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Abstract  

Clinical manifestations of autoimmune hepatitis (AIH) range from mild chronic 

to acute, sometimes fulminant hepatitis. However, it is unknown how the 

progression to fatal hepatitis occurs. We developed a mouse model of fatal AIH by 

inducing a concurrent loss of Foxp3
+ 

regulatory T cells and PD-1–mediated 

signaling. In this model, dysregulated follicular helper T cells in the spleen are 

responsible for the induction, and the CCR6-CCL20 axis is crucial for the 

migration of these T cells into the liver. Using this fatal AIH model, we aimed to 

clarify key molecules triggering fatal AIH progression. During progression, T-bet 

together with IFN- and CXCR3 were highly expressed in the inflamed liver, 

suggesting Th1-type inflammation. T cells that dominantly expanded in the spleen 

and the inflamed liver were CXCR3-expressing CD8
+
 T cells; depletion of these 

CD8
+
 T cells suppressed AIH progression. Expression of one CXCR3 ligand, 

CXCL9, was elevated in the liver. CXCL9 expressing macrophages/Kupffer cells 

were co-localized with infiltrating T cells, and in vivo administration of anti-CXCL9 

suppressed AIH progression. In addition, serum levels of IL-18 but not IL-1 were 

elevated during progression, and dendritic cells in the spleen and liver highly 

produced IL-18. In vivo administration of anti-IL-18R suppressed the increase of 

splenic CXCR3
+
 T cells and the progression to fatal AIH. Moreover, TNF- but not 

IFN- was involved in upregulating CXCL9 in the liver and for increased serum 

levels of IL-18. Conclusion: These data suggest that in our mouse model, fatal 

progression of AIH is mediated by IL-18-dependent differentiation of T cells into 

Th1 cells and effector T cells, respectively, and that CXCR3-CXCL9 

axis-dependent migration of those T cells is crucial for fatal progression.
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  Human autoimmune hepatitis (AIH) typically presents as asymptomatic or mild 

chronic hepatitis. However, presentation as acute severe hepatitis also occurs, and some 

of these AIH patients manifest liver failure at initial presentation.
1,2

 Untreated patients 

with severe AIH rapidly decline, with a mortality rate of up to 50% from 3 to 5 years 

following diagnosis.
3
 Patients progressing to acute liver failure respond poorly to 

corticosteroid treatment, some of them needing liver transplantation.
4, 5

 In addition, 

approximately 20 to 30% of patients undergoing liver transplantation for AIH develop 

features of recurrent disease; in some, recurrent AIH behaves more aggressively, with 

progression to cirrhosis and graft failure.
6
 However, it is unknown how this progression 

to fatal hepatic damages occurs. 

Recently, we developed a mouse model of spontaneous fatal AIH.
7-11  

Neither 

programmed cell death 1-deficient mice (PD-1
-/-

 mice) nor BALB/c mice 

thymectomized three days after birth (NTx mice) developed any inflammation of the 

liver. In PD-1
-/- 

BALB/c mice with neonatal thymectomy (NTx–PD-1
-/-

 mice), however, 

immune dysregulation by a concurrent loss of naturally arising Foxp3
+
 regulatory T cells 

(Tregs) and PD-1-mediated signaling induced fatal AIH. Massive destruction of the 

parenchyma of the liver resulted in most mice dying by four weeks. Fatal AIH in 

NTx–PD-1
-/-

 mice was characterized by CD4
+
 and CD8

+
 T-cell

 
infiltration with massive 

lobular necrosis in the liver and by hyper-gammaglobulinemia and production of 

anti-nuclear antibodies (ANA).
7, 8

 

In our mouse model of fatal AIH, we identified induction sites, responsible T cell 

subsets, and key molecules for induction of AIH.
8
 The spleen is an induction site for fatal 

AIH, and splenic CD4
+
 T cells were autonomously differentiated into follicular helper T 

(TFH) cells in two-week-old NTx–PD-1
-/-

 mice. TFH cells expressing Bcl6, interleukin 

(IL)-21, IL-21 receptor, inducible costimulator (ICOS), and CXCR5 comprise a newly 

defined effector T cell subset that powerfully assists B cells in forming germinal centers 

(GCs).
12

 Indeed, in NTx–PD-1
-/-

 mice, the dysregulated TFH cells promoted 

hyper-gammaglobulinemia and ANA production. In addition, these TFH cells in the 

spleen directly migrated into the liver via the CCR6-CCL20 axis, triggering induction of 

fatal AIH.
8 

On the other hand, in the progression phase of AIH in three-week-old NTx–PD-1
-/-

 

mice, infiltrated CD4
+
 and CD8

+
 T cells in the liver produced large amounts of 
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inflammatory cytokines, such as IFN- and TNF-.
7, 8

 Therefore, dysregulated TFH cells 

in the induction and Th1 cells with effector CD8
+
 T cells in the progression may play 

their roles at different time points in the development of fatal AIH. In this study, using our 

mouse model, we examined mechanisms in the progression process to identify key 

molecules triggering fatal AIH progression. We found that in the progression, 

CXCR3-expressing Th1 cells and CD8
+
 effector T cells infiltrated in the liver, CD8

+
 

effector T cells triggering the fatal destruction of the liver; that hepatic 

macrophages/Kupffer cells producing CXCL9 is critical for migration of these T cells; 

and that DC-derived IL-18 is critical for differentiation of Th1 cells and CD8
+
 effector T 

cells. These data suggest that in this mouse model of AIH, IL-18 and the 

CXCR3-CXCL9 axis are critical for T-cell differentiation and migration in fatal 

progression of AIH. 
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Materials and Methods 

BALB/c mice were purchased from Japan SLC (Shizuoka, Japan), and PD-1
-/-

 on a 

BALB/c background were generated as described previously.
13

 These mice were bred 

and housed under specific pathogen-free conditions. Thymectomies were performed as 

described.
7-11 

All mouse protocols were approved by the Institute
 
of Laboratory Animals, 

Graduate School
 
of Medicine, Kyoto University. 

All other protocols for histological and immunohistological analysis, real-time 

quantitative reverse-transcription polymerase chain reactions (RT-PCR), flow cytometry 

analysis and isolation of single cells, administration of Abs in vivo, enzyme-linked 

immunosorbent assay (ELISA), in vivo injection of cytokines, DC coculture, and 

statistical analysis are detailed in the supplemental materials and methods. 

