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Abstract

Diversity of the Pondaung mammalian fauna (middle Eocene Myanmar) has been
explored based on the dental materials. In this paper, we provided photos of skeletal
materials of a rodent, carnivores, artiodactyls, and perissodactyls. Postcranial morphology
of the endemic Pondaung mammals are compared with those of related fossil species from
North America and Europe, revealing additional postcranial diversity in Eocene carnivorans,
dichobunid artiodactyls, ruminants, and chalicotherioid perissodactyls. The postcranial
materials indicated a presence of an additional taxon, a very small artiodactyl. that has
not been known from the dental materials of the Pondaung mammals. The differences in
postcranial morphologies suggested a divers locomotory behavior among the mammals of
the Pondaung fauna, such that scansors, generalized terrestrialists with cursorial tendency,
and generalized terrestrialists with digging adaptations were present among the carnivorous
mammals, and that small-sized and medium-sized ungulates distributed on various stages of
cursorial adaptations.

Introduction

The middle Eocene Pondaung Formation in central Myanmar has yielded numerous

terrestrial vertebrate fossils since early 20th century (Pilgrim, 1925, 1927, 1928; Matthew,

1929; Colbert, 1937, 1938). An extensive paleontological expedition was conducted by

the Myanmar government in 1997 (Pondaung Fossil Expedition Team, 1997). Since then,

expeditions in the Pondaung area were carried out almost every year by Myanmar researchers

and foreign research teams, such as Americans, French, and Japanese (Tsubamoto et al.,

2006, and cited therein). As a result of many new discoveries of new taxa, including several
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forms endemic to the fauna, the Pondaung fauna currently includes mammals from seven
orders (25 families 37 genera 53 species) (Tsubamoto er al., 2006). The number of known
mammalian taxa from the Pondaung fauna tripled up during this past decade.

The Pondaung mammals have been studied mainly based on dentognathic materials,
which are usually better preserved than bones and are useful for determining a generic
or species-level taxonomy. This does not mean that skeletal materials were not collected
during the expeditions but most of the skeletal materials have been neglected in descriptive
works. As exceptions among tens of descriptive works on the Pondaung mammals, several
papers have dealt with skeletal materials: the cranial fragments of primates (Takai et al.,
2003; Shigehara and Takai, 2004), the limb bones of primates (Ciochon et al., 2001; Gebo
et al., 2002; Marivaux et al., 2003; Kay et al., 2004; Egi et al., 2006), and the postcrania of
creodonts (Egi ef al., 2005, in press).

In this paper, we introduce several postcranial materials of the Pondaung mammals that
have not been described in anywhere previously. As proved by the above mentioned studies,
skeletal materials are possible to provide new information on systematics and sensory and
locomotory adaptations that can not be obtained from dentognathic materials. The materials

presented here include limb bones of perissodactyls, artiodactyls, rodents, and carnivores.

Materials

The specimens presented in this paper were collected by the Pondaung Expedition
Team in 1997 (Pondaung Fossil Expedition Team, 1997) and by the Myanmar-Japan
Pondaung Paleontological Expedition Team since 1998 (Tsubamoto et al., 2006). The former
specimens are stored in National Museum of Myanmar in Yangon, and the latter are stored in
Department of Geology, University of Yangon. These specimens have been catalogued under
the serial NMMP-KU (National Museum - Myanmar - Paleontology - Kyoto University)
specimen numbers by the Kyoto University field party (Tsubamoto et al., 2000, 2006).

The Eocene Pondaung Formation is one of several Tertiary Formations widely
distributed in central Myanmar (Bender, 1983). The vertebrate fossils were obtained from the
lower part of the “Upper Member” of the Pondaung Formation (Aye Ko Aung, 1999, 2004).
The age of this particular stratigraphic level has been calibrated as 37.2 +/- 1.3 Ma, the latest
middle Eocene, based on the fission-track method applied on zircon grains from tuffaceous
sediments (Tsubamoto er al., 2002). The vertebrate fossil localities scatter in the east side
of the Pondaung range (for a map, a locality list, and a detailed geological information, see
Tsubamoto ef al., 2006). Locality of each specimen introduced in this study are listed in
Tsubamoto et al. (2006: table 3).

Occurrence and taxonomic identifications of skeletal materials
It is usually difficult to make a taxonomic identification for a skeletal material when

it is not associated with any dental parts. In the Pondaung localities, most of the specimens
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Postcranial materials of Pondaung mammals

Table 1. The mammals from the Pondaung fauna and their body size. Body size estimates were from
Tsubamoto e al. (2005) for herbivores, Egi er al. (2005) for creodonts, and Egi (pers. data) for carnivorans.
Approximate body mass range in kilograms are indicated in the parentheses.

size primates rodents creodonts artiodactyls perissodactyls
carnivorans [ungulate indet. |
very large Sivatitanops
(=800) Paramynodon
Bunobrontops
cf. Metatelmatherium
large Bunobroniops
(100-500) Paramynodon
Anthracotherium — Amynodaontidae
“Pterodon™ Cf. Teletaceras
medium Nimravus Anthracotherium  Bahinolophus
(8-60) Kyawdawia Indolophus
Proviverrinae gen. nov. “Eomoropidae”
cf. Chailicyon Artiodactyla indet.  Eomoropus
Pondaungia Amphicyonidae Pakkokuliyus
small Amphipithecus Yarshea Asiohomacodon
(2-8) Pondaungia Proviverrinae indet.

