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Abstract 1 

Iron is one of the essential trace elements for humans. In this study, the iron contents in 2 

fresh, dried and toasted nori (Pyropia yezoensis) were analyzed. The mean iron content 3 

of fresh, dried and toasted nori were 21.7, 23.0, 26.2 mg/100 g (dry weight), 4 

respectively. These values were superior to other food of plant origin. Furthermore, 5 

most of the iron in nori was maintained during processing, such as washing, drying, and 6 

toasting. Then, the form of iron in fresh, dried and toasted nori was analyzed. As a result, 7 

an iron storage protein ferritin contributed to iron storage in raw and dried nori, 8 

although the precise rate of its contribution is yet to be determined, while ferritin protein 9 

cage was degraded in the toasted nori. It is the first report that verified the ferritin 10 

contribution to iron storage in such edible macroalgae with commercial importance. 11 

  12 

 13 

Key words: 14 
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 16 
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Introduction 1 

     Iron is an essential element in almost all living kingdoms. It is recommended that 2 

approximately 10-20 mg (9-12.5 mg for a male and 20 mg for a female) iron is taken for 3 

an adult from foods everyday (Data from Food and Agriculture Organization of the 4 

United Nations (FAO); http://www.fao.org/docrep/004/y2809e/y2809e0j.htm), although 5 

the values range largely depending on the availabilities of iron in various food matrices. 6 

In general, iron deficiency is one of the most serious nutritional problem that affect 7 

huge amounts of people world-wide. A well-known iron source with good availability 8 

for human is heme iron included in animal foodstuffs. In contrast, plant foodstuffs 9 

contain little amount of heme iron. However, they show various iron contents and some 10 

can be a candidate for nutritional iron source, which can rescue people suffering from 11 

an iron deficiency all over the world. One of the iron rich plant foodstuffs is legume 12 

seed, such as soybean, pea, and common bean.1) Soybean seed contains approximately 13 

10 mg iron per 100g (dry weight). In legume plants, a major part of iron is stored in 14 

ferritin, a ubiquitous multimeric iron storage protein.2-5) Ferritin, which forms spherical 15 

hollow protein shell composed of 24 subunits, can deposit thousands of iron atoms as 16 

non-toxic and bio-available form in its inner cavity.6) It is suggested that this type of 17 

iron, deposited in ferritin, is an iron source with good bioavailability among 18 

plant-derived iron.7-9) Therefore, attempts for the biofortification of staple food crops 19 

using the ectopically introduced ferritin gene have been performed in the last decade. 20 
10-13) 21 

     Recently, it is also demonstrated that algae is a good candidate for a bio-available 22 

iron source.14) Garcia-Casal et al. assayed the iron contents in several types of coastal 23 

macroalgae such as Ulva sp., Sargassum sp., Porphyla sp., and Gracilariopsis sp., 24 

which are classified as a green alga, a brown alga, and red algae (the last two species), 25 

respectively.15, 16) As a result, they have high iron contents compared with other food 26 

materials derived from plants and all of them are showed good iron absorption rates for 27 

human.15, 16) Traditionally, Japanese and people in other eastern countries have 28 

http://www.fao.org/docrep/004/y2809e/y2809e0j.htm
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consumed coastal macroalgae as an indispensable ingredient. Among the edible algae, 1 

susabinori or simply called nori (Porphyra yezoensis), red macroalga, is one of the most 2 

important species, which is extensively cultured on the surface of coastal region in 3 

Japan, Korea, and China. The thalli of nori are harvested, cut out, dried, pressed to a 4 

sheet, and distributed as dried products 5 

(http://www.fao.org/fishery/culturedspecies/Porphyra_spp/en). In Japan, dried nori 6 

sheets are selected and divided to some grades depending on its quality, and finally most 7 

of them are toasted before our consumption. As shown in this FAO statistics, the global 8 

amounts of nori production was 691 million tons in 2012, and this value tends to be 9 

increased in recent years, partly because a trend in a health-conscious diet of Western 10 

countries. Although iron contents in nori were reported, 14, 17, 18) the reported iron 11 

contents in nori are highly varied (2-90 mg iron/100g of dry matter). Therefore, the iron 12 

contents of nori should be re-evaluated, e.g., the loss amounts of iron during the food 13 

processing and the iron contents in the various grade of nori. Furthermore, a form of 14 

stored iron in nori remains unclear. 15 

With respect to the mechanism for iron storage in algae, researches have been 16 

performed mainly on prokaryotic and eukaryotic unicellular microalgae. For examples, 17 

ferritin has a critical role in iron storage and in the proliferation of cyanobacteria.19) 18 

