
Title Three-quark potential and Abelian dominance of confinement
in SU(3) QCD

Author(s) Sakumichi, Naoyuki; Suganuma, Hideo

Citation Physical Review D (2015), 92(3)

Issue Date 2015-08-21

URL http://hdl.handle.net/2433/199648

Right © 2015 American Physical Society.

Type Journal Article

Textversion publisher

Kyoto University

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Kyoto University Research Information Repository

https://core.ac.uk/display/39322923?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
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(Received 1 February 2015; published 21 August 2015)

We study the baryonic three-quark (3Q) potential and its Abelian projection in terms of the dual-
superconductor picture in SU(3) quenched lattice QCD. The non-Abelian SU(3) gauge theory is projected
onto Abelian Uð1Þ2 gauge theory in the maximal Abelian gauge. We investigate the 3Q potential and its
Abelian part for more than 300 different patterns of static 3Q systems in total at β ¼ 5.8 on 16332 and at
β ¼ 6.0 on 20332 with 1000–2000 gauge configurations. For all the distances, both the 3Q potential and
Abelian part are found to be well described by the Y ansatz, i.e., two-body Coulomb term plus three-body
Y-type linear term σ3QLmin, where Lmin is the minimum flux-tube length connecting the three quarks. We

find equivalence between the three-body string tension σ3Q and its Abelian part σAbel3Q with an accuracy

within a few percent deviation, i.e., σ3Q ≃ σAbel3Q , which means Abelian dominance of the quark-confining

force in 3Q systems.

DOI: 10.1103/PhysRevD.92.034511 PACS numbers: 11.15.Ha, 12.38.Aw, 12.38.Gc

I. INTRODUCTION

Quark confinement has been one of the most important
long-standing issues remaining in theoretical physics [1]
since the concept of quarks was introduced in the 1960s. In
fact, quarks cannot be observed individually and are con-
fined in color-singlet combinations of mesons or baryons. In
particular, the nucleon, the lightest baryon, is one of the main
ingredients of the matter in our real world, and, therefore, the
quark confinement in baryons or three-quark (3Q) systems
would be fairly important in modern physics, as well as in
mesons or quark-antiquark (QQ̄) systems. Furthermore, the
three-body force among three quarks is a “primary” force
reflecting the SU(3) gauge symmetry in quantum chromo-
dynamics (QCD) [2,3], while the three-body force appears as
a residual interaction in most fields of physics. Nevertheless,
the quark interaction in baryonic 3Q systems [2–4] has not
been investigated so much, in contrast with many lattice
studies on QQ̄ systems [1,5,6].
In SU(3) quenched lattice QCD, the static QQ̄ [5] and 3Q

[2,3,7] potentials are found to be well reproduced by

VðrÞ ¼ σr −
A
r
þ C; ð1Þ

V3Qðr1; r2; r3Þ ¼ σ3QLmin −
X
i<j

A3Q

jri − rjj
þ C3Q; ð2Þ

respectively. Here, r1; r2, and r3 are the positions of the
three quarks, and Lmin is the minimum flux-tube length
connecting the three quarks as shown in Fig. 1(a). The form
(2) is called the Yansatz [3]. These functional forms (1) and
(2) indicate the flux-tube picture [8] on the confinement
mechanism. In fact, the lattice QCD simulations [1,9–13]

on the action density in the presence of a static QQ̄ or 3Q
system have actually shown the flux-tube formation; that is,
valence quarks are linked by the color flux tube as a quasi-
one-dimensional object. Here, the strength of quark con-
finement is controlled by the string tension of the flux tube,
σ or σ3Q. We also note that the baryonic 3Q system has
recently received attention in the context of the holographic
description of strong interactions, e.g., AdS/QCD effective
string theories [14].
The difficulty in deriving quark confinement directly

from QCD is considered to originate from non-Abelian
dynamics and nonperturbative features of QCD, which are
quite different from the case of quantum electrodynamics
(QED). However, it remains unclear whether quark con-
finement is peculiar to the non-Abelian nature of QCD
or not.

