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Abstract 1 

Neurodegeneration correlates with Alzheimer’s disease (AD) symptoms, but the molecular 2 

identities of pathogenic amyloid β-protein (Aβ) oligomers and their targets leading to 3 

neurodegeneration remain unclear. Amylospheroids (ASPD) are AD patient-derived 10-to 15-nm 4 

spherical Aβ oligomers that cause selective degeneration of mature neurons. Here, we show that 5 

the ASPD target is neuron-specific Na+/K+-ATPase α3 subunit (NAKα3). ASPD-binding to 6 

NAKα3 impaired NAKα3-specific activity, activated N-type voltage-gated calcium channels, 7 

and caused mitochondrial calcium dyshomeostasis, tau abnormalities, and neurodegeneration. 8 

NMR and molecular modeling studies suggested that spherical ASPD contain 9 

N-terminal-Aβ-derived “thorns” responsible for target binding, which are distinct from 10 

low-molecular-weight oligomers and dodecamers. The fourth extracellular loop (Ex4) region of 11 

NAKα3 encompassing Asn879 and Trp880 is essential for ASPD-NAKα3 interaction, because 12 

tetrapeptides mimicking this Ex4 region bound to the ASPD surface and blocked ASPD 13 

neurotoxicity. Our findings open up new possibilities for knowledge-based design of 14 

peptidomimetics that inhibit neurodegeneration in AD by blocking aberrant ASPD-NAKα3 15 

interaction. 16 
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Significance statement (up to 120 words understandable for undergraduates) 1 

Alzheimer’s disease (AD) involves neuron dysfunction and loss. This brain damage is thought to 2 

be caused by a small protein, the amyloid β-protein (Aβ), which forms aggregates that are 3 

neurotoxic. This neurotoxicity has been explained by multiple mechanisms. We reveal here a 4 

new neurotoxic mechanism that involves the interaction between patient-derived Aβ assemblies 5 

termed amylospheroids, and the neuron-specific Na+/K+-ATPase α3 subunit. This interaction 6 

causes neurodegeneration through pre-synaptic calcium overload, which explains earlier 7 

observations that such neuronal hyperactivation is an early indicator of AD-related 8 

neurodegeneration. Importantly, amylospheroid concentrations correlate with disease severity 9 

and progression in AD patients. Amylospheroid:neuron-specific Na+/K+-ATPase α3 subunit 10 

interactions may be a useful therapeutic target for AD. 11 

  12 
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¥body 1 

Alzheimer’s disease (AD) brains characteristically display fibrillar and non-fibrillar (oligomeric) 2 

protein assemblies composed of the amyloid β-protein (Aβ)(1-6). Aβ has been shown to bind to 3 

postsynaptic receptors, such as α7-nicotinic acetylcholine receptor (α7nAChR)(7), receptor for 4 

advanced glycation end products (RAGE)(8), receptor tyrosine kinase EPHB2 (9), and cellular 5 

prion protein PrPC (10). These ‘Aβ receptors’, except for RAGE, have been reported to mediate 6 

toxicity of Aβ oligomers through modulating NMDA receptors (NMDAR)(11). Aβ oligomers, 7 

including dimers from AD brains (12, 13), dodecamers (Aβ*56) from AD model mice (14), or in 8 

vitro-generated Aβ-derived diffusible ligands (ADDLs)(15, 16), induce synaptic impairment by 9 

affecting NMDAR (11). Thus, NMDAR are a common target for synaptic impairment in AD. 10 

However, these oligomers do not cause neuronal death (12, 14). The atomic resolution structures 11 

of neurotoxic Aβ oligomers and their in vivo targets leading to neuronal death in AD remain 12 

unclear (6), even though neuronal death is the central mechanism responsible for symptomatic 13 

onset in AD (17). 14 

We previously isolated neurotoxic Aβ oligomers, termed amylospheroids (ASPD), from the 15 

brains of AD patient (18-20). ASPD appear in transmission electron microscopic (TEM) images 16 

as spheres of diameter ~11.9 ± 1.7 nm (19). ASPD appear to be unique Aβ assemblies, as 17 
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determined immunochemically. These structures are recognized strongly by ASPD-specific 1 

antibodies (Kd ~pM range), but not with the oligomer-specific polyclonal antiserum A11 (19). 2 

ASPD are distinct from Aβ dimers, ADDLs, dodecamers, and other A11-reactive entities (19). 3 

ASPD cause severe degeneration of mature human neurons (19). ASPD levels in the cortices 4 

of AD patients correlate well with disease severity (19). In contrast, ASPD-like oligomers were 5 

minimally detectable in the brains of transgenic mice expressing human amyloid precursor 6 

protein (APP), in which no significant neuronal loss is observed (19). These findings suggest that 7 

ASPD are an important effector of neuronal death in AD patients. We sought to elucidate 8 

mechanisms of ASPD-induced neurotoxicity. We report here that ASPD interact with the α− 9 

subunit of neuron-specific Na+/K+-ATPase (NAKα3), resulting in presynaptic calcium overload 10 

and neuronal death.  11 

 12 

Results 13 

ASPD Bind To NAKα3 In Mature Neurons. ASPD caused degeneration of mature rat 14 

hippocampal neurons, but not immature neurons or nonneuronal HEK293 (Fig. 1A). ASPD 15 

toxicity required binding to mature neurons, because ASPD-specific mouse monoclonal 16 
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amylospheroid (mASD)3 antibody blocked binding and toxicity of ASPD (Fig. 1 A and B). [The 1 

Kd for ASPD binding = 5.43 ± 0.27 nM (n = 3; Fig. 1C). ASPD concentration was determined 2 

using an average ASPD molecular weight of 128 kDa (20). See summary of the characteristics of 3 

patient and synthetic ASPD in Table S1. See also SI Discussion for updated definition of ASPD.] 4 

Blockers of known Aβ receptors (21), including glutamate receptors (NMDA, non-NMDA, and 5 

metabotropic types) and voltage-gated sodium channels, did not affect ASPD neurotoxicity (Fig. 6 

S1). These findings suggested ASPD exert their toxicity through binding to novel cell-surface 7 

molecules specific to mature neurons. 8 

To identify ASPD-binding proteins on mature neurons, Far-Western ligand-binding assays 9 

were performed in physiological medium. We used ASPD isolated (19) from the soluble brain 10 

extracts of the two AD patients displaying the most severe neurodegeneration and the highest 11 

ASPD concentrations among those shown in Fig. 2A (Fig. 2B). These ASPD were A11-negative 12 

(Fig. 2C), composed predominantly of Aβ1-42 and Aβ1-40 (Fig. 2B and D), had molecular masses 13 

of 123 ± 20 kDa (Fig. 2E), and appeared as ~11.7 ± 1.6 nm spheres (n = 49) in TEM (Fig. 2C), 14 

consistent with previous data (18-20). We also used in vitro-reconstituted synthetic ASPD, which 15 

shares essential characteristics with patient ASPD (19)(Table S1), as an analogue. 16 
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Binding of ASPD was detected with ASPD-specific hamster monoclonal (haASD)1 antibody 1 

(Kd for ASPD ~0.5 pM (19)). ASPD bound to a 105-kDa band in extracts from mature neurons 2 

cultured for 21 days in vitro (DIV) (red arrow in Fig. 3A Center), but not immature 2 DIV 3 

neurons or HEK293 cells. This band was also recognized by synthetic ASPD (Fig. S2A, red 4 

arrow on the left), indicating that ASPD bind directly to this band, because purified synthetic 5 

ASPD contained no protein other than ASPD (19). This band was not detected when we used 6 

haASD1 alone or synthetic ASPD presaturated with haASD1 (Fig. S2B). Unlike ASPD, freshly 7 

dissolved Aβ1-42, which consisted of monomers, dimers, and other low-molecular-weight (LMW) 8 

oligomers, did not bind to the 105-kDa band, but bound to 55-kDa and 45-kDa bands, likely 9 

corresponding to 54.2 kDa α7nAChR and 40.4 kDa RAGE, respectively (Fig. 3A, Left). These 10 

findings showed that the 105-kDa band corresponds to ASPD-specific binding proteins present 11 

only in mature neurons. 12 

MS and MS/MS analyses of the 105-kDa band (red arrow in Fig. S2A Right) identified 13 

various NAKα-derived peptides (Table S2). We confirmed that NAKα appeared at 105 kDa (Fig. 14 

3A, right). ASPD-binding bands from immature neurons or HEK293 (* in Fig. 3A middle and 15 
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Fig. S2A left) were identified as intracellular proteins (see Fig. S2A legend). Thus, NAKα, which 1 

has a molecular mass of 112-113 kDa, is likely to be the 105-kDa band entity. 2 

NAKα is an essential catalytic subunit of the NAK pump (Fig. 3B), which is responsible for 3 

keeping the neuron resting membrane potential at about -70 mV (22). The functional NAK pump 4 

also requires β subunit (22)(Fig. 3B). In adult brains, NAKα1 is ubiquitously expressed, whereas 5 

NAKα3 is expressed exclusively in neurons, and NAKα2 is found in astrocytes (22). We found 6 

that NAKα3 was abundant in extracts of mature neurons only (Fig. 3C). Western blotting 7 

showed that NAKα3 became detectable at 7 DIV and that its levels continued to increase until 8 

21 DIV in our culture (Fig. S2C). This developmental increase in NAKα3 level correlated well 9 

with that of the 105-kDa band in Far-Western blotting using synthetic ASPD (Fig. S2B). To 10 

establish whether NAKα3 is the sole ASPD-binding isoform, we performed 11 

co-immunoprecipitation experiments. First, NAKα3 in mature neuron extracts was 12 

co-immunoprecipitated directly with purified synthetic ASPD using haASD1 antibody (Fig. 3D). 13 

Second, biotin-labelled ASPD were incubated with mature hippocampal neurons, and MS/MS 14 

analysis confirmed that the NAKα3 isoform was selectively co-immunoprecipitated as the 15 

105-kDa band with biotin-labelled ASPD (red arrows in Fig. S2D). We then confirmed that 16 
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ASPD and NAKα3 were essentially co-localized within the neuropil of mature hippocampal 1 

neurons double-stained for synthetic ASPD and NAKα3 (Inset in Fig. 3E left). Furthermore, 2 

surface plasmon resonance spectroscopy (SPR) demonstrated that rat NAKα3 directly bound to 3 

synthetic ASPD (Kd = 7.8 ± 2.5 nM, n=3, Fig. 3F). The Kd value obtained from this SPR data 4 

was almost identical with that obtained from ASPD-binding to mature neurons (Fig. 1C, Kd = 5 

5.43 ± 0.27 nM as described above). We confirmed that human and mouse NAKα3 bound 6 

directly to synthetic ASPD using SPR (human Kd = 28.6 ± 6.6 nM, n=5; mouse Kd = 4.0 ± 1.9 7 

nM, n=3). Notably, most mature hippocampal neurons were stained for NAKα3, whereas most 8 

mature cerebellar neurons were NAKα3-immunonegative (Fig. S2E). This finding was 9 

consistent with Western blotting showing that the amount of membrane NAKα3 in cerebellar 10 

neurons was only ~20% of that in hippocampal neurons (Fig. 3G left). Synthetic ASPD bound to 11 

NAKα3-immunopositive neurons among hippocampal or cerebellar neurons (Fig. 3E) and 12 

induced death in those neurons at levels correlating with their membrane NAKα3 amount (Fig. 13 

3G). Stable knockout of NAKα3 expression with microRNA (miR)-expressing virus vector 14 

decreased NAKα3-expressing neurons to 19.8 ± 14% (n = 3; p < 0.0001 compared with the 15 

untreated neurons using Scheffé’s post-hoc test, n = 3) in hippocampal neurons and abolished 16 
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ASPD-binding and ASPD-induced neurodegeneration (Fig. 3H). These data support the 1 

conclusion that NAKα3 is the mature neuron-specific ASPD-binding protein that is linked to 2 

ASPD neurotoxicity. 3 

 4 

ASPD Impair NAKα3 Activity, Leading To Ca2+ Dyshomeostasis And Neuron Death. We 5 

next examined the effect of ASPD-binding on NAKα3 activity. As shown in Fig. 4A, exposure 6 

of membrane preparations from mature hippocampal neurons to 110 nM synthetic ASPD rapidly 7 

(~70% in 1 hr) impaired NAKα3-specific activity in those membrane preparations. Overnight 8 

treatment of intact mature hippocampal neurons with 140 nM synthetic ASPD caused a >90% 9 

decrease in NAKα3-specific activity (Fig. 4B). 10 

This NAKα3 impairment should cause a failure in active transport of Na+ and K+ ions (Fig. 11 

3B). Indeed, we found that cytoplasmic Na+ levels were increased immediately after exposure of 12 

neurons to synthetic ASPD (at the orange arrow in Fig. S3A), which reached a maximum after 13 

~18 min (at the yellow arrow in Fig. S3A3 and A4; see legends). ASPD-induced impairment of 14 

NAKα3 activity thus increased cytoplasmic Na+ levels and likely induced depolarization in the 15 

treated neurons. 16 
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This process would lead to an increase in intracellular Ca2+ level ([Ca2+]i) through the plasma 1 

membrane Na+/Ca2+ exchanger (NCX) or voltage-gated Ca2+ channels (VGCC) activated by 2 

depolarization (22). We therefore monitored [Ca2+]i using Fura-PE3AM staining. Vehicle 3 

treatments did not affect [Ca2+]i for at least 2 hrs (Fig. 4C1 and Fig. S3B1), but ASPD increased 4 

the number of Ca2+-responsive cells dose-dependently (Fig. 4C2 and Fig. S3B2~B4), with a 5 

plateau at ~40 nM synthetic ASPD (Fig. 4D). The dose-dependent effect of ASPD on the number 6 

of Ca2+-responsive cells correlated well with the level of ASPD-binding (Fig. 1C left), as well as 7 

that of ASPD neurotoxicity (EC50 =18 ± 2.4 nM, n = 5), suggesting that ASPD-binding to mature 8 

neurons caused increased [Ca2+]i, leading to eventual neuronal death. 9 

Depending on the ASPD concentration, two types of Ca2+-responses were observed (SI 10 

Discussion for a plausible mechanistic explanation). With 18 nM ASPD, repetitive Ca2+ spikes 11 

were observed ≈3 min after the treatment (Fig. S3B2). In this case, [Ca2+]i increased gradually 12 

and led to a sustained increase after 2 hrs (e.g. Fig. S3C1). With higher concentrations of ASPD 13 

(e.g., 42 nM in Fig. 4C2), [Ca2+]i increased ~2 min after the treatment, maintained a sustained 14 

increase during 0-40 min, and then rose precipitously before plateauing at ~40-70 min. Much 15 

higher concentrations of ASPD accelerated the process, with [Ca2+]i plateauing earlier (within 1 16 
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h; compare 88 nM synthetic ASPD in Fig. S3B4 with 42 nM synthetic ASPD in Fig. S3B3). 1 

Unlike ASPD, 1.4 µM 20-30-nm Aβ1-42 aggregates (TEM in Fig. 4E), which were obtained by 2 

making a 20-fold concentration and then a 10-fold re-dilution of ASPD (SI Materials and 3 

Methods, Preparation of 20- to 30-nm Aβ aggregates), were rarely detected by ASPD-specific 4 

rabbit polyclonal (rpASD)1 antibody in dot blotting (Fig. 4E) and did not cause such a persistent 5 

increase in [Ca2+]i (Fig. 4C3), and the neurons remained intact (inset bright-field images in Fig. 6 

4C3). 7 

This ASPD-induced increase in [Ca2+]i required extracellular Ca2+, because it was blocked by 8 

addition of EGTA to the medium (Fig. S3C2). Furthermore, blockade of [Ca2+]i overload by 9 

chelation with BAPTA-AM suppressed ASPD toxicity (Fig. 5A). We then asked which plasma 10 

membrane calcium conductors, VGCC or NCX, were involved in ASPD toxicity. Inhibitor 11 

effects on ASPD neurotoxicity showed that N-type VGCC were involved in ASPD-induced 12 

neuronal death, whereas the other VGCC subtypes and NCX were not involved (Fig. 5A). We 13 

confirmed that an inhibitor specific to N-type VGCC blocked ASPD-induced [Ca2+]i increase 14 

(Fig. S3D3). Notably, N-type VGCC are found primarily at pre-synaptic terminals of neurons 15 

(23), consistent with pre-synaptic binding of ASPD (19). 16 
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Next, we examined whether the two major intracellular Ca2+ stores, mitochondria and 1 

endoplasmic reticulum (ER), could be involved in ASPD neurotoxicity. A mitochondrial NCX 2 

inhibitor and an inhibitor of mitochondrial permeability transition (MPT) pore opening both 3 

blocked ASPD-induced apoptosis, whereas an inhibitor of Ca2+ influx in ER (mediated by a Ca2+ 4 

sensor, STIM1), an IP3 receptor antagonist, or a ryanodine receptor (RyR) antagonist, failed to 5 

block ASPD neurotoxicity (Fig. 5A). Thus, Ca2+ dyshomeostasis in mitochondria was involved 6 

in ASPD neurotoxicity, but ER Ca2+ stores were not (Fig. 5 A and B). We found that treatment 7 

with both CGP37157 (a mitochondrial NCX inhibitor) and cyclosporin A (an inhibitor of 8 

mitochondrial MPT pore opening) inhibited the ASPD-induced sharp [Ca2+]i increase that 9 

followed the initial sustained increase in [Ca2+]i more strongly than the single treatments (Fig. 10 

