM over the MSSM is that 

there is a parameter region in which the lightest Higgs boson mass 
can be made larger than that of the MSSM. As can be seen from 
Eq. (1.2), in order for the Higgs boson mass to be larger, it is fa-
vorable to have large λ and small tan β . The approximate formula 
Eq. (1.2) is obtained by neglecting the mixings between the MSSM 
Higgses and the singlet Higgs in the CP-even Higgs-boson mass 
matrix,

M2
S,Tree

=
(

M2
Z cos2 β + μeff Beff tan β (λ2 v2 − 1

2 M2
Z ) sin 2β − μeff Beff λ (2μeff vd − (Beff + κs) vu )

M2
Z sin2 β + μeff Beff cotβ λ(2μeff vu − (Beff + κs) vd)

(symm.) κs (Aκ + 4κs) + λAλ
vu vd

s

)
,

(4.4)

where vu ≡ v sin β and the lower-left components are related 
to the upper-right components by the condition (M2

S,Tree)i j =
(M2

S,Tree) ji . If we take the mixing to the singlet Higgs into ac-
count, the lightest Higgs-boson mass reads [7]:

m2
h,NMSSM ≈ M2

Z cos2 2β + λ2 v2 sin2 2β

− λ2

κ2
v2

(
λ −

(
κ + Aλ

2s

)
sin 2β

)2

+ �m2
h,1loop .

(4.5)

As can be seen from this equation, the mixing to the singlet Higgs 
makes the tree-level lightest Higgs-boson mass smaller. The λ de-
pendence of the lightest Higgs-boson mass mainly comes from the 
second and third terms, and too large value of λ makes the Higgs 
boson very small. There are two ways to decrease the mixing with 
the singlet: One way is to assume a small λ (� 0.1), and the other 
is to tune the parameters to satisfy the relation,3

λ −
(
κ + Aλ

2s

)
sin 2β = 0 . (4.6)

Conditions from positive CP-even and CP-odd Higgs boson mass-squared
The (3, 3) element in the CP-odd Higgs-boson mass matrix is 

given as,

(M2
P )33 = 4λκvu vd + λAλ

vu vd

s
− 3κsAκ , (4.7)

where, in the sample parameter region we study in this paper, the 
third term on the right-hand side gives the dominant contribution. 
Therefore, in order for the CP-odd Higgs mass-squared to be posi-
tive, we must have the condition,

κsAκ � 0 , (4.8)

in the approximation that the first and second terms in Eq. (4.7)
are negligible compared to the third term.

Another condition is that the (3, 3) element of the CP-even 
Higgs-boson mass-squared matrix

(M2
S)33 = λAλ

vu vd

s
+ κs (Aκ + 4κs) , (4.9)

3 The sum of the first three terms on the right-hand side of Eq. (4.5) is not 
an exact expression for the lightest Higgs-boson mass at tree level, but just an 
approximation for it. Therefore, even after making the third term vanish by im-
posing the condition Eq. (4.6), the sum of the first three terms does not neces-
sarily agree with the exactly maximal value of the tree-level lightest Higgs-boson 
mass obtained by diagonalizing the full 3 × 3 Higgs boson mass matrix, Eq. (4.4), 
but only approximately. However, when the two conditions μeff Beff � v2

u, v2
d and 

4κ2s2 � 2λμeff v − (Beff + κs)v sin 2β are satisfied, this approximation holds with a 
very good accuracy.
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should be positive:

−4(κs)2 � κsAκ , (4.10)

where we have worked in the approximation s � vu, vd . This con-
dition comes from the requirement that the singlet Higgs-boson 
mass-squared must be positive in the approximation that the mix-
ing between the singlet and any of the MSSM Higgs doublets is 
neglected. Summing up, the condition which Aκ should satisfy is

−4(κs)2 � κsAκ � 0 . (4.11)

In the numerical analysis presented in this paper, we give Aκ as 
an input parameter at the SUSY scale.