(a) (b) (c)

FIG. 1 (color online). (a) The flux-tube configuration of the
three-quark system with the minimal value of the total flux-tube
length. There appears a physical junction linking the three flux
tubes at the Fermat point rF. (b) The trajectory of the 3Q Wilson
loop W3Q. The three quarks are generated at t ¼ 0, are spatially
fixed in R3 for 0 < t < T, and are annihilated at t ¼ T. (c) The
configuration of static three-quark sources in our lattice QCD
simulations.
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As an interesting idea of quark confinement, Nambu, ’t
Hooft, and Mandelstam proposed an Abelian theory of the
dual superconductor for the confinement mechanism [15]
in the 1970s. In the dual-superconductor picture, the
squeezing of the color-electric flux among quarks is
realized by the dual Meissner effect as the result of
condensation of color-magnetic monopoles. (Note here
that monopole condensation and its relevant role for
confinement have been analytically pointed out by
Seiberg and Witten in the N ¼ 2 supersymmetric version
of the Yang–Mills theory [16].)
As for the possible connection between the dual super-

conductor and QCD, ’t Hooft proposed a concept of
“Abelian projection” as an infrared Abelianization scheme
of QCD [17,18], where the magnetic monopole topologi-
cally appears. And ’t Hooft also conjectured that long-
distance physics such as confinement could be realized
only by Abelian degrees of freedom in QCD [17], which is
called “(infrared) Abelian dominance.” Actually, in the
maximally Abelian (MA) gauge [19–22], QCD becomes
Abelian-like as a result of a large off-diagonal gluon mass
of about 1 GeV [22], and the monopole current topologi-
cally appears [19]. (See Fig. 2.) By using the Hodge
decomposition, the QCD vacuum can be divided into the
monopole and the photon parts. The lattice QCD studies
demonstrate that the monopole part has confinement [21],
chiral symmetry breaking [23,24], and instantons [25],
while the photon part does not have all of them.
Many lattice QCD studies have remarkably shown

Abelian dominance of the confining force in static QQ̄
systems in the MA gauge: the string tension σ is reproduced
by the Abelian-projected one σAbel in both SU(2) [19–22]

and SU(3) [26,27] color QCD. Recently, in the SU(3)
quenched lattice QCD, we found perfect Abelian domi-
nance [28] of the quark-confining force in QQ̄ systems; i.e.,
the confining force is entirely reproduced only with the
Abelian sector, σAbel ≃ σ. (To be precise, e.g., σAbel=σ ¼
1.01ð1Þ and 1.00(2) for β ¼ 6.0 on 324 lattice and β ¼ 5.8
on 16332 lattice, respectively.) To obtain σAbel ≃ σ, it is
necessary to use (i) a larger numbers of gauge configura-
tions, (ii) both on-axis and several types of off-axis data,
and (iii) large-volume lattices of more than about 2 fm. In
particular, the use of large physical-volume lattices is
essential, as is shown in Fig. 3 [28]. Moreover, very
recently, perfect Abelian dominance was reported also in
SU(2) quenched QCD [29]. [The authors of Ref. [29]
reported σAbel=σ ¼ 1.02ð2Þ for β ¼ 2.5 on 244 lattice,
where the physical volume is La≃ 2.0 fm.] These obser-
vations of σAbel ≃ σ indicate that the Abelianization of
QCD can be realized without loss of the quark-confining
force via the MA projection.
In this paper, we investigate whether quark confinement

in the baryonic 3Q potential is entirely kept in the Abelian
sector of QCD in the MA gauge and find this to be true at
the quenched level. Despite the physical importance of
baryons, there are very little studies about Abelian domi-
nance in the baryonic 3Q potential [10] because the
previous lattice studies of Abelian dominance were per-
formed mainly for simplified SU(2) color QCD, where the
color structure of SU(2) baryons (QQ) are the same as that
of mesons (QQ̄). In a pioneering study, Bornyakov et al.
[10] reported approximate Abelian dominance of the string
tension in the 3Q potential, σAbel3Q =σ3Q ¼ 0.83ð3Þ, using the
simulated annealing algorithm to avoid Gribov copy
effects, on a 16332 lattice at β ¼ 6.0. However, from the
results of σAbel ≃ σ in mesonic QQ̄ cases [28], it is expected
that the equivalence σAbel3Q ≃ σ3Q can be also realized in