5



 

  

Results 

T-bet, IFN- and CXCR3 Are Highly Upregulated in Inflamed Livers of 

Three-Week-Old NTx-PD-1
-/-

 Mice. In our mouse model, AIH induction was started as 

early as two weeks of age by dysregulated TFH cells in the spleen.
7, 8

 As shown in Fig. 1A, 

livers in two-week-old NTx–PD-1
-/-

 mice showed mononuclear cell infiltrations, 

predominantly in the portal area, as described.
7
 Within seven days of induction, these 

mononuclear cell
 

infiltrations rapidly progressed and were followed by massive 

destruction of the parenchyma of the liver (Fig. 1A). To investigate whether cytokines 

contributed to the severely inflamed livers of these three-week-old NTx–PD-1
-/-

 mice, we 

performed real-time quantitative RT-PCR analysis to measure the expression levels of 

mRNA encoding T cell lineage-specific transcription factors and various related 

cytokines. In contrast to expression of Th2 or Th17-related molecules, expression of Th1 

lineage-specific transcription factor T-bet, together with IFN- and TNF-, were 

upregulated in inflamed liver tissues of these mice (Fig. 1B). These data suggest that 

inflammatory cytokines related to Th1-type inflammation may be involved in the fatal 

progression of AIH. Notably, we found that in the inflamed livers of these mice, mRNA 

expressions of CXCR3 were highly upregulated along with Th1-related molecules (Fig. 

1C). Although AIH induction was mediated by dysregulated TFH cells in the spleen, in the 

progression phase of AIH, Th1-type responses were predominant. 

 

T Cells Dominantly Expanded in the Inflamed Liver Were CXCR3-Expressing CD8
+
 

T Cells. Next, we monitored T cell numbers of the liver, spleen, and mesenteric lymph 

nodes in NTx–PD-1
-/-

 mice from 1 to 3 weeks old (Fig. 1D). In the AIH progression 

phase in three-week-old mice, we found that CD8
+
 T cells, and to a lesser extent CD4

+
 T 

cells, extensively increased in the liver, as described previously.
7
 Notably, the 

predominant increase of CD8
+
 T cells at three weeks was observed only in the liver but 

not in the spleen or mesenteric lymph nodes (Fig. 1D), implying that CD8
+
 T cells had 

accumulated in the severely inflamed liver. In addition, we analyzed splenic and hepatic 

CD8
+
 T-cell expression of the chemokine receptors CCR6, CCR9, and CXCR3 by flow 

cytometry. As with CD4
+
 T cells in the spleen and liver,

8
 splenic and hepatic CD8

+
 T 

cells mainly expressed CXCR3 in three-week-old NTx–PD-1
-/-

 mice (Fig. 1E). 
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CD8
+
 T Cells During the Progression of AIH Were Indispensable for Fatal 

Destruction of the Liver. In a previous study, we showed that in the induction of fatal 

AIH, CD4
+
 T cells are indispensable for recruiting CD8

+
 T cells in the liver and that 

CD8
+
 T cells may be major effector T cells, fatally destroying the liver in AIH 

progression.
8
 To examine whether depletion of CD8

+
 T cells in the progression is 

sufficient to suppress fatal liver destruction, AIH-developed NTx–PD-1
-/-

 mice were 

injected intraperitoneally at fourteen days after NTx and then once a week with 

anti-CD8 mAbs in vivo (Fig. 2A). After two injections of anti-CD8, the number of CD8
+ 

T cells in the spleen was greatly reduced (Fig. 2B). Although depleting CD8
+
 T cells did 

not completely suppress hepatic infiltrations of mononuclear cells, the infiltration of 

CD4
+
 and CD8

+
 T cells was diminished, and fatal progression of AIH was suppressed by 

the treatment (Fig. 2C-2E). These data suggest that CXCR3-expressing CD8
+
 T cells 

extensively infiltrating the liver are indispensable for fatal progression. 

 

Production of a CXCR3 Ligand, CXCL9, Was Elevated in the Fatal Progression of 

AIH. CXCR3-expressing T cells can be guided by three ligands — CXCL9/MIG, 

CXCL10/IP-10, and CXCL11/I-TAC — and expression of these CXCR3 ligands in the 

inflamed tissues determines inflamed-tissue–specific infiltration of CXCR3-expressing T 

cells in various immunoinflammatory settings, including autoimmune diseases.
 14-17

 We 

performed real-time quantitative RT-PCR analysis to measure the expression levels of 

mRNA encoding these three CXCR3 ligands. In contrast to non-inflamed livers in the 

control mice, severely inflamed livers of 3-week-old NTxPD-1
-/-

 mice showed 

markedly elevated gene expression of CXCL9 but not of CXCL10 and CXCL11 (Fig. 

3A). In contrast to inflamed livers, no organs except those with inflamed gastric tissues 

showed a significantly increased level of mRNA expression of CXCL9 (Fig. 3B). 

In addition, we confirmed elevated protein expression of CXCL9 only in the inflamed 

liver but not the stomach by immunohistochemistry (Fig. 3C and supplementary Fig. 1). 

Furthermore, when we looked at serum concentrations of CXCL9 and CXCL10 at one to 

four weeks of age, the serum level of CXCL9 but not CXCL10, at three to four weeks of 

age, was significantly higher than controls (Fig. 3D). These data suggest that CXCL9 

plays a key role in the progression of AIH. 

 

In Fatal Progression of AIH, the CXCR3-CXCL9 Axis Was Crucial for T-cell 
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Migration into the Liver. To determine whether the axis formed by CXCR3 and its 

ligands contributes to T-cell migration leading to fatal progression of AIH, NTx–PD-1
-/-

 

mice were injected intraperitoneally at one day after NTx and then once a week with 

anti-CXCL9 and/or anti-CXCL10 mAbs in vivo. After four injections, in contrast to 

anti-CXCL10 injections, anti-CXCL9 injections induced a significantly higher survival 

rate (Fig. 4A and 4B). Administering anti-CXCL9 and a combination with anti-CXCL9 

and anti-CXCL10, but not anti-CXCL10 alone, greatly reduced infiltration of CD4
+
 and 

CD8
+
 T cells into the liver and liver destruction at four weeks (Fig. 4C). These data 

suggest that in the progression phase of fatal AIH, the CXCR3-CXCL9 axis is crucial for 

migration of Th1 cells and effector CD8
+
 T cells into the liver. 

 

The Main Cellular Source of CXCL9 Was Hepatic Macrophages/Kupffer Cells in the 

Progression of AIH. Next, we examined which cell types express CXCL9 in the 

inflamed liver by immunohistochemistry. We found that the majority of 

CXCL9-expressing cells in the inflamed liver were F4/80 antigen positive 

macrophages/Kupffer cells and that CD4
+
 and CD8

+
 T cells were co-localized with 

CXCL9-expressing cells in the inflamed liver (Fig. 5A).  

In AIH progression, mRNA expression of IFN- and TNF- in the inflamed liver as 

well as serum levels of these cytokines were markedly elevated
7-10

, and IFN- mediated 

the induction of all three CXCR3 ligands: CXCL9, CXCL10, and CXCL11.
 14, 15

 When 

we injected intraperitoneally with 10 mg/kg of IFN- and TNF- in four-week-old 

PD-1
-/-

 mice, after two hours, IFN- and TNF- significantly upregulated mRNA 

expression of both CXCL9 and CXCL10 in the liver. Interestingly, we found sustained 

CXCL9 upregulation by TNF- (Fig. 5B). Indeed, neutralization of TNF- but not 

IFN-suppressed hepatic CXCL9-expression in four-week-old NTx–PD-1
-/-

 mice (Fig. 