7Sivaladapidae Nimravidae indet. Indomeryx

Myammarpithecus Vitlpavies | Hsanotheriuwm|

very small  Bahinia
(<) Eosimias Pondaungimys

Primates indet. Anomaluridae

have been collected during surface perspectives after rainy seasons. The specimens are not
moved very far from the original sediments, but the parts are hardly articulated. Among the
nearly 2000 specimens collected (Tsubamoto et al., 2006: table 3), only five skeletal materials
are associated with dental materials that help taxonomic identification of the animal. Three
of them were already published in previous papers (a frontal bone of Amphipithecus, Takai
et al., 2003; a humeral head of Myanmarpithecus, Egi et al., 2006; postcrania and a skull
of a creodont, Egi ef al., 2005). The other two specimens, limb bones of a small artiodactyl
(Indomeryx) and those of a brontotheriid perissodactyl, are introduced in the below.

Because the taxonomy of a specimen is usually identified based on its dental
morphology, taxonomic identification of isolated skeletal materials are limited. For certain
skeletal parts such as ends of limb bones, we could identify their order level taxonomy based
on the morphology. Then, assignments of skeletal materials to any of the known Pondaung
mammals were attempted based on the size of animal for the materials. Body sizes of the
Pondaung mammals have been estimated based on the occlusal surface area of molars (Egi
et al., 2004, 2005; Tsubamoto ef al., 2005; Tablel). In a few occasions, there are no dentally
known species in the body size range of the skeletal material of interest. In such case, the
skeletal material suggests an existence of an additional indeterminate taxon that has not been

known from any dental specimens.
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Figure 1. A left proximal tibia of a rodent, NMMP-KU 0827. A, anterior view. B, lateral view. C, posterior
view. D, medial view. One division of scale equals 1 mm.

Rodent postcrania
(Figure 1)

NMMP-KU 0827 (Figure 1) is a left proximal tibia of a rodent, and its size is
comparable to that of Tupaia glis (160 g; Macdonald, 2001). This body size corresponds
to the anomalurid rodents from the Pondaung fauna (Tsubamoto er al., 2005). The tibial
tuberosity and the intercondylar eminence are weakly developed. The medial condyle is
round. The anteroposterior length of the medial condyle is 4.9 mm. It is slightly higher than
the medial one. An oval articulation for the fibula is located postrolaterally under the condyle.
Overall, the morphology is similar to extant sciurids, suggesting scansorial to arboreal

locomotion.

Carnivore postcrania
(Figures 2, 3)
Miacids (Figure 2)

NMMP-KU 1886 and 1379 are femoral fragments of carnivorans. These elements are
comparable in size to those of a Marten with an associated body mass of 1.4 kg. A lower
second molar of a miacid carnivoran, Vulpavus, has been reported from the Pondaung fauna
(Takai and Shigehara, 2004). This tooth is about the size of Miacis petilus from North
America (= 1.3 kg; Heinrich and Rose, 1995). It seems reasonable to consider that the
postcranial materials belonged to the small species of Vulpavus.

In the proximal femur (NMMP-KU 1886; Figure 2A), the femoral head is spherical,
and the fovea capitis is located slightly posteriorly from the most medial point. The femoral
neck is short. The greater tuberosity is lower than the femoral head, and the anterior rugose
surface extends inferiorly. In the distal femur (NMMP-KU 1379; Figure 2B), the medial and
lateral condyles are about the same in width. The condyles are not elongated superoinferiorly
or anteroposteriorly. The patellar groove is shallow. It is not as wide as that of arboreal
carnivorans such as Nandinia, and it is broader and flatter than that of Felis and Vulpes.
Overall, these morphologies agree with those of miacid carnivorans such as Miacis and

Vulpavus, which have been estimated as arboreal to scansorial animals (Heinrich and Rose,
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Postcranial materials of Pondaung mammals

Figure 2. Femoral fragments of miacid carnivorans. A, a left proximal femur, NMMP-KU 1886; Al, anterior
view; A2, posterior view. A3, superior view. B, a left distal femur, NMMP-KU 1379; B1, anterior view; B2,
posterior view; B3, lateral view; B4, distal view. One division of scale equals 1 mm.

1995, 1997).

Medium-sized carnivoran (Figure 3A-C)

NMMP-KU 0689 consists of a medial part of the distal humerus, a humeral shaft, a
radial head, and a cranial fragment. It belonged likely to a wolverine-size animal (10-15 kg;
MacDonald, 2001). Creodonts and carnivorans of similar body size have been known from
the Pondaung fauna. The deltopectoral and supinator crests are poorly developed on the
humeral shaft of NMMP-KU 0689 (Figure 3A). This moderately developed deltopectoral
crest suggests that NMMP-06809 is not closely related to an advanced Old World proviverrine
creodont (Egi et al., 2005) or an amphicyonid such as Guangxicyon (Zhai et al., 2003); thus,
the best candidate for NMMP-KU 06809 is cf. Chailicyon at present.

