

Title	Ecosystem impacts of folivory and frugivory by Japanese macaques in two temperate forests in Yakushima.
Author(s)	Hanya, Goro; Fuse, Mieko; Aiba, Shin-Ichiro; Takafumi, Hino; Tsujino, Riyou; Agetsuma, Naoki; Chapman, Colin A
Citation	American journal of primatology (2014), 76(6): 596-607
Issue Date	2014-06
URL	http://hdl.handle.net/2433/199864
Right	This is the peer reviewed version of the following article: Hanya, G., Fuse, M., Aiba, SI., Takafumi, H., Tsujino, R., Agetsuma, N. and Chapman, C. A. (2014), Ecosystem impacts of folivory and frugivory by Japanese macaques in two temperate forests in Yakushima. Am. J. Primatol., 76: 596–607, which has been published in final form at http://dx.doi.org/10.1002/ajp.22253. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.
Туре	Journal Article
Textversion	author

- 1 Ecosystem impacts of folivory and frugivory by Japanese macaques in two
- 2 temperate forests in Yakushima

3

- 4 GORO HANYA^{1*}, MIEKO FUSE², SHIN-ICHIRO AIBA³, HINO TAKAFUMI⁴,
- 5 RIYOU TSUJINO⁵, NAOKI AGETSUMA⁶ and COLIN A. CHAPMAN⁷

6

- 7 1 Primate Research Institute, Kyoto University, Inuyama, Japan
- 8 ² Sasayama Field Station, Kobe University, Sasayama, Japan
- 9 ³ Kagoshima University, Kagoshima, Japan
- 10 ⁴ Rakuno Gakuen University, Ebetsu, Japan
- 11 ⁵ Nara University of Education, Nara, Japan
- 12 ⁶ Field Science Center for Northern Biosphere, Hokkaido University, Kozagawa,
- 13 Japan
- 14 ⁷ Department of Anthropology and McGill School of Environment, McGill
- 15 University, Montréal, Canada and Wildlife Conservation Society, Bronx, NY, USA

16

17 Short title: Primate ecosystem impact

18

- 19 *Correspondence to: GORO HANYA
- 20 Primate Research Institute, Kyoto University, Inuyama, Aichi, 484-8506, Japan.
- 21 E-mail: hanya@pri.kyoto-u.ac.jp
- 22 Tel: +81-568-63-0542
- 23 Fax: +81-568-63-0564

24

Abstract

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

Comparing animal consumption to plant primary production provides a means of assessing an animal's impact on the ecosystem and an evaluation of resource limitation. Here we compared annual fruit and leaf consumption by Japanese macagues (Macaca fuscata) relative to the annual production of these foods in the lowlands and highlands of Yakushima Island, Japan. We estimated consumption by macagues by the direct observation of macagues groups for one year in each habitat. We estimated leaf production as the sum of leaf litter fall (corrected for the effect of translocated organic and inorganic matter) and folivory by insects (assumed to be 10%) and by macaques. We estimated fruit production as the sum of fruit litter fall and consumption by birds (estimated by the seed fall) and macaques. The impact of macaque folivory at the community level was negligible relative to production (~0.04%) compared with folivory by insects (assumed to be 10%); however, for some species, macaque folivory reached up to 10.1% of production. Tree species on which macaques fed did not decline in abundance over 13 years, suggesting that their folivory did not influence tree species dynamics. For the three major fleshy fruited species in the highland site, macaques consumed a considerable portion of total fruit production (6-40%), rivaling the consumption by birds (32-75%). We conclude that at the community level, macaque folivory was negligible compared to the leaf production, but frugivory was not. Keywords: primary production, primate, productivity, resource limitation, temperate forest

INTRODUCTION

49

50 Animals depend on plant production to sustain their populations, and animals 51 can affect plants through pollination [Yumoto 1987], seed dispersal [Howe 1986] 52 and predation on seeds, flowers and leaves [Adams et al. 2009; Sun et al. 2007]. 53 The effects of plants on animals are usually understandable and well-studied 54 [Chapman et al. 2010; Hanya et al. 2011], but the impact of animal consumption 55 on plant primary production is scarcely quantified. Comparing animal 56 consumption to plant production provides both a useful mean of assessing the 57 ecosystem impact of animals and a way of evaluating if their populations are 58 resource limited. There is substantial correlative evidence that animal 59 populations are limited by plant productivity [Hanya et al. 2004; Hanya & 60 Chapman 2013; Stevenson 2001] and direct tests of food limitation involving 61 food removal or provisioning have also been conducted [Adler 1998; 62 Moegenburg & Levey 2003]. However, an experimental approach is not 63 feasible for animals ranging over a wide area or having a diverse diet, such as 64 most primates [Hanya & Chapman 2013]. For some primates there is 65 considerable controversy concerning whether they are limited by food resources or if such resources are superabundant. For example, Coelho et al. [1976] 66 67 estimated that fruit production far exceeded the food intake for two primates and concluded the populations were not food limited. This study was criticized 68 69 because it included only 2 months of data, and did not address nutritional 70 requirements [Cant 1980]. Similarly, many researchers often assume that tree 71 leaves are as superabundant for folivores, but there is increasing evidence that 72 folivores compete over access to the best leaves and thus that these food item 73 can be limiting [Koenig 2002; Snaith & Chapman 2007].

Large animals are often the most endangered species in an ecosystem [Corlett 2009; Primack 1995], thus, it is important to understand the ecosystem services they provide and to predict the impact of their disappearance. For example, extinction of large primates alters tree species composition as large-seeded plants, which depend on primate dispersers, are not dispersed [Chapman & Onderdonk 1998; Nuñez-Iturri & Howe 2007]. Some ecosystem services will be taken on by other animals with overlapping feeding niches [Peres & Dolman 2000], but it is difficult to predict which services will remain as the functional redundancy is affected by various factors [Rosenfeld 2002]. Therefore, it is necessary to assess the relative impact of various animals on forest productivity.

We aimed to compare the fruit and leaf biomass consumed by Japanese macaques (*Macaca fuscata*), folivorous insects and frugivorous birds, with the leaf and fruit production over 1 year on Yakushima, Japan. Our study sites included a warm- and a cool-temperate forest, which differ with respect to fruit production, macaque density, and diet [Hanya et al. 2003a; Hanya 2004; Hanya et al. 2004]. We also assessed the effect of macaques' folivory on forest tree species composition over 13 years.

METHODS

The research complied with protocols approved by the Primate Research Institute, Kyoto University and it adhered to the legal requirements of Japan and to the American Society of Primatologists Principles for the Ethical Treatment of Non Human Primates.