FIG. 2 (color online). Schematic figure of Abelianization of
QCD and the dual-superconductor scenario of confinement. In
the MA gauge, QCD becomes Abelian-like, and the monopole
current topologically appears. By the Hodge decomposition, the
QCD system can be divided into the monopole and the photon
parts. The monopole part has confinement, chiral symmetry
breaking, and instantons, while the photon part does not have all
of them [21,23–25].

FIG. 3 (color online). Physical spatial-size dependence of
σAbel=σ taken from Ref. [28]. Here, σ and σAbel are the string
tensions of the QQ̄ potential for SU(3) QCD and the Abelian part,
respectively. Perfect Abelian dominance (σAbel=σ ≃ 1) seems to
be realized when the spatial size La is larger than about 2 fm. In
this paper, we investigate the corresponding string tensions of 3Q
potentials for β ¼ 5.8 on 16332 and β ¼ 6.0 on 20332 lattices.
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baryonic 3Q cases. To investigate the equivalence
σAbel3Q ≃ σ3Q, it seems necessary to use (i) large numbers
of gauge configurations, (ii) larger numbers of 3Q con-
figurations, and (iii) large-volume lattices of more than
about 2 fm, which are inspired from the analysis on the
quark-confining force in mesons [28]. Therefore, in this
paper, we perform the accurate calculation that meets the
above conditions. Then, we find equivalence σAbel3Q ≃ σ3Q
within a few percent deviation.

II. NUMERICAL SETTING FOR MAXIMAL
ABELIAN PROJECTION

We perform the SU(3) quenched lattice QCD simula-
tions with the standard plaquette action. We mainly use the
lattice of L3Lt ¼ 16332 at β≡ 6=g2 ¼ 5.8, with the gauge
coupling g, the spatial size L3, and the temporal one Lt. The
lattice spacing is a ¼ 0.148ð2Þ fm, which is determined so
as to reproduce the string tension σ ¼ 0.89 GeV=fm in the
QQ̄ potential. Thus, the physical spatial volume of the
lattice is estimated as ð2.37ð3Þ fmÞ3. We also use a finer
lattice of 20332 at β ¼ 6.0, which corresponds to a ¼
0.1022ð5Þ fm and the physical spatial volume of
ð2.05ð1Þ fmÞ3. The simulation conditions are summarized
in Table I.
For β ¼ 5.8 and 6.0, we use 2000 and 1000 gauge

configurations, respectively, which are taken every 500
sweeps after a thermalization of 20000 sweeps. It is worth
mentioning that the used configuration number 2000 is
about ten times larger than that in the previous detailed
lattice studies of baryonic 3Q potentials [2,3]. The large
number of the gauge configurations enables us to measure
accurately the large-distance 3Q potential data, which is
important for the confinement study.
In the lattice formalism, the SU(3) gauge field is

described by the link variable UμðsÞ ¼ eiagAμðsÞ ∈ SUð3Þ
instead of the gluon field AμðsÞ ∈ suð3Þ. We perform the
SU(3) MA gauge fixing by maximizing

RMA½UμðsÞ�≡
X
s

X4
μ¼1

trðU†
μðsÞ ~HUμðsÞ ~HÞ

¼ 1

2

X
s

X4
μ¼1

�X3
i¼1

jUμðsÞiij2 − 1

�
ð3Þ

under the SU(3) gauge transformation UμðsÞ ↦
ΩðsÞUμðsÞΩ†ðsþ μ̂Þ with ΩðsÞ ∈ SUð3Þ. Here, ~H ¼
ðT3; T8Þ is the Cartan subalgebra of SU(3), and T3 ¼
diagð1=2;−1=2; 0Þ and T8 ¼ ð1=2 ffiffiffi

