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The theory of the multiverse and wormholes suggests that the parameters of the Standard Model
(SM) are fixed in such a way that the radiation of the S3 universe at the final stage Srad becomes
maximum, which we call the maximum entropy principle. Although it is difficult to confirm this
principle generally, for a few parameters of the SM, we can check whether Srad actually becomes
maximum at the observed values. In this paper, we regard Srad at the final stage as a function
of the weak scale (the Higgs expectation value) vh , and show that it becomes maximum around
vh = O(300 GeV) when the dimensionless couplings in the SM, i.e., the Higgs self-coupling,
the gauge couplings, and the Yukawa couplings are fixed. Roughly speaking, we find that the
weak scale is given by vh ∼ T 2

B B N /(Mpl y5
e ), where ye is the Yukawa coupling of electron, TBBN

is the temperature at which the Big Bang nucleosynthesis starts, and Mpl is the Planck mass.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Subject Index B57, B59

1. Introduction and review of the history of the universe

The theory of the multiverse and wormholes [1–5] suggests that the parameters of our universe are
fixed in such a way that the radiation of the universe Srad at the final stage becomes maximum,
which we call the maximum entropy principle or the Big Fix. Here, “the final stage” means that the
curvature term balances with the other contents of the universe, and the radius of the universe a is
getting close to the critical value a∗, taking an infinite time. See, e.g., Fig. 1, and Refs. [2–5] for the
details. This assertion can be checked in principle by changing the parameters of the Standard Model
(SM) one by one, if we know how Srad is determined by those parameters. In general, this procedure
is difficult to do because of the lack of our understanding of the history of the universe. However,
for a few couplings of the SM, we can estimate their effects on Srad under some assumptions, and
we can actually check the principle. As a concrete example, we consider the Higgs expectation value
vh . Although there are many possibilities for the final stage of the universe, we assume the following
scenario:

Assumptions for the final stage of the universe

(I): The dark matter (DM) decays much earlier than the baryons. This guarantees that the radiation
produced by the DM is negligible compared with that of baryons.

(II): The cosmological constant (CC) at the final stage of the universe is fixed at the critical value
�cri so that the curvature term balances with the radiation produced by the baryon decay
(see Fig. 1). The maximum entropy principle predicts that the dark energy should decrease
from the present value to �cri in the future.

© The Author(s) 2015. Published by Oxford University Press on behalf of the Physical Society of Japan.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Funded by SCOAP3

9

 at L
ibrary of R

esearch R
eactor Institute, K

yoto U
niversity on O

ctober 22, 2015
http://ptep.oxfordjournals.org/

D
ow

nloaded from
 

http://ptep.oxfordjournals.org/


PTEP 2015, 033B06 Y. Hamada et al.

cri

cri

cri

baryon decay

radiation and curvature
dominated

a

matter dominated
by baryons

a

V(a) (a)

Fig. 1. The potential of the S3 universe. If the cosmological constant � is chosen so that the maximum of
V (a) becomes zero, the universe takes an infinite time to grow up to the size a∗. The blue line is required by
the maximum entropy principle.

(III): Baryons decay with the lifetime τB , and the radiation Srad is produced. In this paper, we
assume that

τB = 1036 year. (1)

After that, the radiation and the CC balance with the curvature term while electrons, positrons,
and neutrinos annihilate into photons.

Based on these assumptions, we show evidence of the Big Fix: When the Higgs self-
coupling, gauge couplings, and Yukawa couplings are fixed, Srad becomes maximum around vh =
O(300 GeV).1 We first review how Srad is produced through the history of the universe. In the
following argument, we denote the photon temperature by T .

◦ Stage 1: The baryon number NB is produced by the sphaleron process if we assume the standard
leptogenesis scenario. Here we briefly summarize how NB is produced in the early universe.
The number density of a particle species i is given by

ni = gi

(2π)3

∫
dp3

exp

(√
p2+m2

i −μi

T

)
± 1

, (2)

where gi is the degree of freedom, μi is the chemical potential, and the sign ± is − for bosons
and + for fermions. Then the difference between a particle and an anti-particle is given by

ni − n̄i := giμi
T 2

6

⎧⎪⎨
⎪⎩

K f

(mi

T

)
(for fermions),

Kb

(mi

T

)
(for bosons),

(3)