Study sites and subjects

We studied in highland (coniferous cool- temperate, 1000-1200 m a.s.l.) and lowland (evergreen broad-leaved warm-temperate, 0-200 m a.s.l.) forests separated by 7 km on the island of Yakushima (30°N, 131°E), Japan. We observed the feeding behavior of the HR group in the highland site and the NA and H groups in the lowland site. The annual home ranges of the HR, NA, and H groups were 2.7, 0.6, and 0.7 km², respectively. The home range of the HR group was a mosaic of primary and logged forest, but primary forest, where forest productivity was studied, comprised 83% of the total area. The home ranges of NA and H groups overlapped extensively and consisted of old secondary forest. Hanya [2004] and Hanya et al. [2007] provide further information about the study sites and subjects.

In these forests, biomass of sika deer (*Cervus nippon*) equals that of macaques [Agetsuma et al. 2003] and they influence forest dynamics [Koda et al. 2008]. However, we did not compare their impact because deer eat leaves from the ground, where the productivity cannot be estimated by litter trap. In addition, they eat a considerable amount of dead leaves [Agetsuma et al. 2011] they are thus often acting as decomposers. There are no other folivorous or frugivorous large mammals in the island. Marten (*Mustela itatsi*) and field mice (*Apodemus speciosus* and *A. argenteus*) may also eat fruits, but they were also not considered as they are terrestrial. Their biomass seems negligible compared with that of macaques because they are very small (~2 kg for martens and 20-60 g for mice) and very rare, considering the much lower photographic rate (1/10 of macaques) in camera trapping (Hanya et al., unpublished data).

Behavioral observations

We collected data between April 2000 and March 2001 for HR group in the highland site (510 hr) and between October 2003 and August 2004 for NA group in the lowland site (1080 hr). To supplement the September data lacking for the NA group, we also used the data of H group in September 1998. We collected behavioral data using focal animal sampling (duration of 1 hr) of seven adult females and six males for the highland group (mean±SD of observation time: 39±12 hr/individual), and five adult females for the NA group (216±75 hr/individual) and for five adult males in the H group (18±0.86 hr/individual). Data on the diet are available elsewhere [Hanya 2003; Hanya 2004; Hanya et al. 2007] (Appendix 1). We defined a feeding bout as starting when the animal put food into the mouth and stopping when 20 seconds had elapsed without the subject moving in the tree or manipulating food or when the animal left the tree or started eating other items. We recorded the number of food units that the animal ingested for as long as possible. One food unit was operationally defined depending on the particular item and plant species (e.g. one leaf, one fruit, one cluster of fruits).

141

142

143

144

145

146

147

148

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

Estimating food consumption

We estimated the dry weight intake of all stages of leaves (both mature and young leaves) and fruits (including seeds). We considered consumption as the removed biomass and included the weight of indigestible parts that were discarded before ingestion. For feeding bouts where the number of food units ingested could not be recorded, we estimated ingestion by multiplying the duration of the feeding bouts and the average feeding rate (#units/second) of all

feeding bouts for that item of the species. To calculate this average, we discarded data when the duration of a feeding bout was less than 2 min unless this was the only datum available for the food species/item. This was because data of short duration were less reliable. Then, we multiplied the number of food units ingested (estimated or actually counted) during each feeding bout by its unit dry weight and summed the results for all feeding bouts of each focal observation. We multiplied the estimated dry weight intake per observation hour with the average day length of the month and the number of days in the month, to obtain the total estimated dry weight intake in the month. This could be justified as the distribution of observations was not biased to a particular time of the day or month: we made from dawn to dusk [Hanya 2004; Hanya et al. 2007] and equally distributed observation days in each month. We calculated total annual intake by summing the values of the 12 months. We summarized data of the unit weight and feeding rate in Appendix 2.

We estimated intake for age-sex classes that we did not observe assuming that macaque consumption was proportional to the 0.75 power of average body mass for the age/sex [Kleiber 1987] using body weight data from Watanabe [1975] (Appendix 3). For the highland site, data on adult males and females were available, so we estimated the average intake using the pooled data. For the lowland site, only the female data were available, so we estimated the male intake following the power rule. We used age-sex composition of the HR and NA groups to estimate the proportion of individuals of each age-sex class in the population. We used the data of these two particular groups, rather than the data on age-sex composition collected over a larger scale. This was because we needed to use data that were comparable with the

behavioral and litter trap data, which were taken within the home range of these two particular groups. We calculated food consumption of each age-sex class at the population level by multiplying (1) the estimated food consumption of the class, (2) proportion of the class in the population and (3) the population density. We derived density from Yoshihiro et al. [1999] and Hanya et al. [2003b] (Appendix 3). We calculated food consumption at the population-level as the sum of all the age-sex classes. In the highland site, we also recorded the amount of leaves that macaques dropped during feeding. We estimated total amount of dropped leaves in that month by an adult individual by multiplying the amount of leaves (g) per observation time, average day length of the month and the number of days in the month. We estimated amount dropped at the population level over the year in the same way as we did for leaf intake.

Litter trap

We established two vegetation plots within the home ranges of the groups and identified and measured all tree stems with a diameter at breast height (DBH) > 5 cm. Plot size was 50m * 50m in the highland site (0.09% of the home range of the HR group) and 100m * 50m in the lowland site (0.8% of the home range of the NA group). Aiba et al. [2007] and Hanya and Aiba [2010a] described details of the plots. These plots included both ridge and valley and phenological change recorded in these plots predicted the seasonal variation in the macaque diet [Hanya 2004; Hanya et al. 2007]. Therefore these plots seemed to be representative of the home range. We placed 25 and 20 litter traps (nylon mesh of <0.5 mm, 0.58 m² in size and 1-1.5 m above the ground) evenly distributed in highland and lowland site plots respectively. The minimum

inter-trap distance was 10 m. We collected litter once a month, oven-dried it at 60 °C for 96 hr and weighed and sorted items into broad-leaf, conifer needle, fruits, and others. Fruits included the whole or partial ripe fruits, unripe fruits and seeds separated from pulp. We sorted them by species and weighed them. We separated bird feces from 'others' in the highland plot.

Estimation of fruit and leaf production

We conducted the species-level analysis of leaf and fruit consumption for species that accounted for at least 1% of the annual feeding time in each area and when the fruit or leaf production of these species could be estimated by fruit fall or tree species composition in the plots. In addition to these species, we also examined fruit consumption of three fleshy-fruited species in the highland site (*Eurya japonica*, *Cleyera japonica*, and *Symplocos myrtaceae*), because we could also estimate bird consumption for these species.

