

Kyoto University Research Info	rmation Repository
Title	Multi-annual variation in the diet composition and frugivory of the Japanese marten (Martes melampus) in western Tokyo, central Japan
Author(s)	Tsuji, Yamato; Yasumoto, Yui; Takatsuki, Seiki
Citation	Acta Theriologica (2014), 59(3): 479-483
Issue Date	2014-07
URL	http://hdl.handle.net/2433/199598
Right	The final publication is available at Springer via http://dx.doi.org/10.1007/s13364-014-0181-1.
Туре	Journal Article
Textversion	author

1		
2	_	
4	1	Multi-annual variation in the diet composition and frugivory of the Japanese marten (<i>Martes</i>
5		
6 7	2	<i>melampus</i>) in western Tokyo, central Japan
8		
9	0	
10	3	
11		
⊥∠ 13	4	Yamato Tsuji ^{1*} , Yuj Yasumoto ² , and Seiki Takatsuki ²
14		
15		
16	5	¹ Primate Research Institute, Kyoto University, Aichi 484-8506 Japan
17		
19	C	² School of Veterinary Medicine Archy University Kanagawa 220,8501 Japan
20	0	School of veterinary Medicine, Azabu University, Kanagawa 229-8301 Japan
21		
22	7	Running headline: multi-annual variation in diet of Japanese martens
23		
24 25		
26	8	*to whom correspondence should be addressed: ytsuji1002@gmail.com, Tel/Fax: +81-568-63-0539
27		
28	Q	
29	5	
31		
32	10	Abstract To examine multi-annual variations in the food habits of the Japanese marten (Martes
33		
34		
35	11	<i>melampus</i>), we analyzed the composition of marten feces in the Bonbori Forest Path in western Tokyo,
37		
38	12	central Japan in two time periods a decade apart (1997–1998 and 2007–2008). The staple foods of
39		
40		
41 42	13	martens in both periods were fruits/seeds and animal materials (mainly insects and mammals). The
43		
44	14	mentance feed for quantity on finite/goods and increase throughout the year in both namic do, but the
45	14	martens red frequentry on fruits/seeds and filsects throughout the year in both periods, but the
46		
48	15	consumption of mammals, birds, and arthropods/other animals showed seasonal variations. The
49		
50		
51	16	composition of fruits/seeds and the frequency of occurrence for each fruit-bearing species differed
52		
54	17	between the two periods. These results suggest that both the foraging strategy and role of martens as a
55	11	between the two periods. These results suggest that both the foraging strategy and fore of martens as a
56		
57	18	seed dispersal agent changes yearly, presumably according to multi-annual variation in the availability of
50 59		
60		
61		
62		
63 64		
U 1		

19	prey animals and/or fruits. We emphasize the importance of multi-annual studies both on food habits and
20	to monitor food availability in the temperate region where the food environment changes among seasons
21	as well as years.
22	
23	Keywords Dietary composition • Frequency of occurrence • <i>Martes melampus</i> • Multi-annual • Seed
24	dispersal • Yearly variation
25	
26	Introduction
27	Food habit analysis is a basic and important subject in studies on wildlife ecology. The food environment
28	varies both temporally and spatially in accordance with variations in food availability (Herrera et al.
29	1998; McShea 2000). In temperate regions, marked seasonal changes in plant phenology limit the fruiting
30	period of frugivores (Hanya et al. 2013). Such variations in plant availability often affect the population
31	size of prey animals, such as small rodents and sedentary birds, which in turn affect the food
32	environments of omnivorous mammals (Helldin 1999; McShea 2000). As a result, both frugivorous and
33	carnivorous mammals in temperate regions seem to change their food habits according to environmental
34	conditions (O'Donoghue et al. 1998; Naves et al. 2006; Tsuji et al. 2006; Koike 2010), which implies that
35	multi-annual information on the food habits of animals is needed to fully understand temporal variation in
36	their feeding ecology.