At the distal end of the humerus (Figure 3B), the medial epicondyle is unreduced and
superoinferiorly thick. A large entepicondylar foramen is present. The medial edge of the
trochlea is sharp, and the trochlea is conical. The olecranon fossa is not perforated, but deep.
Length and width of the radial head (Figure 3C) are 14.47 and 9.18 mm, respectively. The
capitular eminence is clear. The medial lobe is ovoid, and the smaller lateral lobe is semi-
rectangular. The radial tuberosity is strong. The radial neck is narrow relative to the head. The
morphology of these forelimb fragments suggests absence of powerful shoulder muscles (lack
of fossorial adaptations), a limited pronation ability (not specialized for arboreal adaptations),
and a slight specialization to fore-aft movements (tendency to cursoriality). This animal was

likely to be a generalized terrestrialist that is exampled by an extant civet.

Medium-sized carnivorous mammals (Figure 3D, E)
Two proximal radii, NMMP-KU 1391 (Figure 3D) and NMMP-KU 1313 (Figure 3E),
belong to carnivores larger than NMMP-KU 0689 (Figure 3C). The sizes of the radial heads
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Figure 3. Forelimb fragments of carnivorans. A, humeral shaft: Al, anterior view: A2, lateral view. B, distal
humeral fragment: B1, anterior view; B2, medial view; B3, posterior view; B4, distal view. C, D, E, proximal
radii: C1, D1, E1, lateral view; C2, D2, E2, posterior view: C3, D3, E3, medial view: C4, D4, E4, anterior
view. A, B, C, NMMP-KU 0689 (an associated carnivoran). D, NMMP-KU 1391 (cf. proviverrine creodont). E,
NMMP-KU 1313 (carnivoran). One division of scale equals 1 mm.

are 18.21 x 11.96 mm in NMMP-KU 1391 and 21.98 x 12.77 mm in NMMP-KU 1313. Sizes
of these materials fall in the range of proviverrine creodonts (Kyawdawia and proviverrinae
gen. nov.) and a nimravid carnivoran (Nimravus sp. cf. N. intermedius). Locomotion of
Kyawdawia has been estimated as a generalized terrestrialist with a powerful forelimb
movements (Egi et al., 2005), and that of nimravids has been suggested as scansorial (Van
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Figure 4. A left astragulus of a very small artiodactyl (Artiodactyla indet.), NMMP-KU 0826. A, dorsal view
(a stereo pair). B, plantar view (a stereo pair). C, lateral view. D, medial view. E, proximal view; F, distal view.
One division of scale equals | mm.

Valkenburgh, 1985). Both of the proximal radii (Figure 3D, E) have a clear capitular
eminance, a clear separation between the medial and lateral lobes, and a strong radial
tuberosity. NMMP-KU 1391 differs from the others in relatively wider radial neck. Because
the powerful forelimb movements of the Pondaung proviverrine creodonts likely required a
robust radius, this specimen seems to have belonged to a proviverrine creodont rather than
to a carnivoran. The radial head of NMMP-KU 1313 is rectangular compared with the ovoid
radial heads of NMMP-KU 0689 and 1391, suggesting that NMMP-KU 1313 has some
cursorial adaptations (MacLeod and Rose, 1993).

Artiodactyl postcrania
(Figures 4-10)
Very small artiodactyl (Figure 4)

NMMP-KU 0826 (Figure 4) is a left astragalus of a very small artiodactyl. The
estimated body mass of this very small artiodactyl (NMMP-KU 0826) using the regression
equation by Martinez and Sudre (1995) is about 1181 g. This body mass is much smaller
than the estimated body masses of the previously reported small Pondaung artiodactyls
(Indomeryx and Asiohomacodon: the range is 2.3 — 6.3 kg) (Tsubamoto et al., 2005; Table 1).
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Figure 5. Right humeral fragments of Indomeryx, NMMP-KU 0712 (associated with a molar). A, proximal
humerus; Al, anterior view: A2, medial view; A3, posterior view: A4, lateral view; AS, proximal view. B,
distal humerus; B1, anterior view; B2, medial view; B3, posterior view: B4, lateral view: B5, distal view. One
division of scale equals 1 mm.

The size of this animal is comparable to small Eocene dichobunids such as Diacodexis and
Messelobunodon (Rose, 1982, 1985; Martinez and Sudre, 1995), and this astragalus suggests
an occurrence of a very small (Diacodexis-size) artiodactyl species in the Pondaung fauna.
The distoplantar portion of the astragalus is broken. This astragalus is slender: the length
is 11.13 mm, the width is 4.89 mm, and the dorso-plantar height (Martinez and Sudre, 1995)
is 4.70 mm. NMMP-KU 0826 is slender than astraguli of Cainotherium (Cainotheriidae;
Hiilzeler, 1936), Messelobunodon (Franzen, 1981), and Diacodexis (Rose, 1982, 1985).
The length/width ratio of NMMP-KU 0826 is 2.28, which is close to that of the astragalus
of Doliochoerus (the ratio = 2.3) (Martinez and Sudre, 1995). The distal trochlea is slightly
diagonal to the tibial trochlea, but not so diagonal as in an extant Sus. The distal surface
bears a weakly developed keel that separate the IVth tarsal (the cuboid) articulation from the

central tarsal (the navicular) articulation.

Indomeryx (Figures 5, 6)

NMMP-KU 0712 (Figure 5) is associated with a molar talonid, and is identified as
Indomeryx (Ruminantia). The size of these elements are approximately comparable to that of
a Lepus with an associated body mass of 2.15 kg. Thus, this specimen is a right size for the
smaller species of Indomeryx, I. arenae (2.3 kg; Tsubamoto et al., 2005). Several other limb
bone fragments (NMMP-KU 0115, 1050, 1359, and 1083; Figure 6) of small artiodactyls
seem to have belonged to Indomeryx (2.3 —4.1 kg; Tsubamoto er al., 2005) based on the size.

