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Sliding Mode Control for Transformation

to an Inverted Pendulum Mode
of a Mobile Robot with Wheel-Arms

Hiroaki Fukushima, Member, IEEE, Keiji Muro, and Fumitoshi Matsuno, Member, IEEE

Abstract—This paper proposes a control method for locomo-
tion mode transformation of a mobile robot with wheel-arms. The
proposed method aims at transformation from a four-wheeled
mode for high speed mobility to an inverted pendulum mode,
which has advantages of high viewing position and small turning
radius. Since the initial state of the system is far away from
the target equilibrium point of the wheeled inverted pendulum
system, we use a nonlinear controller based on sliding mode
control. In contrast that the previous transformation methods
cannot control the robot velocity until the robot body is lifted
up, the proposed method can take into account the robot velocity
from the beginning of the transformation, which enables to
complete the transformation in a smaller space. To analyze the
asymptotic stability of the control system on the sliding surface,
we derive an invariant set in which the system state converges
to the origin without going out. Furthermore, the effectiveness
of the proposed method is demonstrated in both simulations and
real robot experiments.

Index Terms—Wheeled inverted pendulum, locomotion mode
transformation, sliding mode control, invariant set.

I. INTRODUCTION

HEELED mobile robots often face more difficulties

when traversing rough terrain compared with tracked
or legged robots, in contrast to the high mobility on flat floors.
For this reason, modifications on wheeled robots have been
made to allow them to conquer complex environments, such
as the switching mechanism between a wheel and a track [1]
and the wheeled-legged robots [2]-[6].

For the same purpose, another type of wheeled robot was
proposed in [7]. As shown in Fig. 1, this robot has arms (or
flippers) equipped with wheels, which we call “wheel-arms”,
on both sides of the main body equipped with a camera on the
top. By using the arms, the robot can climb over obstacles [8].
This robot has two inverted pendulum modes, which enable
to turn in confined space and provide high viewing position
[9]-[10]. Another remarkable feature of this robot is that the
high mobility on flat floors of ordinary wheeled robots is
maintained, since the four wheeled mode has a similar form
to ordinary wheeled robots.
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In the same way as in [9]-[10], this paper focuses on
transformation from a four wheeled mode to an inverted
pendulum mode, as illustrated in Fig. 2. The transformation
starts with lifting up the wheel-arms to raise the center of
gravity (COG) of the whole robot (2 of Fig. 2), due to the
motor torque limits. Then, the robot body is lifted up, while
returning the arms to the initial angle. A problem of the
control methods in [9]-[10] is that the velocity of the robot
is not controlled until the body pitch angle and the arm angle
are controlled to the target values, as in 4 of Fig. 2. As a
result, a considerable amount of space is required before the
robot completes the transformation and stops. This problem
is mainly caused by the underactuation and the complexity of
the system.

A. Related Work

Control system design for wheeled inverted pendulums
has been intensively studied in the literature. Many of early
studies adopt linear controllers [11]-[16] based on a linear
approximation of a nonlinear model around an equilibrium
point. A limitation of linear controllers is that they are not
necessarily effective in cases where the system state is far from
the equilibrium point, such as in our transformation problem.

More recent studies have proposed various nonlinear control
methods for wheeled inverted pendulums [17]-[37]. They can
be classified by how to deal with the underactuation, which
occurs mainly because both the velocity (or position) of the
vehicle and the pitch angle of the body need to be controlled
by a single actuator.

A common approach to deal with the underactuation is the
“two-level” control [17]-[23]. In this approach, the pitch angle
of the body is controlled to a given target angle by an actuator,
while the velocity (or position) of the vehicle is controlled by
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Fig. 1. Mobile robot with wheel-arms.
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Fig. 2. Schematic of transformation.

manipulating the target pitch angle of the body. The two-level
control methods can be further classified by how to determine
the target pitch angle of the body.