37	Mustelids (family Mustelidae) are small- to medium-sized mesopredators that have a wide
38	distribution in the Northern Hemisphere (Buskirk et al. 1994). Martens, as generalist predators, switch to
39	alternative prey when their principal foods are not readily available. Several multi-annual studies have
40	shown that martens fed on rodents (voles and mice) during years when their availability was high, while
41	the martens switched to feeding primarily on alternative diets, such as animal carcasses and fruits when
42	the rodent availability was low (Pulliainen and Ollinmäki 1996; Ben-David et al. 1997). These examples
43	imply that information about marten food habits based on short-term studies can lead to erroneous
44	conclusions about their foraging strategies. Mustelids also feed on fruits (Rosalino and Santos-Reis
45	2009), and therefore potentially disperse intact seeds that pass through their digestive tracts
46	(endozoochory; Wilson 1993; Otani 2002). Thus, multi-annual variation in their food habits can also
47	affect their roles as seed dispersal agents. Despite numerous studies on the food habits of mustelids, few
48	have attempted multi-annual studies on variations in diet composition and its implications.
49	In this study, we tried to address multi-annual variation in the food habits of wild Japanese martens
50	(Martes melampus), an endemic mustelid species in Japan. We especially focused on multi-annual
51	variation in their frugivory. Although several studies have examined the food habits of Japanese martens
52	(Yamagishi 1990; Tatara and Doi 1994; Arai et al. 2003), no study except Arai et al. (2003) documented
53	multi-annual variation. In western Tokyo, the food habits of Japanese marten were previously studied by
54	Nakamura et al. (2001) in 1997–1998 (Period 1 hereafter), and thus we were able to examine

the results between these two periods. Materials and methods Our study was conducted at the Bonbori Forest Path (36° N, 139° E) between Hachioji City and Akiruno City, approximately 50 km west of the central part of Tokyo. The path is about 10 km long and about 5 m wide, and it is almost entirely asphalt-paved (Tsuji et al. 2011a). Mean annual precipitation and temperature at Hachioji, the nearest weather station to the study site, during Period 1 were 2358 mm and 14.8°C, respectively, while in Period 2, they were 2074 mm and 14.6°C, respectively (Japan Meteorological Agency, http://www.jma.go.jp/jma/index.html). The area is mostly covered with forest vegetation dominated by deciduous broad-leaved secondary forests on slopes as well as planted coniferous forests of Cryptomeria japonica and Chamaecyparis obtusa in valleys (Nakamura et al. 2001; Tsuji et al. 2011a). We surveyed the forest path at least once a month from July 2007 to July 2008 (23 surveys in total), and collected marten feces along/on it. When we found feces in one large pile, we treated it as one sample if the color was the same or as independent samples if the color differed. We could easily distinguish marten feces from that of sympatric mammals, such as Japanese macaques (Macaca fuscata) and red fox (Vulpes vulpes) by its shape. We could also distinguish marten feces from that of sympatric mustelids,

multi-annual variation in diets by conducting a follow-up study in 2007–2008 (Period 2) and comparing

73	Japanese weasels (<i>Mustela itatsi</i>), by its size (mean \pm SD width: 10.1 \pm 1.5 mm for martens and 6.5 \pm 1.1
74	mm for weasels; Tsuji et al. 2011b). When we collected feces, we removed stones and leaves that were
75	present on the surface.
76	In the laboratory, defrosted feces were washed through a 0.5-mm mesh sieve, and remnants on the
77	sieve were identified under a microscope. Based on Nakamura et al. (2001), we classified the contents
78	into the following eight categories: mammals (including rodents and insectivores), birds,
79	reptiles/amphibians, insects, arthropods/other animals, fruits/seeds, other plant parts (including leaves,
80	stems, and roots), and others/unidentified items. To examine multi-annual variation in the contribution of
81	fruits, fruits/seeds were sorted to the level of species or genus. Fruits/seeds identification followed
82	Nakayama et al. (2000) and our own references. The percent frequency of occurrence in feces ($\% FO =$
83	number of fecal samples containing a specific food item/total number of fecal samples) was used to show
84	seasonal and year-round food habits, as well as multi-annual variation.
85	We separated the study period into four seasons: spring (March-May), summer (June-August), fall
86	(September–November), and winter (December–February). To test effect of season on the %FO of the
87	given food item in each period, we used chi-square tests for independence. If significant seasonal
88	difference was obtained, we conducted <i>post-hoc</i> Bonferroni tests to address when the martens fed on the
89	item more frequently. To test the effect of study period on the %FO of a given food item in a given
90	season, we used chi-square tests for independence. In these analysis, α was set at 0.05 except for the