Leaf production: We converted litter fall to kg/ha/year by dividing the total annual weight of litter by total litter trap area. We could estimate the weight of leaf litter for particular species from the data of relative basal area of the species because the relative basal area and leaf litter of each tree species was positively correlated (r=0.81, p<0.0001, N=37 species, data from the lowland plot for one year from December 2004). Therefore, when we estimated leaf fall for each species, we assumed that the leaf litter weight of a species was proportional to the species basal area relative to the total basal area in the plot.

In principle, annual leaf production is equal to annual leaf litter fall when the leaf biomass of the forest reaches equilibrium [Clark et al. 2001]. However, these two values are not necessarily the same because of (1) translocation of organic and inorganic matter from the abscised leaves and (2) herbivory. Mean leaf mass loss for temperate evergreen angiosperm leaves is 20.8% [Vergutz et al. 2012], so we divided the gross leaf litter fall by (1-0.208) to estimate the biomass of leaves before falling to the trap. Hereafter, we refer this value as 'corrected leaf fall'. We assumed the amount of insect herbivory as 10% of the leaf production, which is a mean value for temperate forests [Landsberg & Ohmart 1989] (3-17%). We calculated the leaf production as the sum of corrected leaf fall and consumption by macaques and insects, which are the only animals that eat leaves in the canopy layer on Yakushima.

Fruit production: We calculated the production of fruit for the highland site as the sum of fruit fall and consumption by macaques and birds. However, in the lowland site, data on bird consumption were lacking so macaque frugivory was compared only with the fruit fall. The current estimation in the highland was based on the data used also in Hanya [2005], who calculated only the total number of seeds removed by birds. However, in the current analysis, we present data for each species of plant. We confined the estimation of bird consumption to the three species (E. japonica, C. japonica, and S. myrtaceae) that constituted 92.5% of the fleshy fruit production in the highland site. These species have small seeds (<5 mm long) which were swallowed by macaques [Otani & Shibata 2000]. Thus, in the estimation, we could regard the pulpless seeds of these species dropped into the trap as having dispersed by birds [Kominami et al. 2003], along with the seeds found in bird feces. We did not find any macaque feces in the traps in the highland site. We confirmed that

macaque feces were recognizable for at least one month after defecation by experimentally putting feces in a trap. We estimated the weight of fruits removed by birds using the data of (1) the number of seeds trapped, (2) the average number of seeds in one fruit for each species and (3) average weight of one fruit, of which data we collected by measuring >100 fruits for each species.

Long-term changes of forest composition

To assess the impact of macaque folivory on forest tree species dynamics, we established a 2.4 ha vegetation plot (4% of the home range of the NA group) in 1990 in the lowland site. The plot consisted of 10 line transects (5 m wide, 30-150 m long) set every 100 m within the entire home range of the NA and the H groups. We recorded the species and the DBH of all trees >5 cm DBH in 1990 and 2003. In the highland site, for the analysis of forest composition dynamics, we used the plot of 0.25 ha that we set to collect litter. We established this plot in 1999 and resampled in 2012. We examined changes in density between the two periods using a G-test for species with more than 9 stems in one of the years. We tested a null hypothesis which assumed no difference in the proportion of decreasing species between food and non-food species. We examined 47 lowland (5 food and 42 non-food species) and 10 highland species (3 food and 7 non-food species).

RESULTS

Folivory

In both the lowland and highland sites, the impact of macaque folivory at the community level was negligible relative to leaf production or assumed folivory by

insects. The leaf biomass consumed by macaques was only 0.037% and 0.39% of the estimated total leaf production in the lowland and highland sites, respectively (Table 1). These values increased if we considered only food species, but it still remained low (0.21% in the lowland site and 0.90% in the highland site). At the species level, however, macaque leaf consumption reached 5.7% of the estimated leaf production in the lowland site (*Daphniphyllum teijsmannii*) and 10.1% in the highland site (*Symplocos prunifolia*). For other species, macaques consumed between 0.93% and 2.14% of the leaves produced. In the highland site, we estimated the biomass of dropped leaves as 3.93 kg/km²/year, which was 0.21% of the consumed leaves.

There was no evidence that macaque food trees died at a greater rate than non-food trees over the 13 years of monitoring (Table 2). In the lowland site, the proportion of decreasing species was not different between the food and non-food species (G=0.50; p=0.48). None of the species decreased in abundance at the highland site.

Frugivory

In contrast to leaves, macaques consumed a considerable portion of the total fruit production. For the three fleshy-fruited species in the highland site, for which we quantified both bird and macaque consumption, macaque consumption was 3.2-39% of the total fruit production depending on plant species, whereas birds consumed between 32 and 75% of the fruit production (Table 3b). Macaques and birds together consumed more than two-thirds of the fruit production for all the species. In the lowland site, fruit consumption by

macaques constituted 8.8%, 10.1%, and 68.8% of fruit fall for all species, food species, and the most frequently eaten species, respectively (Table 3a).

Although there were 12 fruiting species that constituted more than 1% of the annual feeding time (sum of the duration of the feeding bouts) for the lowland site macaques, fruits of only one of them appeared in the litter trap.

DISCUSSION

Impact of folivory and its effect on long-term forest dynamics

Our data suggested that at the community level the amount of leaves consumed by Japanese macaques in Yakushima was negligible compared with the leaf production. Total leaf consumption by macaques constituted less than 0.4% of the total leaf production. However, for some species, the impact of macaque folivory reached 10% in the highland site, which was comparable to the community-level impact of insect folivory known for various types of forests (3-17%) [Landsberg & Ohmart 1989]. Because some tree species can survive even if they lose all their leaves by browsing [Rooke & Bergstrom 2007], we need further study to confirm the effect of folivory on plant longevity, growth, and/or reproduction.

Species whose leaves were eaten by macaques did not decrease in abundance over 13 years. However, it is still possible that some species are negatively affected by overgrazing by macaques. For example, *Daphniphyllum teijsmannii*, which was the most extensively eaten species in the lowland site, decreased in number from 182 to 133 (G= 7.65, p=0.0057). However, this species is not shade-tolerant [Aiba et al. 2001] thus the decrease was likely caused by the lack of forest disturbance.