In [17]-[20], the control design of the velocity and its
convergence analysis are enabled by simplifying the system
model based on two strong assumptions that the body angle
perfectly tracks the target value and that the body angular
velocity is negligible. In order to make these assumptions
easier to be satisfied, [18] proposed a method based on model
predictive control (see e.g. [24]-[26]), which aims to limit
the frequency band of reference signals for the body angle.
However, there is still no guarantee that the assumptions
mentioned above are satisfied. Further, the implementation of
this method is difficult, since a nonlinear optimization problem
needs to be solved in real time.

On the other hand, [9]-[10] use a more relaxed assumption
that tracking errors of the body angle and body angular
velocity from constant target values are negligible after a given
period of time. However, since the initial body and arm angles
are assumed to be zero in the velocity control methods in
[9]-[10], they cannot be applied from the beginning of the
transformation process, as mentioned earlier.

In [21]-[22], the target body angle, which is changed for
position control, is simply chosen by a linear function of the
position error. While these studies investigate the convergence
of the body angle and tuning parameters of an adaptive
controller, no theoretical result is presented on the convergence
of the vehicle position.

A neural network is used in [23] to approximate a system
that generates a reference signal of the body angle such that
the vehicle position and velocity converge to target values. An
ultimate bound of the tracking errors of the vehicle position
and velocity is derived without one of the strong assumptions,
mentioned above, that the body angular velocity is negligible.
However, it is difficult to know how small this error bound
is, since the bound is described by using a parameter whose
value is difficult to estimate. The same problem arises in [27]-
[30], where the error bound is expected to be larger than the
one in [23], since the controllers in [27]-[30] do not have the
feedback loop for the vehicle velocity and position.

Another approach to deal with the underactuation is to
choose controlled variables such that the internal dynamics
is asymptotically stable when the controlled variables are kept
to zero. Sliding mode control methods in [31]-[32] choose a
controlled variable as a function of the body angle, the body
angular velocity, and the vehicle velocity. In addition to the
convergence of the controlled variable, the asymptotic stability
on the sliding surface, on which the controlled variable is
zero, is discussed based on the linear approximation of the

system. A limitation of the stability analysis based on the
linear approximation is that the region of attraction of the
target equilibrium point is not clarified, even if it can be
ensured that the target equilibrium point is asymptotically
stable.

Other methods using fuzzy control [33]-[36] and neural
network with PID control [37] have also been proposed. Since
these methods use an approximation model of the original
dynamic model of an wheeled inverted pendulum or do not use
any model, the convergence analysis for the original dynamic
model is difficult.

Transformation from a four-wheeled vehicle to an inverted
pendulum has also been studied for other types of robots.
In [38], the transformation is achieved using two-link arms,
which have a roller at the end of each arm. Since this robot
can lift up the COG to the neighborhood of the equilibrium
point by using the arms, a linear controller is used to control
the body angle. The robot in [39], [40] also achieves the
transformation from a four-wheeled vehicle to an inverted pen-
dulum. Unlike other inverted pendulum type wheeled robots,
the balance control is achieved by adjusting joint angles of
arms or the body. We do not consider situations where this
kind of balance control is applicable, since it is difficult for
many other robots including the one which this paper focuses
on.

In contrast that some of the studies mentioned above
consider model uncertainties [20], [22], [27]-[29], [31], [32]
and movement on inclined planes [19], [31], [32], [36], we
do not take into account them in the control system design.
Instead, we focus on the fact that convergence analysis of
both the body angle and the vehicle velocity of the wheeled
inverted pendulum is still a challenging issue even under the
assumption of no model uncertainty and no inclined plane,
due to the underactuation and the complexity of the system.

B. Contribution of This Paper

This paper proposes a sliding mode control method for
transformation to an inverted pendulum mode of a mobile
robot with wheel-arms. In contrast to the previous transfor-
mation methods based on the two-level control [9]-[10], the
proposed method can take into account the robot velocity from
the beginning of the transformation, which enables to complete
the transformation in a smaller space. Furthermore, unlike the
sliding mode control method for mobile inverted pendulums
[31]-[32], the region of attraction on the sliding surface is
clarified by deriving an invariant set in which the system state
converges to the origin without going out. The effectiveness
of the proposed method is demonstrated in both simulations
and real robot experiments.