5C). 

In NTx–PD-1
-/-

 mice, TNF- is essential in the induction of AIH by upregulating 

hepatic CCL20 expression, allowing TNF-–producing activated T cells to migrate from 

the spleen into the liver.
10

 In AIH progression, immunohistochemistry for TNF- 

revealed TNF- production in several infiltrating cell types (Fig. 5D, left panels), 

suggesting that TNF-–dependent upregulation of CXCL9 expression may be induced by 

hepatic macrophages/Kupffer cells in autocrine fashion and/or by activated T cells in 

paracrine fashion. However, after migration of TNF-–producing activated T cells into 
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the liver, neutralizing serum levels of TNF- could not suppress CXCL9 expression in 

the liver and serum levels of CXCL9 (Fig. 5D right panels and 5E). These data suggest 

that TNF- secretion in autocrine and/or paracrine fashion may induce uncontrollable 

CXCL9 expression in the progression of AIH, resulting in unsuccessful anti-TNF 

monotherapy as described.
10

 

 

Serum Levels of IL-18 Were Elevated in AIH Progression, and In Vivo 

Administration of Blocking Abs for IL-18R Signaling Suppressed the Development of 

Fatal AIH. IL-12 is decisive in the development of Th1 subsets. A recent study showed 

that IL-12 can trigger naïve T cells to transitionally differentiate into T cells with features 

of TFH and Th1 cells,
 18, 19

 However, neutralizaing IL-12p40 did not suppress hepatic 

inflammation as described previously
8
 (supplementary Fig. 2). In addition, although 

IFN- has been shown to be essential for IL-12 induced Th1 differentiation,
20

 

neutralizing it did not suppress the development of AIH.
9
 These data suggest that IL-12 is 

not exclusively involved in differentiation into T cells with features of Th1 cells in the 

progression of fatal AIH. 

Serum levels of IL-18 are increased in patients with AIH and fatal hepatitis.
21, 22

 IL-18 

is critical for liver injury in mice sequentially treated with P. acnes and LPS, and for acute 

hepatic injury induced by concanavalin A (Con A).
23, 24

 When we looked at serum levels 

of IL-18 at one to three weeks of age, those of IL-18 but not IL-1 were elevated, and 

IL-18 elevation gradually increased through the progression of AIH (Fig. 6A and 6B). 

IL-18 signals through the IL-18 receptor complex (IL-18R), and IL-18R contains the 

heterodimer IL-18R and IL-18R subunits. The IL-18R subunit is responsible for 

extracellular binding of IL-18, whereas the IL-18R subunit is nonbinding but confers 

high affinity binding for the ligand and is responsible for biological signals.
 25, 26

 

Therefore, to examine the roles of IL-18 in AIH development, NTx–PD-1
-/-

 mice at one 

day after thymectomy were injected with IL-18R mAb, which can neutralize the 

IL-18–mediating biological function in IL-18R–expressing cells. Administering 

anti-IL-18R but not anti-IL-1 suppressed mononuclear cell infiltration, including 

CD4
+
 and CD8

+
 T cells, in the liver (Fig. 6C and 6D), resulting in decreased serum 

concentrations of aspartate aminotransferase and alanine aminotransferase and a 

significantly increased survival rate at four weeks of age (Fig. 6E and 6F). These data 

indicate that IL-18–mediated signaling is critical for the development of fatal AIH in 
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NTx–PD-1
-/-

 mice.  

 

IL-18 Is Mainly Produced by DCs in the Spleen and Liver of NTx–PD-1
-/-

 Mice. Next, 

we investigated how IL-18 mediates fatal AIH progression in NTx–PD-1
-/-

 mice. We 

isolated mononuclear cells from the liver and spleen of 2.5-week-old NTx–PD-1
-/-

 mice, 

and purified them to CD3
+
CD4

+
 T cells, CD3

+
CD8

+
 T cells, B220

+
 B cells, 

CD11b
+
CD11c

- 
macrophages, CD11c

+ 
DCs, and CD3

-
DX5

+
 NK cells, then measuring 

mRNA expression of IL-18. We found that isolated splenic and hepatic DCs increased 

IL-18 mRNA expression, together with upregulated expression of NACHT, LRR, and 

pyrin domain-containing ptotein-3 (NALP3) and, to a lesser extent, IL-1Fig. 7A and 

7B). In contrast, when we cultured isolated splenic DCs, IL-18 but not IL-1 was secreted 

from DCs from NTx–PD-1
-/-

 mice but not from PD-1
-/-

 mice (Fig. 7C and data not shown). 

These data suggest that in NTx–PD-1
-/-

 mice, DCs non-canonically secrete IL-18 by 

activating inflammasome and promoting further differentiation of CD4
+ 

T cells into Th1 

cells and CD8
+
 T cells into effector T cells, respectively. 

 

DCs as well as CD4
+
 and CD8

+
 T Cells in the Spleen and Liver Expressed IL-18R in 

NTx–PD-1
-/-

 Mice. To evaluate whether DCs secreting IL-18 directly or indirectly 

modulate differentiation of T cells in NTx–PD-1
-/-

 mice, we next examined mRNA 

expression of IL-18R on CD4
+
 and CD8

+
 T cells in the spleen and liver. We isolated 

these cells in the spleen and liver of 2.5-week-old NTx–PD-1
-/-

 mice and measured 

mRNA expression of IL-18R. We found that isolated splenic and hepatic CD4
+
 and 

CD8
+
 T cells increased IL-18R mRNA expression, suggesting that IL-18 can directly 

affect differentiation of these cells (Fig. 7D). Interestingly, isolated DCs in the spleen 

and liver of 2.5-week-old mice expressed upregulated expression of IL-18R mRNA 

(Fig. 7E). In addition, four-week-old NTx–PD-1
-/-

 mice injected with anti–IL-18R mAb 

showed decreased serum levels of IL-18 (Fig. 7F), suggesting that IL-18 may act as an 

autocrine for differentiation and/or function of proinflammatory IL-18R–expressing DCs. 

In AIH progression, mRNA expression of IFN- and TNF- in the inflamed liver as well 

as serum levels of these cytokines were markedly elevated
7-10

, so TNF- could be 

involved in the maturation of DCs. Indeed, neutralization of TNF- but not IFN- 

reduced serum levels of IL-18 (Fig. 7F), implying that TNF- is also directly/indirectly 

involved in differentiation and/or function of proinflammatory IL-18R–expressing DCs. 
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Neutralization of IL-18R Signaling Altered Splenic T Cell Function and Ab 

Production in NTx–PD-1
-/-

 Mice. We found that DCs and T cells, not only in inflamed 

liver but also in the spleen, expressed IL18R in AIH progression (Fig. 7D and 7E). In 

addition, CD4
+
 and CD8

+
 T cells in the spleen predominantly expressed CXCR3 (Fig. 