In contrast to our results, Chapman et al. [2013] reported that in Kibale National Park, Uganda, there was a tendency for tree species that were eaten by two species of colobus monkeys to decrease in abundance but no such tendency was found for the species that colobus did not eat. The difference between Yakushima and Kibale is likely due to difference in primate biomass. Primate biomass in Kibale (2759 kg/km²) [Chapman et al. 1999] is 6.77 and 24.2 times larger than that in the lowland and highland sites of Yakushima respectively and folivorous colobines make up the greatest portion (75%) of that biomass [Chapman et al. 1999]. Total litter fall (including leaves, branch, and reproductive parts) in Yakushima was 565,000 kg/km²/year in the lowland site and 473,000 kg/ km²/year in the highland site. This represented 71% and 59% of the average documented for 12 tropical forests (average = 966,200 kg/ km²/year, maximum: 1,235,000 kg/ km²/year) [Hanya & Aiba 2010b]. Therefore, if we suppose that leaf production in Kibale is average for a tropical forest, leaf production in Kibale is calculated only as 1.41 times larger than that in the lowland site and 1.69 times of that in the highland site of Yakushima. Supposing further that the amount of leaf consumption is proportional to primate biomass; leaf consumption/production ratio in Kibale is 4.80 (6.77/1.41) times larger than in lowland site and 17.1 (24.2/1.41) times larger than in the highland site of Yakushima. Given that 75% of the primate biomass in Kibale is folivorous colobines, this is likely to be a conservative estimate. That is, if Japanese macaques in Yakushima consume ca. 10% of produced leaves for some species, more folivorous Kibale primates would impose more serious damage to many species. In addition, latitudinal variations in leaf turn-over cycle [Reich et al. 1996] may affect the different impact of folivory in Yakushima

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

(temperate) and Kibale (tropical). More detailed data on leaf production and consumption by Kibale primates are needed to confirm our estimates. In any case, however, comparisons of Yakushima and Kibale suggest that the threshold value of primate biomass above which primate folivory has a critical impact on the forest lies somewhere between Yakushima and Kibale.

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

349

350

351

352

353

Impact of frugivory

Of the three fleshy-fruited species evaluated at the highland site, Japanese macagues were the most important fruit consumer for one (E. japonica), consuming approximately 40% of production. As for the two other species, bird consumption was 11-23 times larger than that of macaques. These two groups of frugivores consumed up to two thirds of the fruit production. Although one third of the fruits were not eaten, we think that fruits may nevertheless be a limited resource. According to our data on the seasonality of fruit fall, a majority (91%) of the uneaten fruits of these species dropped before the macaques and birds stop feeding on them (by November) and it appeared that finding fruits was difficult. When frugivores stopped feeding on these fruits, there were only very few fruits remaining. In addition, considering the degree of inter-annual variability in diet, frugivores could have depleted the uneaten fruit biomass. Hanya [2005] showed that the fruit consumption by macaques and birds in 1999 reached 1.66 times higher than in 2000. Tsuji et al. [2006] reported even higher inter-annual variation in the amount of fruits consumed by wild Japanese macaques in Kinkazan, northern Japan.

The impact of macaque frugivory at the community level remains to be further investigated, but we can expect that it would be larger than the case of

folivory, but smaller than the case of intensively-fed *E. japonica* fruits. This is because macaques consumed only 10% of the fruit fall for all the food species. In addition, most (65%) of the fruit fall for the species eaten by macaques comprised two gravity-dispersed species (*Distylium racemosum* and *Camellia japonica*) [Hanya & Aiba 2010a], which were unlikely to be eaten by birds (Hanya, per. obs). Macaques might be seed predators for these species.

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

We cannot fully assess the impact of the frugivory by Japanese macagues in the lowland site because there are no data on bird consumption For several reasons, however, it is likely that the tendency would be the same in the lowland site as in the highland sites. First, most (58%) of the fruit fall of food species for macaques in the lowland site was acorns [Hanya & Aiba 2010a], which most birds in Yakushima do not consume. Second, at the species level, macaques are likely important fruit consumers for some species. For example, fruits of Litsea acuminata consumed by macagues reached 68% of the fruit fall, which is a similar level to that of *E. japonica* in the highland site. Fruits of L. acuminata are among the largest in Yakushima and only a few bird species can swallow the seeds [Noma & Yumoto 1997]. In addition, it has already been clarified that fruit consumption by macaques in the lowland site Yakushima is much larger (>32 times) than that by birds for two fleshy-fruited species (Ficus superba and Myrica rubra) [Otani 2001; Terakawa et al. 2008]. Third, 11 out of 12 major food fruit species for Japanese macaques were 'rare' species whose fruit abundance cannot be accurately estimated by litter traps. Since they are rare, the fruit production of these species is likely to be lower than the common species, such as L. acuminata. Therefore, the ratio of macaque frugivory to fruit production would be higher for these species than *L. acuminata*.

It is already known that the Japanese macaques in Yakushima provide effective seed dispersal services with respect to the quality, such as dispersal distance and topography [Noma & Yumoto 1997; Otani & Shibata 2000; Terakawa et al. 2009; Tsujino & Yumoto 2009; Yumoto et al. 1998]. Seed dispersal effectiveness could be evaluated as the product of quantity and quality of seed dispersal [Schupp et al. 2010]. Our results suggest the quantitative importance of seed dispersal by macaques and thus suggest they play an important role in forest regeneration through seed dispersal.

Robustness of the results

Our results remain preliminary as they are based on several assumptions.

Here we discuss the possible biases in the estimations and the robustness of our findings. We hope our preliminary analysis will stimulate future research in this rarely studied but important area of primate ecology.

First, although our dietary data were based on detailed observation of feeding behavior, food intake at the population level was estimated based on many assumptions. Error may have occurred when we (1) estimated food intake of one age-sex class from the data of different classes, (2) estimated age-sex composition of the population, and (3) calculated population-level intake from the population density. As for the first assumption, Hanya [2003] has confirmed that variation in the mass of food ingested by wild Japanese macaques of different age classes are roughly consistent with our assumption. We believe the second assumption did not cause serious error, as we used the age-sex composition of the subject groups, which was the most likely composition of the macaques using the area within the home ranges of the

subject groups. As for the third assumption, the density data seemed correct because they agreed with the the long-term record of the distribution of identified groups [Yoshihiro et al. 1999; Hanya et al. 2003]. Error could have occurred if there was heterogeneity in density within the study site and the home range of the study group was situated where density was particularly high or low, although it seemed unlikely that this was the case given the distribution of groups in the study area.

Second, data on productivity were derived from plots of only 0.25 ha or 0.5 ha. This area was much smaller than the home ranges of the study groups, and may not reflect productivity across the entire home range area. We note, however, that productivity measured in plots within the same altitudinal zones of Yakushima differed at most by a factor of two [Aiba et al. 2007]. This difference is much smaller than the difference in leaf productivity and macaque consumption. Therefore, the qualitative conclusion of our analysis - that macaque folivory is negligible – is not likely to be affected by plot size. However, the conclusion at the population level needs further examination, as certain plant species may show a non-random in the monkeys' home range. Focal tree observation might be a better approach to assess consumption and productivity for rare species.