S3E). This finding suggests that mitochondrial NCX and MPT pore opening are both involved in 11 

Ca2+ release from mitochondria that is linked to ASPD neurotoxicity (see the legend of Fig. S3E 12 

for more details). 13 

These findings indicate that impairment of NAKα3 activity by ASPD binding increases 14 

cytoplasmic Na+ levels (Fig. S3A), activates N-type VGCC, and causes continuous Ca2+ influx 15 

into cytoplasm. This in turn results in Ca2+ overload in mitochondria (observed as the sustained 16 
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[Ca2+]i increase) and subsequent Ca2+ release from mitochondria through mitochondrial NCX 1 

and MPT pore opening (observed as the sharp increase [Ca2+]i), which results in the eventual 2 

death of neurons.  3 

Previously we have shown involvement of tau protein kinase I/glycogen synthase kinase-3β 4 

(TPKI/GSK3β) in ASPD neurotoxicity (18). We also found that tau protein kinase 5 

II/cyclin-dependent protein kinase 5 (TPKII/CDK5) was activated after ASPD treatment (Fig. 5 6 

C and D) and tau phosphorylation increased at Ser396 and Ser404, which are known to be 7 

phosphorylated in AD brains by TPKI/GSK3β/TPKII/CDK5 and TPKII/CDK5, respectively 8 

(24)(Fig. 5E). Furthermore, tau and microtubule-associated protein 2 (MAP2) were rapidly lost 9 

after ASPD treatment (Fig. 5F). Tau phosphorylation and loss, together with MAP2 loss, could 10 

destabilize microtubules and promote neurodegeneration. 11 

Next, time-lapse DIC images of mature neurons after ASPD treatment were taken. Because 12 

of osmotic imbalance, neurons started swelling at ~30 min after exposure to 140 nM synthetic 13 

ASPD, and cell shrinkage, a ubiquitous feature of apoptosis (25), took place in ~3-5 h (Video S1, 14 

Fig. 6A and S4A). Subsequently, DNA fragmentation became detectable after 5 h (Fig. 6B). 15 

Scanning electron microscopic (SEM) images clearly showed ASPD-induced neuronal swelling 16 
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and shrinkage (Fig. 6C). The video showed that the surface of the ASPD-treated neurons became 1 

rough within 30 min after the ASPD treatment (Video S1) and holes appeared within 1 h (see 2 

arrows in Fig. 6C). Similar swelling and shrinkage of neurons were induced by 100 nM ouabain 3 

(Video S2, Fig. 6A and S4A), which selectively blocks rodent NAKα3 activity (26). Unlike 4 

ASPD and ouabain, staurosporine, an apoptosis inducer that inhibits multiple kinases, induced 5 

shrinkage but not swelling (Video S3, Fig. 6A and S4A). Vehicle treatment induced neither 6 

swelling nor shrinkage (Video S4, Fig. 6A and S4A). Ouabain also elicited the events triggered 7 

by ASPD (summarized in Fig. 5B; Fig. S3F). Our data are consistent with the conclusion that 8 

NAKα3 is a death target for ASPD toxicity. We summarize a possible ASPD-induced sequence 9 

of events leading to neuronal death in Fig. 6A. 10 

We next examined NAKα3 localization in human brains. In non-clinically demented 11 

individual (NCI) cerebrum, punctate staining by anti-NAKα3 antibody surrounded the cell body 12 

of pyramidal neurons (arrows in Fig. 6D upper left) and diffuse staining was detected on axons 13 

and in neuropils. Intense staining was found in basket cells surrounding Purkinje cells in NCI 14 

cerebellum (arrows in Fig. 6D lower left). NAKα3 localization was consistent with that in adult 15 

mouse brain (27).  16 
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We found that NAKα3 staining was essentially lost in AD cerebrum, whereas it was not 1 

decreased in AD cerebellum (Fig. 6D right). Quantitative dot blotting with an ASPD-specific 2 

antibody, rpASD1, showed patient ASPD levels in NCI cerebrum, AD cerebrum, and AD 3 

cerebellum of 0.7 ± 0.4, 55.7 ± 7.0, and 0.7 ± 0.7 pmol/mg soluble brain extracts, respectively (a 4 

representative blot in Fig. 6D), suggesting that decreased NAKα3 staining correlated with 5 

patient ASPD levels in AD brains. Comparison of quantitative dot blotting results with rpASD1 6 

those with and anti-Aβ antibody 82E1 indicated that patient ASPD accounted for 62 ± 3 % (n 7 

=3) of soluble Aβ. Unlike decreased NAKα3 staining, anti-NAKα1 antibody showed diffuse 8 

staining throughout NCI and AD cerebrum (Fig. S4B). Results of in situ hybridization (ISH) of 9 

adjacent sections of the same AD or NCI cases with NAKα3 mRNA (ATP1A3) or NAKα1 10 

mRNA (ATP1A1)(n=3 each) showed the same correlation with the histological data (compare 11 

Figs. 6E and S4C with Figs. 6D and S4B). With NAKα3 ISH, the signal intensity of ATP1A3 12 

was clearly lower in layers of pyramidal neurons in the hippocampus in AD compared with that 13 

observed in NCI. No obvious differences were detected in the cerebellum between AD and NCI. 14 

With NAKα1 ISH, the signal intensity of ATP1A1 was not changed in both regions between AD 15 

and NCI cases. These results are consistent with a previous quantitative ISH study on AD 16 
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patients (28) and suggest NAKα3-expressing neurons are preferentially lost in AD-susceptible 1 

brain regions where ASPD concentrations are high. 2 

 3 

Structural Characteristics of ASPD And Their Target, Ex4 of NAKα3. To examine 4 

structural features of ASPD relevant to binding with NAKα3, we acquired solution NMR spectra 5 

of 15N-labelled ASPD. Although we detected 39 heteronuclear single quantum coherence 6 

(HSQC) signals in the case of freshly dissolved Aβ, we detected 14 of 39 HSQC signals 7 

representing peptide backbones of Aβ in ASPD, and these were nearly superimposable on the 8 

signals of the Aβ1-13, Aβ15-16, and Aβ23 regions of monomer (Fig. 7A). Remaining NMR-invisible 9 

amino acids presumably form a magnetically nonequivalent core. In other words, the 10 

NMR-visible amino acids, although derived from different Aβ regions, may exist in close 11 

proximity to form the ASPD surface (Fig. 7B), in accordance with our finding that specific 12 

binding of monoclonal mASD3 antibody to ASPD was blocked by pentapeptides covering Aβ2-8, 13 

Aβ15-19, or Aβ19-23 (19). Since mASD3 antibody neutralizes ASPD toxicity (19), the 14 

NMR-identified ASPD surface is likely involved in binding to NAKα3. The HSQC spectra of 15 

ASPD were different from those of precursors of synaptotoxic dodecamers (termed 16 
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globulomer)(29) and of LMW oligomers (30). Thus, ASPD appear to be structurally distinct 1 

from pre-globulomers and LMW oligomers. This finding is consistent with our finding that 2 

ASPD are immunologically distinct from synaptotoxic oligomers (19). We obtained the same 3 

HSQC spectra of ASPD in all experiments (n = 3), suggesting that there is one defined structure 4 

that is dominant within the ASPD sample. Taken together with our previous immunological data 5 

using ASPD-specific antibodies (details in Table S1), this finding supports the notion that ASPD 6 

consist of closely related structures. Our recent analysis of ASPD structure using solid-state 7 

NMR also supports the notion (31). 8 

The above findings suggest that the unique ASPD surface has a key role in ASPD-NAKα3 9 

interaction. Because protein-protein interaction inhibitors can be designed based on the protein 10 

surface region essential for binding, we sought to determine which extracellular region of 11 

NAKα3 serves as the ASPD target site. NAKα1 and NAKα3 share 96% sequence identity. 12 

Given ASPD’s preferential binding to NAKα3, the NAKα3-specific region, either the first 13 

extracellular loop (Ex1) or the fourth extracellular loop (Ex4)(Figs. 3B and 7C), would be the 14 

key ASPD target. We found that a chemically synthesized octapeptide from Ex4 (RLNWDDRT) 15 

significantly blocked ASPD toxicity, whereas Ex1 peptides neither bound to ASPD, as 16 
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determined by SPR (Fig. S5A), nor blocked ASPD toxicity (Fig. 7D). Scrambled Ex4 peptides 1 

failed to block ASPD toxicity (Fig. 7D). We confirmed that Ex4 interfered with binding of both 2 

patient ASPD and synthetic ASPD to mature hippocampal neurons (Figs. 7E and S5B), in 3 

addition to blocking the subsequent [Ca2+]i increases (Fig. S3D4) and activation of the kinases 4 

(Fig. S5C). Notably, with 15-min patient ASPD treatment, neurites began to degenerate (Fig. 7E, 5 

arrowheads). This degeneration was almost completely blocked by Ex4 (Fig. 7E). These findings 6 

suggest that Ex4 is the main ASPD target site (pink in Fig. 7C). 7 

We then planned to develop ASPD-binding peptides with toxicity-neutralizing activity by 8 

utilizing phage display (PD) analysis. Three independent screenings of a randomized 12-mer 9 

peptide library detected ~21 kinds of ASPD-binding peptides with high His and Trp contents. 10 

Among them, many showed similarity to Ex4 of NAKα3. Chemically synthesized PD-identified 11 

dodecapeptides (PD2, 50, 68) bound to ASPD (Kd = 5.8-8.9 x 10-8 M by SPR). These 12 

dodecapeptides, which commonly contain a four-amino-acid sequence (H*NW) similar to Ex4 13 

(RLNW; corresponding to positions 877-880), inhibited ASPD toxicity towards mature neurons 14 

as effectively as the Ex4-derived peptide, whereas other peptides containing H**W (lacking 15 

NAKα3-specific Asn) were ineffective (Fig. 7F). Notably, ASPD-binding tetrapeptide PD2-11 16 
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(HFNW) was enough to significantly block binding and neurotoxicity of ASPD (Fig. 7F and Fig. 1 

S5B). These findings suggest that the NAKα3-specific region in Ex4 encompassing residues 2 

Asn879 and Trp880 is essential for ASPD-NAKα3 interaction (Fig. 7 C and G). 3 

We built a 3D homology model of human NAKα3 based on the pig NAKα1 structure (32), as 4 

no crystal structure of human NAKα3 is available. Ex4 appeared to form a cavity and Asn879 and 5 

Trp880 are exposed on the NAKα3 surface, to which ASPD can gain access (Fig. 7C). Molecular 6 

modeling suggested that the mature NAK pump has a 9.9-nm-wide opening (Fig. S6). Solution 7 

atomic force microscopy showed that ASPD are 7.2 ± 2.6 nm in height (20). The maximum 8 

number concentration of bound ASPD, calculated from Bmax, was 14 ± 0.7 pmol of ASPD per 9 

milligram of membrane protein (Fig. 1C). This concentration was 40% of the concentration of 10 

NAKα3 (35.2 ± 10 pmol/mg membrane protein; n=4) that we measured (as shown in Fig. 3G 11 

using pre-quantified, cell-free synthesized NAKα3 as the quantification standard; for details see 12 

SI Materials and Methods) and it was ~37-88% of the concentrations found in the literature 13 

(16-38 pmol/mg membrane protein)(33, 34). Simple arithmetic calculations thus give an 14 

ASPD:NAKα3 ratio ranging from 1:1 to 1:3. However, since past studies have shown that the 15 

NAK pump exists predominantly as (NAKα3)2:(NAKβ1)2 heterotetramer in membranes (35, 36) 16 
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and ASPD appeared to bind almost all NAKα3-containing NAK pump in membranes (Fig. 3E), 1 

we infer, using Occam’s razor (37), that the most likely ratio is 1:2, (i.e., 1:1 binding of ASPD 2 

with NAKα3 dimer). This inference is consistent with other ASPD binding data (Fig. S6). 3 

Because the tetrapeptide segment in Ex4 of NAKα3 is conserved in rodents and humans (Fig. 4 

7G), this opens up possibilities for knowledge-based design of inhibitors of neuronal death in 5 

AD. 6 

 7 

Discussion 8 

Past studies have reported the loss of the NAK pump activity, and the protein itself, in the brains 9 

of AD patients (28, 38, 39). In particular, NAKα3 expression, but not NAKα1 expression, is 10 

reduced in the frontal cortices of AD patients and this reduction correlates inversely with levels 11 

of diffuse plaques in that region (28). No such reduction is observed in the unaffected cerebellum 12 

of the same patients (28). NAKα3 activity was reported to decrease in Aβ1-40-treated neuronal 13 

cultures (40) and the NAK pump activity was reported to decrease in 17- to 18-mo-old APP and 14 

presenilin-1 transgenic mice (41). These previous observations suggest a potential link between 15 

Aβ and NAKα3 impairment. However, until now, the question of whether NAKα3 impairment 16 
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is the cause or the result of neuronal death has remained unanswered. We present here direct 1 

evidence that the neuron-specific α subunit of the NAK pump, NAKα3, is the neuronal 2 

death-inducing target of ASPD.  3 

SPR data demonstrated direct binding of ASPD to NAKα3 (Fig. 3F). ASPD-binding to 4 

NAKα3 impaired rapidly NAKα3-specific NAK pump activity (Fig. 4A). Cytoplasmic Ca2+ 5 

overload was highly correlated with ASPD-binding (compare Figs. 1C and 4D), which 6 

eventually led to mitochondrial defects and neuronal death (Fig. 5A), as observed in AD (42). 7 

Stable knockout of NAKα3 expression with a microRNA-expressing virus vector decreased 8 

NAKα3-expressing neurons and abolished ASPD-binding and ASPD-induced neurodegeneration 9 

(Fig. 3H). ASPD binding peptides inhibited the ASPD binding to NAKα3 and protected mature 10 

neurons from ASPD neurotoxicity (Figs. 7D-F, S3D4, S5B, and S5C). In addition to these 11 

cell-based data, we found that NAKα3-expressing neurons were lost in AD-susceptible regions 12 

such as the cortex and the hippocampus in patients (where ASPD levels were high), but were not 13 

lost in the far less affected cerebellum of the same patients (where ASPD levels were low) (Figs. 14 

6 D, E, S4B and S4C). The explanation for these regional differences in ASPD concentrations 15 
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must await further experimentation, but these observations further support our conclusion that 1 

NAKα3 serves as the specific death-inducing target of ASPD. 2 

Recent studies have shown that Aβ forms numerous structurally distinct oligomers that may 3 

contribute differently to disease pathogenesis (6, 19). Aβ receptor/ligand systems may be 4 

organized into three categories (Fig. 8, Table S3). The first category involves regulating the CNS 5 

concentration of Aβ monomer available for assembly. The second category involves Aβ 6 

impairment of synaptic connections by indirectly affecting NMDAR activity (see SI Discussion 7 

for more details about the first two categories). Post-synaptic Sigma-2/PGRMC1 has been 8 

reported to serve as a receptor for 50~75 kDa Aβ1-42 oligomers (43). We report here a third 9 

system involving pre-synaptic neurons. Pre-synaptic neuronal Ca2+ hyperactivation has been 10 

reported to occur near amyloid plaques in AD model mice (44). Interestingly, such 11 

hyperactivation of neurons in hippocampus has been associated with the cortical thinning in mild 12 

cognitive impairment patients and has been considered to be an early indicator of AD-related 13 

neurodegeneration (45). However, the underlying mechanisms were largely unknown. We have 14 

previously shown that ASPD co-localize with pre-synaptic Bassoon (19). Among different 15 

NAKα subunits, only NAKα3 is present in the pre-synaptic side of neurons (27, 46-48). 16 
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Electrophysiological studies have also shown the importance of NAKα3 in the pre-synaptic 1 

function (49, 50). Our data are consistent with ASPD binding to pre-synaptic NAKα3 of mature 2 

neurons, leading to activation of pre-synaptic N-type VGCC, and eventual death of 3 

NAKα3-expressing neurons. Notably, NAKα3 appears as punctate patterns restricted to layers 4 

III and V of the neocortex (27), where N-type VGCC are present (51). These layers are 5 

particularly vulnerable in AD brains (52). It is an intriguing speculation that the 100-kDa band 6 

sometimes observed by Gong et al. in ligand overlay assays with ADDLs was NAKα3 (53). 7 

The human NAKα3 gene ATP1A3 is located on chromosome 19q13.31, an AD linkage 8 

region, but at present there are no reports that mutations in ATP1A3 are linked to AD. The 9 

mutation rate in ATP1A3 is very low in humans (54), suggesting that people with mutations in 10 

ATP1A3 might be at high risk of neurodevelopmental/neuropsychiatric diseases and develop 11 

these diseases before they become old. Indeed, genetic studies have shown that mutations in the 12 

protein-coding region of ATP1A3 cause rapid-onset dystonia parkinsonism, alternating 13 

hemiplegia of childhood, and cerebellar ataxia, areflexia, pes cavus, optic atrophy, and 14 

sensorineural hearing loss syndrome (54). Notably, although a direct linkage of ATP1A3 15 

mutations to AD is difficult to detect, AD and ATP1A3-mutated diseases share features such as 16 
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convulsive seizures (derived from hyperactivity of neurons). A recent clinical study of AD 1 

patients has revealed that convulsive seizures occurred early in the course of AD, which often 2 

began around the same time when symptoms of neurodegeneration first appeared (55). 3 