1E).
8
 We next examined whether IL-18 is involved in differentiation of splenic T cells in 

NTx–PD-1
-/-

 mice. We found that injecting anti–IL-18R significantly reduced the 

number of CXCR3
+
 cells in CD4

+
 T cells as well as in CD8

+
 T cells of the spleen in 

2.5-week-old NTx–PD-1
-/-

 mice Fig. 8A). In addition, we found that neutralizing 

IL-18–mediated signaling suppressed expression of T-bet, IFN-, TNF- and IL-18R 

and upregulated expression of GATA3 in splenic CD4
+
 T cells (Fig. 8B). Moreover, 

although production of total immunoglobulin and ANA increased in NTx–PD-1
-/-

 mice, 

injecting anti–IL-18R reduced total immunoglobulin and ANA in the Th1-dependent 

IgG2a subclass (supplementary Fig.3). In this mouse model, splenic CD4
+
 T cells 

showing the TFH cell phenotype were localized in B-cell follicles with huge GCs.
8
 

Although injections of anti-IL-12p40 did not significantly reduce the size of GCs in the 

spleen at four weeks, injecting anti-IL-18R mAb induced enlargement of PNA
+
 GC in 

B220
+
 follicles (supplementary Fig. 4A and 4B). Taken together, these data suggest that 

DC-derived IL-18 is involved in the differentiation of CD4
+
T cells

 
into Th1 cells and 

CD8
+
 T cells into effector T cells, respectively, in the spleen of NTx–PD-1

-/-
 mice.
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Discussion 

In this study, using our fatal AIH model, we examined molecules key to the triggering 

of fatal progression of AIH. We found that in the progression, CXCR3 expressing Th1 

cells and CD8
+
 effector T cells infiltrated the liver, CD8

+
 effector T cells triggering the 

fatal destruction of the liver; that hepatic macrophages/Kupffer cells producing CXCL9 

is critical for migration of these T cells; and that DC-derived IL-18 is critical for 

differentiation of Th1 cells and CD8
+
 effector T cells (Fig. 8C). 

We previously reported that in the induction phase of AIH in two-week-old 

NTxPD-1
-/-

 mice, IL-21-producing splenic TFH cells directly migrated into the liver via 

the CCR6-CCL20 axis, triggering AIH.
8
 In contrast, we showed here that in severely 

inflamed livers in three-week-old NTxPD-1
-/-

 mice, DC-derived IL-18 mediates the 

differentiation of Th1 cells and CD8
+
 effector T cells, and CXCR3-CXCL9-axis triggers 

the migration of these T cells, resulting in fatal AIH progression. Therefore, in the 

development of fatal AIH in our model, different types of T cells are critically involved at 

different time points in the induction and fatal progression of AIH. This involvement has 

also been reported in experimental autoimmune encephalomyelitis (EAE), a CD4
+
 T 

cell-mediated disease of the central nervous system.
27

 In EAE, Th17 cells migrate via the 

CCR6-CCL20 axis, triggering inflammation in the induction phase, whereas Th1 cells 

are mainly involved in inflamed lesions in the central nervous system during active 

progression.
27

 In addition, a recent study reported that TFH-like cells were transiently 

generated during IL-12-mediating Th1 cell differentiation. In mice infected with 

Toxoplasma gondii, an obligate intracellular parasite, TFH-like cells were generated 7 

days after infection, the proportion of TFH-like cells declined, and IFN-producing Th1 

cells increased at day 15.
19

 

In this study, we showed that DC-derived IL-18 is critical for differentiation of Th1 

cells and CD8
+
 effector T cells in AIH progression. IL-18 is known to be produced by 

various types of immune cells and epithelial cells.
25, 26

 In humans, IL-18 produced by 

DCs promotes Th1 induction.
28

 IL-18 stimulates Th1-mediated immune responses and 

activates Th1 cells, which highly express functional IL-18 receptor, producing large 

amounts of IFN-.
 25, 26

 In addition, in an atopic dermatitis mouse model, IL-18 could 

induce differentiation of Th1-like cells that expressed IFN- and CXCR3.
29

 In humans, 

IL-18 has been shown to be involved in disease processes associated with excessive Th1 

responses in several inflammatory diseases, including autoimmune diseases.
30-32

 Patients 
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with acute hepatitis, chronic liver disease, fulminant hepatitis, primary biliary cirrhosis, 

or AIH all show elevated serum levels of IL-18
21, 22

, which correlates with disease 

severity.
33, 34

 

We found that splenic and hepatic DCs increased IL-18 mRNA expression, together 

with upregulated expression of NALP3 and, to a lesser extent, IL-1However, DCs 

only secreted IL-18 and induced elevation of serum levels of IL-18. Indeed, 

administering anti-IL-18R but not anti-IL-1 suppressed fatal AIH. After 

inflammasome activation via NALP3 occurs in the cells, inactive pro-caspase-1 is 

activated into active caspase-1. Following cleavage by active caspase-1, mature IL-18 as 

wells as IL-1 can be secreted from the cells
35

. These canonical IL-1 and IL-18 

secretions via inflammasome activation are involved in acetaminophen-induced liver 

injury
36

. However, several recent studies suggest that secretion of IL-18, but not IL-1 

via the activation of inflammasome and caspase-1 can be orchestrated by several distinct 

regulatory mechanisms
37-39

. Thus, in NTx–PD-1
-/-

 mice, distinct licensing of IL-1 and 

IL-18 secretion may be involved in the non-canonical secretion of IL-18 via the 

activation of inflammasome. 

Because TNF- can directly induce the maturation of DCs, TNF- and IL-18 may 

directly induce inflammasome upregulation and skew toward IL-18 production via 

repression of IL-1 transcript but upregulation of IL-18 transcript. On the other hand, 

TNF- directly and indirectly induces cell death of hepatocytes
40

 and free DNA released 

from apoptotic hepatocytes can activate Tlr9, triggering a signaling cascade to induce 

pro-IL-1 and pro-IL-18
36

. Therefore, TNF- may induce apoptosis of hepatocytes, 

triggering canonical IL-18 production initially. However, IL-18 may act as an autocrine 

for skewing prolonged IL-18 secretion in DCs.  

Although first described as IFN--inducing factor, IL-18 may not make a major 

contribution to elevated serum levels of IFN- in AIH progression. In contrast to IL-18, 

serum levels of IFN- reached the maximal level at one week of age before AIH 

development; the elevated serum level of IFN- gradually decreased during AIH 

progression.
9
 Indeed, IFN- was dispensable for upregulating CXCL9 in the liver. 

Neutralizing IFN- did not prevent the development of AIH and induced increased 

T-cell proliferation in the spleen and liver, resulting in exacerbated T-cell infiltration in 

AIH
9
. So although IFN- generally acts as a critical proinflammatory mediator, it exerts 

regulatory functions to limit tissue damage associated with inflammation of AIH in 
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progression. 

We showed here that the migration of exclusively CXCR3-expressing T cells was 

triggered by hepatic macrophages/Kupffer cells producing one CXCR3 ligand, CXCL9. 