3
p Þ × diagð1; 1;−2Þ in

the standard notation. (The functional (3) has been used for
MA gauge fixing in Refs. [10,26–28,30,31].) We numeri-
cally maximize RMA for each gauge configuration fUμðsÞg
until it converges, by using the over-relaxation method
[26,28]. As for the stopping criterion, we stop the

maximization algorithm, when the deviation
ΔRMA=ð4L3LtÞ < 10−9 after the one-sweep gauge trans-
formation. From Eq. (3), we remark −1=2 ≤
RMA=ð4L3LtÞ ≤ 1 for arbitrary gauge configuration
fUμðsÞg. The converged value of hRMAi=ð4L3LtÞ is
0.7072(6) at β ¼ 5.8 and 0.7322(5) at β ¼ 6.0, where
h� � �i is the statistical average over the gauge configurations
and the value in parentheses denotes the standard deviation.
Note that the maximized value of RMA is almost the same
over 1000–2000 gauge configurations because the standard
deviation of RMA is fairly small. Then, we expect that our
procedure escapes bad local minima, where RMA is
relatively small, and the Gribov copy effect is not
significant.
We extract the Abelian part of the link variable,

uμðsÞ ¼ exp ðiθ3μðsÞT3 þ iθ8μðsÞT8Þ ∈ Uð1Þ3 × Uð1Þ8;
by maximizing the norm

RAbel ≡ 1

3
RetrðUMA

μ ðsÞu†μðsÞÞ ∈
�
−
1

2
; 1

�
; ð4Þ

where UMA
μ ðsÞ ∈ SUð3Þ denotes the link variable in the

MA gauge. In the MA gauge, there remains the residual
Uð1Þ2 gauge symmetry with the global Weyl (color
permutation) symmetry [32]. In fact, RMA in Eq. (3) is
invariant under the Uð1Þ2 gauge transformation UμðsÞ ↦
ωðsÞUμðsÞω†ðsþ μ̂Þ with ωðsÞ ∈ Uð1Þ3 × Uð1Þ8 and the
global color permutation. Under the Uð1Þ2 gauge trans-
formation, the Abelian link variable uμðsÞ transforms as

uμðsÞ ↦ ωðsÞuμðsÞω†ðsþ μ̂Þ; ð5Þ

which means that uμðsÞ behaves as a Uð1Þ2 gauge field.
Here, the MA-projected Uð1Þ2 Abelian theory is similar to
compact QED, and it has not only the electric current but
also the magnetic-monopole current.
Since off-diagonal-gluon components are suppressed in

the MA gauge, we find approximate “microscopic Abelian
dominance” [32] for the Abelian link variable as uμðsÞ≃
UMA

μ ðsÞ or hRAbeli≃ 1, i.e., hRAbeli ¼ 0.8924ð3Þ at β ¼
5.8 and 0.9027(2) at β ¼ 6.0. However, it is a highly
nontrivial question whether this gauge shows “macroscopic
Abelian dominance” such as Abelian dominance of quark
confinement in QQ̄ and 3Q potentials.

TABLE I. The simulation condition: β, the lattice size L3Lt,
and the gauge-configuration number Ncon. The corresponding
lattice spacing a and the physical spatial size La are also listed.
Here, the values in parentheses denote the standard error.

β L3Lt Ncon a (fm) La (fm)

5.8 16332 2000 0.148(2) 2.37(3)
6.0 20332 1000 0.1022(5) 2.05(1)
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III. NUMERICAL CALCULATION METHOD FOR
THREE-QUARK POTENTIAL

Similar to the case of the QQ̄ potential VðrÞ [28], the
color-singlet baryonic 3Q potential V3Q can be calculated
as [2,3,33]

V3Q ¼ − lim
T→∞

1

T
ln hW3Q½UμðsÞ�i ð6Þ

from the 3Q Wilson loop

W3Q½UμðsÞ�≡ 1

3!