Levetiracetam, which inhibits pre-synaptic calcium channels (56), suppresses neuronal 4 

hyperactivation and reverses cognitive deficits in their AD model mice (57). These results are 5 

consistent with our findings (Fig. 8) and suggest that hyperactivation of pre-synaptic neurons 6 

occurs in AD patients contemporaneously with neurodegeneration. 7 

AD is a progressive disease with risk highly correlated with ageing. As shown in Fig. 2A, 8 

ASPD are not detectable in brains of most healthy old people, suggesting that accumulation of 9 

ASPD may not begin in the very early phase of Aβ accumulation. This notion is consistent with 10 

the fact that ASPD are minimally present in the brains of APP-overexpressing mice, which 11 

accumulate dodecamers and retain the early features of AD development (such as spine loss) but 12 

not the features of symptomatic human AD (such as neurodegeneration)(19). These observations 13 

suggested to us that formation of ASPD might require an age-related "facilitating factor," in 14 

addition to APP overexpression. A prospective study of ASPD formation relative to AD 15 

development and progression could be of interest. We think this study may be particularly 16 
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significant in the light of our prior work showing that ASPD levels correlate with disease 1 

severity (19) and the data presented here (see Fig. 2A) demonstrating that AD patient ASPD 2 

levels correlate with the severity of neurodegeneration based on Braak staging and duration of 3 

disease. 4 

Fine structural analysis of ASPD by solution NMR suggests that amino acid residues 5 

Ala1-His13, Gln15-Lys16, and Asp23 are involved in forming a portion of the ASPD surface, a 6 

portion likely involved in NAKα3-binding (Fig. 7B). Furthermore, molecular modeling of 7 

NAKα3 indicated that the region in Ex4 of NAKα3 encompassing residues Asn879 and Trp880 is 8 

essential for the ASPD-NAKα3 interaction. Indeed, an ASPD-binding tetrapeptide that mimics 9 

this Ex4 region blocked ASPD neurotoxicity. Because Asn879 is essential for neutralizing ASPD 10 

neurotoxicity, we speculate that H-bonding interactions are involved in the ASPD-NAKα3 11 

interaction. Interestingly, in the case of human NAKα2, mutation at this tryptophan (W887R; 12 

Trp887 in NAKα2 corresponds to Trp880 in NAKα3), which is highly conserved among all NAKα 13 

isoforms (Fig. 7G), leads to complete loss of catalytic activity and causes familial hemiplegic 14 

migraine type 2 (58). This suggests the importance of this conserved Trp for native NAKα 15 
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function and it may be that ASPD binding to the region containing this Trp causes impairment of 1 

NAKα3 function. 2 

Except for the NAKβ subunit and agrin, all other NAKα-binding proteins have been reported 3 

to bind to the intracellular region of NAKα (59). Because this NAKβ-binding region is located 4 

ten amino acids more C-terminally than Trp880 (Fig. 7G), the Ex4-mimicking tetrapeptide is 5 

unlikely to interfere with the NAKα-NAKβ interaction. In the case of the NAKα2 mutation 6 

W887R, loss of NAK pump activity occurs without interfering with the NAKα-NAKβ 7 

interaction because the NAK pump containing the NAKα and NAKβ subunits is present at 8 

substantial levels in the plasma membrane (58). With respect to agrin, although its binding 9 

region in NAKα3 has not been determined, it has been suggested to take the place of NAKβ, and 10 

accordingly, it is reasonable to consider that agrin and NAKβ share the same binding region (59). 11 

Taken together, these observations suggest that peptidomimetics would not disrupt interactions 12 

between NAKα3 and proteins other than ASPD. The Ex4-mimicking tetrapeptide (PD2-11, 13 

MW602.6) that inhibits ASPD neurotoxicity is sufficiently small that the molecule could serve as 14 

a lead compound for knowledge-based design of peptidomimetics. This class of compounds is 15 

expected to offer superior stability and pharmacokinetics compared with anti-Aβ antibodies. 16 
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Given the essential functions of the NAK pump in neurons (22), direct modulation of the NAK 1 

pump would be a risky approach. We therefore propose a new strategy to treat AD by blocking 2 

ASPD-NAKα3 interaction through masking the Aβ oligomer surface with specific 3 

peptidomimetics, as illustrated in Fig. S6. In summary, our data support the conclusion that 4 

ASPD-NAKα3 interactions is a cellular basis for neuronal loss induced by ASPD and that 5 

blocking this interaction could be a useful strategy for AD treatment. 6 

 7 

Materials and Methods 8 

Ethics. The Bioethics Committees and the Biosafety Committees of MITILS, Niigata University, 9 

Kyoto University, FBRI, and TAO approved experiments using human subjects. The Animal 10 

Care and Experimentation Committees of MITILS, Kyoto University,FBRI, and TAP approved 11 

animal experiments. 12 

ASPD Preparation. ASPD are neurotoxic, spherical Aβ oligomers of 10-15-nm diameter 13 

(measured by TEM) that are recognized by ASPD-specific antibodies (19, 20). Patient ASPD 14 

were purified from the 100-kDa retentates of soluble AD brain extracts (devoid of LMW 15 

oligomers, prepared as in (19)) by IP using haASD1 (“IP” in SI Materials and Methods). 16 
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Synthetic ASPD were formed in 50 µM Aβ1-42 solution (with or without 2 µM biotinylated 1 

Aβ1-40) using in-house-prepared highly soluble Aβ peptides (essential for obtaining ASPD; see 2 

“Aβ synthesis”) in F12 buffer without L-glutamine and phenol red by slowly rotating the 3 

solution for ~16 hrs at 4 ˚C (19). The level of Aβ1-42-ASPD in this Aβ1-42 solution after slow 4 

rotation is usually ~30 %. Synthetic ASPD were obtained in the fraction that passed through 5 

0.22-µm filters, but was retained on 100-kDa MWCO filters (Sartorius) (19). 15N-Labelled 6 

ASPD were prepared in the same way using purified E. coli-expressed 15N-labelled Aβ1-40 (60). 7 

ASPD quality was confirmed by dot blotting, TEM, amino acid analysis, and toxicity assays 8 

(20). 9 

Statistical Analyses. Statistical analysis was performed using StatView®5.0 (SAS Institute Inc.). 10 

Other Methods. Methods for Aβ Synthesis, Preparation of 20- to 30-nm Aβ aggregates, Primary 11 

neuronal cultures, ASPD Toxicity, ASPD binding, Immunocytochemistry, MicroRNA of 12 

ATP1A3, Western and Far-western blotting and MS/MS, Cell-free NAKα3 production, SPR, IP, 13 

NAK activity, Ca2+ and Na+ Imaging, Time-lapse, Dot blotting, TEM, SEM, Human brain 14 

pathology and ISH, Glycerol gradient sedimentation, PD, NMR, and Molecular modeling are 15 

described in SI Materials and Methods. 16 
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 1 

Online Supporting Information. This includes SI Materials and Methods, SI Discussions, 6 2 

figures, 3 tables, and 4 videos. Fig. S1 shows that glutamate receptor antagonists did not change 3 

ASPD neurotoxicity. Fig. S2 shows data on ASPD interactions with NAKα3, developmental 4 

changes in NAKα3 levels, co-immunoprecipitations, and immunostaining. Fig.S3 shows 5 

ASPD-induced Na+ increase, Ca2+ overload induced by different concentrations of ASPD, which 6 

were abolished by EGTA pretreatment, as well as ouabain-induced Ca2+ overload and tau 7 

phosphorylation/destabilization. Fig. S4 shows time-lapse shots and immunohistochemical 8 

studies of human brains using anti-NAKα1 antibody and ISH. Fig. S5 shows ASPD-binding 9 

peptides inhibit ASPD-binding to NAKα3 and other ASPD-induced downstream phenomena. 10 

Fig. S6 presents a model of ASPD-NAKα3 interactions and how masking the ASPD surface with 11 

specific masking peptides or peptidomimetics could be a new therapeutic strategy.  12 
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 22 

Figure Legends 23 

Fig. 1. Mature Neuron-Specific Binding And Toxicity of ASPD. (A) ASPD neurotoxicity was 24 

determined by measuring apoptotic DNA fragmentation in HEK293 cells, 2 DIV immature or 19 25 

DIV mature rat hippocampal neurons after overnight treatment with 140 nM synthetic ASPD, 26 

with or without 2-hr pretreatment of ASPD with each antibody (0.1 mg/ml for ASPD-specific 27 
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mASD3 antibody; 0.4 mg/ml for Aβ3-8 antibody 6E10) (mean ± SD; *, p < 0.001 Games-Howell 1 

post-hoc test, n = 6). The antibody remained during overnight incubation with ASPD. As shown 2 

previously (19), mASD3 inhibited ASPD-induced neuronal death, but 6E10, targeting Aβ3-8, did 3 

not. ASPD concentration is expressed in terms of the average ASPD mass 128 kDa (20). (B) 4 

Cells were treated for 30 min with 140 nM synthetic ASPD as in A. Images are representative of 5 

ASPD binding detected by mASD3 (red). Green represents anti-actin for HEK293 or anti-MAP2 6 

for neurons. Neuronal 2D images were made from the z stack to show neurites (19). Neurons 7 

(19-27 DIV) gave essentially the same results as to binding and toxicity of ASPD. (C) Binding of 8 

synthetic ASPD was performed as in B, quantified (10), and shown as ASPD concentrations in 9 

400 µL/well. Scatchard analysis gave Kd = 5.43 ± 0.27 nM (n=3). Bmax of ASPD binding was 10 

8.00 ± 1.0 nM for 30 min, from which the maximum level of ASPD binding was calculated to be 11 

14 ± 0.7 pmol of ASPD/mg membrane protein.  12 

 13 

Fig. 2. Characterization of AD Patient-Derived ASPD. (A) Levels of ASPD in soluble extracts of 14 

the cerebral cortex are shown according to disease duration and the level of neurodegeneration 15 

(see “Human brain pathology and ISH” in SI Materials and Methods; reanalysis of the samples 16 
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used in (19)). ASPD are undetectable in most of the age-matched non-clinically impaired (NCI) 1 

cases, but are present even in the very early AD cases. ASPD levels in patients increase 2 

markedly in parallel with the severity and progression of the disease. The 100-kDa retentates of 3 

the extracts from the two patients containing the highest level of ASPD were used for isolation of 4 

patient ASPD in this study. In a severe AD patient 20 years after onset, ASPD levels were very 5 

low, likely because such widespread neuronal death already had occurred. (B-D) Synthetic 6 

ASPD and patient ASPD (see above in A) were purified by immunoprecipitation (IP) using 7 

ASPD-specific haASD1 antibody as in (19). Soluble extracts from NCI brains and normal mouse 8 

IgG were used as controls for patient extracts and haASD1 antibody, respectively. Silver staining 9 

in B, dot blotting (SI Materials and Methods) along with a TEM image of negatively stained 10 

patient ASPD (see “TEM” for particle analysis) in C, and MALDI-TOF/MS analyses in D were 11 

performed (19). Representative data are shown. In the silver-stained gels, a band corresponding 12 

to Aβ1-42 or Aβ1-40 (red asterisk) was detected only in haASD1-immunoislated patient ASPD. 13 

Consistently, in MS of patient ASPD, significant peaks corresponding to Aβ1-40 (4331.3 Da, 14 

centroid) and Aβ1-42 (4515.5 Da, centroid) were reproducibly detected. Less intense peaks at 15 

lower mass than Aβ1-40 (e.g. see “*” in D lower left) were occasionally, but not reproducibly, 16 
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detected. The mass of the peak (3319.9 Da, centroid) is consistent with that of 1 

[pyroglutamyl-Aβ11-42 + H]+. Peaks at higher mass than Aβ40 or Aβ42 monomer were not 2 

detected (right). These showed that Aβ1-40 and Aβ1-42 are the predominant components of patient 3 

ASPD. (E) Fractionation of patient ASPD (~16 pmol) in a 15-30% linear glycerol gradient (see 4 

“Glycerol gradient sedimentation” in SI Materials and Methods) (18). Protein standards (aldolase, 5 

158 kDa; catalase, 232 kDa; ferritin, 440 kDa; and thyroglobulin, 669 kDa) were centrifuged at 6 

the same time as a reference and used for molecular mass determination (upper panel). Fractions 7 

were collected and immediately assayed for neurotoxicity (lower panel) (18). One unit of toxicity 8 

induces apoptosis in 1% of cells (see “Glycerol gradient sedimentation”). Data were obtained 9 

from three independent experiments and normalized to Aβ concentration (mean ± SD; Scheffé’s 10 

post-hoc test, *, p < 0.0001 compared with vehicle alone). Inset shows a representative TEM 11 

image of the sample recovered in fraction 2 (≈11.6 ± 2.2 nm spheres; n = 54). 12 

 13 

Fig. 3. Patient ASPD Bind To NAKα3. (A) Far-western blotting of RIPA extracts (15 µg/lane) 14 

was done using 6.6 nM patient ASPD (Center; detected with ASPD-specific haASD1 antibody) 15 

or 100 nM freshly dissolved Aβ1-42 containing monomers and dimers (left; detected with anti-Aβ 16 
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antibody 6E10). Bands marked an asterisk represent intracellular proteins (legend of Figure S2A). 1 

Western blotting with anti-NAKα3 antibody (excised from D) showed the mass of NAKα3 2 

(right). Red arrow indicates a 105-kDa mature neuron-specific ASPD-binding protein, NAKα3. 3 

(B) Schematic representation of NAK αβ and its function. (C) Western blotting of RIPA extracts 4 

(used in A). (D) Co-immunoprecipitation (CoIP) of NAKα3 with 250 nM synthetic ASPD. (E) 5 

Representative Z-stack images of 27 DIV hippocampal or 22 DIV cerebellar neurons, or 6 

HEK293, treated with 13 nM synthetic ASPD for 15 min. ASPD-binding sites (red) on neuropil 7 

co-localize with anti-NAKα3 staining (green)(high-power view in Inset; see 8 

“Immunocytochemistry” in SI Materials and Methods). (F) Direct interaction between ASPD on 9 

the tip and rat NAKα3 in micelles using SPR (Kd = 7.8 ± 2.5 nM, n=3). NAKα3-binding to the 10 

tip without ASPD was subtracted as background. NAKβ1 did not interact with ASPD in the 11 

AlphaScreen system. (G) Rat hippocampal (19-20 DIV) or cerebellar (23 DIV) neurons were 12 

treated overnight with 110 nM ASPD. ASPD neurotoxicity was determined as in Fig. 1A and 13 

normalized to 0.2 µM staurosporine toxicity. NAKα3 levels in membrane fractions of these 14 

neurons before ASPD treatment were determined by Western blotting. Mean ± SD; *, p = 0.002; 15 

**, p < 0.0001 compared with hippocampal neurons, n = 3~4 by Scheffé’s post-hoc test. (H) 16 
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Representative images of 27 DIV hippocampal neurons, with or without selective knockout of 1 

NAKα3 (see “miR of ATP1A3” in SI Materials and Methods), treated with 13 nM synthetic 2 

ASPD for 15 min. ASPD-binding sites (red) and anti-NAKα3 staining (green) were detected as 3 

in E. ASPD neurotoxicity was assayed as in Fig. 1A (mean ± SD; Scheffé’s post-hoc test, *, p < 4 

0.0001 compared with vehicle alone, n = 3). 5 

 6 

Fig. 4. ASPD Impair NAK Activity And Cause Ca2+ Dyshomeostasis. (A) Membrane fraction of 7 

25-26 DIV hippocampal neurons (30 µg/assay) was incubated with 110 nM synthetic ASPD and 8 

NAKα3-specific ATPase activity (Kd = 45 nM for ouabain (61-63)) was determined by 9 

subtracting the 100 nM-ouabain-sensitive activity from overall Mg2+-ATPase activity (46). Mean 10 

± SD; *, Scheffé’s post-hoc test p < 0.0001 compared with 0 hr, n = 4. (B) NAKα3-specific 11 

ATPase activity of 25-26 DIV hippocampal neurons treated overnight with 140 nM synthetic 12 

ASPD was determined as in A. Mean ± SD; *, p < 0.0001 Scheffé’s post-hoc test, n = 3. (C) 13 

Representative [Ca2+]i changes of cell bodies of 19-20 DIV hippocampal neurons after treatment 14 

with each sample using Fura-PE3AM. The ratio of responsive cells was obtained as in D. 15 

20-30-nm Aβ1-42 aggregates were obtained by concentration and re-dilution processes (see 16 
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“Preparation of 20-30-nm Aβ aggregates” in SI Materials and Methods). For treatment with 1 

ASPD, the circulating buffer was replaced with the buffer containing ASPD. After the 2 

replacement, it took ≈110 sec until the ASPD-containing fluid reached the assay chamber (at the 3 

orange arrow) and it took ≈17.5 min until all the solution in the assay chamber was replaced by 4 

the ASPD solution (at the yellow arrow). Treatment with 20-30-nm Aβ1-42 aggregates was done 5 

similarly. (D) The ratio of neurons that exhibited repetitive Ca2+ spikes or reached a saturated 6 