Constraint from non-vanishing VEV of S
There is a condition on the model parameters from the require-

ment that the singlet Higgs S has a non-zero VEV, 〈S〉 ≡ s �= 0. 
When s � vu, vd , the potential for S reads:

V (S) ∼ m2
S S2 + 2

3
κ Aκ S3 + κ2 S4 . (4.12)

If we require that this potential has a minimum at S = s �= 0, and 
that the value of V (S) at S = s is smaller than V (0), we obtain the 
condition [7],

A2
κ � 9m2

S . (4.13)

Constraint from perturbativity of λ
The tree-level Higgs boson mass becomes larger for larger value 

of λ unless we take the mixing with the singlet into account. How-
ever, there is a limit on the size of λ which comes from theoretical 
consideration. Namely, in order for λ not to blow up below the 
GUT scale, the value of λ at the SUSY scale must be smaller than 
∼ 0.7 [7].

Condition from the SM-like lightest Higgs boson
In this paper, we identify the lightest CP-even Higgs boson as 

the Higgs boson discovered at the LHC [1]. The properties of the 
discovered particle such as the decay branching ratios are known 
to be consistent with those of the Higgs boson in the minimal SM. 
This means that we have to require that the lightest CP-even Higgs 
boson in the model we consider should not be singlet-like but like 
the lightest Higgs boson in the MSSM which is known to become 
SM-like in the decoupling limit.

5. Numerical results

In this section, we give our numerical results.
First, we explain how we choose independent input parameters. 

To maximally keep the similarity to the cMSSM, we choose tanβ

at the SUSY scale and m0, M1/2 and A0 at the GUT scale as input 
parameters. In addition, since the parameter λ directly enters in 
the expression for the lightest Higgs-boson mass, we choose λ at 
the SUSY scale as input. If we further choose either κ or Aλ as 
input, we can use the two tadpole conditions Eqs. (4.1) and (4.2) to 
determine μeff (= λs) and Beff (= κs + Aλ), and then use Eq. (4.3)
to fix m2

S by using the value of Aκ as an additional input. Below 
we consider two cases: in one case we choose κ at the SUSY scale 
as input, and in the other case we take Aλ at the GUT scale as 
input. Summing up, we consider two sets of input parameters. In 
one case, we choose the parameters below as input,

tanβ , λ , κ , Aκ at the SUSY scale ,

m0 , M1/2 , A0 at the GUT scale , (5.1)

which we call the case 1, and in the other case, we take the pa-
rameters below as input:

tanβ , λ , Aκ at the SUSY scale ,

m0 , M1/2 , A0 , Aλ at the GUT scale , (5.2)

which we call the case 2.

Case 1

In this case, we determine the parameters s = μeff/λ and Aλ =
Beff −κs by using the tadpole conditions. If we are to use Eq. (4.6), 
we have to tune κ to satisfy Eq. (4.6). The value of κ in this case is

κ = λ

sin 2β
− Aλ

2s
. (5.3)

This equation means that for large tan β and for large λ, the κ pa-
rameter becomes too large, and then λ at the scale higher than the 
weak scale becomes too large to be perturbative, and eventually 
it blows up below the GUT scale.4 We therefore do NOT assume 
Eq. (4.6) for the case 1, and assume small λ (∼ 0.1) to make the 
mixing of the MSSM Higgses with the singlet Higgs smaller, in or-
der not to decrease the tree-level Higgs-boson mass.

Numerical results
Our numerical results for Br(μ → eγ ) and the Higgs boson 

mass in the case 1 are given in Figs. 1 (a) and (b). In the figures (a) 
and (b), κ at the SUSY scale is taken to be 0.09 and 0.05, respec-
tively. The rest of the input parameters are taken to be the same 
in the two figures, and the input SUSY parameters are λ = 0.1, 
Aκ = −50 (GeV) at the SUSY scale and A0 = −500 (GeV) at the 
GUT scale. We take m0 = M1/2, and the right-handed neutrino Ma-
jorana mass is taken to be Mν = 5.0 × 1014 (GeV). The reason for 
the choice of this value of Mν is that for Mν = 5.0 × 1014 (GeV), 
the largest neutrino Yukawa coupling becomes O(1), as can be 
seen from Eq. (2.23). For smaller values of Mν , the LFV rates be-
come smaller since the off-diagonal entries of the slepton mass 
matrix become smaller, see Eq. (3.13).

In the figures, we plot contours for constant values of Br(μ →
eγ ). Since Br(μ → eγ ) is roughly proportional to tan2 β/m4

0 for 
A0  m0 and tan β � 1, the dependence of the contours on tan β

and m0 are simple. In the case of the MSSM + νR model, similar 
results are known in literature [17–20,24,25,36].