Third, the small plot size in the highland site constrained the analysis of tree species dynamics. Therefore, our evaluation of forest dynamics in the highland site is preliminary. However, given that none of the species decreased in abundance, it is unlikely that larger plot sizes would produce contrary findings. We cannot discard the possibility that macaques can have significant negative impact on rare species which did not appear in the vegetation plot. Various

plots are established in different altitudinal zones of Yakushima [Aiba et al. 2007], so meta-analysis of tree species dynamics with respect to macaque folivory will be feasible in the future. The plot size in the lowland site was rather large (2.4 ha) and cover the entire home range, so the results from here seemed reliable.

Finally, there were no data from the NA group for one month, so we filled in missing values with data from another year and another group.

Considering the large seasonal variation in the diet in Yakushima [Hanya 2004; Hill], we believe this is a better solution than calculating the intake in this month as an average of the other 11 months. Because the home ranges of the two groups overlapped extensively, we assumed that dietary differences were minimal. Main foods in this month were fruits of figs and *Rhus succedanea*, both of which exhibit small supra-annual variations in fruiting intensity.

Therefore, large supra-annual variations in the diet in this month also seem unlikely. In addition, the actual over- or underestimation related to using the data of other year/group should be small because it constitutes only one of the twelve months.

In conclusion, macaque folivory was negligible compared to leaf production at the community level because macaque consumption constituted only ~0.04% of the leaf production and macaque food species did not decrease over 13 years. However, the impact of macaque frugivory has more important consequences for the plants consumed.

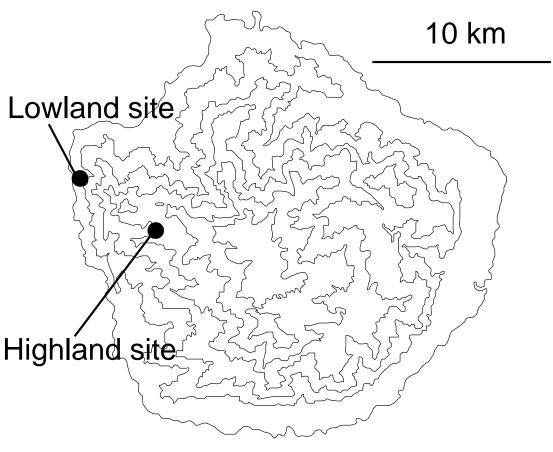
ACKNOWLEDGEMENTS

We would like to thank our friends and colleagues in Yakushima for their

474	hospitality and help. The Sarugoya Committee and Field Research Center			
475	(currently, Wildlife Research Center) of Primate Research Institute, Kyoto			
476	University (KUPRI) offered us excellent facilities. The Yakushima Forest			
477	Environment Conservation Center and Kirishima-Yaku (currently, Yakushima)			
478	National Park gave us permission to study in the area. Dr. Marina Cords and			
479	two anonymous reviewers gave us helpful comments on the manuscript. We			
480	are grateful to these people and organizations. This study was financed by the			
481	John Mung Program of Kyoto University, Cooperation Research Program of			
482	KUPRI, the MEXT Grant-in-Aid (No. 99J04746, No. 03J04838, No. 20770195,			
483	No. 22687002, No. 23657018, No. 25291100 and No. 25650145) to GH, the 21st			
484	Century COE Program (A14), and Global COE Program "Formation of a			
485	Strategic Base for Biodiversity and Evolutionary Research: from Genome to			
486	Ecosystem". There is no conflict of interests with respect to this study.			
487				
488	REFERENCES			
489	Adams JM, Zhang YJ, Basri M, Shukor N. 2009. Do tropical forest leaves suffer			
490	more insect herbivory? A comparison of tropical versus temperate			
491	herbivory, estimated from leaf litter. Ecol Res 24: 1381-1392.			
492	Adler GH. 1998. Impacts of resource abundance on populations of a tropical			
493	forest rodent. Ecology 79: 242-254.			
494	Agetsuma N, Agetsuma-Yanagihara Y, Takafumi H. 2011. Food habits of			
495	Japanese deer in an evergreen forest: Litter-feeding deer. Mamm Biol 76:			
496	201-207.			
497	Agetsuma N, Sugiura H, Hill DA, Agetsuma-Yanagihara Y, Tanaka T. 2003.			
498	Population density and group composition of Japanese sika deer (Cervus			

499	nippon yakushimae) in an evergreen broad-leaved forest in Yakushima,
500	southern Japan. Ecol Res 18: 475-483.
501	Aiba S, Hanya G, Tsujino R, Takyu M, Seino T, Kimura K, Kitayama K. 2007.
502	Comparative study of additive basal area of conifers in forest ecosystems
503	along elevational gradients. Ecol Res 22: 439-450.
504	Aiba S, Hill DA, Agetsuma N. 2001. Comparison between old-growth stands and
505	secondary stands regenerating after clear-felling in warm-temperate
506	forests of Yakushima, southern Japan. For Ecol Manage 140: 163-175.
507	Cant JGH. 1980. What limits primates? Primates 21: 538-544.
508	Chapman CA, Bonnell TR, Gogarten JF, Lambert JE, Omeja PA, Twinomugisha
509	D, Wasserman MD, Rothman JM. 2013. Are primates ecosystem
510	engineers? Int J Primatol 34: 1-14.
511	Chapman C, Gautier-Hion A, Oates J, Onderdonk D. 1999. African primate
512	communities: Determinants of structure and threats to survival. In: Fleagle
513	J, Janson C, Reed K, editors. Primate Communities. Cambridge:
514	Cambridge Univ Press. p 1-37.
515	Chapman CA, Onderdonk DA. 1998. Forests without primates: Primate/plant
516	codependency. Am J Primatol 45: 127-141.
517	Chapman CA, Struhsaker TT, Skorupa JP, Snaith TV, Rothman JM. 2010.
518	Understanding long-term primate community dynamics: implications of
519	forest change. Ecol Appl 20: 179-191.
520	Clark DA, Brown S, Kicklighter DW, Chambers JQ, Thomlinson JR, Ni J, Holland
521	EA. 2001. Net primary production in tropical forests: An evaluation and
522	synthesis of existing field data. Ecol Appl 11: 371-384.
523	Coelho AMJ, Bramblett CA, Quick LB, Bramblett SS. 1976. Resource availability