[Ca2+]i within 2 hrs after the treatment was calculated from [Ca2+]i data from three independent 7 

experiments. Mean ± SD; *, p < 0.0001 Scheffé’s post-hoc test. (E) TEM images and dot blotting 8 

of the samples used in C. 9 

 10 

Fig. 5. Downstream Signals Leading To Neuronal Death After ASPD Binding To NAKα3. (A) 11 

Inhibitor effect on 140 nM synthetic ASPD neurotoxicity examined as in Fig. 1A. (B) Schematic 12 

illustration of the mechanism of ASPD-induced neurodegeneration revealed in this study. (C) 13 

p25 generation from p35, a neuron-specific TPKII/CDK5 activator, after 110 nM synthetic 14 

ASPD treatment (right; representative Western blot). Data were normalized to actin and 15 

presented relative to total p35 and p25 amount at time 0. Mean ± SD; *, p < 0.02 compared with 16 
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data at time 0 (Scheffé’s post-hoc test, n = 4~6). (D) TPKI/GSK3β activation as shown by 1 

phospho-Tyr216 increase and phospho-Ser9 decrease after 110 nM synthetic ASPD treatment 2 

(right; representative Western blot). Data were normalized to total TPKI/GSK3β and presented 3 

relative to each phospho-protein amount at time 0. Mean ± SD; *, p < 0.002 compared with data 4 

at time 0 (Scheffé’s post-hoc test, n = 4~6). (E) Time-dependent increases in tau phosphorylation 5 

after 110 nM synthetic ASPD treatment. Data were normalized to total tau and presented relative 6 

to each phospho-protein amount at time 0. Vehicle controls are shown as inverted triangles in 7 

black for pSer396 and white for pSer404 (Mean ± SD; *, p < 0.0001 compared with data at time 0 8 

(Scheffé’s post-hoc test, n = 3~4). (F) Time-dependent decreases in MAP2 and tau after 110 nM 9 

synthetic ASPD treatment (right; representative Western blot). Data were normalized to actin 10 

and presented relative to each protein amount at time 0. Mean ± SD; *, p < 0.002 compared with 11 

data at time 0 (Scheffé’s post-hoc test, n = 4~6). 12 

 13 

Fig. 6. ASPD Effects On NAKα3-Expressing Neurons In Rat Neurons And Human Brains. (A) 14 

Representative time-lapse images of mature rat hippocampal neurons treated with each reagent 15 

(see Videos S1-4). (B) Time-dependent increase in apoptotic DNA fragmentation (determined as 16 
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in Fig. 1A) induced by 140 nM synthetic ASPD. (C) SEM showed the surface and morphology of 1 

mature rat hippocampal neurons treated with 35 nM synthetic ASPD. (D), (E) 2 

Immunohistochemical studies using anti-NAKα1 or anti-NAKα3 antibody on 4-µm 3 

paraffin-embedded sections in D and ISH analyses using probes for ATP1A1 and ATP1A3 on 4 

10-µm paraffin-embedded sections in E. Soluble extracts were obtained from these brains and 5 

amounts of patient ASPD (representative blots in D) and Aβ in the extracts were determined by 6 

dot blotting as 429 ± 50 and 695 ± 104 (µg/g brain, n = 3), respectively. 7 

 8 

Fig. 7. Structural Basis For ASPD Binding To NAKα3. (A) 1H-15N HSQC spectra of ~350 nM 9 

15N-ASPD and ~100 µM 15N-Aβ1-40 monomers in 0.5x PBS (supplemented with 5% (vol/vol) 10 

D2O) were recorded at 298K on a 600 MHz Bruker AVANCE-III spectrometer equipped with a 11 

cryogenic TCI probe. (B) Schematic diagram of the NMR-derived ASPD surface. (C) A 12 

three-dimensional homology model of human NAKα3 was constructed using the Prime program 13 

(Schrödinger) based on the structure of pig NAKα1 (32) as a template (PDB code 3B8E). (D) 14 

The effect of each NAKα3-derived Ex1, Ex4, or scrambled Ex4 peptides on 140 nM synthetic 15 

ASPD neurotoxicity was examined as in Fig. 1A. Mean ± SD; Scheffé’s post-hoc test, *, p < 16 
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0.001 compared with vehicle, n = 3. (E) Representative Z-stack images of 26 DIV hippocampal 1 

neurons, after 15 min treatment with 7 nM patient ASPD (immunoisolated from the patient 2 

extracts as in Fig. 2B), with or without 30-min pretreatment with Ex4 (20 µM in final 3 

concentration). IP eluates of NCI brain extracts, in which ASPD were not detected by dot 4 

blotting, were used as a control. ASPD-binding sites (red) and anti-NAKα3 staining (green) were 5 

detected as in Fig. 3E. (F) The effect of each Ex4-mimicking ASPD-binding peptides on 140 nM 6 

synthetic ASPD neurotoxicity. All peptides used here contained a free N-terminal amino group 7 

and a carboxylic acid at the C-terminus. Mean ± SD; Scheffé’s post-hoc test, *, p < 0.001 8 

compared with vehicle, n = 3. (G) Alignment of Ex4 regions.  9 

 10 

Fig. 8. Major Aβ ligand/receptor systems previously detected and the system discovered in this 11 

work (see Table S3). 12 
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SI Materials and Methods 

Aβ  synthesis. Highly soluble Aβ1-42 and biotinylated Aβ1-40 peptides were in-house synthesized and 

purified as described below. For Aβ1-42, peptides were synthesized on an Applied Biosystems model 433A 

peptide synthesizer by solid-phase N-(9-fluorenyl)methoxycarbonyl (Fmoc) chemistry using 

Fmoc-Ala-NovaSyn-TGA resin (0.19 mmol/g; Novabiochem) (>75% yield), and were cleaved and 

deprotected in a solution containing phenol (0.15 g), trifluoroacetic acid (TFA, 1.65 ml), Milli Q water 

(0.05 ml), thioanisole (0.1 ml), and ethanedithiol (0.05 ml) (2 ml/200 mg resin). Crude peptides were 

precipitated by adding 30 ml of ice-cold diethyl ether, and the precipitates were washed twice, air-dried 

for 20 min, further dried in a vacuum for 1 hr, then competely dissolved in a solution containing 0.1% 

(vol/vol) TFA and 30% (vol/vol) acetonitrile (ACN) on ice, and lyophilized. The Aβ1-42 peptides were 

purified by ZORBAX 300 Extend-C18 (21.2 mm × 250 mm, 5 µm, Agilent) reversed-phase 

chromatography using linear gradient separation (8-32 % (vol/vol) ACN in 70 mM NH4OH). The purified 

peptides were immediately lyophilized, redissolved in a solution containing 0.1% (vol/vol) TFA and 30% 

(vol/vol) ACN on ice (~150 µM), lyophilized again, and kept at -30 ˚C until used. On average, 40-80 mg 

of purified Aβ1-42 peptide was obtained in the 0.1 mmol scale synthesis. For biotinylated Aβ1-40, the 

peptides were synthesized as described above, except for the use of pre-loaded Fmoc-Val-NovaSyn-TGA 

resin (0.21 mmol/g; Novabiochem) (>85% yield), and were labelled at the N-terminus with 

N-(D-biotinyloxy)succinimide. Crude peptides were obtained as described above. Biotinylated Aβ1-40 

peptides were first purified by Inertsil CN-3 (10 × 150 mm, 5 µm) reversed-phase chromatography using a 

linear gradient separation (8-80 % (vol/vol) ACN in 0.1% (vol/vol) TFA), followed by ZORBAX 300 

Extend-C18 as described above. Analytical HPLC, quantitative amino acid analysis, and matrix-assisted 

laser desorption/ionization time of flight/mass spectrometry (MALDI-TOF/MS) confirmed the purity of 

the peptides. 

Before ASPD preparation, Aβ1-42 (with or without 1/25 biotinylated Aβ1-40) was completely dissolved 

in 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP for HPLC; Kanto Chemical Co., Inc.) at 80-100 µM by 

incubating the peptide solution overnight at 4 ˚C and for another 3 hrs at 37 ˚C, and finally lyophilized 

(~40 nmol/tube). The Aβ1-42 concentration in this step must be kept below 100 µM in order to maintain 

the monomeric state. This step was repeated three times. The lyophilized peptide was kept at -30 ˚C. We 

had long used HFIP from Sigma-Aldrich for lyophilization, and we recently found that this usually 

contained ~1.3 mM bis(2-ethylhexyl)phthalate (DEHP). This means that solutions of peptide lyophilized 

in Sigma-Aldrich HFIP usually contained ~0.65 mM DEHP when the final peptide concentration was 50 

µM. Therefore, when we used HFIP in which DEHP was undetectable, we added DEHP (0.65 mM final 
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concentration; Tokyo Chemical Industry Co., Ltd.) when the lyophilized peptide was initially dissolved in 

anhydrous dimethyl sulfoxide (Sigma-Aldrich) in order to ensure consistency with our previous 

conditions (18-20). 

 

Preparation of 20- to 30-nm Aβ  aggregates. First, synthetic ASPD were prepared from 50 µM Aβ1-42 

and the flow-through fraction of 0.22-µm filters was obtained as usual. Then, the flow-through fraction 

was concentrated (to ~1/20 volume) by recovering highly condensed retentates of Sartorius 100-kDa 

MWCO filters. These concentrated retentates were immediately diluted ~10 times with 0.5x Dulbecco’s 

phosphate-buffered saline without calcium and magnesium (PBS(-)). The Aβ aggregates thus produced 

were usually much larger than ASPD (mostly 20-30 nm in diameter), and showed low reactivity with 

ASPD-specific antibodies.  

 

Primary neuronal cultures. Primary rat hippocampal cultures were prepared from embryonic day 17 

pups and plated into 0.02% (w/v) polyethyleneimine (PEI; Sigma-Aldrich P3143)-coated wells at a 

density of 4.6 × 104 cells/cm2 (Flexiperm), 4.3 × 104 cells/cm2 (48-well plates), or 3.6 × 104 cells/cm2 

(Celldesk®; Sumitomo Bakelite) in neurobasal medium containing B27 supplement and 2.5 µM 

L-glutamine (18-20). After 3 days, half of the medium was replaced once a week with the above media 

additionally containing 10% (vol/vol) astrocyte-derived conditioned medium (ACM, Sumitomo Bakelite). 

Primary rat cerebellar neuronal cultures were prepared from embryonic day 20 pups essentially as 

reported (64) with some modifications. Briefly, cerebella, free of meninges and blood vessels, were 

prepared, cut into small pieces, and incubated in Ca2+-Mg2+-free Hanks’ balanced salt solution (HBS; 

Invitrogen) containing 1% (wt/vol) trypsin (Invitrogen) and 0.05% (wt/vol) DNase I (Sigma-Aldrich) for 

6 min at 37 ˚C. The pieces were washed three times with HBS, and tissues were dissociated by trituration 

with a fire-polished Pasteur pipette in HBS containing 0.05% (wt/vol) DNase I and 12 mM MgSO4. Cells 

were collected by centrifugation for 5 min at 1000 × g at room temperature (r.t.), resuspended in culture 

medium containing basal medium Eagle (BME) (Sigma-Aldrich B9638) containing 10% (vol/vol) equine 

serum (HyClone) supplemented with 1 mg/ml bovine serum albumin (BSA; Sigma-Aldrich A3156), 10 

µg/ml insulin (Sigma-Aldrich I1882), 0.1 nM L-thyroxine (Sigma-Aldrich T0397), 100 µg/ml transferrin 

(Sigma-Aldrich T1283), 1 µg/ml trypsin inhibitor, aprotinin (Sigma-Aldrich A1153), 30 nM selenium 

(Sigma-Aldrich S9133), 0.25% (wt/vol) glucose (Sigma-Aldrich G7021), 0.21% (wt/vol) NaHCO3 

(Sigma-Aldrich S5761), and 100 U/ml penicillin and 100 µg/ml streptomycin (Gibco 15140-122), and 

plated into 0.01% (wt/vol) poly-D-lysine (Sigma-Aldrich P6407)-coated 48-well plates (Corning 
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CellBIND®) at a density of 2.5 × 105 cells/cm2. After 48 hrs, the culture medium was completely changed 

to serum-free culture medium additionally containing 10 µM Ara-C. Thereafter, the medium was 

completely replaced twice a week with the above serum-free culture medium containing 10 µM Ara-C 

and the cells were grown in a 10% CO2 atmosphere until ~23 DIV. 

 

ASPD Toxicity. Toxicity was quantified by estimating apoptotic DNA fragmentation (Cell Death 

Detection ELISAplus, Roche Diagnostics)(19) and was expressed as absorbance difference (ΔA405-450). To 

examine toxicity neutralization by ASPD-specific mASD3 antibody or inhibitors, neurons were 

preincubated for 2 hrs with mASD3 or for 30 min with each inhibitor before ASPD treatment. Inhibitors 

used are; tetrodotoxin (TTX), D-(-)-2-amino-5-phosphonopentanoic acid (D-APV), LY341495, 

nitrendipine, mibefradil dihydrochloride, KB-R7943 mesylate, CGP 37157, 2-APB, and SKF 96365 

hydrochloride from Tocris; (+)-MK-801 maleate (MK801) from Calbiochem; 

6,7-dinitroquinoxaline-2,3-dione (DNQX), and (RS)-α-methyl-4-carboxyphenylglycine (MCPG) from 

ALEXIS; ω-agatoxin IVA, ω-conotoxin GVIA, kurotoxin, and SNX 482 from Peptide Institute; 

cyclosporin A, dantrolene, and BAPTA-AM from Merck Millipore. 

 

ASPD binding. Rat primary hippocampal neuronal cultures (19 DIV) were incubated with synthetic 

ASPD (400 µL/each well) for 30 min at 37 ˚C. After extensive washing with PBS at 37 ˚C, the cells were 

fixed and stained with rpASD1 (1.25 µg/ml), essentially as described under “Immunocytochemistry”. 

Unbound ASPD in the medium were estimated by dot blotting (19, 20). Bound alkaline phosphatase was 

visualized by nitro blue tetrazolium/5-bromo-4-chloro-3-indolyl phosphate reaction (Pierce) in the 

presence of 1 mM levamisole and quantified by measuring the absorbance at 405 nm after solubilization 

(10). 

 

Immunocytochemistry. Cells were rinsed with PBS at 37 °C, either fixed with 1% (wt/vol) 

paraformaldehyde (PFA) in 0.1 M sodium acetate buffer, pH 6.0, for 20 min at 37 °C (for NAKα2 and 

NAKα3 staining), or fixed with 2% (wt/vol) PFA in PBS/neurobasal media (1:1) for 20 min at 37 °C and 

then with 4% (wt/vol) PFA in PBS for another 20 min at 37 °C (for other staining), and rinsed three times 

with PBS. The fixed cells were treated with 1 mg/ml NaBH4 for 20 min at room temperature (r.t.), rinsed 

three times with PBS, permeabilized with 0.2% (vol/vol) Triton X-100 for 5 min at r.t., and rinsed three 

times with PBS. The cells were then pretreated with PBS containing 3% (wt/vol) BSA (Sigma-Aldrich) 

and 10% (vol/vol) normal goat serum (NGS) (IBL Co., Ltd.) for 45 min at r.t., and incubated overnight 
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with a primary antibody against ASPD (1.25 µg/ml rpASD1 or 0.51 µg/ml mASD3), MAP2 (2 µg/ml; 

mouse monoclonal HM-2, Sigma M4403), actin (1:250; mouse monoclonal clone C4, Millipore 

MAB1501R), NAKα2 (1:100; rabbit polyclonal, Upstate 07-674), or NAKα3 (0.4 µg/ml; rabbit 

polyclonal, Santa Cruz sc-16051-R) at 4 °C. After three washes with PBS, the cells were incubated with a 

highly cross-adsorbed secondary antibody in PBS containing 3% (wt/vol) BSA and 10% (vol/vol) NGS 

(1:1000; Alexa Fluor 568 anti-rabbit IgG, 1:1000; Alexa Fluor 488 anti-mouse IgG; Molecular Probes) 

for approximately 90 min at r.t. The cells were rinsed three times with PBS and mounted with Prolong 

Gold anti-fade reagent (Invitrogen). Fluorescence images were acquired using a cooled CCD camera 

CoolSNAP HQ (Roper Scientific) on a Zeiss inverted microscope Axiovert 200M with MetaMorph 

imaging software (Molecular Device Corp.) with laser intensity and signal detection settings held constant 

(19). Neuronal images were collected at 0.4 µm intervals to create a stack in the z-axis and a 2D rendering 

was made from the z stack to show neurites that would otherwise be out of focus (19). 