In the figures, we also show the current limit and the near-
future expected sensitivity of Br(μ → eγ ) by the solid and dotted 
diagonal red lines, respectively. The current limits of the μ → 3e
and μ–e conversion rates are also shown by the corresponding val-
ues of Br(μ → eγ ) in the figures as the solid light-blue and dark-
blue lines, respectively. Similarly, the near-future expected reach 
of Br(μ → 3e) is shown by the dotted light-blue lines, and that of 

4 For λ = 0.3 and tanβ = 3, κ is approximately κ ∼ 0.5 (the second term of 
Eq. (5.3) is small (typically O(0.1) or less) for large part of our sample parame-
ters). The RGEs for λ and κ are

16π2 d

dt
λ = λ

[
2|κ |2 + 4|λ|2 + 3Tr(Y †

U YU ) + 3Tr(Y †
D Y D ) + Tr(Y †

E Y E )

+ Tr(Y †
N Y N ) − 3g2

2 − 3

5
g2

1

]
, (5.4)

16π2 d

dt
κ = κ

[
6|κ |2 + 6|λ|2

]
. (5.5)

If we assume (4.6), then a large λ induces a large κ via RGEs, and λ can develop 
the Landau pole below the GUT scale depending on the parameters. For small tanβ , 
the large top Yukawa coupling makes the right-hand side of the RGE for λ large, 
and this makes it easier for the Landau pole for λ to occur.



402 K. Nakamura, D. Nomura / Physics Letters B 746 (2015) 396–405

Fig. 1. Our numerical results on Br(μ → eγ ) and the lightest Higgs boson mass in the MSSM-like semi-constrained NMSSM, case 1. The diagonal gray contours are the 
contours for the predicted branching ratios of μ → eγ . The diagonal solid and dotted red lines are the current limit and the near-future expected sensitivity of Br(μ → eγ ), 
respectively. The current limits of the μ → 3e and μ–e conversion rates are also shown by the corresponding values of Br(μ → eγ ) as the solid light-blue and dark-blue 
lines, respectively. The near-future expected reach of Br(μ → 3e) is shown by the dotted light-blue lines, and that of the μ–e conversion at COMET and Mu2e is shown by 
the dotted dark-blue lines. The gray line is the contour for the 126 GeV Higgs boson mass. The regions between the two red curves, the two solid green curves and the two 
dotted green curves are the areas where the Higgs boson mass is in the ranges, 125–127, 124–128 and 120–130 GeV, respectively. We assume m0 = M1/2 in the figures. The 
input parameters at the SUSY scale are λ = 0.1, Aκ = −50 (GeV) and we take A0 = −500 (GeV) at the GUT scale. The right-handed neutrino Majorana masses are taken to 
be Mν = 5.0 × 1014 (GeV). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

the μ–e conversion at the COMET and Mu2e experiments is shown 
by the dotted dark-blue lines. Once the PRISM/PRIME experiment 
is realized, it is expected to go beyond the COMET/Mu2e sensitiv-
ity by about two orders of magnitude, and the full region in the 
figures will be covered for this particular choice of the input pa-
rameters.

Also shown in Figs. 1 (a) and (b) are the contours for the light-
est Higgs boson mass. From the figures, we find that smaller κ
makes the Higgs boson mass smaller. We have numerically con-
firmed that the difference in the Higgs boson mass mainly comes 
from the values of κ , and the difference in the values of the other 
parameters like Aλ are not very important for the difference in 
the predictions for the Higgs boson mass. This dependence of the 
Higgs boson mass on κ can be understood from Eq. (4.5). Namely, 
large κ makes the (3, 3) element of M2

S,Tree larger and the mixing 
between the MSSM Higgses and the singlet Higgs, which makes a 
negative contribution to the lightest Higgs boson mass, smaller.

From the figures, we find that there is a parameter region 
which is favored from the Higgs boson mass measurement where 
the predicted value of Br(μ → eγ ) is within reach of the near-
future experiment even if m0 is as large as ∼ 4 TeV. In addition, 
the near-future experiments Mu3e, COMET and Mu2e can probe 
the SUSY mass scale up to ∼ 5 TeV for our sample parameters. The 
reach will be extended further if the PRISM/PRIME experiment is 
carried out.