524	and population density in primates: A sociobioenergetic analysis of the
525	energy budgets of Guatemalan howler and spider monkeys. Primates 17:
526	63-80.
527	Corlett RT. 2009. The Ecology of Tropical East Asia. Oxford: Oxford University
528	Press.
529	Hanya G. 2003. Age differences in food intake and dietary selection of wild male
530	Japanese macaques. Primates 44: 333-339.
531	Hanya G. 2004. Diet of a Japanese macaque troop in the coniferous forest of
532	Yakushima. Int J Primatol 25: 55-71.
533	Hanya G. 2005. Comparisons of dispersal success between the species fruiting
534	prior to and those at the peak of migrant frugivore abundance. Plant Ecol
535	181: 167-177.
536	Hanya G, Aiba S. 2010a. Fruit fall in five warm- and cool-temperate forests in
537	Yakushima, Japan. Forestry Studies in China 12: 184-192.
538	Hanya G, Aiba S. 2010b. Fruit fall in tropical and temperate forests: implications
539	for frugivore diversity. Ecol Res 25: 1081-1090.
540	Hanya G, Chapman CA. 2013. Linking feeding ecology and population
541	abundance: a review of food resource limitation on primates. Ecol Res 28
542	183-190.
543	Hanya G, Kiyono M, Takafumi H, Tsujino R, Agetsuma N. 2007. Mature leaf
544	selection of Japanese macaques: effects of availability and chemical
545	content. J Zool 273: 140-147.
546	Hanya G, Noma N, Agetsuma N. 2003a. Altitudinal and seasonal variations in
547	the diet of Japanese macaques in Yakushima. Primates 44: 51-59.
548	Hanya G, Stevenson P, van Noordwijk M, Wong ST, Kanamori T, Kuze N, Aiba S


549	Chapman CA, van Schaik C. 2011. Seasonality in fruit availability affects
550	frugivorous primate biomass and species richness. Ecography 34:
551	1009-1017.
552	Hanya G, Yoshihiro S, Zamma K, Kubo R, Takahata Y. 2003b. New method to
553	census primate groups: estimating group density of Japanese macaques
554	by point census. Am J Primatol 60: 43-56.
555	Hanya G, Yoshihiro S, Zamma K, Matsubara H, Ohtake M, Kubo R, Noma N,
556	Agetsuma N, Takahata Y. 2004. Environmental determinants of the
557	altitudinal variations in relative group densities of Japanese macaques on
558	Yakushima. Ecol Res 19: 485-493.
559	Hill DA. 1997. Seasonal variation in the feeding behavior and diet of Japanese
560	macaques (Macaca fuscata yakui) in lowland forest of Yakushima. Am J
561	Primatol 43: 305-322.
562	Howe HF. 1986. Seed dispersal by fruit-eating birds and mammals. In: Murray
563	DR, editor. Seed Dispersal. Sydney: Academic Press. p 123-190
564	Kleiber M. 1987. The Fire of Life. Florida: Robert E. Krieger Publishing
565	Company.
566	Koda R, Noma N, Tsujino R, Umeki K, Fujita N. 2008. Effects of sika deer
567	(Cervus nippon yakushimae) population growth on saplings in an
568	evergreen broad-leaved forest. For Ecol Manage 256: 431-437.
569	Koenig A. 2002. Competition for resources and its behavioral consequences
570	among female primates. International Journal of Primatology 23: 759-783.
571	Kominami Y, Sato T, Takeshita K, Manabe T, Endo A, Noma N. 2003.
572	Classification of bird-dispersed plants by fruiting phenology, fruit size, and
573	growth form in a primary lucidophyllous forest: an analysis, with

574	implications for the conservation of fruit-bird interactions. Ornithological
575	Science 2 3-23.
576	Landsberg J, Ohmart C. 1989. Levels of insect defoliation in forests: Patterns
577	and concepts. Trends Ecol Evol 4: 96-100.
578	Moegenburg SM, Levey DJ. 2003. Do frugivores respond to fruit harvest? An
579	experimental study of short-term responses. Ecology 84: 2600-2612.
580	Noma N, Yumoto T. 1997. Fruiting phenology of animal-dispersed plants in
581	response to winter migration of frugivores in a warm temperate forest on
582	Yakushima Island, Japan. Ecol Res 12: 119-129.
583	Nuñez-Iturri G, Howe HF. 2007. Bushmeat and the fate of trees with seeds
584	dispersed by large primates in a lowland rain forest in western Amazonia.
585	Biotropica 39: 348-354.
586	Otani T. 2001. Measuring fig foraging frequency of the Yakushima macaque by
587	using automatic cameras. Ecol Res 16: 49-54.
588	Otani T, Shibata E. 2000. Seed dispersal and predation by Yakushima
589	macaques, Macaca fuscata yakui, in a warm temperate forest of
590	Yakushima Island, southern Japan. Ecol Res 15: 133-144.
591	Peres CA, Dolman PM. 2000. Density compensation in neotropical primate
592	communities: evidence from 56 hunted and nonhunted Amazonian forests
593	of varying productivity. Oecologia 122: 175-189.
594	Primack RB. 1995. A Primer of Conservation Biology. Sunderland: Sinauer
595	Associates.
596	Reich PB, Oleksyn J, Modrzynski J, Tjoelker MG. 1996. Evidence that longer
597	needle retention of spruce and pine populations at high elevations and
598	high latitudes is largely a phenotypic response. Tree Physiol 16: 643-647.

599 Rooke T, Bergstrom R. 2007. Growth, chemical responses and herbivory after 600 simulated leaf browsing in Combretum apiculatum. Plant Ecol 189: 601 201-212. 602 Rosenfeld JS. 2002. Functional redundancy in ecology and conservation. Oikos 603 98: 156-162. 604 Snaith TV, Chapman CA. 2007. Primate group size and interpreting 605 sociolecological models: Do folivores really play by different rules? Evol 606 Anthropol 16: 94-106. 607 Stevenson PR. 2001. The relationship between fruit production and primate abundance in Neotropical communities. Biol J Linnean Soc 72: 161-178. 608 609 Sun IF, Chen YY, Hubbell SP, Wright SJ, Noor NSM. 2007. Seed predation 610 during general flowering events of varying magnitude in a Malaysian rain 611 forest. J Ecol 95: 818-827. 612 Terakawa M, Isagi Y, Matsui K, Yumoto T. 2009. Microsatellite analysis of the 613 maternal origin of *Myrica rubra* seeds in the feces of Japanese macaques. 614 Ecol Res 24: 663-670. 615 Terakawa M, Matsui K, Hamada T, Noma N, Yumoto T. 2008. Reduced seed 616 dispersal effectiveness in the large-seeded tree Myrica rubra in the 617 absence of the Japanese macaque on Tanegashima Island, Japan (in 618 Japanese). Jpn J Cons Ecol 13: 161-167. 619 Tsuji Y, Fujita S, Sugiura H, Saito C, Takatsuki S. 2006. Long-term variation in 620 fruiting and the food habits of wild Japanese macagues on Kinkazan 621 Island, northern Japan. Am J Primatol 68: 1068-1080. 622 Tsujino R, Yumoto T. 2009. Topography-specific seed dispersal by Japanese 623 macaques in a lowland forest on Yakushima Island, Japan. J Anim Ecol