The humeral head (Figure 5A) is hemispherical in the lateral aspect and flat in the
posterior aspect. The greater tuberosity is large and thick. Its height is unknown because
of the damage on the specimen. The bicipital groove is shallow, and the deltopectoral

crest is poorly developed. The proximal shaft surface is smooth, showing more similarity
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D1

C3 C4 D4

Figure 6. Hindlimb fragments of Wndomeryx. A, proximal femur, NMMP-KU 0115; Al, anterior view; A2,

medial view; A3, posterior view; A4, lateral view: AS, proximal view. B, distal femur, NMMP-KU 1050; B1,

anterior view; B2, medial view; B3, posterior view; B4, lateral view; BS5, distal view. C, distal tibia, NMMP-

KU 1359; C1, anterior view; C2, medial view; C3, posterior view; C4, lateral view; C5, distal view. D,

proximal metatarsals III, TV, and a vestigial V, NMMP-KU 1083; D1, dorsal view: D2, plantar view; D3, lateral

view; D4, proximal view. One division of scale equals 1 mm.
to Diacodexis (Rose, 1985) than to Cainotherium (Hiilzeler, 1936). The distal humerus
(Figure 5B) is narrow. Indomeryx is more advanced than Diacodexis (Rose, 1985, 1990) and
Cainotherium (Hiilzeler, 1936) in lacking the lateral condyle, but more primitive than recent
ruminants such as Cervus and Capra in retaining a small medial condyle. The olecranon
fossa is perforated as a foramen. The articulation is cylindrical. The capitulum is modified
into a narrow intercondylar ridge as in dichobunids and other ruminants.

The femoral head (Figure 6A) is superoinferiorly compressed, so that it is in an

intermediate condition between those of dichobunids and Cainotherium (Hiilzeler,
1936: Rose, 1985) and those of ruminants. The neck is short. Similar to dichobunids and

Cainotherium, the greater trochanter protrudes slightly above the head. The lesser trochanter
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projects posteromedially, similar to tragulids and Cainotherium but dissimilar to dichobunids
(Rose, 1985). The distal femur (Figure 6B) is mediolaterally narrow. The patellar groove is
narrow and deep. The medial ridge of the patellar groove is more elevated and thicker than
the lateral one. These features are shared with dichobunids and tragulids (Rose, 1985). The
distal tibia (Figure 6C) has two deep parallel grooves for the astragulus. The lateral surface
of the distal part of the shaft is flat, providing an articular surface for the fibular malleolus.
The proximal parts of the metatarsal III and IV (Figure 6D) indicate that the metatarsals are
attached to one another but have not been fused. The metatarsals seem to be more gracile
than thosc of Cainotherium and cxtant tragulids (Hilzeler, 1936; Rose, 1985). The size of
the metatarsal I'V is relatively reduced compared with that of Cainotherium and Diacodexis
(Hiilzeler, 1936; Rose, 1985) and becomes similar to the size of the metatarsal I1I. The
metatarsal IV bears a small fragment of a vestigial metatarsal V, suggesting that the reduction
of this digit is more progressed in Indomeryx than in Cainotherium and Diacodexis (Hiilzeler,
1936; Rose, 1985). A small metatarsal 1l was probably present and articulated at the convex

of the medial surface of the proximal metatrasal III.

Asiohomacodon (Figures 7, 8)

Asiohomacodon (Dichobunidae) is another small artiodactyl that is known from the
Pondaung fauna, and it is slightly larger (6.3 kg) than Indomeryx (Tsubamoto er al., 2005).
The distal humeri of NMMP-KU 1803 and 1013 (Figure 7A, B) are elements of a small
artiodactyl, and are larger than the Indomeryx humerus. These distal humeri differ from that
of Indomeryx and are similar to that of dichobunid such as Diacodexis (Rose, 1985) in having
a better developed medial condyle and a swelling of the lateral condyle. Thus, the size and
the morphology agree with the assignment of this material to the dichobunid Asiohomacodon.
The olecranon fossa is perforated, and the capitulum is cylindrical as in other small
artiodactyls. The capitulum is relatively wider than that of Diacodexis and Indomeryx, and
the medial trochlear edge protrudes slightly distally.

The proximal radius of Asiohomacodon (Figure 7C) is similar to that of Diacodexis (Rose,
1985, 1990). The morphology of the medial surface of the shaft indicates that the radius
is appressed to the ulna. The radial head surface is indented by a shallow groove for the
intercondylar ridge of the capitulum, indicating that the radial head articulates with the whole
distal humeral articulation. The medial lobe is more distally deflected in Asiohomacodon
than in Diacodexis, that seems to be related with the distal protrusion of the medial edge of
the humeral trochlea. Distally, the radius (Figure 7D) has two articular facets for carpals,
presumably for the radial carpal (the scaphoid) and for the intermediate carpal (the lunate).
The rugose surface at the posteromedial side of the distal shaft indicates that the reduction of
the ulna was not as great as that of extant ruminants. The distal part of the ulna was bound to
the radius by connective tissue fibers.