II. CONTROL OBJECTIVE

As mentioned in Section I, we focus on the transformation
from the four wheeled mode to the inverted pendulum mode,
as illustrated in Fig. 2. More precisely, this paper proposes
a control algorithm for transformation from 2 to 4, since the
transformation from 1 to 2 can be easily achieved. Therefore,
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Fig. 3. Schematic of parameters.

we first describe the dynamic model of the robot in the
transformation from 2 to 4.

As illustrated in Fig. 3, ¢; denotes the angle of the main
body with respect to the vertical direction, g is the rotation
angle of the wheels, and g3 is the relative angle of the arms
with respective to the main body. Let u; and wy denote
the motor current values to control each arm and wheel,
respectively. The definition of other parameters are shown in
Table I. We assume that the left and right wheel angles are
always the same as each other, since the same input command
is given to the left and right motors. Also, g3 is assumed to
take the same value for both left and right arms, since the same
reference trajectory is always given for both arms. Under these
assumptions, the motion of the robot is restricted to the X —Y
plane in Fig. 3. The equations of motion can be derived using
Lagrange’s equations, as follows:

M(q)§+ C(q,4) + G(q) = Eu, ¢))

where ¢ = [q1,2,q3]7, u = [u1,u2]”, and the elements of

M(q) € R®*3, C(q,q) € R3, G(q) € R3, E € R3*? are
described as
Myy = myl3 + 2mgl3 + 2my L? + Jy + 2J3
Mo = My, = r{B1 cos q1 + 22 cos(q1 + g3)}
M3 = M3y = Mss = 2mal? + 2.J3 + 2myL?
Moy = (my + 2m3 + 2my + 2mo)r? 4 2J4 + 275
Maz = M3zy = 2351 cos(q1 + g3)
C1=C3=Gy=Fy» =0
Cy = —r{B14i sinq1 + 262(G1 + 3)” sin(q1 + gs)}
G1 = —pigsings — 2B2gsin(q1 + q3)
G3 = —2P2gsin(q1 + g3)
Ey = —E31 = —2n1 Ky
Eio = B30 = —Fao = —2n3 Ky

where (51 := mqly, B2 := msla+myL and g is the acceleration
of gravity. Furthermore, (1) can be rewritten as

G=f(q,q) +g(qQu (2)
fla,q) == M(q)""(-C(q:4)—G(q)). g(q) :== M(q)"E.

Our goal is to steer (¢1, g3, g2) from the initial state (7/2,
g3(0), 0) as in 2 of Fig. 2 to (0, 0, 0) as in 4 of Fig. 2 for some

TABLE I
DEFINITION OF PARAMETERS.

m1 | Mass of main body J1 | Moment of inertia of main body
mo | Mass of rear wheel J2 | Moment of inertia of rear wheel
ms Mass of arm J3 Moment of inertia of arm
my4 | Mass of front wheel J4 | Moment of inertia of front wheel

T Radius of wheel A Length to COG of main body
L Length of arm lo Length to COG of arm

n1 | Arm motor gear ratio || K1 Arm motor torque constant
n2 | Wheel motor gear ratio || K2 ‘Wheel motor torque constant

q3(0) # 0. However, when g3 # 0, the robot as a whole is not
balanced even if g; = 0. Thus, the angle of the whole body 6,
described below, is controlled instead of directly controlling
q1. If 64 and g3 are controlled to 0, then ¢; is also controlled
to 0, indirectly. As shown in Fig. 3, 0, is the angle measured
clockwise from the vertical direction to the vector from pg to
Dg, Where po and p, are the center of the rear wheels and
the COG of the robot, respectively. By “the rear wheels”, we
mean the wheels attached to the main body (the one on the
ground in Fig. 3), whereas “the front wheels” are the other
wheels attached at the end of the arms. More precisely, §, is
described as

0y =q +a (3)
1 2Bssings @)

a:=tant =222
B1 + 282 cos g3

Thus, 0, is obtained as

Oy =1 +d=q+((g3)43 5)
482 + 281 B cos q
C(Q?)) =5 2 2 22 > . (6)
B + 485 + 4812 cos g3
See [10] for the details on the model including the values of
physical parameters and on the derivation of 6.