624	78: 119-125.
625	Vergutz L, Manzoni S, Porporato A, Novais RF, Jackson RB. 2012. Global
626	resorption efficiencies and concentrations of carbon and nutrients in
627	leaves of terrestrial plants. Ecol Monogr 82: 205-220.
628	Watanabe T. 1975. Some features of the wild Japanese monkeys (Macaca
629	fuscata) of Shiga A troop from viewpoint of somatometry. Physiology and
630	Ecology 16: 55-63.
631	Yoshihiro S, Ohtake M, Matsubara H, Zamma K, Hanya G, Tanimura Y, Kubota H
632	Kubo R, Arakane T, Hirata T, Furukawa M, Sato A, Takahata Y. 1999.
633	Vertical distribution of wild Yakushima macaques (Macaca fuscata yakui)
634	in the western area of Yakushima Island, Japan: Preliminary report.
635	Primates 40: 409-415.
636	Yumoto T. 1987. Pollination systems in a warm temperate evergreen
637	broad-leaved forest on Yaku Island. Ecol Res 2: 133-145.
638	Yumoto T, Noma N, Maruhashi T. 1998. Cheek-pouch dispersal of seeds by
639	Japanese monkeys (Macaca fuscata yakui) on Yakushima Island, Japan.
640	Primates 39: 325-338.
641	
642	
643	

644	Legend to the figure	
645	Fig. 1. Map of Yakushima showing lowland and highland study sites.	Contours
646	are drawn every 300 m.	
647		

648 649 Fig. 1

650

Table 1. Comparison of leaf consumption by macaques and estimated leaf production

a. Lowland forest of Yakushima

a. Esmana refect of Tanas			Corrected	
Target	Leaf fall	Corrected leaf fall*	leaf fall+estimate d consumption by insects**	Leaf consumption by macaques
	kg/km²/year	kg/km²/year	kg/km²/year	kg/km²/year (% to leaf production)
All species	431000	544000	605000	226
Food species	76100	96100	107000	(0.037%) 226 (0.21%)
Symplocos lucida	1480	1870	2120	35
Daphniphyllum teijsmannii	410	518	614	(1.7%) 35 (5.7%)

b. Highland forest of Yakushima

b. r lightana forest of rattachina				
			Corrected leaf	
	Leaf fall	Corrected	fall+estimate	Leaf consumption by
Target	Loai iaii	leaf fall*	d	macaques
raiget			consumption	
			by insects**	
	kg/km²/year	kg/km²/year	kg/km²/year	kg/km²/year
	rig/rim /year	ng/mii/year	ng/nii /yeai	(% to leaf production)
All species	352000	444000	495000	1910
				(0.39%)
Food species	150000	189000	212000	1910
	40400	4=000	4=000	(0.90%)
Symplocos myrtacea	12100	15300	17200	160
France ionesiae	4000	50.40	0000	(0.93%)
Eurya japonica	4230	5340	6080	130
Trachadandran araliaidaa	26600	46200	E1400	(2.1%)
Trochodendron aralioides	36600	46200	51400	78.2 (4.5%)
Symplocos prunifolia	81.3	103	129	(1.5%) 13
Symplocos prumiona	01.3	103	129	(10%)
				(1070)

^{*} Corrected leaf fall was calculated by dividing the gross leaf fall by 0.792, which indicated estimated leaf weight before the translocation of organic and inorganic matter from the abscised leaves.

^{**} Insect folivory was assumed to be 10% of the leaf production.

Table 2. Number of species decreasing/not decreasing over 13 years

a. Lowland forest of Yakushima (between 1990 and 2003)

	Decrease	Not decrease
Food species	2	3
Non-food species	10	32

a. Highland forest of Yakushima (between 1999 and 2012)

	Decrease	Not decrease
Food species	0	3
Non-food species	0	7

Table 3. Comparison of fruit/seed consumption by Japanese macaques and birds to amount of fruit litter

a. Lowland forest of Yakushima

ai zemana rerest er ranasınına				
		Fruit consumption		
Towast	Fruit fall	by Japanese		
Target		macaques		
	kg/km²/year	kg/km²/year		
All species	59900	5230		
Food species	52200	5230		
Litsea acuminata	887	603		

b. Highland forest of Yakushima

b. Highland forest of Taxashina				
	Fruit fall	Fruit consumption		
Target	Fluitiali	kg/km ² /year (% to fruit production)		
raiget	kg/km²/year	by Japanese	by birds	
	kg/km /year	macaques	by bilds	
All species	10700	381	-	
Food species	3810	381	-	
Distylium racemosum	1980	176	-	
Eurya japonica	24.2	33.4	27.6	
	(28.4%)	(39.2%)	(32.3%)	
Cleyera japonica	27.1	4.01	92.6	
	(21.9%)	(3.24%)	(74.9%)	
Symplocos myrtacea	8.95	2.11	25.0	
	(24.8%)	(5.85%)	(69.3%)	

Appendix 1. Diet composition of the three study groups

	HR		NA		H (September only)	
	% feeding time	intake g dry weight/h	% feeding time	intake g dry weight/h	% feeding time	intake g dry weight/h
Fruit	13%	3.74	34%	11.35	39%	7.03
Seed	4%	1.89	32%	8.40	52%	3.95
Mature leaf	38%	12.76	5%	0.67	2%	0.09
Young leaf	3%	0.24	2%	0.19	0%	0.01
Flower	15%	Not estimated	2%	Not estimated	0%	Not estimated
Pith, stem, bark and roo	4%	Not estimated	2%	Not estimated	2%	Not estimated
Fungi	14%	Not estimated	1%	Not estimated	0%	Not estimated
Animal	1%	Not estimated	18%	Not estimated	5%	Not estimated
Other	7%	Not estimated	3%	Not estimated	1%	Not estimated