Similarly, ferritin plays an important role in iron storage in bloom-forming marine 19 

pennate diatoms.20) As a unicellular Chlorophyceae, Chlamydomonas has multiple 20 

genes encoding plant-type ferritins, and these gene expression are differently regulated 21 

against iron deficiency and sufficiency.21) Ferritin is also detected in a unicellular red 22 

alga, Cyanidium caldarium, 22)whereas it is suggested that another iron storage 23 

mechanism does exist in unicellular brown alga, Ectocarpus siliculosus which has no 24 

orthologue of ferritin in its genome.23) On the other hand, knowledge of iron storage in 25 

macroalgae is still very limited. Recently, we showed that a green macroalga Ulva 26 

pertusa contains high amount of iron, and ferritin protein was detected in thalli of this 27 

alga.24) It was the first report that demonstrates ferritin contribution for macroalgal iron 28 
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storage. In the present study, we focused on iron in various forms and grades of nori, P. 1 

yezoensis. At the same time, we provide the first evidence that ferritin functions as an 2 

iron storage device in red macroalga, nori. 3 

 4 

Materials and methods 5 

Algae 6 

     Nori (P. yezoensis) were cultured and harvested on the coastal region in Suma 7 

(Kobe, Japan) approximately 100 m offshore from the beach in December 2012 and 8 

2013. After harvest, nori fronds were washed, cut out, pressed to sheets and dried at 9 

40 °C for 3 hours using automatic nori manufacturing machine. Dried nori sheets were 10 

further heated and dried at 70 °C for 3 hours. The resultant nori sheets were designated 11 

as ‘dried nori’. Dried nori were selected and divided to some classes, such as the first, 12 

second, third, fourth grade, and out of the grade. These are the general procedures in 13 

processing of nori. Subsequently, dried nori sheets were toasted at 300 °C for 3 seconds 14 

to generate ‘toasted nori’ sheets. The samples harvested in December 2012 were all 15 

judged as the first grade, and samples were mainly used in this study unless specially 16 

mentioned.  17 

 18 

Metal content measurement 19 

A few kilograms of the harvested thalli of nori (P. yezoensis) were used as a 20 

non-processed sample, designated as ‘raw’. Raw nori thalli were washed with distilled 21 

water and lyophilize for three days, followed by air dried at 120 °C for 5 hours. Dried 22 

and toasted nori sheets were also air dried at 120 °C similarly. 0.5 g (dry weight) of each 23 

sample was wet-ashed with a solution of 14 ml of HNO3 (60%, Nacalai tesque, Kyoto, 24 

Japan) and 0.5 ml of H2O2 (Wako, Tokyo, Japan) for 5 hours at 250 °C using a graphite 25 

block acid digestion system ‘Ecopre’ (Actac, Tokyo, Japan). The resulting digested 26 

solution of each sample was diluted to 40 ml with distilled water (HPLC grade, Nacalai 27 

tesque). Then, each sample was diluted 200 folds, followed by the measurement of iron 28 



 

6 
 

concentration using an atomic absorption spectrophotometer (AAS) AA-6800 1 

(Shimadzu, Kyoto, Japan) equipped with graphite furnace atomizer. The iron 2 

concentration of each sample was calculated by standard addition method and/or 3 

calibration curve method. To ensure the results of iron concentration analyses, the iron 4 

contents of dried nori samples harvested in 2012 winter were analyzed by Uv-visual 5 

(Uv/Vis) spectrophotometric analysis described below. Each 40 ml-sample was mixed 6 

with equal volume of 0.5% potassium ferrocyanide followed by the incubation at room 7 

temperature for 35 minutes in the dark place.25) Then, the absorbance at 690 nm was 8 

measured using a Uv/Vis spectrophotometer (UV-2550, Shimadzu). The concentration 9 

of each sample was determined from an average of 3-10 independent samples. ANOVA 10 

with Tukey-Kramer’s multiple comparison test was used to compare iron contents 11 

among various forms and grades of nori. Mean differences were considered significant 12 

at P < 0.01. 13 

 14 

Cloning of P. yezoensis ferritin cDNA（PyFer）and similarity analysis 15 

 Total RNA was extracted using the Sepasol reagent (Nacalai) according to the 16 

manufacture’s instructions. Gene specific primer set, (5′-cgtccttaccatgacgatg-3′) and 17 