To elucidate the specificity of anti-NAKα3 antibodies, NAKα3 expression was selectively knocked 

down in rat primary hippocampal neuronal cultures by infection at 5 DIV with AAV-miR-ATP1A3 vector 

that contained an antisense sequence for rat ATP1A3 and an enhanced GFP sequence (see “MicroRNA 

(miR) of ATP1A3” below) at the virus titer of 1×104 particle/cell for 5 days. The cultures were maintained 

in virus-free medium for another 15-20 days before experiments, with half of the medium replaced once a 

week (see “Primary neuronal cultures”). NAKα3 protein level, determined by Western blotting, was 

decreased to 19.8% of that of the mock control at 19-20 DIV, while NAKα1 protein level was not 

decreased (increased to 233%), by the AAV-miR-ATP1A3 treatment. Consistent with this large decrease 

in NAKα3 protein level, little NAKα3 staining was observed and almost all the neurons infected by 

AAV-miR-ATP1A3 vector (judged from GFP expression) died, except for a huge cell, also transfected 

with AAV-miR-ATP1A3 vector, yet which was heavily stained by anti-NAKα3 antibodies and remained 

alive. Unlike the other mature hippocampal neurons, this AAV-miR-ATP1A3 vector-resistant huge cell 

showed high levels of NAKα2 and MAP2, suggesting that it is likely to have immature neuronal 

characteristics. These results strongly suggest that AAV-miR-ATP1A3 vector-resistant NAKα3 staining 

reflects cross-reactivity of anti-NAKα3 antibodies with NAKα2. We confirmed that the anti-NAKα2 

antibody used here did not cross-react with NAKα3 in Western blotting. Consistent with this, ASPD did 

not bind to this AAV-miR-ATP1A3 vector-resistant huge cell. As a result, as shown in Fig. 3E, punctate 

signals for ASPD and for NAKα3 were detected on neuropil and were almost exclusively co-localized 

with each other under the established staining conditions. Within z-stack image sets obtained from 

specimens prepared according to this protocol, we carefully examined whether these punctate signals 
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occurred on the plasma membrane or intracellularly and confirmed that individual puncta co-stained for 

ASPD and NAKα3 appeared to lie on the neuronal surface. In hippocampal neurons, NAKα3-staining 

was also observed diffusely and strongly in the soma, which was likely to reflect intracellular NAKα3 

expression in ER. Binding of anti-NAKα3 antibody to nucleolus-like structures in the nuclei was 

observed occasionally in both NAKα3-expressing mature hippocampal neurons and 

NAKα3-non-expressing HEK293 cells (see Western blot in Fig. 3C), indicating non-specific binding of 

the antibody. Thus, it is reasonable that NAKα3-staining on the soma or the nucleolus-like structures did 

not co-localize with ASPD signals. Taking these results together, we conclude that ASPD and NAKα3 

essentially co-localize on the neuronal surface, in particular on neuropil (see Fig. 3E Inset). 

 

MicroRNA (miR) of ATP1A3. For the selective knockout of rat ATP1A3 expression, miR-ATP1A3 

vector expressing an antisense sequence for rat ATP1A3 (TTTACTGTGTGTCAGACCCTG) was 

generated based on murine miR-155 using the Invitrogen BLOCK-iTTM system. As a control, miR-Mock 

vector containing Mock sequence (TATTGCGTCTGTACACTCACC) was produced. The above miR 

sequence was inserted into an expression cassette in which a human cytomegalovirus immediate-early 

promoter was followed by an enhanced GFP sequence, either miR-ATP1A3 or miR-Mock vector, 

woodchuck hepatitis virus posttranscriptional regulatory element (nucleotides 1093-1684, GenBank 

accession number J04514), and simian virus 40 polyadenylation signal sequence. This expression cassette 

was inserted between the inverted terminal repeats of the AAV3 genome. This miR-expressing AAV3 

vector was introduced into HEK293 cells with two helper plasmids, pAAV-2R1C (harboring the AAV2 

rep and AAV1 cap genes) and pHelper (harboring E2A, E4, and VA1 genes of the adenovirus genome; 

Agilent Technologies), using the calcium phosphate co-precipitation method. AAV particles 

(AAV-miR-ATP1A3 vector or AAV-miR-Mock vector) were harvested and purified by two-sequential 

continuous CsCl gradient ultracentrifugation. Vector titers were determined by quantitative PCR of the 

DNase-I-treated vector stocks and estimated at 1012-1013 vector genome. 

 

Western and Far-Western Blotting and MS/MS. Whole-cell RIPA extracts (2 DIV or 19-25 DIV of rat 

primary neuronal cultures or HEK293 cells, 10 or 15 µg/lane) were separated under denaturing conditions 

on reducing NuPAGE 3-8% Tris-Acetate gels (Invitrogen) and bands were transferred onto 0.45 µm or 

0.2 µm nitrocellulose membranes. For the detection of tau- or GSK3β-phosphorylation and p35/25, 

whole-cell RIPA extracts were obtained using PhosSTOP (Roche Diagnostics) and were separated under 
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denaturing conditions on reducing NuPAGE 12% Bis-Tris gels (Invitrogen). Bands were transferred onto 

0.2 µm nitrocellulose membranes. 

For western blotting, the membranes were blocked with 5% (wt/vol) skim milk for 1 h at r.t. and 

probed with a primary antibody against NAKα1 (0.1 µg/ml, US Biological A4000-52), NAKα2 (1/2,000; 

Upstate 07-674), NAKα3 (1 µg/ml, Santa Cruz sc16052), actin (1:500, Millipore MAB1501R), MAP2 

(1:2000, Sigma M4403; 1:1000, Millipore AB5622), tau (1:1000, Millipore 577801 or Merck Millipore 

MAB2239), phospho-tau (Ser396, 1:1000, Invitrogen 44752G; Ser404, 1:1000, Sigma-Aldrich T7444-1VL), 

p35/25 (1:1000, Cell Signaling 2680), GSK3β  (1:5000, Santa Cruz sc-9166), or phospho-GSK3β (Ser9, 

1:5000, Biosource 44-600G; Tyr216, 1:5000, Millipore 05-413). Bands were detected with SuperSignal 

West Femto chemiluminescent substrates (Pierce) and quantified using a LAS-1000 Plus or LAS-4000 

Mini (18). 

For Far-western blotting, the membranes were blocked with 5% (wt/vol) skim milk for 1 h at r.t., 

washed three times with ice-cold F12 buffer without L-glutamine and phenol red, and incubated with 

either AD patient-derived ASPD (6.6 nM) or the purified synthetic ASPD (3.5 nM) as a ligand for 3 hrs at 

4 °C. They were probed with haASD1 antibody (0.02 µg/ml) overnight at 4 °C, washed with TBS-T and 

incubated with highly cross-adsorbed anti-hamster antibody (1:5000) (Zymed Laboratories) for 1 h at r.t. 

Immunoreactions were detected and quantitated as described above (18). Far-western blotting was also 

performed using freshly dissolved Aβ1-42 (100 nM) as a ligand, which was detected with anti-Aβ 

N-terminal antibody 6E10 (0.1 µg/ml) as described above. 

For MS/MS analysis, the samples separated on NuPAGE gels were silver-stained using Silver Quest 

Silver Staining kit (Invitrogen). Silver-stained bands were excised, destained, and in-gel digested with 

trypsin. The proteins were reduced with 25 mM NH4HCO3-50% (vol/vol) acetonitrile and digested with 

trypsin (10  µg/ml) at 37 °C overnight. The tryptic peptides were recovered from the gel slices by 

incubating twice in 50% (vol/vol) acetonitrile-0.1% (vol/vol) trifluoroacetic acid at r.t. for 20 min and 

then by incubating in 100% (vol/vol) acetonitrile at r.t. for 5 min. At each incubation, the supernate was 

harvested and pooled. The pooled peptide extracts were desalted, evaporated to dryness, and subjected to 

MS/MS analysis (Bruker Ultraflex III MALDI-TOF/TOF mass spectrometer). Spectra were collected 

from 400 shots per spectrum over an m/z range of 1000–5000 and calibrated by 7-point internal 

calibration (m/z 1046.5418, 1296.6848, 1347.7354, 1619.8223, 2093.0862, 2465.1983, and 3147.4710). 

Monoisotopic peptide masses were assigned and used for Swiss-Prot primary sequence database searches 

with BioTools 3.1 software (Bruker-Daltonics) and the MASCOT search engine (Matrix Science). Search 

parameters were set as follows: a maximum allowed peptide mass error of 50  ppm and consideration of 1 
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incomplete cleavage per peptide. The known peptide masses of keratins, internal standards, and trypsin 

were excluded. For MS/MS, the most intense precursor ions with a signal/noise ratio of >25 were selected 

after exclusion of the common background signal. 

 

Cell-free NAKα3 Production. NAKα3 protein for SPR analysis and for use as standards for quantifying 

neuronal NAKα3 was synthesized with the wheat germ cell-free protein synthesis system in the presence 

of asolectin liposomes (65). ATP1A3 ORF DNA was cloned into pEU-E01-MCS vector, which was used 

as a template for in vitro transcription. Translation reaction was performed using the lipid bilayer method. 

A reaction mixture (25 µl) containing 10 µl (60 OD) of WEPRO7240 wheat germ extract (Cell-Free 

Sciences), 10 µl of mRNA, 40 µg/ml creatine kinase, and 10 mg/ml asolectin liposomes (65), was 

overlaid with 125 µl of SUB-AMIX SGC solution (Cell-Free Sciences) in flat-bottomed 96-well 

titer-plates. The reaction was performed for 16 hrs at 26 ˚C. To quantify NAKα3 levels, radiolabelled and 

unlabelled NAKα3 proteins were simultaneously prepared, except for addition of [14C]leucine to both the 

upper and bottom layers in translation reaction of radiolabelled NAKα3. Each NAKα3/liposome complex 

was purified by centrifugation at 20,000 × g for 10 min at 4 ˚C and then resuspended into 

HEPES-buffered saline (HBS). This procedure was repeated 3 times. A portion of the purified (~60 %) 
14C-labelled NAKα3 was spotted on 3MM filter paper and 14C-decay was measured by liquid scintillation 

(Hitachi-Aloka Medical). Based on the [14C]leucine level of radiolabelled NAKα3, the concentration of 

simultaneously prepared unlabeled NAKα3 was accurately determined and used as a standard for 

quantifying neuronal NAKα3 levels in Western blotting. For SPR analysis, NAKα3 micelles were 

prepared as described below with the cell-free protein synthesis system. Large-scale translation was 

conducted by the dialysis method. Five-hundred µl of reaction mixture (60 OD of WEPRO7240 wheat 

germ extract, 125 µl of mRNA, 40 µg/ml creatine kinase, and 10 mg/ml asolectin liposomes) was 

prepared in a Thermo Scientific 10K MWCO Slide-A-Lyzer dialysis device, and the dialysis cup was 

immersed in 3.5 ml of dialysis solution (SUB-AMIX SGC, Cell-Free Sciences). The reaction was 

performed for 24 hrs at 15 ˚C. The NAKα3/liposome complex was purified by centrifugation and 

resuspension in HBS as described above. The purified pellet was suspended in 300 µl of a solubilization 

solution (200 mM HEPES-NaOH, pH 8.0, 750 mM NaCl, 4% (wt/vol) n-dodecyl-β-D-maltoside, 10% 

(vol/vol) glycerol, and 1 mM dithiothreitol). The suspension was sonicated using Branson Sonifier model 

450 Advanced Cell Disrupters for 15 min at 20 ˚C, and centrifuged at 14,000 × g for 15 min at 4 ˚C. The 

supernate containing solubilized NAKα3 was collected and loaded on a Superdex 200 10/300 24-mL 

SEC column (GE Healthcare) for further purification (66). The concentration of the purified NAKα3 
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micelles was determined from the absorbance at 280 nm using an extinction coefficient of 94770 (67). 

 

SPR. SPR was performed on a ProteOn XPR36 Protein Interaction Array System (BIO-RAD) with 

standard system software. About 900 RU (resonance units) of C-terminally biotinylated PD peptide was 

immobilized on the GLC chip, on which NeutrAvidin had been pre-coupled, according to the 

manufacturer's instructions. Association and dissociation of ASPD with each PD peptide were measured 

at 25 ˚C as a function of time (sensorgram). To examine direct interaction between ASPD and NAKα3, 

synthetic ASPD were diluted with a sodium acetate immobilization buffer (pH 4.5) and immobilized on 

the intermediate binding capacity-sensor chip GLM according to the manufacturer’s instructions (~1600 

RU of ASPD). Association and dissociation of ASPD with purified NAKα3 micelles (see “Cell-free 

Protein Production of NAKα3”) were monitored as described above. Langmuir with Mass Transfer 

determined kinetic parameters in ProteOn Manager software (version 3.1). 

 

Immunoprecipitation (IP). IP with haASD1 was performed using either an Immunocapturing Kit 100 

MB-IAC Prot G (Bruker Daltonics 233794) or a Protein Capturing Kit MB-CovAC-Select (Bruker 

Daltonics 254733) as described previously using 3% (wt/vol) BSA (Sigma A7030) to suppress 

non-specific binding (19, 20). We confirmed that ASPD retained their structure and toxicity by means of 

TEM, dot blotting, and toxicity studies (19, 20). The ASPD amount was determined using dot blotting (19, 

20). CoIP experiments were performed essentially as described above except that extracts were 

preincubated with ASPD (250 nM) for 30 min at r.t. 

For Figs. 2 and 7, in order to remove other Aβ oligomers less than 100 kDa in mass, soluble extracts 

from AD or NCI brains were concentrated approximately 16 times using 100-kDa molecular mass cut off 

filters (Sartorius) (19, 20). IP was performed using N-hydroxysuccinimide (NHS)-Activated Magnetic 

Beads (Thermo Scientific), according to the manufacturer’s instructions, except that BSA was used to 

suppress nonspecific binding. ASPD-specific haASD1 antibody or normal mouse IgG was coupled to 

NHS-magnetic beads. In order to remove nonspecific binding proteins to haASD1, pre-absorption of AD 

and NCI samples was performed with mouse IgG-coupled beads before antigen-antibody complex 

reaction. After a final washing step of the IP, the captured immunocomplex was separated by SDS-PAGE. 

The magnetic beads were resuspended in 20 µl of SDS-loading buffer without reducing agent and the 

beads were heated at 70 ˚C for 10 minutes. The beads were then removed and the supernatant was 

collected for SDS-PAGE under denaturing conditions on non-reducing NuPAGE 12% Bis-Tris gels (Life 

Technologies) in MES buffer. Then, silver staining was performed using SilverQuest Silver Staining kit 
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(Life Technologies), according to the manufacturer’s instructions.  

Rat primary hippocampal neuronal cultures (21 DIV) were washed twice with PBS at 37 ˚C, 

incubated with 10 nM streptavidin in PBS for 15 min at 37 ˚C, washed twice with F12 without 

L-glutamine and phenol red at 37 ˚C, and incubated with 53 nM biotinylated ASPD in F12 without 

L-glutamine and phenol for 30 min at 37 ˚C. After three washes with F12 without L-glutamine and 

phenol at 37 ˚C, the cells were extracted using 1% (wt/vol) n-octyl-β-D-thioglucopyranoside for 30 min 

on ice, and the lysate was centrifuged for 30 min at 16,000 × g at 4 ˚C. The biotinylated ASPD-ASPD 

binding protein complexes in the supernate were isolated using streptavidin magnetic beads (Promega) 

according to the manufacturer’s protocol. The samples were separated on NuPAGE gels and 

silver-stained using SilverQuest Silver Staining kit (Invitrogen). 

 

NAK activity. ATPase activities in membrane fractions were determined as described (40) with some 

modifications. Briefly, after vehicle or synthetic ASPD treatment, mature rat primary neuronal cultures 

(25-26 DIV) were extracted using 300 µl of lysis solution (20 mM Tris-HCl pH 7.5, 0.6 mM EGTA, 0.1 

mM PMSF). The lysate was homogenized once using a Potter-Elvehjem homogenizer, and the 

homogenate was centrifuged for 5 min at 1,500 × g. The supernate was further centrifuged for 45 min at 

120,000 × g at 4 °C. The pellet was suspended on ice in a buffer (20 mM Tris-HCl pH 7.5 and 0.1 mM 

EGTA), and the suspension was used as the membrane fraction. ATPase activities were determined using 

the membrane fraction (20-30 µg/assay) in 90 µl of a buffer (18 mM Tris-HCl pH 7.5, 80 mM NaCl, 15 

mM KCl, 3 mM MgCI2 and 0.1 mM EGTA) with or without ouabain at different concentrations (40). The 

level of inorganic phosphate was quantified as ATPase activity using MicroMolar Phosphate Assay 

Reagent (Profoldin). The absorbance at 655 nm was measured and converted to the activity value by 

linear regression using a standard curve of phosphate ion standard solution (Wako). Since rodent NAKα3 

is extremely sensitive to ouabain (IC50=1.6 nM) (26), the activity of the rodent NAKα3 was determined 

by subtracting the ouabain-sensitive (100 nM) activity from the overall Mg2+-ATPase activity (40). 