1 In our previous paper [5], we showed that Srad becomes maximum around vh = O(300 GeV) when the
Higgs self-coupling, the gauge couplings, and the current quark and lepton masses are fixed.
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where

K f (y) = 3

2π2

∫ ∞

0
dx x2 cosh−2

(√
x2 + y2

2

)
,

Kb(y) = 3

2π2

∫ ∞

0
dx x2 sinh−2

(√
x2 + y2

2

)
. (4)

We can eliminate the chemical potentials {μi } by using the conservations of the total
electromagnetic charge Q and the difference between the baryon number and the lepton number
NB − NL . As a result, the baryon number NB is given as a function of mi

T :

NB = NB

(mi

T

)
. (5)

See Appendix B in Ref. [5] for the explicit formula and detailed calculations. When T reaches
the sphaleron decoupling temperature Tsph, NB is fixed at NB

( mi
Tsph

)
. We can obtain Tsph by using

the recent numerical result [6]:

Tsph = 7

8
× 160vh

246
GeV. (6)

Here, we have assumed that the Higgs self-coupling and the gauge couplings are fixed. Thus,
NB at Tsph is given by

NB = NB

(
8mi

7vh
× 246

160

)
. (7)

Note that, if we fix the gauge couplings and the Yukawa couplings, NB is just a constant because
the quark masses mq and the gauge boson mass mW are given by

mq = yqvh√
2

, mW = g2vh

2
. (8)

◦ Stage 2: The ratio of neutrons to all nucleons Xn is fixed by the following processes:
(1) For T > 1 MeV, protons and neutrons are in thermal equilibrium through the weak

interactions, and Xn at that time is given by

Xn = 1

1 + exp
(

Q
T

) , (9)

where Q := mn − m p is the mass difference between a neutron and a proton.
(2) The weak interactions are frozen out, and Xn decreases through the beta decay until T

reaches the temperature TBBN, at which the Big Bang nucleosynthesis (BBN) starts. Here,
note that the lifetime of a neutron τn depends strongly on vh , me, and Q − me, where me is
the electron mass. After TBBN, neutrons are rapidly converted to atomic nuclei. We discuss
these processes in more detail in Sect. 3.2. See also Ref. [5].

◦ Stage 3: The radiation at the early universe becomes dilute, and the matter-dominated era starts.
After that, the dark energy becomes dominant. This is the era in which we live. As discussed
before, we assume that the dark energy becomes very small in the future.

◦ Stage 4: The DM decays sufficiently earlier than baryons.
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◦ Stage 5: Baryons decay, and the radiation Srad is produced. Srad depends on Xn , the masses of
protons and helium nuclei m p, mmHe , and their lifetimes τp, τHe. Moreover, we must take into
account the possibility that a pion produced by the decay of a helium nucleus is scattered by the
remaining nucleons, and loses its energy. We denote the energy loss through this process by a
dimensionless parameter ε.

From the above argument, it is clear that we need to know the vh dependence of the following
quantities in order to evaluate Srad as a function of vh :

m p, mHe, Q(or mn), Xn, TBBN, τp, τHe, ε. (10)

In this paper, we use the phenomenological equations for m p, Q, and τp:

m p = α�QCD + β(2mu + md), Q = β(md − mu) − Mem, m2
π = γ�QCD

mu + md

2
, (11)

	p = τ−1
p ∝ m5

p

M4
G

G. (12)

The meanings of the parameters and the factor G are as follows.

◦ mu and md are masses of an up quark and a down quark. Their typical values are (mu, md) =
(2.3 MeV, 4.8 MeV) [9].

◦ �QCD is the scale where the QCD coupling becomes O(1), which we fix at 300 MeV in this
paper.

◦ Mem is the electromagnetic energy of a neutron, and α, β, γ are numerical constants that should
be determined by QCD. In principle, they can also be found from observations. The typical
values that we use in this paper are

α = 3.1, β = 1.4, γ = 16, Mem = 2.2 MeV, (13)

which explain the experimental results [9] well.
◦ G can be approximately calculated by using the effective interaction of the proton decay as

G = constant ×
(

1 −
(

mπ

m p

)2
)2

. (14)

Here, we neglect the electron mass me in the formula for the proton lifetime (see Appendix B).
In the limit mu,d � m p, we expect that G depends linearly on mu,d

m p
:

G 	 1 + ξ
mu,d

m p
(for mu,d � m p). (15)