(5′-ccagaaactgacatgggag-3′), was designed according to the sequence deposited in 18 

GenBank (Accession No. JX293834). The similarity analysis of the nucleotide sequence 19 

was carried out using BLAST2.0 at DDBJ. Theoretical isoelectric point (pI) and 20 

molecular weight (MW) of protein was calculated from deduced amino acid sequence of 21 

PyFer by pI/MW tool (http://au.expasy.org/tools/). Multiple alignment of the ferritin 22 

sequences were performed by ClustalW (http://clustalw.ddbj.nig.ac.jp/top-j.html) 23 

program. The phylogenetic tree was created by ClustalW and viewed by tree view 24 

program. 25 

 26 

Preparation of recombinant PyFer (rPyFer) 27 

To construct the pET vector based expression plasmid, cDNA fragment of PyFer 28 

http://au.expasy.org/tools/
http://clustalw.ddbj.nig.ac.jp/top-j.html
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was amplified by the primer set (5′-gactaccatggcgcgtatgacgttttcg-3′) and 1 

(5′-gactaggatccattacgcctgggcatcctc-3′). The resulting PCR fragment was digested by 2 

NcoI and BamHI, and inserted to the NcoI/BamHI site of pET21d (Novagen, San Diego, 3 

CA). Protein expression was performed at 30 °C after 4 

isopropyl-β-D-thiogalactopyranoside induction. The cells were harvested and disrupted 5 

by sonication, followed by protein extraction with phosphate buffered saline containing 6 

protease inhibitor cocktail (Nacalai tesque). PyFer was expressed as soluble protein, and 7 

further purified by ammonium sulfate precipitation (50 % saturation), anion exchange 8 

chromatography by Q-sepharose (GE-healthcare, Piscataway, NJ) and size exclusion 9 

chromatography by Superdex 200pg 16/60 column (GE healthcare).  10 

 11 

Detection of ferritin in various forms of nori 12 

     To enable specific detection of ferritin in nori, a rabbit polyclonal antibody was 13 

raised against the recombinant PyFer (rPyFer), and used for the western blot analysis. 14 

Prior to western blot analysis, SDS-PAGE were performed with or without a reducing 15 

reagent, that enable the detection of ferritin monomer and oligomer (24-mer) form, 16 

respectively. Generally, oligomeric ferritin can be detected by non-reducing-PAGE 17 

without heat denaturation, because ferritin oligomer has high stability against the 18 

treatment of heat and denaturant.26, 27) Protein samples were prepared by extraction from 19 

0.1 g of raw, dried, and toasted nori using 5 ml of PBS. So, each loaded sample 20 

contained soluble protein extracted from 200 µg of each form of nori. The horse-radish 21 

peroxidase labeled anti rabbit IgG (Promega) was used as the secondary antibody. 22 

Signal was visualized by using Chemilumi-one (Nacalai) and laser imager (LAS-4000, 23 

GE-healthcare). 24 

     Iron containing proteins were detected by non-reducing SDS-PAGE followed by 25 

Prussian blue staining of the gel. The gel separated above mentioned protein extracts 26 

was dipped in the mixture of 2% (w/v) Potassium Ferrocyanide and 2% (w/v) 27 

hydrochloride. 28 
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 1 

Results and Discussion 2 

Iron contents of nori and their variation depending on the forms, grades, and years 3 