Although CXCL9, CXCL10, and CXCL11 can bind to the common receptor CXCR3, 

differences have been reported in the kinetics and the tissue/cell type expression patterns 

of these three chemokine genes and their proteins during infection or inflammatory 

responses.
41-44

 Studies using CXCL9- or CXCL10-deficient mice have shown the 

non-redundant function of these chemokines in various immunoinflammatory settings, 

including a hepatitis B virus (HBV) transgenic mouse model and a liver injury model.
41-44

  

In this study, we showed that CXCL9-expressing cells are macrophages/Kupffer cells 

in AIH progression. Although rIFN- and rTNF- upregulated hepatic CXCL9 

expression, anti–IFN- did not suppress hepatic CXCL9 upregulation. In NTx–PD-1
-/-

 

mice, cell types responsible for secreting CXCR3 ligands in various organs may exhibit a 

refractory response to constitutively elevated serum IFN-. In addition, TNF- secreted 

in autocrine and in paracrine fashion by activated T cells may induce uncontrollable 

CXCL9 expression in AIH progression. Therefore, anti–TNF- monotherapy may not 

significantly prevent fatal AIH in mice. 

In conclusion, we have identified the pivotal role of the IL-18 and CXCR3-CXCL9 axis 

in fatal progression of AIH, implying that blocking these systems may have clinical 

potential for protecting against fatal progression of this disease.
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Figure Legends 

Fig. 1. Histological and immunological analysis of AIH-bearing NTx–PD-1
-/-

 mice. (A) 

Histological findings of the liver in NTx–PD-1
-/-

 mice at indicated ages in weeks. All 

scale bars, 100 m. (B and C) Livers from 3-week-old PD-1
-/-

 mice with or without NTx 

were used for real-time quantitative RT-PCR analyses for mRNA expressions of 

lineage-specific transcription factors such as T-bet, GATA-3, or ROR-t, and various 

cytokines (B) and Th1-cell–expressing chemokine receptor CXCR3 (C). (D) Cell 

numbers of CD4
+
 and CD8

+
 T cells in the spleen, liver, and mesenteric lymph nodes 

(MLN) of PD-1
-/-

 mice with or without NTx at the indicated age. Isolated cells were 

stained with FITC-anti-CD3e and APC-Cy7-anti-CD4 or APC-anti-CD8. (E) Cell 

numbers of splenic and hepatic CD8
+
 T cells expressing indicated chemokine receptors. 

Isolated cells were stained with FITC-anti-CD3e, APC-anti-CD8 and PE-anti-CCR6, 

-anti-CCR9, or -anti-CXCR3. Flow cytometric analyses were carried out as described in 

Supplementary Materials and Methods. Numbers of indicated T cell populations were 

calculated by (percentage of the cells in viable cells) x (no. of viable cells). Data are 

shown as the mean of at least three mice. Error bars represent SD. Asterisks indicate P < 

0.05. n.s., not significant. ND, not detected. 

 

Fig. 2. Immunological and histological analysis for NTx–PD-1
-/-

 mice injected with 

anti-CD8 in the progression phase of AIH. (A) NTx–PD-1
-/-

 mice at 14 days after 

thymectomy were injected intraperitoneally (i.p.) every week with 100 g of depletion 

antibody to CD8 (n=6) or the isotype control mAb (n=6). After two injections, mice at 

four weeks of age were sacrificed. (B) Cell numbers of CD8
+
 T cells in the spleen of 

NTx–PD-1
-/-

 mice injected with indicated Abs. (C) Survival rates at four weeks of age. 

(D) Representative stainings of the liver for hematoxylin and eosin are shown. (E) Cell 

numbers of infiltrating T cells in the liver of NTx–PD-1
-/-

 mice injected with indicated 

Abs. Isolated cells were stained with FITC-anti-CD3e and APC-Cy7-anti-CD4 or 

APC-anti-CD8. Error bars represent SD. Asterisks indicate P < 0.05.  

 

Fig. 3. Expression levels of CXCR3 ligands in NTxPD-1
-/-

 mice. (A) Livers from 

3-week-old PD-1
-/-

 and PD-1
+/+

 mice with or without NTx were used for real-time 

quantitative RT-PCR analyses for mRNA expressions of CXCR3 ligands, CXCL9, 

CXCL10, and CXCL11. (B) CXCL9 mRNA expression in various organs. The stomach, 
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heart, lung, intestine, pancreas and kidney were from 3-week-old PD-1
-/-

 mice with or 

without NTx. (C) Immunostaining with anti-CXCL9, CXCL10, or isotype controls. The 

livers from three-week-old PD-1
-/-

 and PD-1
+/+

 mice with or without NTx were used. (D) 

Serum levels of CXCL9 and CXCL10 were measured by ELISA. Data are shown of sera 

from indicated aged PD-1
-/-

 and PD-1
+/+

 mice with or without NTx. Data are shown as 

the mean of at least three mice. Error bars represent SD. Asterisks indicate P < 0.05. n.s., 

not significant. Scale bars, 100 m. 

 

Fig. 4. Survival rate and histological analysis of the liver in NTx–PD-1
-/-

 mice injected 

with neutralizing Abs for CXCR3 ligands. (A and B) NTx–PD-1
-/-

 mice at one day after 

thymectomy were injected intraperitoneally every week with 100 g of neutralizing 

anti-CXCL9 (n=5), anti-CXCL10 (n=5) or the isotype control mAbs (n=5). Survival rates 

at four weeks of age. (C) After four injections of anti-CXCL9, anti-CXCL10 or a 

combination with anti-CXCL9 and anti-CXCL10 (n=5), mice at four weeks of age were 

sacrificed, and the livers were harvested. Representative stainings of the liver for 

hematoxylin and eosin (HE), CD4, and CD8 are shown. Upper panels are control 

stainings of the liver in PD-1
-/-

 mice with or without NTx. Asterisks indicate P < 0.05. n.s., 

not significant. All scale bars, 100 m. 

 

Fig. 5. The cellular source of CXCL9 and the role of cytokines in inducting CXCR3 

ligands in NTxPD-1
-/-

 mice. (A) Immunostaining with anti-CXCL9, F4/80, CD4, and 

CD8. The livers from 3-week-old NTxPD-1
-/-

 mice were used. Scale bars, 20m. (B) 

Four-week-old PD-1
-/-

 mice were injected intraperitoneally (i.p.) with 10 µg/kg of mouse 

rIFN or rTNF. The livers at the indicated time after injection were subjected to 

real-time quantitative RT-PCR analyses for mRNA expressions of CXCL9 and CXCL10. 