On the other hand, for mHe, τHe, and ε, it is difficult to determine their vh dependence because of the
complicated effects of nuclear physics. However, by the numerical calculations (see Sect. 2 and also
Ref. [5]), we can show that these quantities effectively contribute to Srad through a single function
c
(
ε,

τHe
τp

,
mHe
m p

)
whose typical value is ofO(0.01). In this paper, we assume that c is a constant; namely,

we neglect the vh dependence of mHe, τHe, and ε. The details are given in Sects. 2 and 5. Finally, we
also assume that TBBN does not depend on vh in the main part of this paper, and fix it at 0.1 MeV.
The case where it depends on vh is discussed in Appendix A.
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Summary: Assuming that

α, β, γ, c

(
ε,

τHe

τp
,

mHe

m p

)
, Mem (16)

are fixed at phenomenologically reasonable values, we find that Srad has a global maximum around
vh = O(300 GeV) when the Higgs self-coupling, the gauge couplings, and the Yukawa couplings
are fixed. Here, we consider such a region in which a neutron is heavier than a proton.

This paper is organized as follows. In Sect. 2, we briefly review how the radiation of the universe
is determined, and give a qualitative expression for it. In Sect. 3, we discuss the vh dependence of
Srad. In Sect. 4, we consider the Big Fix. In Sect. 5, we give a summary and discussion.

2. Radiation of the universe at the final stage

The radiation of the universe at the final stage can be obtained in principle by solving the following
equations:

d Np(t)

dt
= −τ−1

p · Np(t) + 3τ−1
He · NHe(t), (17)

d NHe(t)

dt
= −τ−1

He · NHe(t), (18)

H2(t) : =
(

ȧ

a

)2

= 1

3M2
pl

·
(

M(t)

a3 + Srad(t)

a4 −
M2

pl

a2 + M2
pl�

)
, (19)

M(t) = m p · Np(t) + mHe · NHe(t), (20)

d Srad(t)

dt
= a(t)m p ×

(
τ−1

p · Np(t) + (1 − 2ε) · τ−1
He · NHe(t)

)
. (21)

Here Np(t) and NHe(t) are the numbers of protons and helium nuclei, and ε represents the following
effect: a pion produced by the nucleon decay of a helium nucleus is scattered by the remaining
nucleons, loses its kinetic energy, and produces less radiation after it decays [5]. The initial values
of Np(t), NHe(t) are given by

Np(0) = NB(1 − 2Xn), (22)

NHe(0) = NB
Xn

2
, (23)

where NB is the total baryon number and Xn is the ratio of neutrons to all nucleons. By numerical
calculations, we have obtained a qualitative expression for Srad [5]:

Srad = constant ×
(

1

M2
pl

) 1
3

× (NBm p)
4
3 τ

2
3
p ×

{
1 − c

(
ε,

τHe

τp
,

mHe

m p

)
Xn

}
. (24)

The qualitative meaning of this equation is as follows: First, if there are no atomic nuclei, baryons
are all protons with the lifetime τp. If we simplify the situation so that these protons decay
simultaneously, we can obtain the radiation Srad by the energy conservation

NBm p

a3
(
τp
) = Srad

a4
(
τp
) , (25)

from which we have

Srad = NBm pa
(
τp
)
. (26)
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In our scenario, because the universe is matter-dominated until τp, the Friedmann equation indicates

H2(τp) 	 1

τ 2
p

	 NBm p

M2
pla

3(τp)
. (27)

Thus, we obtain

Srad 	 (NBm p)
4
3 τ

2
3
p . (28)

This expression is modified by the existence of the atomic nuclei. The 1 − c · Xn term in Eq. (24)
represents such effects. If c is positive, the radiation decreases and vice versa.

As discussed in Sect. 1, NB and Xn depend on the SM parameters as

NB = NB

(
mi

vh

)
, (29)

Xn = Xn (vh, me, Q, TBBN) . (30)

If the Higgs self-coupling, the gauge couplings, and the Yukawa couplings are fixed,2 the vh

dependence of Srad comes from m p, τp, and Xn in Eq. (24):

Srad = constant × m
4
3
p(vh)τ

2
3
p (vh)(1 − cXn(vh)). (31)

Here, note that, because the baryon number NB depends on the SM parameters through mi
vh

(see Eq. (7)), it is just a constant in this case. While the analytic expressions of m p, mπ , and τp

are given by Eqs. (11) and (12), it is difficult to give the counterparts to mHe, τHe, and ε. However,
because c varies by only a few percent for vh < 1 TeV,3 the vh dependence of c is not so important
compared with that of Xn . In this paper, we assume that c is a constant such as 1/50 or 1/100 [5].
We discuss this point in Appendix C.