     The iron contents of raw, dried, and toasted nori, which were harvested in 4 

December, 2012 and judged as the first grade, are shown in Figure 1A. The mean values 5 

of iron contents of raw, dried, and toasted nori were 19.0, 22.6, and 26.2 mg/100 g dry 6 

weight, respectively (Fig. 1A). These values were measured by AAS analysis combined 7 

with standard addition method. According to the results, the iron contents of edible 8 

forms, dried and toasted nori, are quite high among all plant-derived food stuffs such as 9 

legumes, cereals, vegetables, and fruits (http://fooddb.mext.go.jp/). In addition, iron 10 

content of raw nori was comparable with that of U. pertusa, which had highest iron 11 

content among coastal green, red, and brown macroalgae, we analyzed in previous 12 

study.24) Together with the good bio-availability of iron in red alga Porphyra sp. (a 13 

native species of Venezuela),15, 16) nori can be considered as a good nutritional iron 14 

source. Since the dried and toasted nori samples were made from the raw thalli used in 15 

this study, these results reflect the true transition of iron concentration during the food 16 

processing. 17 

To ensure these values in Fig. 1A, iron concentrations were further measured by 18 

two different methods, AAS combined with calibration curve method and colorimetric 19 

analysis using Uv/Vis spectrophotometer. The iron contents of dried nori were 20 

calculated to 22.6±1.21, 22.9±0.520, and 25.6±0.205 mg/100 g dry weight by AAS with 21 

standard addition method, AAS with calibration curve method, and Uv/Vis 22 

spectrophotometric method, respectively (Fig. 1B). These values indicated that AAS 23 

with calibration curve method, which is simpler than the standard addition method, can 24 

be adoptable for the measurements of iron contents of dried nori samples. Colorimetric 25 

analysis with Uv/Vis spectrophotometric method may slightly overestimate the values. 26 

Accordingly, the following iron content measurements were performed by AAS data 27 

with standard curve method using dried nori as samples. Dried nori sheets are usually 28 

Fig. 1 

http://fooddb.mext.go.jp/
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selected and divided to different grades depending on their appearance, such as colors 1 

and glaze, which reflect the quality of nori. The iron concentrations in various grades of 2 

dried nori are shown in Figure 1C. The samples were harvested in winter of 2012 and 3 

2013. The mean iron contents of the first grade nori harvested in 2012 and 2013 were 4 

22.9 and 27.0 mg/100g dry weight, respectively (Fig. 1C). The value of 2013 was 5 

significantly higher than that of 2012, suggesting that the iron content of nori product 6 

varies among the harvested years. Since the variation of the concentration of iron and 7 

other minerals among culture locations were pointed out by Yoshie et al.,17) the values 8 

may vary among the years of harvest to some extent. The variation in iron content 9 

among different grades can be evaluated by the comparison between the first and fourth 10 

grade of 2013, and among the first, second and out of the grade of 2012 (Figure 1C). 11 

The comparisons in iron contents of different grades of nori have significant only when 12 

compared among grades harvested in a same year, because the grade is judged relatively 13 

every year. In both cases of 2012 and 2013 samples, the iron contents of the samples in 14 

the grade of good quality are higher in general. For examples, in 2012 samples, the 15 

mean iron content of ‘out of the grade’, which is the worse quality and not to be sold in 16 

the market, is 11.3 mg/100g dry weight, while that of the first and second grade were 17 

22.9 and 15.9 mg/100g dry weight, respectively (Fig. 1C). Similarly, in 2013 samples, 18 

mean iron contents of the first and fourth grade 27.0 and 18.7 mg/100g dry weight, 19 

respectively (Fig. 1C). These results indicate that there is a clear correlation between 20 

iron contents and grades of nori, although previous study suggested no such tendency 21 

was observed.17) The reason for the data confliction is not clear. However, the iron 22 

content values of preceding studies17, 18) tend to be lower (2-12 mg/100 g dry weight)17) 23 

than that of the present results, available database, and another study measuring the iron 24 

contents in various algae, including red macroalga (Porphyra sp.).15) To clarify the 25 

relationship between the grades of nori and iron contents, further encompassing study is 26 

required. 27 

 28 
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cDNA cloning of ferritin from P. yezoensis (PyFer) 1 

     The open reading frame of PyFer cDNA composed of 795 bp, which encoded 264 2 

amino acid rsidues (Fig. 2A). The calculated pI and Mw were 4.52 and 28,135, 3 

respectively. The cDNA sequence has been submitted to the NCBI database (GenBank 4 

ID: AB918149). The amino acid sequence of PyFer shows 38% and 35% sequence 5 

identity with ferritin from Ulva pertusa24, 26) (green macroalga) and soybean ferritin 6 

subunit No.4.28) Further, PyFer and CmFer, a ferritin cDNA of unicellular red alga 7 