 

Ca2+ and Na+ imaging. Primary rat hippocampal cultures (19-24 DIV) on Celldesk were washed with 

HSS buffer (5.4 mM KCl, 130 mM NaCl, 1 mM CaCl2, 0.6 mM MgCl2, 5.5 mM glucose, and 20 mM 

HEPES, pH 7.3) and loaded with 4 µM Fura-PE3AM (TEFLABs; a leakage-resistant Fura-2AM 

derivative that is retained in cells for hours) for 45 min at 37°C. The cells were mounted in the chamber 

where HSS buffer was perfused by a peristaltic pump at 37 ˚C. ASPD and other reagents were added to 

the perfusion line. Images were captured and processed using Metafluor software (Molecular Devices) 
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with a CCD camera (Hamamatsu Photonics ImagEM Model C9100-13) coupled to an Olympus IX70 

microscope (Olympus). The cells were excited at 340 and 380 nm via a Lambda DG-5 light source (Sutter 

Instrument Co.) and emission at 500 nm was captured every 2 sec. The absorbance ratio at 340/380 nm is 

shown. In the case of sodium (Na+) imaging, cultures were loaded with a Na+ indicator, 2 µM Asante Na 

TRIUM Green TM-2AM (ANG-2AM) (Kd = 20 mM; excitation 488-517 nm; emission 540 nm; 

TEFLABs) for 30 min at 37 °C. Na+ imaging was performed in essentially the same way as Ca2+ imaging, 

except that the cells were excited at 470-495 nm and emission at 510-550 nm was captured using an 

Olympus NIBA filter set. In our system, as described above, HSS buffer was circulated. The treatment of 

neurons with ASPD or other reagents was initiated by changing the circulating HSS buffer to HSS buffer 

containing ASPD or the sample reagent. After the buffer change, it usually took ~110 sec for HSS buffer 

containing ASPD or the sample to reach the assay chamber, and by ~17.5 min the solution in the assay 

chamber was completely replaced with HSS buffer containing ASPD or the sample. 

 

Time-lapse. Confocal images of the culture in a thermostatic chamber (37 ˚C, 5% CO2) were taken with a 

20x objective for 24 hrs (6 images/hr) using a confocal laser microscope system A1 and NIS-Elements C 

software (Nikon). The time of cell swelling or shrinkage was quantified based on the time of each shot. 

 

Dot blotting. Dot blotting was performed as described (19, 20) using 40 ng/ml ASPD-specific rpASD1 

antibody in 5% skim milk with membrane boiling, 1/5000 anti-pan-oligomer A11 antibody (StressMark 

Biosciences Inc.) in 5% skim milk without membrane boiling, and 12.5 ng/ml anti-Aβ N-terminal 82E1 

antibody in 10% skim milk without membrane boiling. Immunoreactions were detected with SuperSignal 

West Femto chemiluminescent substrates (Pierce) and quantified using a LAS-1000 Plus or LAS-4000 

Mini (19, 20). In the case of synthetic ASPD, amounts were determined by quantitative amino acid 

analysis using a Waters AccQ-Tag system, according to the manufacturer’s protocol, as in (19). In the 

case of patient ASPD, amounts of ASPD or Aβ in samples were obtained from a standard curve generated 

from serial dilutions of synthetic ASPD, the concentration of which was pre-determined as described 

above (see 19). The linear range of the assay is 0.3 – 3000 nM in equivalents. 

 

TEM. Samples were negatively stained with 4% (wt/vol) uranyl acetate solution on carbon or 

elastic carbon-coated Formvar grids and then immediately analyzed at 100 kV (19, 20). ASPD images 

were captured at a direct magnification of 200,000 and the size of each spherical assembly was 

determined at the equator (19). 
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SEM. Rat primary hippocampal neuronal cultures (20 DIV on Aclar films from Nisshin EM Co., Ltd) 

were treated for the indicated time with 35 nM synthetic ASPD, fixed with 4% (wt/vol) paraformaldehyde, 

0.005% (vol/vol) glutaraldehyde, 15% (vol/vol) saturated picric acid, 0.1% (wt/vol) tannic acid, and 1% 

(w/v) sucrose in 0.1 M phosphate buffer pH 7.4 for 20 min at 37 ˚C, and dehydrated through a 50, 70, 80, 

90, 95, and 100% (vol/vol) ethanol series. After replacement of ethanol with 100% (vol/vol) 

tert-butyl alcohol, the samples were dried using a Hitachi freeze dryer ES-2030. The dried specimens 

were sputter-coated with osmium. The surface and morphology of the cells were examined by scanning 

electron microscopy (SEM) using a Hitachi model S-4500 field emission electron microscope operating at 

15 kV. 

 

Human brain pathology and ISH. We examined 5 clinicopathologically confirmed AD cases (as in 

(19)) and 5 control cases, among which samples with well-preserved RNA were used for the study. The 

cases used for this purpose were as follows (patient number, age, gender, disease duration, post-mortem 

(p.m.) sampling time, brain weight): AD patients (AD1, 86 yr, female, 23 yr duration, 4 hr p.m., 995 g; 

AD2, 100 yr, female, 6 yr duration, 3 hr p.m., 935 g; AD3, 87 yr, female, 9 yr duration, 3 hr p.m., 1000 g) 

and NCI cases (NC1, 76 yr, male, no AD symptoms, 3 hr p.m., 1220 g; NC2, 82 yr, male, no AD 

symptoms, 2 hr p.m., 1170 g; NC3, 79 yr, female, no AD symptoms, 3 hr p.m., 1100 g). 

Paraffin-embedded 4-µm sections of formalin-fixed brains were pretreated with microwaves for 30 min in 

10 mM citrate buffer (pH 6.0), and treated with 0.3% (vol/vol) H2O2-methanol for 30 min followed by 

incubation with normal goat serum for 30 min at r.t. These sections were incubated overnight at 4 °C with 

primary antibodies against NAKα1 (US Biological A4000-52, 1:300) and NAKα3 (US Biological 

A4000-65c, 1:300), followed by incubation for 1 hr at r.t. with appropriate biotinylated secondary 

antibodies. Immunoreactivities were detected by the avidin-biotin-peroxidase complex method using a 

Vectastain ABC kit (Vector). The chromogen reaction was developed with diaminobenzidine/H2O2 

solution. Counterstaining was carried out with Mayer’s hematoxylin. Sections were viewed by using a 

light microscope (Olympus AX80T) and images were captured with a digital camera (Olympus DP70). It 

is well known that the distribution patterns of neurofibrillary tangles and of senile plaques in AD brains 

develop in a predictable sequence (68). We assessed the overall pathology of the AD brains according to 

the Consortium to Establish a Registry for Alzheimer’s Disease (CERAD) criteria. Since severity of 

neuronal degeneration usually appears to be associated with the cellular burden, we evaluated it according 

to the staging system of neurofibrillary pathology by using a phosphorylation-specific anti-tau antibody 
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(clone AT8)(68). We considered the cases with stages III/IV and V/VI neurofibrillary pathology as 

corresponding to “moderate” and “severe” degeneration, respectively. 

ISH was performed on paraffin sections with some modifications. Briefly, 10-µm sections were made 

from frontal cortex, cornu ammonis, and cerebellum. The digoxigenin-labelled riboprobes for ATP1A1 

(3189-3741 of human ATP1A1 cDNA; accession number NM_000701.7) and ATP1A3 (2882-3573 of 

human ATP1A3 cDNA; accession number NM_001256213.1) were used and visualized with the 

Tyramide Signal Amplification (TSA) Biotin System (NEL700; Perkin-Elmer) according to the 

manufacturer’s protocol. After ISH staining, the sections were counterstained using Methyl Green (Vector 

Laboratory). Bright-field images were acquired using a Nikon Eclipse E600 microscope with a Nikon 

DS-Ri1 CCD camera and NIS-Elements Microscope Imaging Software (Nikon Instrument Inc.). 

 

Glycerol gradient sedimentation. Patient ASPD (~16 pmol in a volume of 0.2 ml) was layered on top of a 

4 ml 15-30% (vol/vol) linear glycerol gradient in a Beckman Coulter 344057 tube. The tube was 

centrifuged in a Beckman Coulter SW55Ti rotor at 86,000 × g for 16 h at 4 °C. Fractions (0.35 ml each) 

were collected from the bottom of the tube. Fraction numbering begins with #1, which corresponds to the 

top 0.35 ml of fluid in the tube (the last fraction actually collected). Fractions were immediately 

dot-blotted to quantify Aβ content (see “Dot blotting”). Antibody 82E1 was used for Aβ and antibody 

rpASD1 was used for ASPD. Aliquots of selected fractions then were used in toxicity assays and for 

TEM. Standards (158 kDa, aldolase, 1 mg; 232 kDa, catalase, 0.3 mg; 440 kDa, ferritin, 4 mg; and 669 

kDa, thyroglobulin, 0.5 mg) were centrifuged at the same time as were the ASPD, but in a separate tube, 

and used to determine the molecular mass of the ASPD fractions. Collected fractions of standard proteins 

were separated by SDS-PAGE using Novex 10-20 % Tricine gels and stained with a Colloidal Blue 

Staining Kit (Life Technologies). Densitometric analysis of each band was performed using an LAS-1000 

Plus and the mobility shift of each standard protein thus determined was used to construct a standard 

curve of molecular mass versus relative mobility. Toxicity assays measured apoptotic cell death using 

propidium iodide and Hoechst 33258 (18). Briefly, after 24 h treatment, 19-22 DIV mature hippocampal 

neurons were gently rinsed and exposed for 30 min to 5 µM propidium iodide in a buffer (130 mM NaCl, 

5.4 mM KCl, 5.5 mM glucose, 20 mM HEPES, pH 7.3, 2 mM CaCl2) at 37 ˚C. Dye uptake was measured 

using a fluorescence microscope (Axiovert 200M, Zeiss) with a computer-assisted cooled CCD camera 

unit (CoolSNAP HQ, Roper Scientific) using band-pass filters appropriate for each probe, and analyzed 

with MetaMorph imaging software (Universal Imaging Corp., West Chester, PA, USA). Cells with 

shrunken or fragmented nuclear staining were counted as dead cells. The total cell number was assessed 
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by 1 µg/ml Hoechst 33258 nuclear staining after 10% formalin fixation. At least 400 cells were selected 

randomly from eight different fields. Data were expressed as the apoptotic ratio with respect to the total 

cell number. One unit is defined as the activity causing apoptosis in 1% of cells (determined by Hoechst 

33258 staining)(18). 

 

PD. A randomized 12-mer peptide library presented on M13 phages (Ph.D.TM-12 phage display library 

kit; New England Biolabs) was used for screening against ASPD immobilized on an 8-well strip 

(compatible with a 96-well plate) (Mitsubishi Chemical Medience Corp.) (19). BSA-only-immobilized 

8-well strips were also used. Biopanning was performed according to the manufacturer’s instructions. 

Briefly, the phages were incubated in the synthetic ASPD-immobilized wells for 1 hr at 25 °C. To remove 

phages with low affinity to ASPD, the wells were washed ten times with TBS-T. Bound phage was eluted 

in 0.2 M glycine-HCl buffer (pH 2.2) and immediately neutralized with Tris. The mixture was then 

incubated in the BSA-only-immobilized wells four times to subtract non-specific binders. Finally, the 

phage was transfected into E. coli, amplified, and recovered. After the third round of this biopanning 

processes, the phage was cloned and sequenced using an ABI PrismTM 310 genetic analyzer (Applied 

Biosystems). 

 

NMR. 1H-15N HSQC spectra of both monomeric 15N-Aβ1-40 and 15N-ASPD were recorded at 298 K on a 

600 MHz Bruker AVANCE-III spectrometer equipped with a cryogenic TCI probe. Approximately 100 

µM 15N-Aβ1-40 and 350 nM 15N-ASPD in 0.5 x PBS (supplemented with 5% D2O) were used. 128 and 512 

scans were accumulated, respectively. The data were processed and analyzed with NMRPipe (69) and 

Sparky. 15N-Aβ1-40 backbone signal assignments were taken from the literature (70). 

 

Molecular modeling. A three-dimensional homology model of human NAKα3 was constructed using the 

Prime program (Schrödinger). The structure of pig NAKα1 (32) was selected as a template (PDB code 

3B8E). To further refine the model, all the coordinates of the hydrogen atoms and heavy atoms of side 

chains and main chains except backbone C and N atoms were optimized with the Merck Molecular Force 

Field (MMFF) using the MacroModel program (Schrödinger). During the optimization, an implicit water 

solvent model was employed, and a van der Waals cut-off of 8 Å and an electrostatic cut-off of 20 Å were 

used. Finally, the model was appended with the β and γ subunits of pig NAK (PDB code 3KDP) (32) by 

superimposing the α subunits on these subunits. The homology model was visualized by the program 

PyMOL (Schrödinger). 
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SI Discussion of definition of ASPD 

In Hoshi et al. (18), two fractions of soluble Aβ aggregates were obtained from the slowly rotated Aβ 

solutions after glycerol gradient sedimentation: (1) non-toxic aggregates of mass ~60 kDa and diameter 

<10 nm by TEM (termed “non-toxic ASPD”); and (2) toxic aggregates of mass ~346 kDa and diameter 

10-25 nm in TEM (termed “toxic ASPD”). Solution AFM studies have shown that these aggregates both 

have a height/width ratio of 1 (Fig. 2C of (18)), suggesting they are spheres. We thus refer to them as 

such. Structure-activity studies demonstrated that the 10-15-nm spheres were the toxic entities within the 

population of 10-25 nm structures (18). However, all spheres were considered ASPD at that time because 

we did not know whether any difference, other than size, existed between non-toxic and toxic spheres. In 

subsequent studies by Noguchi et al. (19), toxic ASPD were used as immunogens to produce 

ASPD-specific antibodies, which reacted robustly with 10-15 nm spheres but very weakly with Aβ 

monomers, dimers, or fibrils (Fig. 1B in (19)). These antibodies detected the toxic 10-15-nm ASPD, but 

not the non-toxic, smaller spheres or the non-toxic, larger spheres >15 nm in diameter (19). Furthermore, 

these antibodies selectively immunoisolated only the neurotoxic 10-15-nm spheres (Fig. 2B and C of 

Matsumura et al. (20)). Therefore, on the basis of neurotoxic activity and immunoreactivity, as well as 

size, we conclude that the 10-15-nm spheres are distinct from the spheres of diameter <10 nm and those 

of diameter >15 nm. These new data enable us to make our definition of ASPD more specific: namely 

ASPD are “neurotoxic, spherical Aβ  oligomers of 10-15-nm diameter (measured by TEM) that are 

recognized by ASPD-specific antibodies.” Additional details follow. 

By using ASPD-specific antibodies, we found that ASPD were recovered in soluble fractions of 

patients’ brains, but not from insoluble fractions, after treatment with 2% SDS or 70% formic acid 

[Figure S3 in Noguchi et al., (19)]. We selectively isolated 10-15-nm ASPD by a combination of 100-kDa 

retention and immunoprecipitation using ASPD-specific antibodies (purity >95%) [Figure 2G, H, I in 

Noguchi et al., (19)] and showed that the purified AD patient-derived ASPD were composed 

predominantly of Aβ1-40 and Aβ1-42 (by means of mass spectrometry) and were directly toxic to human 

mature neurons [Figure 2J, K in Noguchi et al., (19)]. We have thus proved that ASPD are present in AD 

patients’ brains and we have defined the diameter, mass, and neurotoxicity of ASPD (Table S1). 

To monitor ASPD formation in vitro, as well as to determine ASPD mass more accurately than with 

the glycerol gradient sedimentation analysis, we have developed a highly sensitive monitoring method 

using fluorescence correlation spectroscopy (FCS) combined with TEM and toxicity assays (20). With 

this method, we showed that the mass of 10-25 nm Aβ1-42 aggregates containing predominantly 
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ASPD-sized, 10-15-nm spheres as major species is 330 ± 58 kDa (Fig. 1B 16.5 h in (20)), in good 

agreement with the result (~346 kDa) of the sedimentation assay in (18). As described above, from these 

ASPD-containing aggregates, we selectively immunoisolated pure (97%) 10-15-nm ASPD using the 

ASPD-specific antibody haASD1. This isolation procedure did not affect ASPD structure or neurotoxicity 

as described in (19). The 10-15-nm spheres were found to have a molecular mass of 128 ± 44 kDa (Fig. 

2C in (20)). 

To identify the receptor mediating toxicity of ASPD, in this work we used ASPD immunoisolated 

with the haASD1 antibody from the soluble brain extracts of the two AD patients displaying the most 

severe neurodegeneration and the highest ASPD concentrations among those shown in Fig. 2A. 

Importantly, these two patients were the same patients from whom we previously purified patient ASPD 

and characterized them in comparison with synthetic ASPD (19).. To confirm the mass of patient ASPD 

used in this work, we performed glycerol gradient sedimentation because we cannot apply our FCS 

method to patient ASPD. In our previous work (18), thyroglobulin (669 kDa) and ferritin (440 kDa), two 

marker proteins, both were recovered in the bottom-most fraction of the gradient. To enable resolution of 

assemblies in this mass size range, in the current work, we centrifuged the sample in a Beckman Coulter 

SW55Ti rotor, instead of the TLS55 rotor we originally used, which allowed us to resolve thyroglobulin 

and ferritin within two distinct fractions. Note that our ASPD preparation method involves initial 

filtration through a 100-kDa MWCO filter, which eliminates the smaller (<10 nm) non-toxic aggregates, 

which pass through filters. Our higher resolution glycerol gradient system yields 10-15 nm spheres (i.e., 

synthetic ASPD) in fractions 1-3, centered at ~120 kDa in mass (as described in the text in (19)), while 

larger spheres were recovered in fractions 4-5. Patient ASPD were similarly recovered in fractions 1-3, 

centered at fraction 2, and of ~120 kDa in mass (Fig. 2E). In Parthasarathy et al. (31), we compared the 

size of synthetic ASPD and that of patient ASPD in TEM images using Image J software. The analysis 

indicated identical diameters, within experimental error, for synthetic ASPD (11.0 ± 2.1 nm; n = 65) and 

patient ASPD (10.9 ± 1.7 nm; n = 34). These data collectively indicated that synthetic ASPD and patient 

ASPD are essentially identical in size and in mass. 