3. vh dependence of Srad

In this section, we discuss how Srad depends on vh . First, we consider m
4
3
p × τ

2
3
p , and then discuss Xn .

3.1. m
4
3
p × τ

2
3
p

In Fig. 2, we show the graphs of

m
4
3
p × τ

2
3
p ∝ 1

m2
p

G− 2
3 . (32)

Here, for G we have used Eq. (14). We can understand Fig. 2 qualitatively as follows. In the large vh

region, because the current quark masses are larger than �QCD, G becomes a constant, and we have

m
4
3
p × τ

2
3
p ∝ 1

m2
p

	 1

m2
u,d

. (33)

2 On the other hand, if the Higgs self-coupling, the gauge couplings, and the current quark masses are fixed,
the vh dependence of Srad comes from Xn and NB :

Srad|mass fix ∝ constant × (1 − cXn(vh)) × N
4
3
B (vh).

This is because m p, mHe, τp, τHe, and ε are determined once �QCD and the current quark masses are fixed.
The conclusion in the previous paper [5] is that Srad|mass fix becomes maximum around vh = 246 GeV.

3 This can be understood intuitively: because mHe, τHe, and ε depend on vh through the current quark masses,
the changes of mHe

m p
, τHe

τp
, and ε are essentially O(

mu,d

m p
) 	 1% when we vary vh in the region vh < 1 TeV.
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Fig. 2. m
4
3
p × τ

2
3
p as a function of vh . Here, the parameters are fixed at phenomenologically reasonable val-

ues, and we have rescaled m
4
3
p × τ

2
3
p so that it becomes one at vh = 246 GeV. The upper left panel shows the

case where �QCD = 300 MeV, α = 3.1, β = 1.4, and γ = 16 for vh < 100 TeV. One can see that m
4
3
p × τ

2
3
p

decreases monotonically. The upper right, lower left, and lower right panels show the vh dependence in the
region vh < 1 TeV for various values of α, β, and γ , respectively.

Therefore, m
4
3
p × τ

2
3
p simply decreases in this region. On the other hand, in the vh < 1 TeV region,

because the vh dependence appears through the current quark masses mu,d , and they are very small

compared with �QCD, we can approximate m
4
3
p × τ

2
3
p linearly as a function of mu,d :

m
4
3
p × τ

2
3
p ∝

(
1 + η(α, β, γ, ξ) · mu,d

�QCD

)
, (34)

where η is given by (see Appendix B)

η =
(

4γ

3α2 − 6β

α

)
. (35)

As one can see from Fig. 2, for the typical values of α, β, and γ as in Eq. (13), m
4
3
p × τ

2
3
p decreases

monotonically as a function of vh , which is crucial for obtaining the maximum of

Srad ∝ m
4
3
p × τ

2
3
p × (1 − cXn) (36)

around vh = O(300 GeV). This is because, as we will see in the next subsection, 1 − cXn

rapidly increases around vh = O(200–300 GeV), and becomes almost constant in the vh > O
(200–300 GeV) region.
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3.2. Neutron-to-nucleon ratio Xn

In this subsection, we discuss the vh dependence of Xn . At a temperature T 
 1 MeV, neutrons and
protons are in thermal equilibrium through the following six processes:

n + ν ↔ p + e−, n + e+ ↔ p + ν̄, n ↔ p + e− + ν̄, (37)

and Xn is given by

Xn = 1

1 + exp
(

Q
T

) . (38)

The total reaction rate of the p → n process is given by [7]

	(p → n) = 0.400 sec−1 ×
(

T

1 MeV

)5

×
(

246 GeV

vh

)4

×
P
(

me
T ,

Q
T

)
P(0, 0)

. (39)

Here,

P

(
me

T
,

Q

T

)
:=
∫ ∞

0
dx

√
1 −

(
me/T

Q/T + x

)2

· (Q/T + x)2x2(
1 + e−xT/Tν

) (
1 + eQ/T +x

) , (40)

and Tν is the neutrino temperature

Tν = T × S (me
T

)
S(0)