(C) NTx–PD-1
-/-

 mice at one day after thymectomy were injected intraperitoneally every 

week with 100 g of neutralizing anti-IFN, anti-TNF or isotype controls. After four 

injections, mice at four weeks of age were sacrificed. PD-1
-/-

 mice without NTx at the 

same age were used for controls. The livers from these mice were used for real-time 

quantitative RT-PCR analyses for mRNA expressions of CXCL9. (D, E) NTx–PD-1
-/-

 

mice at fourteen day after thymectomy were injected intraperitoneally every week with 

100 g of neutralizing anti-TNF or isotype control. After two injections, mice at four 

weeks of age were sacrificed. Liver stainings are shown for hematoxylin and eosin, and 
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immunostaining with anti-TNF. Scale bars, 50 m (upper four panels). Immunostaining 

with anti-TNF and anti-CXCL9. Scale bars, 20 m (lower four panels) (D). Serum 

levels of CXCL9 were measured by ELISA (E). Data are shown as the mean of at least 

three mice. Error bars represent SD. Asterisks indicate P < 0.05. n.s., not significant. 

 

Fig. 6. Serum levels of IL-18 and IL1-, and analysis for NTx–PD-1
-/-

 mice injected with 

blocking Abs for IL-18R signaling and neutralizing Abs for IL-1.  (A, B) Serum levels 

of IL-18 at indicated ages and IL-1at 3 weeks of age of PD-1
-/-

 mice with or without 

NTx were measured by ELISA. (C, E, F) NTx–PD-1
-/-

 mice at one day after thymectomy 

were injected intraperitoneally every week with 100 g of IL-18R mAb (n=10), or the 

isotype control mAb (n=10). (D) NTx–PD-1
-/-

 mice were injected with 100 g of IL-1 

mAb (n=3), or the isotype control mAb (n=3) as described above. After four injections, 

mice at four weeks of age were sacrificed. Stainings of the liver for hematoxylin and 

eosin (HE), CD4, and CD8 (C, D), serum levels of AST and ALT (E) and survival rates at 

four weeks of age (F) are shown. Data are shown as the mean of at least three mice. 

Error bars represent SD. Asterisks indicate P < 0.05. n.s., not significant. Scale bars, 100 

m. 

 

Fig. 7. Expression levels of IL-18, IL-1, NALP3, and IL-18R in AIH-bearing 

2.5-week-old NTx–PD-1
-/-

 mice. (A) Expression levels of mRNA encoding IL-18 of 

CD3
+
CD4

+ 
T cells, CD3

+
CD8

+ 
T cells, B220

+
 B cells, CD11b

+
CD11c

-
 macrophages, 

CD11c
+ 

DCs and CD3
-
DX5

+
 NK cells in the spleen and liver of 2.5-week-old 

NTx–PD-1
-/-

 mice. Data represent 1 of 3 independent experiments.  (B) Expression 

levels of mRNA encoding IL-1 and NALP3 of CD11c
+ 

DCs in the spleen of 

2.5-week-old NTx–PD-1
-/-

 mice. (C) Concentration of IL-18 in DC-culture supernatants 

measured by ELISA. CD11c
+ 

DCs were isolated from the spleen in PD-1
-/-

 mice with or 

without NTx and DCs were cultured for 24 h. Data are shown as the mean of triplicates. 

(D and E) Expression levels of mRNA encoding IL-18Rof CD3
+
CD4

+ 
and CD3

+
CD8

+ 

T cells (D), and CD11c
+ 

DCs (E) in the spleen and liver of 2.5-week-old NTx–PD-1
-/-

 

mice. (F) Serum levels of IL-18 were measured by ELISA. NTx–PD-1
-/-

 mice at one day 

after thymectomy were injected intraperitoneally every week with 100 g of neutralizing 

anti-IL-18R, anti-IFN, or anti-TNF. After four injections, mice at four weeks of age 
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were sacrificed. Data is shown of sera from PD-1
-/-

 mice of 4-week-old with indicated 

condition. Data are shown as the mean of at least three mice. Error bars represent SD. 

Asterisks indicate P < 0.05. n.s., not significant. ND, not detected. 

 

Fig. 8. Immunological and RT-PCR analysis for NTx–PD-1
-/-

 mice injected with 

blocking Abs for IL-18R signaling and the model of pathological mechanisms in the 

progression phase of AIH in NTx–PD-1
-/-

 mice. (A-B) NTx–PD-1
-/-

 mice at one day after 

thymectomy were injected with IL-18R mAb. (A) After four injections, mice at four 

weeks of age were sacrificed as described in Fig 6. Cell numbers of CXCR3
+
 cells in 

CD4
+
 and CD8

+
 T cells in the spleen. Data are shown as the mean of at least three mice. 

(B) After three injections, mice at three weeks of age were sacrificed, and CD4
+ 

T cells 

were isolated from the spleens. Expression levels of mRNA encoding T-bet, GATA-3, 

ROR-t, IFN, TNF, and IL-18R were measured. Data are shown as the mean of 

triplicates. Error bars represent SD. Asterisks indicate P < 0.05. n.s., not significant. (C) 

The model of mechanistic links of cytokines and chemokines in the progression phase of 

NTx–PD-1
-/-

 mice. In the progression, DC-derived IL-18 is critical for differentiation of 

CXCR3-expressing Th1 cells (Th1) and CD8
+
 effector T cells (TE). CXCL9 production 

by hepatic macrophages/Kupffer cells triggers migration of these T cells into the liver. 

CXCR3-expressing TE and, to a lesser extent, Th1 infiltrate the liver and TE trigger the 

fatal destruction of the liver. 
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Fig. 3. 
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Fig. 4. 

A 

C 
HE CD4 CD8 

P
D

-1
 K

O
 

N
T

x
+

 
N

T
x
–
 

P
D

-1
 K

O
 N

T
x
+

 

A
n
ti
-C

X
C

L
1

0
 

A
n
ti
-C

X
C

L
9

 

+
 A

n
ti
-C

X
C

L
1

0
 

A
n
ti
-C

X
C

L
9

 
B 

 Anti-CXCL9 
 Isotype 

Time (day) 

S
u

rv
iv

a
l 

ra
te

 (
%

) 

0 10 20 
0 

50 

100 

* 

Time (day) 

n.s. 

0 

50 

100 

0 10 20 

 Anti-CXCL10 
 Isotype S

u
rv

iv
a

l 
ra

te
 (

%
) 

26



Fig. 5. 

A 

D C 

0 

2 

4 * 

* n.s. 

 R
e

la
ti

v
e

 m
R

N
A

 
e

x
p

re
s
s
io

n
(×

1
0

3
) 

A
n

ti
- 

IF
N

g 

A
n

ti
- 

T
N

F
a

 Tx 

NTx – 

– – 

+ + + 

Anti-TNFa Isotype 

CXCL9 CXCL9 

TNFa 

n.s. 

S
e

ru
m

 C
X

C
L

9
 (

n
g

/m
L

) 

2 

4 

6 

0 

8 

NTx 

Anti-TNFa 

+ 

– 

+ 

+ 

d3 d10 d17 d24 

NTx 

i.p. i.p. 

Anti-TNFa 

(100μg/body) 

sacrifice d3 d10 d17 d24 

NTx 

i.p. 

Anti-IFNg or Anti-TNFa 

(100μg/body) 

sacrifice 

i.p. i.p. i.p. 