X
a;b;c

X
a0b0c0

ϵabcϵa0b0c0Xaa0
1 Xbb0

2 Xcc0
3 : ð7Þ

Here, Xk ≡Q
Γk
UμðsÞ is the path-ordered product of the

link variables along the path denoted by Γk in Fig. 1(b). The
3Q Wilson loop represents that the gauge-invariant 3Q
state is generated at t ¼ 0 and is annihilated at t ¼ T with
the three quarks spatially fixed in R3 for 0 < t < T. We
note that the potential V3Q is independent of the choice of
the junction point O [2,3], which is different from the
physical junction at the Fermat point.
As shown in Fig. 1(c), we put three quarks on ði; 0; 0Þ,

ð0; j; 0Þ, and ð0; 0; kÞ in R3 with 1 ≤ i ≤ j ≤ k ≤ L=2 in
lattice units and set the junction point O at the origin
(0,0,0). For the calculation of the 3Q Wilson loop, we use
the translational, the rotational, and the reflection sym-
metries on the lattices. Here, we deal with 101 and 211
different patterns of 3Q systems at β ¼ 5.8 and 6.0,
respectively, based on well-converged data of hW3Qi.
We extract V3Q from the least-squares fit with the single-

exponential form hW3QðTÞi ¼ ~Ce−V3QT . Here, we choose
the fit range of Tmin ≤ T ≤ Tmax such that the stability of
the so-called effective mass

Veff
3QðTÞ≡ ln

hW3QðTÞi
hW3QðT þ 1Þi ð8Þ

is observed in the range Tmin ≤ T ≤ Tmax − 1. On the error
estimate, we use the jackknife method.
For the accurate calculation of the 3Q potential with

finite T, we apply here the gauge-invariant smearing
method [2,3,5,34], which enhances the ground-state com-
ponent in the 3Q state in W3Q. The smearing is performed
as the iterative replacement of the spatial link variables
UiðsÞ ði ∈ 1; 2; 3Þ by the obscured link variables
ŪiðsÞ ∈ SUð3Þ, which maximizes Re tr½Ū†

i ðsÞViðsÞ� with

ViðsÞ≡ αUiðsÞ þ
X
j≠i

X
�

U�jðsÞUiðs� ĵÞU†
�jðs� îÞ:

ð9Þ

Here, we denoteU−jðsÞ≡ U†
jðs − ĵÞ. (For the details of the

smearing method, see Secs. III B and III C in Ref. [3].)

For the case of β ¼ 5.8 on 16332, we adopt the smearing
parameter α ¼ 2.3 and choose the iteration number Nsmr ¼
25 and 4 for SU(3) QCD and the Abelian part, respectively,
so as to largely enhance the ground-state overlap for each
part. We have confirmed that the results are almost
unchanged by changing the iteration number Nsmr.
Similarly, we also calculate the MA projection of the 3Q

potential

VAbel
3Q ¼ − lim

T→∞

1

T
ln hW3Q½uμðsÞ�i ð10Þ

from the Abelian 3Q Wilson loop in the MA gauge,
W3Q½uμðsÞ�, which is invariant under the residual Abelian
gauge transformation (5). By way of illustration, we show
in Fig. 4 the effective mass plot for each part at β ¼ 5.8
on 16332.

IV. ABELIAN DOMINANCE OF QUARK
CONFINEMENT IN 3Q POTENTIAL

In this section, we show the numerical results of QQ̄ and
3Q systems in SU(3) quenched lattice QCD at β ¼ 5.8 on
16332. Figure 5(a) shows the QQ̄ potential VðrÞ and the
Abelian part VAbelðrÞ. All the lattice data of VðrÞ are well
reproduced by the Coulomb-plus-linear ansatz (1) with the
best-fit parameter set listed in Table II. For a larger
interquark distance r than 1 fm, VðrÞ is simply described
by the linear quark-confining potential σrþ C [upper
straight line in Fig. 5(a)]. Figure 5(a) illuminates “perfect
Abelian dominance” of confinement in the QQ̄ potential,
which was reported in Ref. [28], because the Abelian part
VAbelðrÞ has a significant agreement with σrþ C0 [lower
straight line in Fig. 5(a)] at large distances.
We note that the Abelian dominance of the QQ̄-confining

force does not necessarily mean that of the 3Q-confining
force because one cannot superpose solutions in QCD even