, (41)

where

S(x) := 1 + 45

2π4 ·
∫ ∞

0
dy y2 ·

(√
x2 + y2 + y2

3
√

x2 + y2

)
· 1

1 + exp
(√

x2 + y2
) . (42)

As the universe expands, the above processes, except for the beta decay, decouple at Tdec. We can
obtain Tdec by solving

H = 	(p → n). (43)

Below Tdec, Xn decreases through beta decay until T reaches TBBN, where the BBN starts.4 Thus,
Xn at TBBN is given by

Xn = exp
(
−τ−1

n (tBBN − tdec)
)

× Xn(tdec) = exp
(
−τ−1

n (tBBN − tdec)
)

× 1

1 + exp
(

Q
Tdec

) , (44)

where τn is the neutron lifetime, and the relation between T and t is given by the Friedmann equation:

H = 1

2t
= 1

2

√√√√2π2N
45M2

pl

T 2. (45)

Here, N is the degrees of freedom and is given by 43/4 when me < T < mμ. By using the Fermi
theory, we can calculate τn as

τ−1
n = 885−1 sec−1 ×

( me

0.51 MeV

)5 ×
(

246 GeV

vh

)4

×
F
(

Q
me

)
F
(1.29

0.51

) , (46)

4 As discussed in Sect. 1, we assume that TBBN does not depend on vh . The vh dependence of TBBN is
discussed in Appendix A.
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0.0
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0.2

0.3

0.4

0.5

vh TeV

Xn 1.4, TBBN 0.1 MeV

Fig. 3. Xn as a function of vh when the Yukawa couplings are fixed. Here, TBBN and β are fixed at 0.1 MeV
and 1.4, respectively. The lines with different colors correspond to different values of Mem.

where

F(x) :=
∫ x

1
dy y(y2 − 1)1/2(x − y)2. (47)

Figure 3 shows Xn given by Eq. (44) as a function of vh for various values of Mem. Here, TBBN is
fixed at 0.1 MeV. One can see that Xn is a monotonically decreasing function of vh , and that Xn

increases for fixed vh when we increase Mem. The latter behavior is easily understood: if we increase
Mem, the initial value of Xn (which is given by Eq. (38)) and the neutron lifetime τn become large
because Q becomes small.

4. Big Fix of vh

By using Eq. (31) and the results of the previous section, we can determine Srad as a function of vh .
From Figs. 2 and 3, it is clear that Srad has a maximum around vh = O(300 GeV). Figure 4 shows
the results for the case

TBBN = 0.1 MeV, α = 3.1, β = 1.4, γ = 16. (48)

In the left (right) figure, we assume c = 1/50 (1/100). Srad has a maximum around vh =
O(300 GeV).

We can also check that the quantitative behavior of Srad does not change even if α, β, and γ are
varied by O(0.1); see Fig. 5. It would interesting to see whether QCD predicts such values of α, β,
and γ that Srad becomes maximum at precisely vh = 246 GeV.

A few comments are in order. Originally, the c · Xn term in Srad came from the existence of helium
nuclei, which is guaranteed by

mHe = 2(m p + mn) − 
 < 4m p + 2me, (49)

where 
 is the binding energy of a helium nucleus. This is equivalent to

2(Q − me) < 
. (50)

However, when we change vh with the Yukawa couplings fixed at the observed values, 
 and
2(Q − me) can become equal at some point vh = v0 > 246 GeV. This is because Q − me is an
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2.6 MeV Q vh 246 GeV] 0.9 MeV)
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2.6 MeV Q vh 246 GeV] 0.9 MeV)
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0.993

0.994

0.995

0.996

0.997

0.998

0.999

vh TeV
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0.2 0.3 0.4 0.5 0.6
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0.9980

0.9985

0.9990

0.9995

vh TeV

Srad TBBN 0.1 MeV, 3.1, 1.4, 16, c 1 100

Fig. 4. The radiation of the universe Srad as a function of vh for various values of Mem when the Higgs self-cou-
pling, the gauge couplings, and the Yukawa couplings are fixed. Here, α, β, and γ are fixed at typical values,
and the scale of the vertical axis is chosen properly. Left (right) shows the c = 1/50 (1/100) case.