The distal tibia (Figure 8A) is associated with a distal humerus (NMMP-KU 1803). The
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Figure 7. Forelimb fragments of small artiodactyls (?Asiohemacodon). A, B, distal humerus: A1, B1, anterior
view: A2, B2, medial view: A3, B3, posterior view:; A4, lateral view; B4, distal view. A, NMMP-KU 1803
(associated with the distal tibia in Figure 8A). B, NMMP-KU 1013. C, proximal radius, NMMP-KU 1372:
C1, anterior view; C2, medial view; C3, posterior view; C4, lateral view; C5, proximal view. D, distal radius,
NMMP-KU 1882: D1, anterior view: D2, medial view; D3, posterior view; D4, lateral view: D5, distal view.
One division of scale equals 1 mm.

distal tibia is mediolaterally narrow. There is an articular surface for the fibular malleolus

on the lateral side of the distal shaft, similar to that of Indomeryx. The two grooves for the

astragular trochlea are deep, and the medial one is longer. The astragulus (Figure 8B) is

relatively slender as in Cainotherium (Hiilzeler, 1936), Messelobunodon (Franzen, 1981),
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Figure 8, Hindlimb [ragments of small artiodactyls (?Asiohomacodon). A, distal tibia, NMMP-KU 1803
(associated with the distal tibia in Figure 7A): Al, anterior view; A2, medial view; A3, posterior view: Ad,
lateral view; A5, distal view. B, astragulus, NMMP-KU 0273: B1, dorsal view; B2, plantar view: B3, lateral
view; B4, medial view; BS, proximal view; B6, distal view. C, proximal metatarsals III, IV, and a vestigial V,
NMMP-KU 1077; €1, dorsal view: C2, plantar view; C3, lateral view; C4, proximal view. One division ol
scale equals 1 mm.
and Diacodexis (Rose, 1982, 1985). The tibial trochlea is very deep and slightly diagonal to
the distal trochlea. There is a distinct keel that separates the articulation for the central tarsal
(the navicular) from that for the IVth tarsal (the cuboid). At the plantar side, the articulation
with the calcaneum is limited to the two thirds of the bone width. NMMP-KU 1077, proximal
metatarsals, are covered with matrices, but some morphologies are still identifiable. As in
Indomeryx, these slender metatarsals are not fused. The metatarsal V is reduced and sits at
posterolateral side of the metatarsal IV. The metatarsal IV is slightly wider than the metatarsal
IIT in this specimen. This feature is similar to other dichobunids, such as Diacodexis and

Bunolophus (Rose, 1985) rather than to Indomeryx.

Anthracotherium (Figures 9, 10)
Anthracotherium (Suiformes; Anthracotheriidae) is the most abundant mammal in the
Pondaung fauna, consisting of 40 % of the identifiable dental materials (Tsubamoto et al.,

2005). Four species of Anthracotherium are presently known from the fauna, and their body
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Figure 9. Forelimb fragments of Anthracotherium. A, distal humerus, NMMP-KU 1356; Al, anterior view:
A2, medial view; A3, posterior view; A4, lateral view; A5, distal view. B, proximal radius, NMMP-KU 1590;
B1, anterior view: B2, medial view; B3, posterior view: B4, lateral view; BS, proximal view. One division of
scale equals 1 mm.

size ranges from 16 to 237 kg (Tsubamoto et al., 2005). Several distal tibiae and astraguli of
Anthracotherium have been collected from the fauna, reflecting the abundance of the genera.
However, the number of specimens that were identified as Anthracotherium is not large
for other postcranial elements. This may be due to collection biases towards to neglecting
skeletal materials of these medium to large sized mammals or due to taphonomic biases to
eliminating this size of specimens.

The medial condyle of the distal humerus in Anthracotherium (Figure 9A) is better
developed than that of an extant Sus. The lateral side is incomplete, but the remaining
morphology indicates absence of a lateral condyle. A large olecranon foramen opens on the
distal articular surface. The capitulum forms an intercondylar ridge as in other artiodactyls,
and has a smaller diameter than the trochlea. The capitulum is cylindrical, differing from
the laterally flared capitulum in an extant Sus. The medial surface of the trochlea curves
internally, in contrast to that of an extant Sus, which bulges out and forms a round surface.
These morphology in the distal humerus is reflected to the radial head (Figure 9B). The
medial lobe is larger and anteroposteriorly much thicker than the lateral lobe. There is a
shallow groove for the intercondylar ridge, and a ridge from the capitular eminence fits
with the trochlear groove. The medial edge of the articular surface is deflected distally. The
radial shaft is anteroposteriorly compressed. Rugose impressions are widely distributed on
the posterior surface of the shaft, indicating a wide ulnar shaft was bound to the radius by
connective fibers.

The distal femur of Anthracotherium (Figure 10A) is similar to that of an extant Sus.
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Figure 10. Hindlimb fragments of Anthracotherium. A, distal femur, NMMP-KU 0706; Al, anterior view; A2,
posterior view; A3, lateral view; A4, distal view. B, proximal tibia, NMMP-KU 1606: B1, proximal view; B2,
anterior view. C, distal tibia, NMMP-KU 0977 (a subadult individual): C1, anterior view; C2, lateral view; C3,
posterior view; C4, medial view; C5, distal view. D, astragulus, NMMP-KU 0972: D1, dorsal view; D2, medial
view:; D3, plantar view; D4, lateral view:; D5, proximal view: D6, distal view. One division of scale equals |
mm.