C
X

C
L

9
 

 R
e

la
ti

v
e

 m
R

N
A

 

e
x

p
re

s
s
io

n
(×

1
0

2
) 

0 

4 

12 

8 

16 * * * * 

B 

C
X

C
L

1
0

 

 R
e

la
ti

v
e

 m
R

N
A

 

e
x

p
re

s
s
io

n
(×

1
0

4
) 

1 2 3 6 9 
0 

0.5 

1.5 

1.0 

2.0 

2.5 

Time(h) after 

  rIFNg injection  

* * * * 

CXCL9 F4/80 CXCL9/F4/80 

CXCL9 CD4 CXCL9/CD4 

CXCL9 CD8 CXCL9/CD8 

Time(h) after 

   rTNFa injection  

1 2 3 6 9 

* * * * 

n.s. n.s. * * 

CXCL9 

Treatment 

TNFa 

TNFa TNFa 

E 

27



Fig. 6. 
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Fig. 7. 
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Fig. 8. 
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<Supplementary Information> 

Supplemental Materials and Methods 

Histological and Immunohistological Analysis. Organs were fixed in neutral 

buffered formalin, embedded in paraffin wax, and cut into sections 4 µm thick. These 

sections were stained with hematoxylin and eosin for histopathology. Fluorescence 

immunohistology was performed on frozen sections using FITC-conjugated anti-CD4 

or anti-CD8a (eBioscience, San Diego, CA), peanut agglutinin (PNA, Vector 

Laboratories, Burlingame, CA), biotin-labeled anti-B220 (BD Biosciences, San Jose, 

CA) followed by Texas red-conjugated avidin (Vector Laboratories) as described 

previously.
1-5

 To stain CXCR3 ligands, rabbit polyclonal Abs to CXCL9/MIG 

(sc-50302, Santa Cruz Biotechnology, Santa Cruz, CA) and rat monoclonal Ab (mAb) 

to CXCL10/IP-10 (R&D Systems, Minneapolis, MN) were used, followed by Alexa 

Fluor 546 goat anti-rabbit IgG (Invitrogen, Carlsbad, CA) and FITC-conjugated goat 

anti-rat IgG (BD Biosciences), respectively. For staining of macrophages/kupffer cells, 

rat mAb to F4/80 (eBioscience) was used, followed by Alexa Fluor 488 goat anti-rat 

IgG (Invitrogen). As for the staining of TNFrabbit polyclonal Ab to TNF(Abcam, 

Cambridge, UK) was used followed by Alexa Fluor 488 goat anti-rabbit IgG 

(Invitrogen). Germinal center (GC) diameters were measured in several high-power 

fields in at least three sections of each mouse, as described previously.
2 

 

 
Real-time Quantitative Reverse-transcription Polymerase Chain Reactions. 

(RT-PCR) Real-time quantitative RT-PCR was performed as described previously.
1-4 

Spleen and liver tissues or isolated cells from the spleen and liver were frozen in 

RNAlater. RNA was prepared with an RNeasy mini kit (Qiagen, Hilden, Germany), and 

single-strand complementary DNA was synthesized with SuperScript
TM

 II reverse
 

transcriptase (Invitrogen). Real-time quantitative RT-PCR was performed using SYBR 

Green I Master (Roche Applied Science, Basel, Switzerland). The real-time quantitative 

reactions were performed using a Light Cycler 480 (Roche Applied Science) according 

to the manufacturer’s instructions. Values are expressed as arbitrary units relative to 

glyceraldehyde-3-phosphate dehydrogenase (GAPDH). The following primers were 

used: GAPDH: 5’-CAACTTTGTCAAGCTCATTTCC-3’ and 

5’-GGTCCAGGGTTTCTTACTCC-3’; T-bet: 5’-TCAACCAGCACCAGACAGAG-3’ 

and 5’-AAACATCCTGTAATGGCTTGTG-3’;  
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GATA-3: 5’-TTATCAAGCCAAGCGAAG-3’ and 

5’-TGGTGGTGGTCTGACAGTTC-3’; 

ROR-t: 5’-CCGCTGAGAGGGCTTCAC-3’ and 

5’-TGCAGGAGTAGGCCACATTACA-3’; 

IFN-: 5’-GGATGCATTCATGAGTATTGC-3’ and 

5’-CCTTTTCCGCTTCCTGAGG-3’; TNF-: 

5’-CCCTCACACTCAGATCATCTTCT-3’ and 5’-GCTACGACGTGGGCTACAG-3’; 

IL-15’-TGTAATGAAAGACGGCACACC-3’ and 

5’-TCTTCTTTGGGTATTGCTTGG-3’; IL-4: 5’-TCATCGGCATTTTGAACGAG-3’ 

and 5’-CGTTTGGCACATCCATCTCC-3’; IL-13: 

5’-TGGGTGACTGCAGTCCTGGCT-3’ and 5’-GTTGCTTTGTGTAGCTGAGCA-3’; 

IL-17A: 5’-CTCCAGAAGGCCCTCAGACTAC-3’ and 

5’-AGCTTTCCCTCCGCATTGACACAG-3’; IL-18: 

5’-GACAACACGCTTTACTTTATACCTGA-3’ and 

5’-GTGAAGTCGGCCAAAGTTGT-3’; IL-18R: 

5’-GGAACACAACACGGACCAT-3’ and 

5’-CGAGAAGGATGTATACAAACACCA-3’; IL-22: 

5’-AGAAGGCTGAAGGAGACAGT-3’ and 

5’-GACATAAACAGCAGGTCCAGTT-3’; CXCR3: 

5’-GGCATCTAGCACTTGACGTTC-3’ and 5’-AGGCAGCACGAGACCTGA-3’: 

CXCL9: 5’-GCATCGTGCATTCCTTATCA-3’ and 

5’-CTTTTCCTCTTGGGCATCAT-3’; CXCL10: 5’-TCTCACTGGCCCGTCATC-3’ 

and 5’-GCTGCCGTCATTTTCTGC-3’; CXCL11: 

5’-CCCTGTTTGAACATAAGGAAGC-3’ and 

5’-GCTGCTGAGATGAACAGGAA-3’; NALP3: 

5’-TGCCTGTTCTTCCAGACTGGTGA-3’; 5’-CACAGCACCCTCATGCCCGG-3’. 

Administration of Abs in vivo.  NTxPD-1
-/-

 mice were intraperitoneally injected 

every week from day3 with 100g of mAbs to CXCL9, CXCL10, IL-12p40 and IL1 

(R&D Systems), IFN and TNF (eBioscience) and IL-18R (BD Bioscience), and 

from day17 with mAbs to TNF For depletion of CD8
+
 T cells in vivo, anti-mouse 

CD8 mAbs (eBioscience) were used at day17 and day24. All isotypes were from 
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eBioscience or R&D Systems. After injections, mice at indicated ages were sacrificed, 

and their livers, spleens, and sera were harvested. We did not detect any serious adverse 

events. 