3

3.1

3.2

3.3

0.25 0.30 0.35 0.40 0.45 0.50
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0.9990
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Srad TBBN 0.1 MeV, 1.4, 16, c 1 50, Mem 2.2 MeV]

1.2

1.3

1.4

1.5

0.25 0.30 0.35 0.40 0.45 0.50

0.996

0.997

0.998

0.999

1.000

1.001

1.002

vh TeV

Srad TBBN 0.1 MeV, 3.1, 16, c 1 50, Mem 2.2 MeV]

15.5

16

16.5

17

0.25 0.30 0.35 0.40 0.45 0.50

0.9965
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0.9975

0.9980

0.9985

0.9990

0.9995

Srad TBBN 0.1 MeV, 3.1, 1.4, c 1 50, Mem 2.2 MeV]

Fig. 5. The parameter dependences of Srad as a function of vh . Here, TBBN and Mem are fixed, respectively, at
0.1 MeV and 2.2 MeV, and c is chosen to be 1/50. In the upper left, upper right, and lower figures, α, β, and γ

are changed, respectively.

increasing function of vh and 
 is expected to be a decreasing function of vh .5 Therefore, in the
vh > v0 region, atomic nuclei cannot exist (see Fig. 6). However, a simple analysis indicates that v0

5 The nucleon–nucleon interaction comes from the pion exchange, which becomes weak if the pion mass mπ

becomes large; thus 
 is a decreasing function of vh because mπ is an increasing function of vh (see Eq. (11)).
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atomic nuclei cannot exist

v0

246 GeV

vb

b decay does 
not occur

proton is heavier
than neutron

vQvr

vh

Fig. 6. How physics changes when the Higgs expectation value vh is varied.

is greater than 1 TeV, where Xn is very close to zero (see Fig. 3). Therefore, we can trust the analysis
done so far, even in this region.6

On the other hand, in the vh < 246 GeV region, there are three critical points where Q + me, Q,
and Q − me become zero, which we denote respectively by

vr , vQ, vβ. (51)

In the region vQ < vh < vβ , beta decay does not occur. This case is already included in the analysis
done so far. In the v < vQ region, protons become heavier than neutrons. Even if such a universe
exists, there should also be atomic nuclei because of the isospin symmetry. In the vh < vr region,
protons become unstable, and again atomic nuclei cease to exist if vh is much smaller than vr . As
a result, Srad increases as vh gets smaller. It would be interesting to see whether the peak around
vh = O(300 GeV) is the global maximum or not.

5. Summary and discussion

In this paper, we have shown that the radiation of the universe Srad at the final stage has a maxi-
mum around vh = O(300 GeV) when the Higgs self-coupling, the gauge couplings, and the Yukawa

couplings are fixed. The vh dependence of Srad is given by Eq. (24). We have seen that m
4
3
p × τ

2
3
p is

a decreasing function for typical values of α, β, and γ , while 1 − cXn increases rather rapidly for
smaller values of vh and becomes a constant of one around vh = 300 GeV. Therefore, Srad becomes
maximum at the scale where 1 − cXn becomes one. As we have seen in Sect. 3.2, Xn is the product of

1

1 + exp
(

Q
Tdec

) , (52)

and

exp
(
−τ−1

n (tBBN − tdec)
)

. (53)

6 Although the vh dependence of 
 is complicated, the upper bound of v0 can be obtained by Q − me =

(vh = 246 GeV)/2 = 14 MeV. For example, if we assume β = 1.4 and use (mu, md) = (2.3 MeV, 4.8 MeV)

[9], Mem becomes 2.2 MeV, and v
(Max)
0 is given by v

(Max)
0 (β = 1.4, Mem = 2.2 MeV) = 1.3 TeV.
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e n
1 tBBN tdec

1

1 e
Q

Tdec

0.2 0.4 0.6 0.8 1.0
0.0

0.1

0.2

0.3

0.4

vh TeV

Fig. 7. The vh dependence of the two factors of Xn . Here, we show the case where β = 1.4 and Mem = 2.2 MeV.
Blue and red lines show exp(−τ−1

n (tBBN − tdec)) and 1/(1 + exp(Q/Tdec)), respectively.