The width of the distal part is narrow as in ungulates. The patellar groove is deep and curves
slightly medially at the distal end. The medial ridge of the patellar groove is higher than the
lateral one, but the difference is not as clear as in extant ruminants. The proximal tibia of
Anthracotherium (Figure 10B) is similar to that of an extant Sus than to an extant ruminant, in
having poor developments of intercondylar eminence, extensor groove, and tibial tuberosity.
The medial condyle is longer and extends more anteriorly than the lateral one as in an extant
Sus. The tibial tuberosity is relatively wide.

There are some differences in ankle morphology between Anthracotherium and an extant
Sus. The distal tibia (Figure 10C) is mediolaterally wider in Anthracotherium. The medial
malleolus is large, but the tibial cochlea, which is an articulation for the astragular trochlea
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Figure 11, Forelimb fragments of medium perissodactyls (?chalicotherioids). A, a left distal humerus, NMMP-
KU 0639: A1, anterior view:; A2, lateral view; A3, posterior view; Ad, medial view; A5, distal view. B, a right
proximal radius, NMMP-KU 1591; B1, anterior view; B2, posterior view; B3, medial view; B4, proximal view.
One division of scale equals 1 mm,

groove, is not as distinct as an extant Sus and ruminants. The difference between the medial
and lateral grooves are nol as great as an extant Sus. The overall proportion of the astragulus
of Anthracotherium (Figure 10D) is similar to that of an extant Sus and longer than that of
extant Cervus and Capra. The angle of the tibial trochlea relative to the distal trochlea is less
diagonal in Anthracotherium than in an extant Sus. The lateral ridge of the tibial trochlea is
sharp as in Asiohomaodon. The fossa at the distal end of the tibial trochlear groove is shallow,
reflecting the small tibial cochlea of the distal tibia. The distal trochlear groove and the ridge
between the central tarsal (the navicular) and the IVth tarsal (the cuboid) articulations are
more clear in Anthracotherium than in Asiohomacodon, and the condition is rather similar to
that in an extant Sus. In an extant Sus, the distal trochlea increases its width distally, so that
the articular surface for the IVth tarsal (the cuboid) is large. In Anthracotherium, the medial
and lateral walls of the distal trochlea is parallel. The articulation for the calcaneum is widely
spread at the plantar surface.

Perissodactyl postcrania
(Figures 11-17)
Medium-sized perissodactyls (Figures 11. 12)
Besides Anthracotherium, the Pondaung fauna has yiclded some medium-sized
ungulates (Table 1). They are tapiromorph perissodactyls, and some postcranial materials
likely belonged to these perisodactyls.
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NMMP-KU 0639 (Figure 11A) is a distal humerus of a perissodactyl with a body
size of Gazella (15 — 32 kg; Macdonald, 2001). NMMP-KU 1591 and 1311 are distal radii
(Figures 11B, 12B). They also seem to have belonged to Gazella-sized animals but show
very different morphologies. Two types of Gazella-sized perissodactyls are known from the
Pondaung fauna: chalicotherioids (Eomoropus and “Eomoropidae™ indet.) and an indolophid
(Indolophus) (Tsubamoto et al., 2005). Based on the morphology discussed the below,
NMMP-KU 0639 and 1591 are here tentatively assigned to Chalicotherioidea, and NMMP-
KU 1311 are assigned to the other taxon, Indolophus.

The distal humerus, NMMP-KU 0639 (Figure 11A), is similar to that of primitive
perissodactyls such as Heptodon and Hyracotherium in having reudced medial and lateral
condyles, a low and sharp supinator crest, and a perforated deep olecranon fossa (Rose,
1996). The capitulum is narrow, but the intercondylar ridge has not been formed yet. NMMP-
KU 0639 differs from the distal humeri of Heprodon and Hyracotherium, in more reduced
condyles, a loss of the capitular tail, and a more conically shaped capitulum. The capitulum
and the trochlea form a spool-shaped articulation in NMMP-KU 0639. One very peculiar
feature in this specimen is that the lateral edge of the distal humeral articulation protrudes
more distally than the medial edge, so the plane defined by the trochlear groove is not parallel
to the shaft. The proximal radius, NMMP-KU 1591 (Figure 11B), has morphologies that can
articulate with such distal humeral articulation; thus, we can assume that NMMP-KU 1591
belonged to the animal same as NMMP-KU 0639. A ridge from the capitular eminence is
formed at the middle of the radial fovea. This ridge articulates with the trochlear groove of
the humerus, and it curves slightly laterally. The articular surfaces medial and lateral to the
ridge are subequal in surface area size. The medial half is deflected distally. The groove for
an intercondylar ridge is absent. The radial head and the shaft are mediolaterally wide. The
posterior surface of the proximal shaft provides a wide attachment with the ulna.