 With respect to the methods of preparation of ASPD, in the case of Aβ1-40, ASPD are prepared from 

350 µM Aβ1-40 solution in 0.5x PBS (-) by slowly rotating the solution for 5-7 days at 37 ˚C (as described 

in (18)) or from 50 µM Aβ1-40 solution in 0.5x PBS (-) by slowly rotating the solution for 5-7 days at 4 

˚C (used in (20)). In either protocol, the level of Aβ1-40-ASPD is maximally ~8%. In the case of Aβ1-42, 

ASPD are formed in 50 µM Aβ1-42 solution in F12 buffer without L-glutamine and phenol red by slowly 

rotating the solution for ~16 hrs at 4 ˚C as shown in (19, 20) and the current study, except for the 
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fluorescence-based study using FCS. Since FCS is highly sensitive to fluorescent materials, we used F12 

buffer without riboflavin, L-glutamine, and phenol red in order to eliminate the fluorescent background. 

The level of Aβ1-42-ASPD in the Aβ1-42 solution after slow rotation is usually ~30 %. In addition to 

immunoisolation using ASPD-specific haASD1 antibody as described in (19, 20), synthetic ASPD are 

obtained by means of two-step filtration, in the fraction that passed through 0.22-µm filters, but was 

retained on 100-kDa MWCO filters (Sartorius), as described in (19). Synthetic ASPD were prepared 

every week and the quality was confirmed by dot blotting, TEM, amino acid analysis, and toxicity assays 

using 19-27 DIV hippocampal neurons. In this work, we also confirmed the Kd of ASPD-specific 

rpASD1 antibody for synthetic ASPD each week using SPR. Patient ASPD were isolated by a 

combination of 100-kDa retention and immunoprecipitation using ASPD-specific antibodies (see 

“Immunoprecipitation (IP)” in SI Materials and Methods and “Human Brain Extracts” in Additional 

Experimental Procedures in Supplemental Data of Noguchi et al. (19). Patient ASPD are very stable, and 

our isolation procedures are highly reproducible, as evidenced by our ability to obtain essentially the same 

amounts of ASPD in multiple independent extractions and fractionations over time from the same 

patient's brain. 

 

Discussion for a Plausible Mechanistic Explanation for Two Types of Ca2+-Responses Induced by 

ASPD. Mitochondria have been considered to act as a spatial Ca2+ buffer by: (i) taking up excess 

cytoplasmic Ca2+ mainly through the rapid mode of calcium uptake (the RaM) and partly through the 

uniporter; or (ii) releasing Ca2+ mainly through the Na+-dependent mechanism in neurons, to maintain 

cytoplasmic Ca2+ levels (71). At high ASPD concentrations (more than 40 nm), severe NAK impairment 

causes high levels of Ca2+ influx from VGCC, which will result in inactivation of the RaM. As a result, 

only the uniporter remains to sequester excess cytoplasmic Ca2+. The capacity of the uniporter to do so is 

limited, which allows the initial sustained increase of cytoplasmic Ca2+ levels observed at high ASPD 

concentrations (Fig. 4C2). At low ASPD concentrations, because of moderate levels of Ca2+ influx from 

VGCC, both the RaM and the uniporter can take excess cytoplasmic Ca2+ into mitochondria and as a 

result cytoplasmic Ca2+ levels will increase transiently and then decrease rapidly, as observed. In either 

case (high or low ASPD), in spite of the presence of the mitochondrial Na+/Ca2+ exchanger that releases 

excessive mitochondrial Ca2+, owing to continuous Ca2+ influx from outside, mitochondrial Ca2+ levels 

will continue to increase and sooner or later will reach abnormal levels. Since levels of Ca2+ influx from 

outside will correlate with levels of VGCC activation, i.e. levels of NAK impairment, higher 

concentrations of ASPD will cause mitochondria to reach the abnormal Ca2+ level earlier. That would 
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explain why cytoplasmic Ca2+ levels did not plateau within two hrs in the case of 18 nM ASPD treatment. 

In either case (high or low ASPD), eventual prolonged Ca2+ overload in mitochondria has been reported 

to cause the mitochondrial permeability transition pore (MPT) to open (72). This mitochondrial 

calcium-induced calcium release through MPT opening as well as the mitochondrial Na+/Ca2+ exchanger 

both cause the sharp Ca2+ increase after the initial sustained increase (Fig. S3E), leading to neuronal death 

induced by ASPD. 

 

SI Discussion for the first and second categories shown in Fig. 8 

The first system involves regulating the CNS concentration of Aβ monomer available for assembly. 

Whereas RAGE transports Aβ1-40 or Aβ1-42 into the CNS and increases brain Aβ levels (73), APOE 

stabilizes Aβ1-40 or Aβ1-42 through its binding, and as a result reduces brain Aβ levels available for 

assembly (74). The binding of APOE4 to Aβ1-42 is slightly weaker than that of APOE3 (75), which could 

be the reason why APOE4 increases the risk for AD onset. 

The second system involves post-synaptic neurons. Here, Aβ impairs synaptic connections by 

indirectly affecting NMDAR activity. Aβ1-42 activates post-synaptic α7nAChR leading to NMDAR 

internalization (76). Binding of dimers/trimers to EPHB2 induces degradation of EPHB2 by proteasomes. 

Loss of EPHB2 has been reported to reduce cell-surface NR1 subunit of NMDAR and impair 

NMDAR-mediated synaptic connections in APP transgenic mice (9). Binding of Aβ oligomers larger than 

500 kDa to PrPC has been shown to activate FYN kinase, induce phosphorylation of the NR2B subunit of 

NMDAR, and facilitate a transient overexpression of NMDAR on the cell surface, leading to spine loss 

(77). Although ADDLs have been reported to co-immunoprecipitate with NMDR-containing 

synaptosomes (16), at present NMDAR is unlikely to be a direct target for Aβ. Recently, post-synaptic 

Sigma-2/PGRMC1 has been reported to serve as a receptor for 50~75 kDa Aβ1-42 oligomers (43). It would 

be interesting in the future to examine whether Aβ1-42 oligomers directly bind to Sigma-2/PGRMC1, and 

if so, how the Aβ1-42 oligomers-Sigma-2/PGRMC1 interaction affects neuronal function. 

AD is a progressive disease with risk highly correlated with ageing and with pathology that may vary 

due to micro-environmental and genetic differences among patients. Different receptor/ligand systems, as 

discussed above, thus may act synergistically or in a stage-dependent manner to contribute to AD 

pathogenesis. 
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SI FIGURE LEGENDS 

Fig. S1. Effects of antagonists on ASPD neurotoxicity (DNA fragmentation) towards mature rat primary 

neuronal cultures (19 Day-In-Vitro (DIV)). Toxicity of synthetic ASPD (176 nM) towards mature 

neurons was blocked specifically by 2-hr pretreatment with 0.1 mg/ml ASPD-specific antibody mASD3, 

but not with the same concentration of another ASPD-specific antibody, haASD1, that detects a different 

epitope in ASPD, as we have shown previously (19). The antibody remained present during the overnight 

incubation with ASPD. This ASPD toxicity (176 nM) was unchanged by treatments with 1 µM TTX (a 

potent sodium channel blocker), or glutamate receptor antagonists (10 µM APV or MK801 for NMDA 

receptors, 100 µM DNQX for non-NMDA kainate or α-amino-3-hydroxy-5-methyl-4-isoxazole propionic 

acid (AMPA) receptors, 500 µM MCPG for metabotropic glutamate receptors (I/II), and 50 µM 

LY341495 for metabotropic glutamate receptors (II)). Mean ± SD; *, p < 0.001 Scheffé’s post-hoc test, n 

= 3. 

 

Fig. S2. Developmental NAKα3 expression and its binding to synthetic ASPD. (A) Representative TEM 

of negatively stained synthetic ASPD is shown on top. Representative Far-western blotting using 3.5 nM 

synthetic ASPD (left) and a silver-stained gel used for the Far-western blotting (right) are shown. Binding 

was detected using anti-ASPD antibody haASD1. RIPA extracts (15 µg/lane) of 2 DIV immature rat 

neurons (lane I) or 21 DIV mature rat neurons (lane M), or HEK293 cells (lane H) were used. Red arrows 

indicate a 105-kDa mature neuron-specific ASPD binding protein, NAKα3. MS/MS analysis of the other 

ASPD-detected bands, derived from immature neurons or HEK293, showed that these bands contained 

intracellular proteins such as α-spectrin2 (pink* at ~238 kDa), an uncharacterized protein (black* at ~171 

kDa), heat shock protein gp96 (green* at ~110 kDa), and eukaryotic translational elongation factor 2 

(blue* at ~110 kDa) (Fig. 3A and Fig. S2A). Postsynaptic Aβ receptors such as 35 kDa PrPc, 40.4 kDa 

RAGE, 54.2 kDa α7nAChR, NMDAR (~100 kDa NR1 and 165 kDa NR2 subunits), 108 kDa EPHB2, 

were not detected among the ASPD-binding bands using MS/MS analysis. (B) Representative 

Far-western blotting using 3.5 nM synthetic ASPD detected by haASD1 antibody (left), 3.5 nM synthetic 

ASPD presaturated with 100 nM (equimolar in terms of Aβ1-42 monomer concentration) haASD1 (middle), 

and haASD1 alone (right). RIPA extracts (15 µg/lane) were used. Red arrows indicate a 105-kDa mature 

neuron-specific ASPD binding protein, NAKα3. Asterisks have the same meaning as in A. (C) 

Developmental changes in the levels of NAKα3 and MAP2 were analyzed by Western blotting 

(representative blotting on the right). Data were normalized to actin and shown relative to each protein 

amount at 2 DIV. Mean ± SD; *, p < 0.008 compared with data at time 0 (Scheffé’s post-hoc test, n = 3). 
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(D) Using biotin-labelled ASPD as a ligand, NAKα3 (red arrows) was co-immunoisolated from living 

mature neurons (see text). Far-western blotting using biotin-labelled ASPD is shown on the right. (E) 

Representative Z-stack images of 27 DIV hippocampal or 22 DIV cerebellar neurons, treated with 13 nM 

synthetic ASPD for 15 min were obtained as in Fig. 3E. The images showed anti-MAP2 (red) and 

anti-NAKα3 (green) staining. 

 

Fig. S3. Representative Na+ and Ca2+ imaging data. (A) Cytoplasmic Na+ levels of mature rat 

hippocampal neuronal cultures (20-24 DIV), treated with vehicle (A1), 300 nM ouabain (A2), synthetic 

ASPD (38 nM in A3, 59 nM in A4), or 100 µM NMDA (A5), were measured using a Na+ indicator, 

ANG-2AM (TEFLABs) (see “Ca2+ and Na+ imaging” in SI Materials and Methods). The treatment of 

neurons with ASPD or other reagents was initiated by changing the circulating HSS buffer to HSS buffer 

containing ASPD or the sample reagent. After the buffer change, it usually took ~110 sec for HSS buffer 

containing ASPD or the sample to reach the assay chamber (at the orange arrow) and at ~17.5 min the 

solution in the assay chamber was completely replaced with HSS buffer containing ASPD or the sample 

(at the yellow arrow). Treatment of neurons with 300 nM ouabain, which corresponds to 52 nM synthetic 

ASPD based on the average Kd values of ASPD (7.8 nM) and ouabain (45 nM (61-63)) for rat NAKα3, 

elicited a Na+ increase similar to that induced by ASPD.  

 (B) Intracellular free Ca2+ level ([Ca2+]i) of cell bodies of mature rat hippocampal neurons (19-20 DIV), 

treated with vehicle, 18 nM, 42 nM, or 88 nM synthetic ASPD (at the orange arrow; see text in A), was 

measured using a leakage-resistant Ca2+ indicator, Fura-PE3AM (TEFLABs) (see “Ca2+ and Na+ imaging” 

in SI Materials and Methods). The absorbance ratio at 340/380 nm is shown. The ratio of responsive cells 

was obtained as in Fig. 4D. Ca2+ levels were stable during vehicle treatment over 2 hrs, but increased 

transiently upon brief exposure to 100 µM glutamate, proving that the neurons remained responsive. With 

18 nM ASPD, neurons showed repetitive Ca2+ spikes starting at the time of ASPD treatment. Higher 

concentrations of ASPD persistently increased [Ca2+]i, which showed a sudden rise to plateau levels. 

Higher concentrations of ASPD appeared to accelerate the process: with 35 nM ASPD, the initial Ca2+ 

response was transient, but a sustained increase was seen after 2-hr treatment (Fig S3C1), whereas with 88 

nM ASPD, [Ca2+]i usually reached a plateau within 1 hr. Note that the data of 42 nM ASPD is also shown 

in Fig. 4C2.  

 (C) C1, 35 nM synthetic ASPD caused repeated transient increases in [Ca2+]i of neurons, leading to a 

sustained increase after 2-hr treatment. C2, EGTA inhibited ASPD-induced increase in [Ca2+]i of mature 

neurons (see text).  
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 (D) [Ca2+]i was monitored as described in B in mature rat hippocampal neurons (19 DIV) treated with 16 

nM synthetic ASPD, with or without preincubation with 4 µM ω-conotoxin (N-type VGCC specific 

inhibitor) or 20 µM peptides derived from the 4th extracellular loop (Ex4) of NAKα3 (see Fig. 7 C-G). 

The inhibitor was present while neurons were labelled with Fura-PE3AM for 40 min and was also present 

during the ASPD treatment. The peptides were preincubated with ASPD for 60 min on ice and were also 

present during the ASPD treatment.   

 (E) [Ca2+]i changes of rat hippocampal neurons (24 DIV), treated with 50~80 nM synthetic ASPD, with 

or without 40-min preincubation with 20 µM cyclosporin A (an inhibitor of MPT pore opening) and/or 3 

µM CGP37157 (a mitochondrial NCX inhibitor), were monitored as in B. The inhibitors were present 

while neurons were labelled with Fura-PE3AM and were also present during the ASPD treatment. 

Representative data are shown in E1. Quantification of the data from three independent experiments 

(Mean ± SD) is shown in E2. In the case of ASPD-treated neurons, the second sharp Ca2+ rise was seen 

almost exclusively after the initial sustained [Ca2+]i increase. As shown in Fig. S3E2, treatment of neurons 

with cyclosporin A, CGP37157, or both did not affect this initial sustained [Ca2+]i increase in terms of the 

responsive cell number and the response level (=[Ca2+]i Δ[first peak height-baseline]). In contrast, 

treatment of neurons with these inhibitors markedly impaired the ASPD-induced second sharp [Ca2+]i rise 

in terms of both the responsive cell number and the response level (=[Ca2+]i Δ[second peak height-first 

peak height])(*, p < 0.001; **, p < 0.0001 compared with ASPD alone using the Scheffé’s post-hoc test, n 

= 3). In ASPD-treated neurons, the second sharp [Ca2+]i rise, once it occurred, was saturated without 

decline, but in the presence of MPT pore opening inhibitor (cyclosporin A), the number of neurons 

showing this sharp [Ca2+]i rise was markedly decreased, or, if the sharp [Ca2+]i rise occurred, it gradually 

declined (not saturated) to the initial sustained level after it had reached the peak (Fig. S3E1). The 

mitochondrial NCX inhibitor strongly inhibited occurrence of the sharp [Ca2+]i rise, and a gradual 

increase of [Ca2+]i was seen, instead of the sharp [Ca2+]i rise, after the initial sustained [Ca2+]i increase 

(Fig. S3E1). Treatment with both cyclosporin A and CGP37157 appeared to inhibit the ASPD-induced 

second sharp [Ca2+]i
 + rise more potently than the single treatments. These results suggest that 

mitochondrial NCX and MPT pore openings are both involved in ASPD neurotoxicity. 

 (F) Effects of 100, 300, and 500 nM ouabain, which correspond to 17, 52, and 87 nM ASPD, 

respectively, based on the average Kd values of ASPD (7.8 nM) and ouabain (45 nM (61-63)) for rat 

NAKα3. Ouabain elicited the same phenomena triggered by ASPD, including increases in [Ca2+]i, 

activation of CDK5, increase in the Tyr216 phosphorylated active form of TPKI/GSK3β, tau 

phosphorylation/destabilization, and MAP2 destabilization, except for decrease in the Ser9 
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phosphorylated inactive form of TPKI/GSK3β (see Figs. S3B and 5C-F). The reason for the difference in 

the case of Ser9 is not clear at present. These data further support the conclusion that ASPD-induced 

NAKα3 impairment is the main cause of these phenomena. Mean ± SD; *, p < 0.02 Scheffé’s post-hoc 

test, n = 3. 

 

Fig. S4. Time lapse images of ASPD-treated neurons and human studies. (A) Representative time-lapse 

images of mature rat hippocampal neurons treated with each reagent (see Videos S1-4). (B) 

Immunohistochemical studies of non-clinically demented individual (NCI) and Alzheimer’s disease (AD) 

brains using anti- NAKα1 (see text). Bar = 50 µm (C) ISH analyses using probes for ATP1A3 (NAKα3) 

and ATP1A1 (NAKα1) on 10-µm paraffin-embedded adjacent sections. 