III. SLIDING MODE CONTROLLER DESIGN

We use the sliding surface s = 0 for the following s:

g [ st ] 2 [ Ml Aoy + d
==

A3q3 + g3
where \; (¢ = 1,2, 3) is a constant number determined by a
designer. It follows from (2) that

(7

41 = f1 + guius + giaus
Go = fa + gor1u1 + Goou2
Gs = f3 + gs1u1 + gzauo. ¥

where f; (i = 1,2,3) is the ith element of f, and g;; (i =
1,2,3, 7 = 1,2) is the (4,7) element of g. By differentiating
(5), we obtain

s 00
0, = — . 9
9 =1+ e + ¢Gs ©))
Thus, it holds from (7) and (8)—(9) that

$=A+ Bu (10
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where

a | Mboe (Rt gt ch) + o

|

Asds + f3
A2(g11 +€g31) + g21 A2(g12 + CF32) + o2 ]

By following a standard way for multi-input sliding mode

control [41], the feedback law is decided as

g31 g32

u=—B"'(A+ Ksgn(s)) (11)

where sgn(s) denotes the vector of the signum functions of
each element of s, and K = diag(k1, ko) for positive constants
k1 and ko. By substituting (11) into (10), we obtain

$1 = —kisgn(s1), $2 = —kosgn(sa). (12)

Thus, s1(¢) and s(t) reach zero, and they remain to be zero
once they reach zero. On the nonsingularity of B, we have the
following property.
Proposition 1: If Ay is chosen such that Ao
2Ao Moo — My — My3 > 0, then B is nonsingular.
Proof: The determinant of B is described as

> 2 and

det(B) = E1E2{2>\2M22 — M11 — M13 —+ )\2M23

+ (A2 — 2)Myo}/det(M), (13)

where E) := 2n1 Ky and Es := 2nsKys. Since |¢1| < 7/2
and |q1 + g3| < w/2 are always satisfied, we have My >
0 and M3 > 0. Thus, it holds from the assumptions that
2o Moo — M1 —M13+>\2M23+()\2—2)M12 > 0. Therefore,
since By > 0, E2 > 0, and det(M) is bounded, it is proved
that det(B) # 0. [ |

IV. STABILITY ANALYSIS ON THE SLIDING SURFACE

Since s(t) is maintained as zero as shown in Section III, we
now analyze the behavior of the system on the sliding surface
s = 0. From the definition of s in (7), the following constraints
are satisfied on the sliding surface

51= M0, + Xaby + G2 = 0
s2 = A3q3 +¢3 = 0.

(14)
15)

From (15), it is easily seen that g3 converges to zero on the
sliding surface, if A3 > 0. Therefore, we next analyze the
behavior of (99,99,42), when s; = 0 and g3 = 0. More
precisely, we analyze the convergence of (6, ég), since (14)
implies that ¢o converges to zero if (6, ég) converges to zero.

To this end, we first describe the system model for s; =0

and g3 = 0. Since (1) implies

Mi1Gy + MiaGa + Mizgs + Gi1 = —2n1 Kpur — 2naKpug
Mo1G1 4 MaagGa + Maozgs + Co = 2na Koy
M31G1 4+ M3aGa + M33gs + Gs = 2n1 Kyur — 2naKpus,

we obtain the following relationship without u; and wuq

Nigi + NaGa + N3z + Ny =0 (16)

where Ny := My + 2Moy + M3y, No := Mg + 2Mos +
Mso, N3 := Mi3 + 2Ms3 + Mz3z, Ny := Gi + 2C; + Gs.
We also obtain

Go =~y — A\ab, a17)

by differentiating (14). Since g1 = 64 for g3 = 0, it holds
from (16)—(17) and g3 = 0O that

0, = —F0, — Fysinf, (18)
where
0 by + byf?
P o= a1 + ag cos g’ jo. 1 204 (19)
dy + dacos by, dy + dacost,
ay :=2MpxXy, az:= (B1+4B82)r\ (20)

by := (b1 +4B2)g, by :=2(B1 + 202)r
dy = 2Moodg — My — M3,

dy = {(B1 +4B2) A2 — 2(B1 + 2B2) }r.