We here comment on the dependence of the Higgs boson mass 
on κ . In the figures, we take κ only down to 0.05. For smaller 
values of κ , for example, κ � 0.03 for λ = 0.1, the Higgs boson 
mass sharply decreases for decreasing κ . This sharp κ dependence 
comes from the factor (λ/κ)2 in the third term of the right-hand 
side of Eq. (4.5). If we take smaller value of λ, this sharp decrease 
of κ happens at smaller value of κ , and hence we can take smaller 
κ as well.

The difference between the above results and the result in the 
case of the MSSM + νR model can become clearer if we com-
pare Figs. 1 (a) and (b) with the prediction in the MSSM + νR

model for similar input parameters. In Fig. 2 we show the predic-
tion for Br(μ → eγ ) in the MSSM + νR model with the boundary 
conditions at the GUT scale, Eqs. (2.3)–(2.6) together with the con-
ditions at the GUT scale M1/2 = m0 and (m2

N)i j = m2
0δi j , where 

Fig. 2. The numerical results for Br(μ → eγ ) and the lightest Higgs boson mass in 
the MSSM+νR model. The diagonal gray contours are the contours for the predicted 
branching ratios of μ → eγ . The meanings of the diagonal red/light-blue/dark-blue 
solid/dotted lines, gray line, red curves, two solid green curves, and two dotted 
green curves are the same as in Fig. 1. We assume m0 = M1/2 in the figure. We take 
A0 = −500 (GeV) at the GUT scale and assume μ > 0. The right-handed neutrino 
Majorana masses are taken to be Mν = 5.0 × 1014 (GeV). (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version of 
this article.)

(m2
N )i j (i, j = 1, . . . , 3) is the soft SUSY breaking mass-squared ma-

trix for the right-handed neutrinos. We take A0 = −500 (GeV) at 
the GUT scale and assume μ > 0. We also take the same neutrino 
masses and mixing parameters as in Figs. 1 (a) and (b), as well as 
the same right-handed neutrino Majorana masses which are taken 
to be Mν = 5.0 × 1014 (GeV). By comparing Figs. 1 (a), (b) with 
Fig. 2, we see little difference for the prediction for Br(μ → eγ )

for given values of tan β and m0 (= M1/2), but the region favored 
from the Higgs boson mass slightly changes. For example, for a 
fixed value of tan β = 10, the value of Br(μ → eγ ) predicted from 
the fixed value of the Higgs boson mass at mH = 126 GeV in the 
MSSM+νR model is ∼ 10−10 for this particular choice of input pa-
rameters, while in the case of Figs. 1 (a) and (b), the corresponding 
values are ∼ 6 × 10−11 and ∼ 2 × 10−11, respectively. We there-
fore conclude that in the NMSSM + νR model, the predicted value 
of Br(μ → eγ ) favored from the Higgs boson mass can slightly 
change from the MSSM + νR model.
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Fig. 3. Our numerical results on Br(μ → eγ ) and the lightest Higgs boson mass in the MSSM-like semi-constrained NMSSM, case 2. The diagonal gray contours are the 
contours for the predicted branching ratios of μ → eγ . The meanings of the diagonal red/light-blue/dark-blue solid/dotted lines, gray line, red curves, two solid green curves, 
and two dotted green curves are the same as in Fig. 1. We assume m0 = M1/2 in the figures. The input parameters at the SUSY scale are λ = 0.1, Aκ = −50 (GeV) and we 
take A0 = −500 (GeV) at the GUT scale. The right-handed neutrino Majorana masses are taken to be Mν = 5.0 × 1014 (GeV). (For interpretation of the references to color in 
this figure legend, the reader is referred to the web version of this article.)

Case 2

In this case, if we are to use Eq. (4.6), the value of κ is deter-
mined to be, similarly to the case 1,

κ = λ

sin 2β
− Aλ

2s
. (5.6)

Similarly to the reasoning in the case 1, the equation above implies 
that if tan β or λ is too large, the κ parameter at higher scale 
blows up and becomes non-perturbative. Therefore, if we are to 
use Eq. (4.6), we need small λ and small tan β , but this choice 
makes the Higgs boson mass very similar to the MSSM case and 
hence is not very interesting. We therefore do NOT use Eq. (4.6) in 
the case 2, either.