Appendix 2. Estimated unit weights, feeding rates, and percentage of feeding time for plants consumed by Japanese macaques living in lowland and highland forest areas

a. Lowland of Yakushima

a. Lowland of Yakushima				
		Unit	Feeding	% to total
Category	Species	weight (g)	rate	feeding
			(#unit/sec)	time
fruit	Ficus superba	0.150	0.22	9.0%
fruit	Ficus erecta	0.152	0.29	7.0%
fruit	Eurya emarginata	0.019	0.60	4.5%
fruit	Actinidia rufa	0.920	0.05	2.4%
fruit	Ficus microcarpa	0.148	0.15	2.2%
fruit	Myrica rubra	0.067	0.10	2.1%
fruit	Litsea acuminata	0.395	0.35	1.9%
fruit	Ficus pumila	0.352	0.03	1.6%
fruit	Neolitsea sericea	0.147	0.25	1.1%
fruit	Morinda umbellata	0.088	0.47	0.9%
fruit	Vitis ficifolia	0.013	0.27	0.6%
fruit	Melia azedarach	0.405	NA	0.6%
fruit	Cinnamomum camphora	0.048	0.28	0.4%
fruit	Eurya japonica	0.012	0.63	0.4%
fruit	Diospyros japonica	0.352	0.10	0.4%
fruit	Elaeocarpus sylvestris	0.356	0.09	0.2%
fruit	Psychotria serpens	0.008	0.10	0.2%
fruit	Taxillus yadoriki	0.041	0.10	0.1%
fruit	Glochidion obovatum	0.195	NA	0.1%
fruit	Ardisia sieboldii	0.055	0.21	0.1%
mature leaf	Daphniphyllum teijsmannii	0.110	0.07	1.9%
mature leaf	Symplocos lucida	0.110	0.17	0.6%
mature leaf	Oreocnide pedunculata	0.022	0.34	0.4%
mature leaf	Ficus superba	0.270	0.11	0.4%
mature leaf	Trema orientalis	0.230	0.07	0.4%
mature leaf	Ficus erecta	0.170	0.06	0.2%
mature leaf	Callicarpa shikokiana	0.022	0.43	0.2%
mature leaf	Maesa tenera	0.120	0.11	0.1%
mature leaf	Hydrangea grosseserrata	0.037	NA	0.1%
seed	Rhus succedanea	0.093	0.42	8.8%
seed	Zanthoxylum ailanthoides	0.093	0.42	5.4%
seed	Rhaphiolepis umbellata	0.007	0.22	4.3%
seed	Lithocarpus edulis	0.193	0.22	3.8%
	Cinnamomum camphora		0.06	3.0 <i>%</i> 3.1%
seed	•	0.048		
seed	Mallotus japonicus	0.009	0.48 0.28	2.4%
seed	Ardisia sieboldii	0.055		0.8%
seed	Litsea acuminata	0.001	0.25	0.7%
seed	Quercus phillyraeoides	0.490	0.12	0.7%
seed	Oreocnide pedunculata	0.007	0.49	0.6%
seed	Euscaphis japonica	0.030	0.23	0.6%
seed	Neolitsea sericea	0.147	0.36	0.2%
seed	Castanopsis sieboldii	0.498	NA	0.2%
seed	Glochidion obovatum	0.195	NA	0.1%
young leaf	Rhus succedanea	0.039	0.14	1.2%
young leaf	Elaeagnus glabra	0.044	0.40	0.2%
young leaf	Oreocnide pedunculata	0.006	0.64	0.1%

b. Highland of Yakushima

b. r ligiliaria	OI TAKUSIIIIIIA	11.74	Feeding	% to total
Category	Species	Unit	rate	feeding
	- F	weight (g)	(#unit/sec)	time
fruit	Eurya japonica	0.012	1.01	5.2%
fruit	Prunus sargentii	0.082	0.30	2.4%
fruit	Boehmeria longispica	0.067	0.38	1.7%
fruit	Eurya japonica var. yakushimensis	0.008	0.71	0.9%
fruit	Cornus kousa	0.700	0.14	0.8%
fruit	Cleyera japonica	0.038	0.52	0.4%
fruit	Dendropanax trifidus	0.030	0.34	0.3%
fruit	Symplocos myrtacea	0.030	0.51	0.3%
fruit	Neolitsea aciculata	0.036	0.50	0.2%
fruit	Vitis ficifolia	0.042	0.17	0.2%
fruit	llex pedunculosa	0.074	0.16	0.2%
fruit	Euonymus yakushimensis	0.018	0.27	0.2%
fruit	llex crenata	0.065	0.55	0.2%
mature leaf	Symplocos myrtacea	0.039	0.56	12.5%
mature leaf	Eurya japonica	0.118	0.34	5.3%
mature leaf	Histiopteris incisa	0.123	0.25	4.0%
mature leaf	Actinidia arguta	0.103	0.24	3.3%
mature leaf	Symplocos prunifolia	0.055	0.20	2.2%
mature leaf	Sorbus commixta	0.045	0.60	1.7%
mature leaf	Rubus croceacanthus	0.008	0.61	1.5%
mature leaf	Lepisorus onoei	0.066	0.59	1.5%
mature leaf	Trochodendron aralioides	0.325	0.12	1.1%
mature leaf	Rubus minusculus	0.035	0.58	1.0%
mature leaf	Ficus oxyphylla	0.075	0.17	0.8%
mature leaf	Mitchella undulata	0.008	0.76	0.8%
mature leaf	Pyrrosia lingua	0.133	0.05	0.4%
mature leaf	Zoysia japonica	0.007	0.77	0.4%
mature leaf	Miscanthus sinensis	0.034	0.87	0.3%
mature leaf	Chloranthus serratus	0.074	0.27	0.3%
mature leaf	Gleichenia japonica	0.123	0.23	0.2%
mature leaf	llex pedunculosa	0.100	0.23	0.1%
mature leaf	Clethra barbinervis	0.103	0.38	0.1%
seed	Distylium racemosum	0.001	0.10	2.5%
seed	Cornus kousa	0.096	0.54	1.0%
seed	Camellia japonica	0.019	0.54	0.2%
seed	Quercus salicina	0.124	0.50	0.2%
young leaf	Symplocos myrtacea	0.779	0.00	2.9%
_young leaf	Actinidia arguta	1.022	0.02	0.4%

Appendix 3. Parameters used in the estimation of the population-level food consumption by Japanese macaques

a. Average day length of each month

Month	Day length
IVIOLITI	(hour)
January	13.0
February	13.2
March	14.2
April	14.0
May	13.3
June	12.5
July	11.5
August	10.7
September	10.2
October	10.3
November	11.1
December	12.0

b. Parameters specific to different age-sex categories

Category	Body mass (kg)	Energy requirement relative to an adult female	Proportion in the population (NA group)	Proportion in the population (HR group)
Adult male	15.39	1.10	16%	25%
Adule female	13.55	1	28%	35%
Juvenile	6.54	0.58	56%	32%
Infant	NA	0	0%	8%

c. Abundance of Japanese macaques

	Population
Site	density
	(macaque/km ²
Lowland	81.1
Highland	11.8