Cyanidioschyzon merolae,29) share 38.9% identity in their amino acid sequences. The 8 

phylogenic tree of various ferritin cDNA indicates that PyFer belongs to the same 9 

cluster as the plant-type ferritins, including higher plants (soybean), green algae (Ulva 10 

sp., Chlamydomonas reinhardtii, and Volvox carteri) and red algae (P. yezoensis and C. 11 

merolae). This tree further supports the close relationship between PyFer and CmFer of 12 

a unicellular micro-redalga C. merolae, (Fig. 2B). 13 

The putative secondary structure deduced from the three dimensional structure of 14 

algal26) and higher-plant ferritin28) was shown in Fig. 2A. According to the sequence 15 

alignment, the central part of PyFer forms 4-helix bundle, which is the conserved motif 16 

among all the identified ferritin from bacteria to mammals.30) The amino acid residues 17 

forming the iron oxidation site (Ferroxidase site)31, 32) are completely conserved in 18 

PyFer sequence (Fig. 2A). Similar to the other plant-derived ferritin, PyFer possesses a 19 

putative transit peptide (TP), which is responsible for the targeting to a plastid, although 20 

this putative TP has no similarity to other plant ferritin sequences. However, the TP 21 

sequences are very highly divergent.33, 34) Together with the fact that almost all the 22 

identified plant-type ferritin are targeted to a plastid, PyFer also can be considered as a 23 

chloroplast protein. The additional N-terminal region, which positions downstream of 24 

the TP, is generally designated as the extension peptide (EP) in plant type ferritin.3) This 25 

region is the N-terminus of mature plant ferritin and forms an α-helix unique to plant 26 

ferritins.26, 28) The EP region also presents in PyFer sequence in the downstream of 27 

putative TP region. Since the core region forming the 4-helix bundle is highly conserved 28 

Fig. 2 
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among PyFer, UpFer, and other plant type ferritins, PyFer is also supposed to forms 1 

4-helix bundle subunit, which assembles to spherical 24-mer. 2 

 3 

Detection of PyFer in Thallus and various forms of nori 4 

     To clarify whether ferritin (PrFer) contributes to the iron storage in nori, we 5 

performed western blotting using specific antibody raised against recombinant PyFer. 6 

First, we detected the monomeric PyFer after reduced SDS-PAGE. Figure 3B shows 7 

that monomeric PyFer (approximately 27 kDa) are present in raw, dried, and toasted 8 

nori. As described above, ferritin usually functions as an iron storage protein by forming 9 

a multimeric protein shell composed of 24 subunits. To detect functional 24-mer of 10 

PyFer in each form of nori, we performed another western blotting after non-reducing 11 

condition SDS-PAGE without heat treatment. Figure 4A shows that PyFer were detected 12 

as the bands, whose apparent molecular masses are much larger than 250 kDa marker 13 

(Fig. 4A). Subsequently, to detect the iron containing protein, the gel of non-reducing 14 

SDS-PAGE was treated by Prussian blue staining (Fig. 4B). In Figure 4B, iron 15 

containing soybean ferritin purified from dry soybean seeds was loaded as positive 16 

control of iron containing plant ferritin (Fig. 4B, lane C). Figure 4A and 4B show that 17 

bands of multimeric and iron containing PyFer are detected in raw and dried nori, 18 

whereas not in toasted one. Thus, these results suggest that PyFer functions as 19 

multimeric (24-mer) iron storage protein in raw and dried nori, that is similar to the case 20 

of higher plants. In contrast, there was no PyFer 24-mer in toasted nori, although 21 

monomeric one was present in comparable amounts with raw and dried nori (Fig. 3B). 22 

Thus, PyFer functioned as a multimeric iron storage protein, which was tolerant of the 23 

drying process at 70°C. However, the precise rate of ferritin contribution in iron content 24 

of nori is still unknown. Further characterizations of PyFer in various forms of nori are 25 

required. As shown in Fig. 3A, few soluble proteins were detected in toasted nori, 26 

indicating that almost soluble proteins were denaturated or aggregated during toasting 27 

process at 300 °C. In contrast, PyFer was still detectable in toasted nori, even though it 28 