The morphologies of the distal humeral articulation and the radial head suggest that
the humerus is abducted when the forearm is set vertical to the ground, or that the hand is
positioned medially compared with the elbow and the shoulder. The long bones angled to
the parasaggital plane are not efficient during running activity, because it reduces the stride
length relative to the limb bone length and increases the bending and torsional loadings on
the limb bone shaft, suggesting the lineage of this animal had abandoned to enhance cursorial
adaptations. Such a peculiar limb posture seems unlikely to be present in usual perissodactyls
except in chalicotherioids, which are known for their elongated forelimbs and clawed fingers
and toes, and even for the knuckle-walking posture in some species (Coombs, 1983, 1998).
The Eocene member of Chalicotherioidea were not as specialized as the later species (Coombs,
1983), but it seems to be possible for a middle Eocene eomoropid to have some modifications
in their forelimb. This medium-sized perissodactyl from the Pondaung fauna differs from
the Heptodon and Hyracotherium (Rose, 1996) in its greatly reduced condyles and loss of
the capitular tail in the distal humerus and more mediolaterally elongated radial head. These
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Figure 12. Forelimb fragments of a medium perissodactyl (?Indolophus), NMMP-KU 1311. A, humeral head:
Al, posterior view: A2, medial view: A3, proximal view. B, proximal radius: B1, anterior view; B2, lateral
view: B3, posterior view; B4, medial view; BS, proximal view. One division of scale equals 1 mm.
indicate that the linecage of this animal had once reached a more derived stage of cursorial
adaptations of ungulates than the early Eocene Heprodon and Hyracotherium.

NMMP-KU 1311 consists of a humeral head and a proximal radius (Figure 12).
Although the proximal radius of NMMP-KU 1311 (Figure 12B) is approximately same in
size as the above mentioned NMMP-KU 1591 (Figure 11B), the overall morphology of the
former is that of usual cursorial perissodactyls. At present, Indolophus, of which body mass
has been estimated as 20.7 kg (Tsubamoto er al., 2005), seems to be the best candidate for
this kind of perissodactyls. The humeral head (Figure 12A) is spherical in the superior view,
is hemispherical in the medial view, and is flat in the posterior view. The greater tuberosity
is slightly wider than the lesser tuberosity. The greater tuberosity is not very thick. The
radial head (Figure 12B) is mediolaterally elongated. The lateral one third of the articular
surface is higher than the rest, indicating that the capitulum had the intercondylar ridge and
that its height was smaller than that of the trochlea. The ridge for the trochlear groove runs
at the lateral third of the radial head, and it is parallel to the groove for the intercondylar
ridge. The anterior edge of the radial head parallel to the posterior edge and the horizontal
articular surface for the trochlea indicates that the humeral trochlea was cylindrical and that
the elbow joint movement is limited in the parasaggital plane. The articulation surface with
the ulna is wide at the posterior surface of the radial head but it narrows rapidly at the radial
neck, indicating that the radius is not mobile relative to the ulna and that the ulnar shaft was

reduced. The posterior surface of the radial shaft curves anteriorly, similar to many extant
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Figure 13. Hindlimb fragments of a brontotheriid (A, B, NMMP-KU 0672) and a cf. brontotheriid (C, NMMP-
KU 0621). A, ilium to acetabulum part of the pelvis: A1, inferior view: A2, medial view. B, femur; B1, anterior
view; B2, medial view; B3, posterior view; B4, lateral view. C, proximal tibia: C1, anterior view; C2, posterior
view; C3, lateral view; C4, proximal view. One division of scale equals 5 mm.

ungulates. Overall, the morphologies of the proximal radius indicate that this animal is the

most cursorial mammal in the Pondaung fauna.

Large perissodactyl (Figures13-17)
Most of large mammals are brontotheriid and rhinocerotoid perissodactyls in the

Pondaung fauna. They are taxonomically divers in the fauna, and six genera and eleven
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Figure 14. Proximal radius and carpals of large perissodactyls (cf. brontotheriids). A, proximal radius; Al,
anterior view; A2, medial view; A3, posterior view: A4, lateral view; AS, proximal view. B, accessory carpal;
B1, lateral view: B2, superior view: B3, proximal (dorsal) view. C, ulnar carpal; C1, dorsolateral view: C2,
lateral view; C3, plantar view; C4, medial view: C5, proximal view; C6, distal view. D, radial carpal; D1,
dorsomedial view; D2, medial view:; D3, plantolateral view; C4, lateral view; C5, proximal view; C6, distal
view. E, carpal 1V: El, dorsolateral view: C2, plantar view; C3, plantomedial view: Ed4, dorsal view; ES,
proximal view; E6, distal view. A, NMMP-KU 1507; B, C, E, NMMP-KU 1245; D, NMMP-KU 1373. One
division of scale equals 5 mm.

species have been known based on the dental materials (Tsubamoto et al., 2006). The body
size of amynodontid rhinocerotoid ranges from 154 kg of an indeterminate genus to 1 t of
Paramynodon cotteri in the Pondaung fauna, while the body size of brontotheriid ranges from
512 kg of Bunobrontops sp. to 5 t of Sivatitanops birmanicus (Tsubamoto et al., 2005). Large
fragments of limb bones are likely to have belonged to these perissodactyls, but taxonomic

identifications are not possible because of the incompleteness of the materials and the lack
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Figure 15. Foot elements and a metacarpal of large perissodactyls (cf. brontotheriids). A, astragulus, NMMP-
KU 1012a; Al, dorsal view; A2, plantar view; A3, medial view; A4, proximal view; AS, distal view. B,
calcaneum, NMMP-KU 1012b; B1, dorsal view: B2, plantar view; B3, lateral view. C, metacarpal II, NMMP-
KU 0110; C1, dorsal view; C2, medial view; C3, plantar view; Cd, lateral (median) view: C5, proximal view.
One division of scale equals 5 mm.
of association with any dental materials. The skeletons of brontotheriids and rhinocerotoids
have been reconstructed for better known species (Osborn and Wortman, 1895; Osborn,
1898, 1929). We do not attempt comparisons of the materials from the Pondaung fauna with
brontotheriids and amynodontids from the other places, because the preservation of the
Pondaung materials is too incomplete.