 

Fig. S5. ASPD-binding peptides inhibit both ASPD binding to NAKα3 and other ASPD-induced 

downstream phenomena. (A) SPR analyses were performed as in Fig. 3F. Ex4 of NAKα3 bound to 

synthetic ASPD, but Ex1 did not. Representative data are shown. (B) Inhibition of synthetic ASPD (50 

nM) binding to mature hippocampal neurons by the peptides (20 µM). ASPD-binding sites (red) and 

anti-NAKα3 staining (green) were detected as in Fig. 3E. (C) Activation of TPKII/CDK5 and 

TPKI/GSK3β was determined by Western blotting as shown in Fig. 5C and 5D, respectively. Ex4 

peptides were treated as in Fig. S3D. ASPD-binding Ex4 peptides (final concentration 20 µM) 

significantly inhibited activation of these tau-phosphorylating kinases induced by 6-hr treatment with 35 

nM synthetic ASPD. Mean ± SD; *, p = 0.011 for TPKII/CDK5; 0.050 for pTyr216; 0.028 for pSer9 by 

Scheffé’s post-hoc test, n = 3. 

 

Fig. S6. Interference with aberrant ASPD-NAKα3 interaction by masking the Aβ oligomer surface with 

specific masking peptides or peptidomimetics. ASPD (7.2 ± 2.6 nm in diameter) bind and cause death of 

mature neurons. Molecular modeling suggests that the mature heterotetrameric NAK pump forms a 9.9 

nm-wide opening. This diameter is similar to that of in situ ASPD (7.2 ± 2.6 nm in diameter) and the Ex4 

region, which is essential for the ASPD-NAKα3 interaction, is on the edge of the opening. Based on these 

data, we present a possible model of ASPD-NAKα3 interaction (left). Given the essential functions of the 

NAK pump in neurons, direct modulation of the NAK pump would be a risky approach. We propose a 

new strategy to interfere with the aberrant ASPD-NAKα3 interaction by masking the Aβ oligomer surface 

with specific masking peptides or peptidomimetics (right). 
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Video Legends 

Video S1. Primary rat hippocampal mature neurons (19-25 DIV) were imaged at intervals of 10 min for 

11 h (see “Time-lapse” in SI Materials and Methods) after the administration of 141 nM ASPD at 20x 

magnification. The time-lapse videos were shortened (1 sec = 20 msec). 

Video S2. Primary rat hippocampal mature neurons (19-25 DIV), treated with 100 nM ouabain, were 

imaged as in Video S1 at 20x magnification. 

Video S3. Primary rat hippocampal mature neurons (19-25 DIV), treated with 1 µM staurosporine, were 

imaged as in Video S1 at 20x magnification. 

Video S4. Primary rat hippocampal mature neurons (19-25 DIV), treated with vehicle, were imaged as in 

Video S1 at 20x magnification. 
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Table S1 Summary of the Characteristics of ASPD Reported Previously (18-20) And Found in this Work 

 Synthetic ASPD AD patient-derived native ASPD 
Source ・	
 Synthetic Aβ1-40 or Aβ1-42 

・	
 Identified as the most toxic entities 
either in Aβ1-40 solutions (50 µM 
in 0.5x PBS(-), slowly rotated for 
5-7 d at 4°C) or in Aβ1-42 solutions 
(50 µM in 0.5x PBS(-) or F12 
media without L-glutamine and 
phenol red, slowly rotated for 
14-16 h at 4°C) 

・	
 Obtained by two-step filtrations as 
the 100-kDa retentates of the 
0.22-µm filtrates 

・	
 Purified (~97%) by 
immunoprecipitation using 
ASPD-specific haASD1 or 
mASD3 antibody 

・	
 Hippocampus or cerebral cortex of 
AD patients (not cerebellum cortex of 
AD patients) 

・	
 Increase with the disease severity   
and duration, along with the increase 
in neurodegeneration† 

・	
 Ultracentrifuge supernatant of the 
extracts of AD brains, homogenized 
in F12 media without L-glutamine 
and phenol red (no detergents) 

・	
 Purified (>95%) by 
immunoprecipitation using 
ASPD-specific haASD1 or mASD3 
antibody from the 100-kDa retentates 
of the above supernatant 

・	
 Aβ1-40 and Aβ1-42 are detected as 
major components by MS analysis 
and by silver staining† 

Size of active 
components 

・	
 10- to 15-nm spheres in TEM 
(11.8 ± 2.1 nm; n = 94)* 

・	
 Complete spheres 
y/x = 0.982 (n = 100; in TEM) 
height/diameter = 1.0 (n = 100; 
solution AFM) 

・	
 ASPD mass peak is ~120 kDa in 
15-30% glycerol gradient 
sedimentation assays (slightly 
smaller than 158-kDa aldolase). 

・	
 ASPD (purified (97%) using 
ASPD-specific haASD1 antibody) 
is  
128 ± 44 kDa in mass (FCS) 
~30 ± 10 mers 
(using 4.5 kDa for Aβ1-42) 
7.2 ± 2.6 nm in height (solution 
AFM) 

・	
 10- to 15-nm spheres in TEM 
(11.9 ± 1.7 nm; n = 108) * 

・	
 ASPD mass peak is 123 ± 20 kDa (n 
= 3)(slightly smaller than 158-kDa 
aldolase) in 15-30% glycerol gradient 
sedimentation assays†. 

・	
 The size of ASPD is estimated to be 
128 ± 44 kDa in mass 
28~30 ± 10 mers 
(using 4.3 kDa for Aβ1-40 and 4.5 kDa 
for Aβ1-42) based on FCS analysis of 
synthetic ASPD 

 

Structural 
characteristics 

・	
 Originate from trimer 
・	
 A11-negative in dot blotting 
・	
 ASPD-specific antibodies 

(rpASD1, mASD3, haASD1, 
etc.)-positive in dot blotting 

・	
 Immunoprecipitated by haASD1 or 
mASD3 antibody, but not by 6E10 

・	
 A11-negative in dot blotting† 
・	
 ASPD-specific antibodies (rpASD1, 

mASD3, haASD1, etc.)-positive in 
dot blotting 

・	
 Immunoprecipitated by haASD1 or 
mASD3 antibody, but not by 6E10 

・	
 Bind to a 105-kDa band in mature 
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・	
 Solution NMR analysis indicated 
the presence of one defined 
structure in the ASPD sample and 
determined the amino acid 
sequences exposed on the ASPD 
surface†, which are consistent with 
the previous epitope map of ASPD 
obtained by ASPD-specific 
antibodies. 

・	
 Bind to a 105-kDa band in mature 
neurons in Far-western ligand 
binding assay† 

neurons in Far-Western ligand 
binding assay† 

Biological 
effects 

・	
 Activate both TPKI/GSK-3β and 
TPKII/CDK5 and increase tau 
phosphorylations† 

・	
 NMDAR independent neuronal 
cell death of mature neurons 

・	
 Nontoxic against non-neuronal 
cells or immature neurons (human, 
monkey, and rat origins)  

・	
 Toxicity is neutralized by 
ASPD-specific antibodies 
(rpASD1 and mASD3) but not by 
6E10 or 82E1 antibody. 

・	
 Impair NAKα3 activity in mature 
neurons† 

・	
 Activate N-type voltage gated 
calcium channels and cause 
mitochondrial calcium 
dyshomeostasis† 

・	
 Induce loss of tau and MAP2† 

・	
 Cause neuronal cell death of mature 
neurons 

・	
 Nontoxic to non-neuronal cells or 
immature neurons (human) 

・	
 Toxicity is neutralized by 
ASPD-specific mASD3 antibody. 

・	
 Colocalize with NAKα3 and this 
binding is inhibited by ASPD-binding 
peptides† 

*Calculated from the data in Noguchi et al. JBC 2009 
†Data from the current work 
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Table S2 Summary of the ＭS/MS analysis of ~105 kDa bands in Fig. S2A 

 
Sample MS hit MS hit 

peak 
MS/MS 
peak 

MS/MS protein Mass pI 

2 DIV - 
- 

- 
- 

1081 
2030 

heat shock protein gp96† 
heat shock protein gp96† 

92713 
92713 

4.72 
4.72 

21 DIV NAKα3 776 
1030 
1158 
1268 
1284 
1296 
1055 
1619 
1659 
1158 
1431 
1490 
1766 
1829 
1867 
1236 
2505 
2464 
2480 
2505 
2866 
2882 
1442 

 
 
 
 
 
 
 
1619 
1659 
 
 
 
 
1829 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
NAKα1, -2, -3 
NAKα3 
 
 
 
 
NAKα1, -2, -3 

 
 
 
 
 
 
 
111664 
111664 
 
 
 
 
111664 

 
 
 
 
 
 
 
5.26 
5.26 
 
 
 
 
5.26 

- 
 
- 
- 
- 

- 
 
- 
- 
- 

1501 
 
1709 
1400 
1081 

adaptor-related protein complex 2 β1 
subunit† 
dynamin I* 
hexokinase I* 
heat shock protein gp96† 

105625 
 
95867 
102342 
92713 

5.19 
 
6.32 
6.29 
4.72 

HEK - 
 
- 
 
- 

- 
 
- 
 
- 

1799 
 
2220 
 
1081 

eukaryotic translation elongation 
factor 2† 
eukaryotic translation elongation 
factor 2† 
heat shock protein gp96† 

95277 
 
95277 
 
92713 

6.41 
 
6.41 
 
4.76 

  The MALDI-TOF/MS analyses of three independent experiments are shown. In each sample, the 
results are shown in high hit score order. NAKα3 is the only protein that was detected by MS analysis, 
and this was confirmed by further MS/MS analyses. Proteins that were not detected by MS are considered 
insignificant. 
*; detected only in one run only by MS/MS (without MS hit) 
†; detected only by MS/MS (without MS hit) 
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Table S3 Summary of the representative Aβ ligand/target systems 
Target Target character Ligand Binding mode Mechanism 
Sigma-2/ 
PGRMC1  
(43) 
 

§ 21.6 kDa* 
§ Heme-binding protein, 

co-purified with 
progesterone binding 
proteins in liver 

§ Possible roles in cell survival 
and apoptosis 

§ High expression in liver and 
kidney, lower expression in 
lung, brain, in humans (. 
expression in liver, lung, 
e.g., kidney, and brain in 
rodents) 

§ Post-synaptic localization in 
neurons 

Aβ1-42 oligomers 
(50-75 kDa 
mixtures) 

§ Kd = 518 nM for 
neuronal cultures（using 
Aβ1-42 oligomers） 

§ PGRMC1 siRNA 
reduced oligomer 
binding to neurons. 

§ PGRMC1 levels increased ~30% 
after 48 h oligomer treatment. 

§ Aβ1-42 oligomers facilitate 
membrane trafficking (MTT assay), 
which is inhibited by small 
compounds that inhibit oligomer 
binding to neurons. 
 

APOE 
(78) 

§ 34.2 kDa glycoprotein* 
§ A major component of very 

low-density lipoproteins 
(VLDLs). VLDLs maintain 
normal levels of cholesterol 
and triglyceride in systemic 
tissues by carrying these 
lipids from the liver. 

§ E2, E3, E4 isoforms (E4 as a 
risk factor for AD) 

§ High expression in liver and 
in astrocytes in brains 

Aβ1-40 
Aβ1-42 

§ Direct binding of 
purified APOE to Aβ on 
the microplate. 

§ Kd = 48.1 nM for E2; 
63.7 nM for E3; 75.9 
nM for E4 (using 
Aβ1-42) 

§ 1:1 binding 
§ Lys16 of Aβ binds to 

Lys72, 75, 95, 143, 157 
and 242 of APOE. 

§ Binding of APOE to Aβ prevents 
formation of Aβ fibrils. APOE 
stabilizes extracellular 
Aβ monomers and may reduce the 
extracellular Aβ concentration of 
Aβ monomers available for fibril 
formation. 

PrPC 
(10, 79) 

§ 35-36 kDa* 
§ GPI-anchored protein 
§ PrPC’s physiological 

function is a complex issue 
that requires further studies. 

§ Ubiquitous expression. 
Greater expression in CNS, 
spinal cord, and thymus, less 
in the other tissues. 

§ Localization in synaptic 
connections and in astrocyte 
in brains. 

Aβ1-42 oligomers 
(~500 kDa in 
SEC) 

§ Direct binding of 
purified PrPC and 
Aβ1-42 oligomers using 
SPR 

§ Kd = 50~100 nM for 
neuron cultures (using 
Aβ1-42 oligomers);   
Kd = 71 nM with EPR 
spectroscopy 

§ PrPC 23-27, 92-110 are 
both critical for binding 
to Aβ1-42 oligomers. 

§ Post-synaptic PrPC mediates 
activity of certain type of Aβ 
oligomers (mitochondria 
dysfunction, reactive oxygen 
species production, Ca2+ influx and 
LTP suppression).  

§ Binding of Aβ oligomers activates 
FYN kinase, induce 
phosphorylation of NR2B subunit 
of NMDAR, and facilitate transient 
overexpression of NMDAR on the 
surface, leading to spine loss. 

RAGE 
sRAGE 
(80) 

§ 40.6 kDa* 
§ Multi-ligand receptor of the 

IgG superfamily (several 
ligands known including 
Aβ) 

§ Expression in the 
blood-brain barrier (BBB), 
glia, microglia, and neurons 

§ Post-synaptic localization in 
neurons 

Aβ1-40 
Aβ1-42 

§ Direct binding of 
125I-Aβ to purified 
RAGE on the 
microplate 

§ Kd = 55 nM for rat 
neuronal cultures（using 
Aβ1-40） 

§ RAGE mediates Aβ transport 
across BBB into CNS. 

§ RAGE inhibitors markedly reduced 
Aβ40 and Aβ42 levels in brain and 
normalized cognitive performance 
in aged APPswe mice. 

§ RAGE mediates Aβ-induced 
oxidant stress in neurons and 
activation of microglia. 

α7nAChR 
(81) 

§ Homopentamer (54.1 kDa)* 
§ Neuronal nicotinic AChR 
§ Abundant pre- and 

post-synaptic distributions 

Aβ1-42 § Direct binding of 
Aβ1-42 to purifid 
α7nAChR by 
co-immunoprecipitation 

§ Kd ~ pM and nM ranges 
for 
α7nAChR-expressing 
N-MC cell membrane 
(using Aβ1-42 
monomers) 

§ N-terminal domain of 
α7nAChR is involved in 
binding. 

Neuroprotective Effects: 
§ Aβ1-42 monomers activate pre- 

and post-synaptic α7nAChR, 
promote calcium influx, enhance 
neurotransmitter release, and 
trigger protective signals such as 
ERK. 

Pathologic Effects: 
§ Aβ1-42 activates post-synaptic 

α7nAChR, promotes NMDAR 
internalization. 

§ ADDLs inactivate α7nAChR, 
impair LTP probably through 
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NMDAR. 
EPHB2 
(9) 

§ 108.1 kDa* 
§ EPH B2-type receptor 

tyrosine kinase 
§ Pre- and post-synaptic 

distributions 

Aβ1-42 oligomers  
Dimers/trimers 
 

§ Direct binding of 
Aβ1-42 oligomers to 
purified EPHB2-Fc 
chimaera by 
co-immunoprecipitation 

§ Kd undetermined 
§ Fibronectin type III 

repeats domain of 
EPHB2 is involved in 
binding. 

§ Dimers/trimers induce degradation 
of EPHB2 by the proteasome in 
neuronal cultures. 

§ Loss of EPHB2 reduce surface 
NR1 of NMDAR and impairs 
NMDAR-mediated synaptic 
connections in hAPP mice.  

NMDAR 
(12, 16, 82) 

§ Heterodimer (97.3 kDa for 
NR1; 132.3-165.2 kDa for 
NR2A, B, C, D)* 

§ Post-synaptic localization 

ADDLs 
(3~24-mers 
mixtures) 

§ Synaptosomes 
(containing PSD95, 
NR1 and NR2A/2B) and 
ADDLs were 
co-immunoprecipitated 
by anti-ADDL antibody. 

§ Knockdown of NR1 
with its anti-sense 
reduced ADDL binding 
to neurons.  

§ Morphology change and loss of 
spines are induced by ADDLs and 
dimers through NMDAR. 

NAKα3 
(current 
work) 

§ 111.7 kDa* 
§ Neuron-specific catalytic 

subunit of NAK pump 
§ Mainly pre-synaptic 

localization 

ASPD (128 kDa 
on average) 

§ Direct binding of ASPD 
to recombinant human 
NAKα3 by SPR 

§ Kd = 28.6 nM (using 
NAKα3 by SPR) 

§ 1:1 binding of ASPD to 
(NAKα3)2(NAKβ1)2 
heterotetramer 

§ RLNW motif in 
extracellular loop 4 is 
involved in binding. 

§ ASPD directly bind to NAKα3, 
impair its activity, which activate 
N-type VGCC and induce calcium 
dyshomeostasis in cytoplasm and 
mitochondria, induce tau 
phosphorylation and loss, and 
degenerate mature neurons. 

§ Tetrapeptides inhibit ASPD 
binding and protect neurons from 
ASPD-induced death. 

*Human protein’s mass value is shown. 
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