FIG. 4 (color online). Typical examples of effective mass plots
of the 3Q potential for (a) SU(3) QCD and (b) the Abelian part in
lattice units. Here, three quarks are put on the equilateral-triangle
configuration, i.e., i ¼ j ¼ k ¼ 1;…; 5 in Fig. 1(c), on a 16332
lattice at β ¼ 5.8. The solid horizontal lines denote the obtained
values of V3Q and VAbel

3Q and are extended in the corresponding fit
range of Tmin ≤ T ≤ Tmax − 1.
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at the classical level. Indeed, a 3Q system cannot be
described by the superposition of the interaction between
two quarks, as is suggested from the functional form (2) of
the 3Q potential [2,3]. We find, however, Abelian domi-
nance of the 3Q-confining force with an accuracy within a
few percent deviation as described below.
Figure 5(b) shows the 3Q potential V3Q and the Abelian

part VAbel
3Q plotted against the total length of the flux

tube, Lmin. All the lattice data of V3Q are approximately
described by a single-valued function of Lmin, although V3Q

generally depends on the relative position of the three
quarks. The main reason is that the three-body confinement
term σ3QLmin is relevant in the Y ansatz (2) except for
short distances. When the 3Q system forms an equilateral
triangle, one finds Lmin ¼

ffiffiffi
3

p jri − rjj for any i ≠ j, and the
Y ansatz (2) becomes

V3Qðr1; r2; r3Þ ¼ σ3QLmin − 3
ffiffiffi
3

p A3Q

Lmin
þ C3Q: ð11Þ

Since V3Q approximately obeys a single-valued function
of Lmin, all the lattice data are well reproduced by
Eq. (11) with the best-fit parameter set as listed in
Table II, other than the equilateral-triangle 3Q systems.
When the total flux-tube length Lmin is larger than 1 fm,
V3Q is described by the linear 3Q-confining potential
σ3QLmin þ C3Q [upper straight line in Fig. 5(b)].
Remarkably, the Abelian part VAbelðrÞ has a significant
agreement with σ3QLmin þ C0

3Q [lower straight line in
Fig. 5(b)] at large distances, which is plausible evidence
for σAbel3Q ≃ σ3Q in the baryonic 3Q potential.
To demonstrate σAbel3Q ≃ σ3Q conclusively, we investigate

the difference between V3Q and VAbel
3Q at long distances as

shown in Fig. 5(c). As is the case in V3Q, the Abelian part of
the 3Q potential has the functional form

VAbel
3Q ¼ σAbel3Q Lmin −

AAbel
3Q

R
þ CAbel

3Q ; ð12Þ

FIG. 5 (color online). MA projection of (a) QQ̄ and (b) 3Q potentials in SU(3) quenched lattice QCD at β ¼ 5.8 on 16332. In each
panel, the black and blue circles denote the original SU(3) potential and the Abelian part, respectively. The gray curves are obtained by
the best fit with Eqs. (1) and (11) (Y ansatz), as listed in Table II. The slopes of the parallel orange lines for the panels (a) and (b) are σ
and σ3Q, respectively. (c) Fit analysis of V3Q − VAbel

3Q (black diamonds) to illustrate the equivalence σ3Q ≃ σAbel3Q between the three-body
string tension and its Abelian part in the baryonic 3Q potential. The red dashed and the green solid curves are the best fits with the pure
Coulomb ansatz (13) and the Coulomb-plus-linear ansatz, respectively.