Fig. 3 

Fig. 4 
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wasn’t native 24meric form. Monomeric or dimeric ferritin may still contribute to iron 1 

binding in toasted nori, because the various forms of ferritin oligomer were seen in pea 2 

seed,35) and the iron containing dimeric ferritin was detected in soymilk (Masuda T. 3 

Unpublished data). 4 

     It has been demonstrated that ferritin plays a crucial roles in iron storage in higher 5 

plants35-37) and unicellular microalgae.19, 38-40) On the other hand, ferritin contribution to 6 

iron storage in macroalgae or seaweeds is explored only recently,24) although a ferritin 7 

gene is described as a stress-induced gene in a green seaweed Ulva sp.41) Algae have 8 

been developed sophisticated mechanisms for iron acquisition and storage, because 9 

one-third of the ocean is assumed to be deficient in iron due to its extremely low 10 

solubility in the oxidized state. Recently, genome project of nori, P. yezoensis, has just 11 

been completed.42-44) Hence, nori can be one of the candidates for a model in exploring 12 

a mechanism for iron acquisition and storage in macroalgae in addition to its 13 

economical and nutritional significance. 14 
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 21 

Figure legends 22 

 23 

Figure 1 24 

Iron contents of various forms and grades of nori (P. yezoensis)   25 

 26 

(A) Iron contents (mg/100 g dry weight) of raw, dried, and toasted nori. Iron contents of 27 

these nori samples harvested in 2012 winter were analyzed by AAS with standard 28 



 

13 
 

addition method. (B) Evaluation of the iron content values measured by AAS with 1 

standard addition (AAS_1), AAS with calibration curve method (AAS_2), and Uv/Vis 2 

spectrometry. (C) Iron contents of various grades of dried nori were assayed by AAS 3 

combined with calibration curve method. Iron concentrations were determined from 4 

three to eight independent experiments. Each data point represents the average of 5 

replicates and bars indicate standard deviations. The differences in means were 6 

compared with ANOVA with Tukey-Kramer’s multiple comparison test. Means not 7 

sharing identical letters are significantly different (P < 0.01). 8 

 9 

 10 

 11 

 12 

Figure 2 13 

Sequence description of PyFer.  14 

 15 

(A) Multiple alignment of PyFer (GenBank accession number AB918149) with other 16 

ferritins: Ulva pertusa (UpFer, AB691549), Glycine max (GmFer1, M64337), and G. 17 

max (GmFer4, AB062756). The amino acid residues forming the ferroxidase site are 18 

black hilighted. Putative transit peptide (TP) and extension peptide (EP), and helix A-E 19 

of PyFer are indicated by bars on the sequences. Strictly conserved amino acid residues 20 

among 6 members are indicated by asterisks, while similar residues are by colons. 21 

(B) Unrooted phylogenetic tree of various ferritins generated using the neighbor-joining 22 

(NJ) method. Bar indicates p-distances. Ferritins are PyFer, UpFer, GmFer1, GmFer4 23 

(Genbank IDs of them are shown above), Cyanidioschyzon merolae (CmFer, 24 

XP_005537881), Ulva fasciata (UfFer, EF437243), Chlamydomonas reinhardtii 25 

(CrFer1, AF503338), Volvox carteri f. Nagariensis (VaFer, XP_002951031), 26 

Pseudo-nitzschia australis (PaFer, ACI30661), Pseudo-nitzschia multiseries (PmFer, 27 

ACI30660), Synechocystis sp. PCC6803 (CyanobacFer, AGF53187), Escherichia coli 28 



 

14 
 

FTN (EcFTN, X53513), Escherichia coli Bfr (EcBfr, ABJ02814), Homo sapiens (HuHF, 1 

M11146) , and H. sapiens (HuLF, M11147).  2 

 3 

 4 

 5 

 6 

Figure 3 7 

Reducing and heat-denaturing SDS-PAGE (A) and Western-blot (B) analysis of protein 8 

extracted from raw, dried, and toasted nori. 9 

 10 

Lane 1, raw; lane 2, dried; lane 3, toasted nori. (A) Protein extract from 100 µg of raw, 11 

dried, and toasted nori were loaded to 12.5% polyacrylamide gel and stained with 12 