To analyze the convergence of (g, 99), we consider a region
E of zg 1= [0,,0,]" as follows

&= {we| V(zg) <7}

V(wg) = a} Prg, P = { b
P12

21

P12
(22)
D22 } ’
where P is a constant positive definite matrix, and v is a
positive constant. If V' < 0 is satisfied for g9 # 0 in &, zy
converges to 0 without going out of the set, once zy is in &.
Before we derive the conditions of P, v and \; (i = 1,2) to

guarantee V < 0 in &, we define the following.

Fl:max{a1+a2 al},Fl:min{alJra2 al}

dy +dy dy di+dy dy
= (p12Fy + p11)pe — 2p3, b
hy = 5 , Foi=
Do dy + do
_ (p12F + p11)paz — 2p%,
- P32

Vhy
D22

Now the condition for P and J; is described as follows.
Assumption 1: The following inequalities are satisfied.

S =

hy = p3ohi = (P11 = praFy)?, iy

di >0, d2>0, hy >0, h; >0 (23)

pi2 >0, pi1—pi2Fi >0 24
9 _

2 (TFQ - h1> ++vhy >0 (25)

S(dy +do) — by >0 (26)

Note that all the conditions in Assumption 1 can be checked
using known values of the physical parameters of the system
and design parameters P, A; and A\s. Based on the assumption
above, we obtain the following result.

Theorem 1: Under Assumption 1, V < 0 is satisfied for
xg # 0 in &, if v is the minimum eigenvalue of PzU~'P2
where U := diag(Uy, Us) for

Sdg b2

U : Uy = ——"—F——.
! 27 8(dy + dy) — by

T 2{S(dy +do) — by}’
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Fig. 4. Invariant set of zg for s1 = 0 and g3 = 0.

Proof: See Appendix. ]
Based on Theorem 1 above, the values of A\;, A2 and P
should be chosen such that Assumption 1 is satisfied for
as large v as possible, in order to obtain a large region of
attraction £. On the other hand, k1, k> and A3 can be chosen
irrespective to Theorem 1. By choosing large values of ki, ko
and \s, the trajectory of the state rapidly goes to the surface
of s; = g3 = 0, although the values are limited due to the
motor torque limitation of the real robot. Unfortunately, since
no other guideline is currently available, the values of the
parameters need to be selected by trial and error.

Since s; and g3 go to 0 by using our controller, the stability
for s; = ¢3 = 0 is a fundamental property required for
the closed-loop system. However, it should be noted that the
stability for s; # 0,¢3 # 0 is not proved, even if (6, ég) is
in £ at the initial time. The possibility that (6, 99) goes out
of £ by decreasing s; cannot be denied theoretically, although
such a behavior is not seen in our simulations. We leave the
stability analysis for s; # 0, g3 # 0 as a future work.

V. SIMULATION

The design parameters in (7) and (11) are chosen as

AM=4, M=2 N=1, K =diag(2,2).

The value of \s above satisfies the condition for nonsingularity
of B in Proposition 1. Fig. 4 shows the region £ in Theorem
1 when P is chosen as

p—RT [ 40 0 ] R R— [ cos 105 — Sin 1gg

: us us
0 1 sin 155 COS 155

The initial state of the simulation is illustrated in 2 of Fig.
2. By performing simulations for various values of the initial
arm angle ¢3(0) from -180 [deg] to O [deg] with the resolution
of 0.1 [deg], we confirmed that the trajectories of (6,,6,) do
not go out of £ once the trajectories go into £, which is not
theoretically proved for s; # 0 and g3 # 0. The trajectories
of (,,0,) from the initial state on the boundary of & (g3 =
—76.7) and the initial state with the maximum 6, (g3 = 0) are
shown in dashed and dash-dotted lines respectively in Fig. 4,
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Fig. 5. Time responses of 04, ¢, u and s (simulation).

as examples. The marks “x” in Fig. 4 denote the initial states
of the trajectories.