TABLE II. Fit analysis of interquark potentials in lattice units at β ¼ 5.8 (i.e., a≃ 0.15 fm) on 16332 and β ¼ 6.0 (i.e., a≃ 0.10 fm)
on 20332. The best-fit parameter sets ðσ; A; CÞ of the QQ̄ potential V and the Abelian part VAbel are listed with the functional form (1).
The best-fit parameter sets ðσ3Q; A3Q; C3QÞ of the 3Q potential V3Q and the Abelian part VAbel

3Q are listed with the Yansatz (2). The label
of (equi. triangle) means the fit analysis only with the lattice data of equilateral-triangle 3Q configurations. NQ is the number of different
patterns of QQ̄ or 3Q systems. The string tension ratio σAbel=σ is listed in the last column.

SU(3) Abelian part

β NQ σ A C σAbel AAbel CAbel σAbel=σ

5.8 QQ̄ 26 0.099(2) 0.30(3) 0.67(2) 0.098(1) 0.043(12) 0.187(7) 0.99(3)
3Q (equi. triangle) 5 0.097(1) 0.118(3) 0.93(1) 0.098(3) −0.001ð8Þ 0.19(2) 1.01(3)
3Q 101 0.0997(4) 0.109(1) 0.905(4) 0.0967(5) 0.006(2) 0.213(5) 0.97(1)

6.0 QQ̄ 39 0.0472(6) 0.289(10) 0.658(5) 0.0457(2) 0.050(3) 0.183(2) 0.97(1)
3Q (equi. triangle) 8 0.0471(10) 0.121(3) 0.936(9) 0.0455(12) 0.014(4) 0.233(12) 0.97(3)
3Q 211 0.0480(3) 0.113(1) 0.917(3) 0.0456(2) 0.013(1) 0.232(2) 0.95(1)
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where 1=R≡P
i<j1=jri − rjj [35]. If the Abelian domi-

nance of the 3Q potential is exact, i.e., σAbel3Q ¼ σ3Q, one has
to observe

ΔV3Q ≡ V3Q − VAbel
3Q ¼ −

ΔA3Q

R
þ ΔC3Q; ð13Þ

where ΔA3Q ≡ A3Q − AAbel
3Q and ΔC3Q ≡ C3Q − CAbel

3Q .
Then, we try a fit analysis to ΔV3Q with the pure
Coulomb ansatz (13) (fit 1) and the Coulomb-plus-linear
ansatz, Δσ03QR − ΔA0

3Q=Rþ ΔC0
3Q (fit 2), in Fig. 5(c).

Fits 1 and 2 reveal thatΔV3Q has almost zero string tension,
Δσ03Q ≃ 0, and is well reproduced by the pure Coulomb
ansatz (13). Therefore, we conclude that there is no differ-
ence between the string tensions in V3Q and VAbel

3Q , i.e.,
σAbel3Q ≃ σ3Q,withanaccuracywithin a fewpercentdeviation.
[We remark that Fig. 5(c)would beplausible evidence for the
exact equivalence of σAbel3Q ¼ σ3Q.]

To see the finite lattice-spacing effect, we also perform
SU(3) quenched lattice QCD at β ¼ 6.0 on 20332 and
summarize the results in Table II and Fig. 6(b). We find
again σAbel3Q ≃ σ3Q, and thus σAbel3Q ≃ σ3Q is expected to be
true in the finer lattice spacings, similar to the case of the
QQ̄ potential [28]. Figure 6 compares the QQ̄ and 3Q
results at β ¼ 5.8 on the 16332 lattice and at β ¼ 6.0 on the
20332 lattice. In both cases, we find that the string tensions
of the QQ̄ and 3Q potentials for the SU(3) and Abelian part
are equivalent within a few percent deviation: σ ≃ σAbel≃
σ3Q ≃ σAbel3Q . To be exact, in the case of β ¼ 6.0 on the
20332 lattice, the string tensions of the Abelian part
(σAbel ≃ σAbel3Q ) are about 3% smaller than SU(3) QCD
(σ ≃ σ3Q) because the physical spatial size is slightly small
(La≃ 2.0 fm). This physical-spatial-size effect is expected
from the result of the QQ̄ potential [28] (see Fig. 3).
For a visual demonstration, we restrict ourselves on

equilateral-triangular 3Q configurations and show their
lattice results of V3Q and VAbel

3Q at β ¼ 5.8 and 6.0 in the
physical unit in Fig. 7, where an irrelevant constant is
shifted. For each of V3Q and VAbel

3Q , both lattice data are
found to be well reproduced by a single curve. We list their
raw data in Table III and add the fit result in Table II.
To conclude, we thus find Abelian dominance of the

string tension, σAbel3Q ≃ σ3Q, with an accuracy within a few
percent deviation in the baryonic 3Q potential in SU(3)
quenched lattice QCD for β ¼ 5.8 on 16332 and β ¼ 6.0 on
20332, as shown in Table II.