Numerical results
In Figs. 3 (a) and (b), we give our numerical results for Br(μ →

eγ ) and the lightest Higgs boson mass in the case 2. In the fig-
ures (a) and (b), Aλ at the GUT scale is taken to be −5000 GeV
and −2500 GeV, respectively. The rest of the input parameters 
are taken to be the same in the two figures, and the input SUSY 
parameters are λ = 0.1, Aκ = −50 (GeV) at the SUSY scale, and 
A0 = −500 (GeV) at the GUT scale. We take m0 = M1/2, and 
Mν = 5.0 × 1014 (GeV).

In the figures, we plot contours for the constant values of 
Br(μ → eγ ). The behaviors are very similar to the case 1. Also 
shown are the favored regions from the Higgs boson mass and 
the current and near-future expected sensitivities of the μ → eγ , 
μ → 3e and μ–e conversion rates, similarly to Figs. 1 (a) and (b).

From the figures, we find that only in Fig. 3 (b), there is an ex-
tra Higgs-mass favored parameter space at the region where tan β

and m0 (= M1/2) are both large. This difference between the two 
figures mainly comes from the difference in the value of κ , and 
the differences in the other parameters like Aλ enter only indi-
rectly through the value of κ in the prediction for the Higgs boson 
mass.

We now explain why the changes in the input value of Aλ at 
the GUT scale affect the value of κ at the SUSY scale.

To do so, we first explain the dependence of κ on m0 (= M1/2)

and tan β with fixed value of Aλ(MGUT). Below we will show that 
κ becomes smaller for larger m0 and for larger tan β at the re-
gion tanβ � 1 in the parameter space shown in Figs. 3 (a) and 
(b). At the upper-right region of Fig. 3 (b), the value of κ becomes 

κ � 0.03, where the Higgs boson mass decreases relatively quickly 
for decreasing κ , as discussed at the end of the discussion for the 
case 1 in this section.5 In the parameter region shown in Fig. 3 (a), 
the value of κ is larger than 0.03, and hence this relatively fast de-
crease does not happen. Then we have to explain why κ is smaller 
in Fig. 3 (b). This is because Aλ(MSUSY) is larger in Fig. 3 (b) since 
Aλ(MGUT) is larger. The relation between Aλ(MSUSY) and κ are 
given by κ = (Beff − Aλ)/s and hence larger Aλ means smaller κ .

Let us discuss the change in κ for different m0 (= M1/2) for 
fixed values of tan β and Aλ(MGUT). The value of Aλ at the SUSY 
scale is given by solving the RGE,

16π2 d

dt
Aλ = 4|κ |2 Aκ + 8|λ|2 Aλ + 6Tr(Y †

U TU ) + 6Tr(Y †
D T D)

+ 2Tr(Y †
E T E) + 2Tr(Y †

N T N) + 6g2
2 M2 + 6

5
g2

1 M1 .

(5.7)

For our sample parameters, Aλ(MSUSY) becomes larger6 for larger 
m0 (= M1/2) and fixed tan β . Therefore, for a fixed value of tanβ , 
larger m0 (= M1/2) makes κ smaller through the relation, κ =
(Beff − Aλ)/s.

Next, we discuss the dependence of κ on tan β , fixing the val-
ues of m0 (= M1/2) and Aλ at the GUT scale. Since here we 
are mainly interested in the difference at large tan β region, in 
this paragraph we assume tan β � 1. For large tanβ , Aλ(MSUSY)

becomes larger for larger tan β since the fourth term of the right-
hand side of Eq. (5.7), which involves the bottom Yukawa coupling, 
becomes more important. This increase in Aλ(MSUSY) for larger 
tanβ makes κ smaller for fixed m0 since κ = (Beff − Aλ)/s. An-
other reason which makes κ smaller for larger tan β comes from 
the values of μeff and Beff , although this effect is less important 
for large tanβ . The values of μeff and Beff at the SUSY scale are 

5 If κ is too small, the (3,3) element of the Higgs boson mass matrix becomes 
very small and the lightest Higgs boson becomes singlet-like. In all the parameter 
regions we consider in this paper, the lightest Higgs boson is MSSM-like.