In order to save the time for the transformation from 1 to
2 in Fig. 2, the initial arm angle g3(0) is desired to be as
close to 0 as possible. However, as g3(0) becomes closer to
0, a larger torque is required. Thus, similarly to the previous
studies [9][10], we set as g3(0) = —120 [deg] in the rest of
this section and in the experiment of the next section, taking
into account the torque limitation of the real robot.

To prevent chattering, sgn(s) in (11) is replaced by tanh(cs),
which denotes the vector of the hyperbolic tangent functions
of each element of cs where ¢ is a scalar positive design
parameter. Fig. 5 shows the time responses of 4, ¢, v and s
in the cases of ¢ = 1 and ¢ = 50. In both cases, ¢; and q¢3 are
controlled to 0, and ¢ is converging to some constant value,
without any problem except that the responses for ¢ = 50 are
slightly more oscillatory than those for ¢ = 1. It can be seen
that although the convergence of s; and s, is slow around O
for ¢ = 1, a significant problem is not found in the responses
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of ¢ and 6,,.

VI. EXPERIMENT

As in the simulation in Section V, sgn(s) in (11) is replaced
by tanh(cs) to prevent chattering in real robot experiments.
We choose ¢ = 1 based on the simulation results in the
previous section. In addition, we need another modification
of the control algorithm to apply the proposed method to the
real robot. More precisely, the controller is switched from the
sliding mode controller (SMC) in (11) to a linear state feed-
back near the target state, i.e. [0, ég, G2, 93, ¢3] ~ 0. The linear
state feedback controller has the form v = —K(z — z,),
where x := [¢7, 4T, 2, := [0, ¢2(t5),0,0,0,0] and t, is the
switching time to the linear controller. The constant matrix K,
is obtained by solving the linear quadratic regulator (LQR)
problem [43] for the following linear model

. _ B q B

ro= [ Ax 4+ Bu ] @7
- o _of 99 %9

A a 31” w:a:,,._ 81: 1207 ' 8x T=x, 81” (28)

which approximates the original system in (2) near x = z,.
The weighting matrices for the state and input in the cost
function are chosen as

Qiy = diag (5,8,3,5,1,1), Ry, = diag (20, 10)

respectively. These parameters have been chosen empirically
from simulations and experiments with initial states around
the target state, since it is difficult to theoretically analyze
the stability of the original nonlinear system when the LQR
controller is applied.

The switching condition to the linear controller is set as
|6g] < 10 [degl, |g3| < 10 [degl, |¢2|] < 10 [deg/s]. Note
that if the proposed nonlinear controller is used instead of
switching to a linear controller around the target state, the
robot’s position starts moving slowly after the state variables
go to the target values. A possible reason for this is that the
proposed nonlinear controller does not have a feedback of gs.
More study is needed to incorporate properly the feedback of
g2 into the proposed controller. However, even if this problem
is solved, it is possibly better to use a linear controller around
the target state, since the parameters of such a linear controller
can be customized for the performance around the target state,
unlike the proposed nonlinear controller. In order to suppress
the effect of the switching, we chose a small constant value
of ¢ (=1) in tanh(cs), which makes the control input nearly
0 around the target state. Although we do not focus on other
ways to choose c in this paper, there might be more elegant
ways. For example, if ¢ is chosen as an increasing function
of |s| such that ¢ = 0 for s = 0, the function tanh(cs)
approximates sgn(s) better for large |s| than just choosing
a small constant value of ¢, while it suppresses the effect of
switching since c¢ is small around s = 0.

Except for this modification, the values of parameters in
the control method are same as the ones in Section V. The
angle of the main body ¢; is measured by the InertiaCube3
(InterSense Inc.), and the angular velocity ¢; is measured by a

«— SMC ——»i«——LQR—
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Fig. 7. Comparison of g2 (experiment).

gyro sensor CRS03-04 (Silicon Sensing Systems Japan Ltd.).
On the other hand, ¢» and g3 are respectively approximated
by the difference quotients of g2 and g3, which are measured
by rotary encoders. The control input u is computed at every
10 [ms],

Fig. 6 shows the time responses of 0,, ¢, v and s for the
same initial state as the simulation in Fig. 5. The dotted line
at t = 4.9 [s] illustrates the switching time to the LQR.
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Fig. 8.