V. SUMMARY AND CONCLUDING REMARKS

We have studied the MA projection of quark confine-
ment in the baryonic 3Q potential in the SU(3) quenched
lattice QCD with β ¼ 5.8 on 16332 and β ¼ 6.0 on
20332 for more than 300 different 3Q systems in total,
with 1000–2000 gauge configurations. (Note also that the
lattice data of V3Q themselves are fairly accurate, because
of the high statistics.) Remarkably, we have found

FIG. 6 (color online). Comparison of string tensions of the QQ̄
and 3Q potentials for SU(3) QCD and the Abelian part. Here, σ
and σAbel are the string tensions of the QQ̄ potential for SU(3)
QCD and the Abelian part, respectively. Similarly, σ3Q and σ3Q
are the string tensions of the 3Q potential for SU(3) QCD and
the Abelian part, respectively. In both cases of (a) β ¼ 5.8 on the
16332 lattice and (b) β ¼ 6.0 on the 16332 lattice, we find that the
string tensions are equivalent within a few percent deviation:
σ ≃ σAbel ≃ σ3Q ≃ σAbel3Q .

FIG. 7 (color online). The MA projection of the 3Q potential
for equilateral-triangular configurations plotted against Lmin for
β ¼ 5.8 and 6.0 in the physical unit. The curves are obtained by
the best fit with Eq. (11) for the β ¼ 5.8 data, as listed in Table II.

TABLE III. A part of the lattice data of the 3Q potential V3Q

and the Abelian part VAbel
3Q restricted for the equilateral-triangle

configuration, i.e., i ¼ j ¼ k in Fig. 1(c), in lattice units.

16332 at β ¼ 5.8 20332 at β ¼ 6.0

ði; j; kÞ Lmin V3Q VAbel
3Q V3Q VAbel

3Q

(1,1,1) 2.45 0.9176(2) 0.4361(1) 0.7943(3) 0.3140(1)
(2,2,2) 4.90 1.2812(9) 0.6765(4) 1.0393(8) 0.4425(2)
(3,3,3) 7.35 1.559(2) 0.9095(9) 1.193(2) 0.5521(3)
(4,4,4) 9.80 1.819(6) 1.159(2) 1.323(3) 0.6648(6)
(5,5,5) 12.24 2.10(2) 1.424(4) 1.460(6) 0.782(1)
(6,6,6) 14.70 � � � � � � 1.58(1) 0.906(2)
(7,7,7) 17.15 � � � � � � 1.72(1) 1.037(2)
(8,8,8) 19.60 � � � � � � 1.87(4) 1.172(3)
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Abelian dominance of the string tension with an accuracy
within a few percent deviation, σ ≃ σAbel ≃ σ3Q ≃ σAbel3Q ,
in QQ̄ and 3Q potentials simultaneously on these lattices.
(For a more definite conclusion, it is desired to perform
similar studies with larger and finer lattices.) Thus,
despite the non-Abelian nature of QCD, quark confine-
ment is entirely kept in the Abelian sector of QCD in
the MA gauge. In other words, Abelianization of QCD
can be realized without the loss of the quark-confining
force via the MA projection. This fact would be mean-
ingful to understand the confinement mechanism in the
non-Abelian gauge theory of QCD. Furthermore, the
Abelian dominance for both QQ̄ and 3Q potentials
indicates a universality of the confinement mechanism

for the wide category of hadrons in terms of
Abelianization of QCD.
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