NMMP-KU 0672 is an associated skeleton of a brontotheriid (Figure 13). Most of the
elements are fragmentary, but it included an upper molar and M,, which helped taxonomic
identification, and mostly complete femora. The total length of the femur (Figure 13B) is
37 ¢m, which is as same as an extant horse. The mediolateral and anteroposterior diameters
of the mid-shaft are 41.7 and 36.8 mm, so the anteroposterior elongation of the shaft cross-
section seen in extant horses is absent in this brontotheriid. The diameters of the femoral

head are 48.3, 51.0, and 29.6mm in anteroposteriorly, superoinferiorly, and mediolateral
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Figure 16. Carpal and tarsal elements of very large perissodactyls. A, ulnar carpal. NMMP-KU 1326; Al,
dorsolateral view; A2, lateral view; A3, plantar view; A4, medial view: AS, proximal view; A6, distal view. B,
astragulus, NMMP-KU 1355; B1, dorsal view; B2, lateral view; B3, medial view. C, central tarsal, NMMP-KU
1231: C1, proximal view; C2, distal view; C3, dorsomedial view; C4, plantolateral view. One division of scale
equals 5 mm.

directions, respectively. The proximal half of the femoral head is spherical. The lesser and
third trochanters are large and extend nearly to the 50 % of the shaft. The distal femur
is anteroposteriorly deep. The total width of the distal end is 78.2 mm, and it is smaller
relative to the proximal femur than that of an extant horse. The patellar groove is deep and
is bordered by a thick medial ridge. The height, width, and depth of the medial condyle are
51.3, 31.2, and 30.5 mm, respectively, and those of the lateral condyle are 46.6, 31.5, and
28.0 mm, respectively. A fragmentary distal humerus associated with this individual indicates
that the size of this part (total width, 83.55 mm; capitular height, 43.0 mm; trochlear height,
53.9 mm) is as large relative to the femoral length as that of an extant horse. The illium is
not greatly expanded relative to the acetabular part of the pelvis (Figure 13A). Although
later large brontotheriids are characterized as a widely sprayed illiac blade, the morphology
seen in this Pondaung brontotheriid agrees with primitive and moderate-sized brontotheriids
(Mader, 1998). Many other postcranial elements such as the proximal tibia, forelimb, and
foot elements of this sized animal have been collected (Figures 13C, 14, 15). There are not
many amynodontid species in this body size range in the Pondaung fauna, so a skeletal
fragment of a horse-sized mammal likely belongs to a brontotheriid in the fauna. Tibial shaft

is not as slender relative to the proximal articulation as that of Titanotherium and Brontops
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FS

Figure 17. Phalages of very large perissodactyls. A, metacarpal IV, NMMP-KU 0111; A1, dorsal view; A2,
lateral view; A3, plantar view; A4, medial (median) view: A5, proximal view. B, metacarpal 1II, NMMP-KU
1608; B1, dorsal view; B2, lateral view; B3, plantar view; B4, medial view; B5, proximal view. C, metacarpal
IV, NMMP-KU 0642; C1, dorsal view:; C2, lateral view; C3, plantar view; C4, medial (median) view; C5,
proximal view. D, metatarsal II, NMMP-KU 1114; D1, dorsal view; D2, medial view; D3, plantar view: D4,
lateral (median) view; D5, proximal view. E, proximal phalange, NMMP-KU 1021; E1, dorsal view; E2,
plantar view; E3, medial or lateral view; E4, proximal view; ES5, distal view. F, middle phalange, NMMP-KU
1020: F1, dorsal view: F2, plantar view; F3, medial or lateral view; F4, proximal view; F5, distal view. One
division of scale equals 5 mm.

(Osborn and Wortman, 1895; Mader, 1998). The astragulus and the calcaneum indicate that
the astragular neck is unreduced. The metacarpal is not shortened relative to the diameter.
These morphologies of the postcranial materials indicate that these Pondaung brontotheriids
(Bunobrontops and/or cf. Metatelmatherium) are primitive among the family in lacking

graviportal specializations and seems to have retained cursorial adaptations considerably.
The postcranial specimens of gigantic sized mammals are represented by hand and foot
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elements in the Pondaung fauna (Figures 16, 17). Limb bone fragments have been hardly
collected for mammals of this size, because they are usually broken to pieces before being
discovered. The mammals that are at the upper end of the body size range of the Pondaung
fauna are Sivatitanops (Brontotheriidae) and/or Paramynodon (Amynodontidae) . For
brontotheriid, skeletal modifications for graviportal adaptations have been known forms
appeared after the middle Eocene (Mader, 1998). Metamynodontines, the amynodontids
include Paramynodon, have been reconstructed as heavy-limbed and barrel-chested animal,
and they have been suggested to have had habitat analogous to extant Hipporumus (Wall,
1998). The astragulus of a very large perissodactyl (Figure 16B) bears a shorter neck and
a wider articular surface for the central and IVth tarsals than that of the above mentioned
brontotheriid specimen (Figure 15A). The mesopodials (Figure 17A-D) are robust, and the
proximal and middle phalanges (Figure 17E, F) are short. It is not clear that these materials
belonged to brontotheriids or amynodontids, but at least they indicate that the gigantic
herbivorous mammals consisted of hippo- or rhino-like heavily built stout animals in the

Pondaung fauna.
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