Snapshot of the experiment.

Note that the responses of s; and sy are not shown after
t = 4.9 [s], since the LQR does not use s. A snapshot of
the experiment is shown in Fig. 8. These figures show that ¢;
and g3 are controlled to zero and that ¢, is converging to some
constant value. Thus, it can be seen that the robot achieved
the transformation to the wheeled pendulum and stopped.

Fig. 7 illustrates the comparison of the responses of g2 by
the proposed and conventional methods. As shown in the solid
line, the maximum wheel angle during the transformation is
q2 = 246 [deg], when the proposed method is used. Since
the conventional methods do not control the velocity until 8,
and g3 become close to 0, they need longer time before ¢s is
controlled to 0. As a result, the maximum wheel angles by the
the methods in [9] and [10] are 867 [deg] and 642 [deg] as
shown in the dashed and dash-dotted lines, respectively. From
the radius of wheels » = 0.2 [m], the maximum distance
the robot moved from the initial position in the case of
the proposed method can be calculated as 0.86 [m], which
is significantly smaller than 3.0 [m] in [9] and 2.2 [m] in
[10]. This implies that the control method proposed in this
paper achieved the transformation in a smaller space than the
conventional methods in [9] and [10]. On the other hand, it
should be noted that the method in [10] has a merit that the
robot position can be controlled as well as the velocity. Thus,
the value of g5 in [10] goes to 0 around ¢ = 15.

VII. CONCLUSIONS

This paper has presented a sliding mode control method
for transformation to an inverted pendulum mode of a mobile
robot with wheel-arms. In contrast to the previous transfor-
mation methods based on the two-level control, the proposed
method can take into account the robot velocity from the
beginning of the transformation, which enables to complete
the transformation in a smaller space. Furthermore, unlike

the previous sliding mode control method for mobile inverted
pendulums, the region of attraction on the sliding surface is
clarified by deriving an invariant set in which the system state
converges to the origin without going out. The effectiveness
of the proposed method has been demonstrated in both simu-
lations and real robot experiments. The robot in this paper has
the same form with ordinary inverted pendulum type wheeled
robots, when the arm angles are fixed to zero. Therefore, the
proposed nonlinear control method is expected to be effective
for other vehicles of inverted pendulum type, especially in
situations where the state of such a vehicle is away from
the equilibrium point. Possible future works are the stability
analysis off the sliding surface and the control design taking
into account the modeling error and motor torque limits.

APPENDIX
PROOF OF THEOREM 1

We use the following fact to prove Theorem 1.
Lemma 1: Under Assumption 1, we have

Fi<F<F, E,<F. (29)

Proof: We first show the inequalities for F;. Note that
F1(6,) is an even function, i.e. Fy(0,) = Fi(—6,). Thus,
it suffices to consider the case of 0 < 6, < 7/2, since the
possible range of 6, is |6, < 7/2. From ds > 0 in (23) and

@ - (aldg — CL2d1)SiIl99 (30)
04, - (di +dycosby)?

it can be seen that
oF
>0, if aidy > axd; 31)
00,
oF
=1 <0, if a1ds < asdy (32)
00,

for 6, > 0 and that % = 0 for 0, = 0. Therefore,

there are only three cases where Fy(8,) is (i) monotonically
increasing, (ii) monotonically decreasing, and (iii) constant,
for 0 < 6, < m/2. In each case, the maximum and minimum
of F1(6,) are F1(0) or Fy(m/2), which concludes the proof
of the inequalities for F}.