  Flow Cytometry Analysis and Isolation of Single Cells. Single cells from the livers 

and spleens were prepared, and flow cytometric analysis was performed as described 

previously.
1-5

 Cells were stained with FITC-conjugated anti-CD3e (BD Bioscience), and 

either APC-Cy7-conjugated anti-CD4 (BD Bioscience) or APC-conjugated anti-CD8a 

(eBioscience). For chemokine receptors, cells were stained with FITC-conjugated 

anti-CD3e (145-2C11), APC-conjugated anti-CD8a (eBioscience), and PE-conjugated 

anti-CCR6, anti-CCR9 or anti-CXCR3 (R&D Systems). Stained cells were analyzed 

with FACSCantoTM II (BD Biosciences). Data were analyzed using Cell Quest ProTM 

(BD Biosciences). Dead cells were excluded based on side- and forward-scatter 

characteristics. The number of viable indicated cells was calculated as follows: (the 

percentage of cells in the cell type) x (the number of viable cells). For isolation of cells 

in Figure 7A, the following mAbs were used for surface staining: FITC-conjugated 

anti-CD3e, anti-DX5, PE-conjugated anti-CD3e, anti-B220, APC-conjugated anti-CD8a, 

and PE-streptavidin purchased from eBioscience, FITC-conjugated anti-CD11c, 

biotinylated anti-CD11b, and APC-Cy7-conjugated anti-CD4 from BD Bioscience. 

CD3
+
CD4

+
, CD3

+
CD8

+
, CD3

-
B220

+
, CD11b

+
CD11c

-
, CD11b

+or-
CD11c

+
, CD3

-
DX5

+
 

cells from the spleen or liver were obtained by a FACS AriaTM (BD Biosciences) to 

reach >99% purity, as described.
1,2

 For CD4
+ 

T cell isolation in Figure 8B, NTx–PD-1
-/-

 

mice were injected intraperitoneally with anti-IL-18R or isotype controls at one day 

after thymectomy and then once a week with the mAbs in vivo. After three mAbs 

injections, CD4
+ 

T cells were isolated from the spleens of three-week-old mice by 

positive selection using mouse CD4 microbeads (Miltenyi Biotec, Bergisch Gladbach, 

Germany) according to the manufacturer’s instructions. CD4
+
 T cells reached >94% 

purity, as assessed by flow cytometry. 

  Enzyme-Linked Immunosorbent Assay (ELISA). Concentrations of CXCL9 and 

CXCL10 in serum were measured by using mouse CXCL9 and CXCL10 ELISA kits 

(Abcam, Cambridge, UK) according to the manufacturer’s protocols. To detect IL-18 

in serum and culture supernatants, a mouse IL-18 ELISA kit (Medical & Biological 
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Laboratories, Nagoya, Japan) was used. Serum levels of IL-1 were measured using a 

mouse IL-1 ELISA kit (eBioscience). Serum Ig levels were determined by ELISA as 

described,
6
 and Ab sets for detection of mouse IgG1 and IgG2a from BD Biosciences 

(San Jose, CA) and anti-mouse IgM from AbD Serotec (Oxford, UK) were used. To 

detect serum ANAs, microtiter plates (Nunc, Roskilde, Denmark) were incubated 

with 10 g/ml antigens, and the nuclear fraction was prepared from normal liver.
7
 Ab 

sets for detection of mouse ANA subclasses were the same as above.  

  In vivo Injection of Cytokines.  PD1
-/-

 mice at four weeks of age were injected 

intraperitoneally with 10g/kg of mouse recombinant IFNTNF(eBioscience), or 

PBS. After 1, 2, 3, 6 or 9 hours following injections, mice were sacrificed, and their 

livers were harvested. We did not detect any serious adverse events. 

  Dendritic Cell (DC) Coculture.  CD11b
+/-

CD11c
+
 DCs were isolated from the 

spleen of 2.5-week-old NTxPD-1
-/-

 mice using a FACS AriaTMII (BD Biosciences) 

to reach >99% purity, as described.
1,2 

Isolated DCs (5×10
5
) were cultured for 24 h in 

round-bottomed 96-well culture plates in D-MEM supplemented with 10% fetal 

bovine serum, 50 mol/L 2-mercaptoethanol, 100 U/ml penicillin, and 100 g/ml 

streptomycin.  

  Statistical Analysis.  The data are presented as the mean values ± SD. Statistical 

analysis was performed by the Student’s t-test for unpaired data to compare the 

values between two groups; variance was analyzed with the Tukey-Kramer test for 

multiple comparisons. Survival rates were estimated by the Kaplan-Meier method 

and compared with the log-rank test. P-values below .05 were considered significant.
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Supplementary Fig. 1.  Immunohistological analysis of the liver, stomach and heart 

in NTx–PD-1
-/-

 mice. Immunostaining with anti-CXCL9 or isotype control. The livers 

from three-week-old NTx–PD-1
-/-

 mice were used. Scale bars, 50 m. 
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Supplementary Fig 2.  Histological and immunohistological analysis for the liver in 

NTx–PD-1
-/-

 mice injected with neutralizing Abs for IL-12p40. (A) NTx–PD-1
-/-

 mice 

at one day after thymectomy were injected intraperitoneally every week with 100 g of 

neutralizing anti-IL-12p40 (n=5) or the isotype control mAb (n=5). After four injections, 

mice at four weeks of age were sacrificed, and the livers were harvested. Representative 

stainings of the liver for hematoxylin and eosin (HE), CD4, and CD8 are shown. All 

scale bars, 100 m. 
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Supplementary Fig. 3. Immunological analysis for NTx–PD-1
-/-

 mice injected with 

blocking Abs for IL-18R signaling. NTx–PD-1
-/-

 mice at one day after thymectomy 

were injected intraperitoneally every week with 100 g of IL-18R mAb (n=10), or the 

isotype control mAb (n=10). After four injections, mice at four weeks of age were 

sacrificed. The serum levels of total immunoglobulin (Ig) and ANAs subclasses in IgM, 

IgG1, and IgG2a in indicated mice were determined by ELISA. Error bars represent SD. 

Asterisks indicate P < 0.05. n.s., not significant. 
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Supplementary Fig. 4.  Immunohistological analysis for NTx–PD-1
-/-

 mice injected 

with blocking Abs for IL-18R signaling and with neutralizing Abs for IL-12p40. 

NTx–PD-1
-/-

 mice at one day after thymectomy were injected with anti-IL-12p40 or 

IL-18R mAb. After four injections, mice at four weeks of age were sacrificed as 

described in Supplementary Fig. 2 and Fig. 3. Immunohistological analysis of the 

spleens from mice with indicated treatments (A) and diameters of germinal center (GC) 

in the follicles of the spleen. Spleens were stained with FITC-conjugated anti-CD4, 

anti-CD8, or PNA (green) and biotin-labeled anti-B220 followed by Texas 

red-conjugated avidin (red). Diameters of PNA
+ 

GC in the B220
+ 

follicles were 

determined in several high-power fields. Data are shown as the mean of at least three 

mice. Error bars represent SD. Asterisks indicate P < 0.05. n.s., not significant. Scale 

bars, 100 m. 
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