Actually, Eq. (53) determines where Xn becomes zero (see Fig. 7) and thus 1 − cXn becomes one.
As a result, the maximum point of Srad is qualitatively given by

τ−1
n × tBBN 	 1, (54)

from which we obtain

vh 	 T 2
BBN

Mply5
e
. (55)

This shows a surprising and mysterious relation between vh , TBBN, ye, and Mpl.
In conclusion, we mention the possibilities that we could make further predictions by combining

the maximum entropy principle with other principles, such as the stability of the Higgs potential. For
example, we could consider the U(1) gauge coupling gY . As seen in Fig. 4, Srad increases if Mem is
decreased. Because Mem mainly depends on gY , smaller values of gY are favored by the maximum
entropy principle. Thus, if there exists a lower bound of gY , we can conclude that gY is fixed at that
value. From the recent analyses [10–20] based on the observed Higgs mass, it is possible that the
Higgs potential is marginally stable up to the energy scale 1017–1018 GeV. In other words, if gY is
smaller than the observed value, the Higgs potential is unstable. This means that the present value
of gY is at the lower bound, which is consistent with the above argument. It would be interesting to
consider various uses of the maximum entropy principle.
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Appendix A. Including the vh dependence of TBBN

In this appendix, we take the vh dependence of TBBN into account. TBBN is the temperature where
the ratio of deuterons to all nucleons,

Xd := nd

nN
, (A1)
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becomes O(1). In the following, we find

TBBN 	 0.03 × Bd , (A2)

where Bd is the deuteron binding energy Bd .
In thermal equilibrium, the number density of the particle species i having the heavy mass mi 
 T

is given by

ni = gi

(
mi T

2π

) 3
2

× exp

(
−mi − μi

T

)
, (A3)

where gi are the internal degrees of freedom, and μi is the chemical potential. If T � 1 GeV, we can
use Eq. (A3) for protons, neutrons, and deuterons. Therefore, we obtain

nd

n pnn
= 3(2π)

3
2

4
×
(

md

m pmnT

) 3
2

exp

(
−md − m p − mn

T

)

= 3(2π)
3
2

4
×
(

md

m pmnT

) 3
2

× exp

(
Bd

T

)
:= f (T, Bd), (A4)

where we have used the relation between the chemical potentials7

μd = μp + μn. (A5)

By using

n p = (1 − Xn)nN , nn = XnnN , (A6)

and the baryon-to-photon ratio
nγ

nN
	 6 × 1010, (A7)

Xd is given by

Xd = nd

nN
= nd

n pnn
× n pnn

nN

= f (T, Bd) × Xn(1 − Xn)nN

= f (T, Bd) × Xn(1 − Xn) × 10−10

6
× nγ

	 1.35 × 10−10 ×
(

T

1 GeV

) 3
2

exp

(
Bd

T

)
. (A8)

Here, we have put Xn(1 − Xn) 	 0.1. This will be verified by seeing that Xn has an O(0.1) value as
a function of vh around vh = 300 GeV (see Fig. 3). By solving Xd = 1 numerically, we can obtain

TBBN 	 0.03 × Bd . (A9)

Although determining Bd as a function of vh is difficult, the qualitative behavior is easily under-
stood. Because m2

π ∝ vh , the strength of the nuclear force is roughly given by v−1
h . Therefore, Bd

7 Protons, neutrons, and deuterons are in thermal equilibrium through p + n ↔ d + γ .
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TBBN is fixed

TBBN depends on vh
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Fig. A1. Xn as a function of vh in the cases where the vh dependence of TBBN is included (red), and where
TBBN is fixed at that of vh = 246 GeV (blue). In the left and right panels, we assume Mem = 1.8 MeV and
Mem = 2.2 MeV, respectively.
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Fig. A2. Srad as a function of vh in the cases where the vh dependence of TBBN is included (red), and where
TBBN is fixed at that of vh = 246 GeV (blue). Here, we have chosen c = 1/100. In the left and right panels, we
assume Mem = 1.8 MeV and Mem = 2.2 MeV, respectively.

should be a decreasing function of vh . Here, we use the recent result [8]8 in which Bd is calculated
as a function of the current quark masses by using the effective chiral perturbation theory. The result
in Ref. [8] agrees with the above heuristic argument.

Now we consider Xn when we take the vh dependence of TBBN into consideration. First we read
off Bd as a function of vh from Ref. [8], then, by using Eqs. (A9), (45), and (44), we obtain Xn as a
function of vh ; see Fig. A1.9

By using Eq. (24), we obtain Srad as a function of vh ; see Fig. A2.10 We can see that the maximum
of Srad changes slightly.