6 At first glance, it appears that larger m0 (= M1/2) makes the gaugino masses 
larger, which makes the right-hand side of Eq. (5.7) becomes positive, and that Aλ

at the SUSY scale becomes smaller. However, in reality, the contributions from At

and Ab makes negative contributions, and the balance between the gaugino mass 
contributions and the At and Ab contributions determines the scale dependence 
of Aλ .
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obtained by solving the tadpole conditions, and the solutions at 
the tree-level are,

μ2
eff = m2

Hd
− m2

Hu
tan2 β

tan2 β − 1
− 1

2
M2

Z , (5.8)

Beff = 1

2μeff
(m2

Hu
+ m2

Hd
+ 2μ2

eff + v2λ2) sin 2β . (5.9)

Both μeff and Beff become smaller for larger tan β for our sample 
parameters. From the relation μeff = λs, a smaller μeff means a 
smaller s for fixed λ. From κ = (Beff − Aλ)/s, the variation of κ
comes from that of s (= μeff/λ) and that of Beff. For our sample 
parameters, since the decrease in Beff due to increase in tan β has 
a larger effect on κ than that of s, κ becomes smaller for larger 
tan β .

As for Br(μ → eγ ), also in the case 2, we find that there is 
a parameter region which is favored from the Higgs boson mass 
and in which the predicted value of Br(μ → eγ ) is within reach 
of near-future experiment even if m0 ∼ 4 (TeV), which has not yet 
been probed at the LHC.

6. Summary and discussions

In this paper, we have studied the cLFV in the semi-constrained 
NMSSM + νR model, taking into account the recent results on 
the Higgs boson mass determination. We have considered the 
boundary conditions at the GUT scale to be MSSM-like and semi-
constrained in the sense that the SUSY breaking parameters Aλ , 
Aκ , m2

S which are specific to the NMSSM are not necessarily equal 
to A0, A0, m2

0, respectively. We have considered two cases: in one 
case the parameters (s, Aλ , m2

S ) are determined from the tadpole 
conditions, which we call the case 1, while in the other case (s, 
κ , m2

S ) are determined from other input parameters, which we call 
the case 2.

One of the advantages of the NMSSM is that the tree-level light-
est Higgs boson mass can be taken to be larger than that of the 
MSSM by taking a large value of λ. In addition to this effect, there 
is another new effect in the Higgs boson sector of the NMSSM, 
namely, we also have to take into account the mixing with the 
singlet Higgs. This mixing can decrease the Higgs boson mass de-
pending on the parameters. In the semi-constrained scenario we 
have considered, we find it is difficult to realize both large λ and 
small mixing with the singlet at the same time. Hence in this pa-
per we have assumed a small λ (∼ 0.1) which makes the mixing 
with the singlet small.

In the case 1, we have obtained the results similar to those in 
the MSSM + νR model. We have also shown that the Higgs-boson-
mass favored parameter region depends on the value of κ . As the 
case 2, we have considered the case where the κ parameter is not 
an input parameter but is a parameter determined from other pa-
rameters via the tadpole conditions, and we have obtained a partly 
different favored region from the case 1. In both cases, we have 
shown that in the NMSSM + νR model there is a parameter re-
gion in which the predicted value of Br(μ → eγ ) is so large that 
the μ → eγ decay can be observable at the near-future experi-
ment even if the SUSY mass scale is about 4 TeV. The reach will be 
improved further by the near-future experiments, Mu3e, COMET, 
Mu2e and PRISM/PRIME.

Several comments are in order. In this paper we have taken the 
input SUSY mass parameter m0 (= M1/2) as high as � 1 TeV. This 
choice makes the squarks and gluino as heavy as multi-TeV, whose 
possibility is still not excluded by any experiments including the 
LHC [1]. The price we have to pay is that it is difficult to explain 
the muon g −2 anomaly in terms of SUSY if we take the multi-TeV 
SUSY particle mass scenario, and that we have to introduce the 

so-called “little hierarchy” between the weak scale and the SUSY 
scale. In particular, some fine-tuning is necessary in order to keep 
the Higgs boson mass protected from large radiative corrections. 
Nevertheless, in SUSY models the cancellation between the bosonic 
and fermionic loop contributions to the Higgs-boson mass-squared 
is automatic at the scales much higher than the SUSY breaking 
scale, which decreases the degree of fine-tuning significantly com-
pared to the non-SUSY minimal standard model and makes SUSY 
models still attractive.
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