Coomassie Brilliant Blue R-250. (B) The 50 times diluted above extracts were separated 13 

by 12.5% gel, followed by electro-blotted to the PVDF membrane. Anti-recombinant 14 

PyFer anti-serum was used as primary antibody. Approximately 1 ng of recombinant 15 

PyFer was loaded as a control (lane C). 16 

 17 

 18 

 19 

 20 

Figure 4 21 

Non-reducing and non-heat-denaturing SDS-PAGE analysis of oligomeric state of 22 

PyFer in the raw, dried, and toasted nori extract. 23 

 24 

Protein extract from 100 µg of raw, dried, and toasted nori were loaded to 7.5% 25 

polyacrylamide gel without reducing reagents and heat treatment. Lane 1, raw; lane 2, 26 

dried; lane 3, toasted nori. (A) Western-blot analysis of non-reducing nori extracts. 27 

Anti-recombinant PyFer anti-serum was used as primary antibody. (B) The gel was 28 
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stained by Prussian blue stain. The iron containing protein on the gel was stained as 1 

light blue bands. Approximately 50 ng of native soybean ferritin purified from dry 2 

soybean seeds was loaded as a control (lane C). 3 

4 
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PyFer MTMAAFASVAPVGVSTFAPG-----ASLSTGRPGAGAVAAPSTSRSAARMTFSSGSPSGG
UpFer ---MLSASIKASTGATKAVG--------------AGRLSHFQLRRQRGVSAHAAQEVTGM
GmFer1          ---MALAPSKVSTFSGFSPKPSVGGAQKNPTCSVSLSFLNEKLGSRNLRVCASTVPLTGV
GmFer4          -MLLRTAAASASSLSLFSPN-----------AEPPRSVPARGLVVRAAKGSTNHRALTGV

*.      :  :                .  .                   :* 

PyFer ETIDFSDVDVTDAGAQFSGMVFTPDTADAPLSRANVGFSQACQDAVNNQIQVEYTASYAY
UpFer VFQPFSEVQGELSTVTQAPVTDS---------YARVEYHIECEAAINEQINIEYTISYVY
GmFer1          IFEPFEEVKKSELAVPTAPQVS----------LARQNYADECESAINEQINVEYNASYVY
GmFer4          IFEPFEEVKKELDLVPTVPQAS----------LARQKYVDESESAVNEQINVEYNVSYVY

*.:*.     .     .            *.  :   .: *:*:**::**. **.*

PyFer HAMFAYFNRDTVALPGFAKYFEEQSLEERTHADEFMRYMNKRGGQVVLKPLAVPSMSFNN
UpFer HALHSYFARDNVGLPGFAKFFKEASDEEREHAHMLMDYQTKRGGRVELKPLAAPEMEFAN
GmFer1          HSLFAYFDRDNVALKGFAKFFKESSEEEREHAEKLMKYQNTRGGRVVLHPIKNAPSEFEH
GmFer4          HAMFAYFDRDNVALRGLAKFFKESSEEEREHAEKLMEYQNKRGGKVKLQSIVMPLSDFDH

*::.:** **.*.* *:**:*:* * *** **. :* * ..***:* *:.:  .  .* :

PyFer TDGTSDAVYAMDLHLQLEKFVWAKLEEVAAAANADNDLSLADLID-DYVQEQVQAVKKAA
UpFer DD-KGEALYAMELALSLEKLNFQKLQALQAIADKHKDAALCDFVEGGLLSEQVDAVKEHA
GmFer1          VE-KGDALYAMELALSLEKLVNEKLLNVHSVADRNNDPQMADFIESEFLSEQVESIKKIS
GmFer4          AD-KGDALHAMELALSLEKLTNEKLLNLHSVATKNGDVQLADFVETEYLGEQVEAIKRIS

: ..:*::**:* *.***:   **  : : *  . *  :.*:::   : ***:::*. :

UpFer VYVSQLRRVGKGVGVYLLDQELGEEEA---
PyFer DMVAQLKRVGTPHGVWHFDQEVLGGEDAQA
GmFer1          EYVAQLRRVGKGHGVWHFDQRLLD------
GmFer4          EYVAQLRRVGKGHGVWHFDQMLLHEGGDAA

*:**:***.  **: :** : 

Transit peptide Extension peptide
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