8 Although, in Ref. [8], Bd is calculated in the 0.5 < mq/m(phy)
q < 2 or 123 GeV < vh < 492 GeV region,

where the chiral perturbation theory seems to be reliable, this region is enough to examine the maximum point
of Srad.

9 One can see that the vh dependence of TBBN makes an effect to decrease (increase) Xn in the vh >

(<) 246 GeV region. This can be understood intuitively: as discussed above, because Bd is a decreasing func-
tion of vh , TBBN is also a decreasing function. Thus, if vh is large, TBBN becomes small, and the time when the
BBN starts becomes large. As a result, the beta decay lasts for a longer time, and Xn decreases.

10 Qualitatively, the radiation increases (decreases) in the 246 GeV < vh (246 GeV > vh) region because Xn

decreases (increases) in this region.
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Appendix B. The proton lifetime

In this appendix, we give the formula for the proton lifetime. We start from the effective Lagrangian
[21]. The process

p → e+ + π0 (B1)

is described by

Ldecay = i
m2

p

M2
G

(
c1π0ēc p + c2π0ēcγ5 p

)+ h.c., (B2)

where MG is the GUT scale. Although c1 and c2 may depend on the current quark masses due to the
wave function of a proton and pion, we assume that they are constants in this paper.

Then, the partial width of Eq. (B1) is given by

	p = 1

2m p

∫
d3 p′

(2π)32p′
0

∫
d3k

(2π)32k0

1

2
·
∑
spin

|M|2 (2π)4δ(p − p′ − k)

= m5
p(c

2
1 + c2

2)

24π M4
G

×
(

1 −
(

mπ

m p

)2
)2

. (B3)

Taking into account the other process

p → π+ + ν̄, (B4)

we have an approximate expression for G in Eq. (12):

G = constant ×
(

1 − m2
π

m2
p

)2

. (B5)

Let us calculate η in Eq. (34), which has been explained in Sect. 3. We neglect the electron mass
in the following argument. Because c1 and c2 are constants in our assumption, G becomes when
mu,d � m p. Thus, by using Eqs. (11) and (B5), we have

m
4
3
p × τ

2
3
p ∝ 1

m2
p

G− 2
3

∝
(

1 + β(2mu + md)

α�QCD

)−2

×
(

1 − γ (mu + md)

2α2�QCD

)− 4
3

	
(

1 − 2β(2mu + md)

α�QCD
+ 2γ (mu + md)

3α2�QCD

)

= 1 −
(

4β

α
− 2γ

3α2

)
· mu

�QCD
−
(

2β

α
− 2γ

3α2

)
· md

�QCD
. (B6)

For example, if we choose

α = 3.1, β = 1.4, γ = 16, (B7)

Eq. (B6) becomes

m
4
3
p × τ

2
3
p ∝ 1 − 0.69 · mu

�QCD
+ 0.20 · md

�QCD
. (B8)
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Fig. C1. The parameter regions where c > 0.01 when we allow mHe
m p

, τHe
τp

, and ε to change by 10% from their
natural values. One can see that only in the region where τHe is large can c be smaller than 0.01.

Thus, if we use the typical values (mu, md) = (2.3 MeV, 4.8 MeV) [9], the coefficient of vh becomes

negative, which means that m
4
3
p × τ

2
3
p is a monotonically decreasing function for small vh .

Appendix C. Parameter region where c > 0.01

One of the crucial assumptions in our argument is having fixed c at a small positive value such as
1/50 or 1/100. By solving the differential equations (17)–(21), we can examine how naturally we
have c > 0.01 when we change mHe

m p
, τHe

τp
, and ε by 10% from their roughly estimated values (4, 1

4 , 1
32)

[5]. In Fig. C1, the c > 0.01 region is shown in blue. One can see that a wide range of parameters gives
c > 0.01. However, the large τHe region is not allowed, which comes from the fact that the lifetime
of an atomic nucleon increases the radiation of the universe.11 Thus, if the effect from τHe dominates
in the small vh region, c becomes negative, and the peak of Srad obtained in Sect. 4 disappears. To
make a more quantitative argument, we need to understand how τHe and mHe depend on the quark
masses.

11 Qualitatively, this can be understood as follows: if the matter with the energy 
M decays and becomes
radiation, we can obtain 
M

a3(t) = 
Srad
a4(t) , namely 
Srad = a(t) × 
M , from the conservation of the energy

density. Thus, if the decay time becomes large, because a(t) becomes large, the radiation increases.
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