We next show the inequality for F5. From the assumption
in (23), we have d; > 0 and dy > 0. Thus, since by > 0 and
by > 0, we obtain Fy < F; for |0,] < /2. [ |

By differentiating V', we obtain

V = 2{p11040, + p12(0; + 0,0,) + p220,0,}. (33)
Then, by substituting (18) into (33), we have
V = — 2(p1oFy + pag Fab — pn)@gég
— 2(p22Fy — p12)b; — 2p12FE0, (34)

where £ := %9-. Eq. (34) is rewritten as

2
: P12 4 paoFoé — p11 ;
V = —2po F: (7 (%
P12F2 < 9 2p12F5€ g
F; Fr¢ — 2 .
+ 9 { (p12 1 +p22 25 pll) +p12 _ p22Fl} 93 (35)
dp1oFoé
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by completing the square with respect to ,. From d; > 0,
do >0, by >0, by >0 and |0y] < I, we have F» > 0 and
& > 0, which imply pi12F»€ > 0 under the assumption that
p12 > 0 in (24). Thus, (35) implies that a sufficient condition
for V<0 is

(p12F) + p2afné — pi1)? + 4p12Foé(pr2 — p2a k) < 0
which can be rewritten as
P3a(EF2 —hy)? —hy <0
_ paa(pr2Fi +p11) — 2p3,
= D)
P22
hy = p3ohi — (p12Fy — p11)°

(36)

hli

by completing the square with respect to F5. From the
assumption in (24) and F; < F; < F, we have

0 < p11 — p12F1 < p11 — pr2F1 < pi1 — p12Fy 37

which implies hy > hy. Thus, we have hy > 0 from the
assumption that h, > 0 in (23). Therefore, the condition in
(36) is written as

*\/E < po2(§Fs — i) < \/E

We now show that the inequality on the left in (38) is
satisfied for each xy which satisfies |0,] < 7/2. It holds
from Lemma 1 that Fy > Fy > 0. From F; < F} < F
in Lemma 1, p15 > 0 in (24), and p2o > 0 due to the positive
definiteness of P, we have h; < h; < h1. Thus, it holds from
& =sinb,/0, > 2/m and h; > 0 in (23) that

2 _
pa2(§F> — hi) +\/ho > P22(;E2 — h1) + v/h,.

Therefore, it can be shown from the assumption in (25) that
the inequality on the left in (38) is satisfied. This implies that
the inequality on the right in (38) is a sufficient condition for
vV <o.

We next derive a sufficient condition for the inequality on
the right in (38) to be satisfied. Since { < 1 for |0,| < /2, a
sufficient condition for the inequality on the right in (38) is

P22 (Fo — hy) < \/hs,

(38)

which implies
by + bof?
dy + dacos b,
from the definitions of F5 and S. Thus,
b2602 — Sdy cos Oy < Sdi — by (40)

since dy + docosf, > 0 from (23) and |0,] < w/2. By

substituting sin? %9 = % into (40), we obtain

<S8 (39)

. 0
ba2 + Sdy (2 sin? Eg — 1) < Sdy — by. 41)
Further, since |sin(6,/2)| < 8,/2 for 64| < 7/2, a sufficient
condition for (41) is

2

: 0
byt + Sdy | 2 —

dy — by.
5 < Sd; 1

This implies from the assumption in (26) that

Sdo 9 by =
0; + 0 < 1. 42
Q{S(dl -‘rdg)—bl} 9 S(dl-‘rdg)—bl g “42)
Therefore, it can be seen from the definitions of U that
xi Uxg < 1 (43)

is a sufficient condition for the inequality on the right in (38)
to be satisfied. This implies that (43) is a sufficient condition
for V < 0.

We finally show that £ is included in the ellipsoid described
in (43). To this end, we define y := 7_%P%x9 and substitute
29 = ~v2 P~ 2y into the left hand side in (43) to obtain

2f Uy = vy P 3UP 3y = 4|[US P 3y|2.  (44)

In &, it holds that v~ 'z} Pzy < 1, which implies |jy| < 1.
Thus, we have

|UZP~3y|? < |USP3|2 = 1/, (45)

since |[Uz P~z || is the maximum singular value of Uz P~ 2,
which is equivalent to the square root of the maximum
eigenvalue of P~zUP~z. Therefore, (43) is satisfied from
(44) and (45).
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