91	Bonferroni tests in which we adjusted the significance levels (α) to 0.013 (for 4 seasons) and 0.017 (for 3
92	seasons) to avoid type I error. Data analyses in this study were performed using the statistical software R
93	2.15.1.
94	
95	Results
96	During Period 2, we collected 381 fecal samples, among which we analyzed 257 samples ($N = 33$ in
97	spring, 20 in summer, 26 in fall, and 178 in winter). In total, 594 identifiable food items were found in the
98	257 fecal samples, which corresponded to an average of 2.32 food categories per fecal sample (SD =
99	0.83, range: 1–5). Fruits/seeds (annual %FO: 94.9), mammals (annual %FO: 69.6), insects (annual %FO:
100	51.0), and other plant parts (annual $\%FO$: 61.5) were the staple food items during Period 2 (Table 1).
101	Birds, reptiles/amphibians, arthropods/other animals, and fungi were supplementary sources, whose
102	annual $\%FOs$ were less than 5%.
103	As to seasonal change, the %FO of mammals in Period 2 was significantly higher in spring and
104	summer than winter ($p < 0.017$). The %FO of birds in Period 2 was significantly higher in spring than
105	winter ($p < 0.013$). The %FO of arthropods/other animals in Period 1 was significantly higher in spring
106	than other seasons ($p < 0.013$), while %FO of arthropods/other animals in Period 2 was significantly
107	higher in summer than winter ($p < 0.013$) (Table 1).
108	Significant effects of study period on % <i>FO</i> were detected for mammals in the annual mean (χ^2 =

109	4.7, $df = 1$, $p = 0.031$), for birds in winter ($\chi^2 = 11.8$, $df = 1$, $p < 0.001$), reptiles and amphibians in the
110	annual mean ($\chi^2 = 3.9$, $df = 1$, $p = 0.049$), arthropods/other animals in the annual mean ($\chi^2 = 11.1$, $df = 1$, p
111	< 0.001), and other plant parts in each season (spring: $\chi^2 = 16.3$, $df = 1$, $p < 0.001$; summer: $\chi^2 = 20.0$, $df =$
112	1, $p < 0.001$; fall: $\chi^2 = 11.4$, $df = 1$, $p < 0.001$; winter: $\chi^2 = 9.3$, $df = 1$, $p = 0.002$; the annual mean: $\chi^2 = 11.4$, $df = 1$, $p < 0.001$; winter: $\chi^2 = 9.3$, $df = 1$, $p = 0.002$; the annual mean: $\chi^2 = 11.4$, $df = 1$, $p < 0.001$; winter: $\chi^2 = 9.3$, $df = 1$, $p = 0.002$; the annual mean: $\chi^2 = 11.4$, $df = 1$, $p < 0.001$; winter: $\chi^2 = 9.3$, $df = 1$, $p = 0.002$; the annual mean: $\chi^2 = 11.4$, $df = 1$, $p < 0.001$; winter: $\chi^2 = 9.3$, $df = 1$, $p = 0.002$; the annual mean: $\chi^2 = 11.4$, $df = 1$, $p < 0.001$; winter: $\chi^2 = 10.4$, $df = 1$, $p < 0.001$; winter: $\chi^2 = 10.4$, $df = 1$, $p < 0.001$; $\chi^2 = 10.4$, $\chi^2 =$
113	65.1, $df = 1$, $p < 0.001$). However, no significant difference in %FO was observed for insects and
114	fruits/seeds among the study periods ($p > 0.05$ for each; Table 1).
115	Throughout the study periods, at least 19 species of fruits/seeds were found in the feces. Some
116	fruits appeared in feces during only one period (Table 1): in spring, Rubus spp. and Aspidistra elatior
117	fruits appeared only in Period 1, while Actinidia arguta, Stachyurus praecox, Morus bombycis, Hovenia
118	dulcis, Pyrus pyrifolia, Celtis sinensis, Aphananthe aspera, and Physalis alkekengi appeared only in
119	Period 2; in summer, Rubus spp., A. arguta, and Broussonetia kazinoki appeared only in Period 1, while
120	M. bombycis appeared only in Period 2; in fall, Rubus sp., H. dulcis, and Cinnamomum camphora
121	appeared only in Period 1, while C. sinensis, Viburnum dilatatum, Cocculus orbiculatus, and Sorbus sp.
122	appeared only in Period 2; in winter, Cardiospermum halicacabum, Mollugo verticillata, and Prunus sp.
123	appeared only in Period 1, while S. praecox, H. dulcis, P. pyrifolia, C. sinensis, Prunus jamasakura,
124	Actinidia polygama, and Vitex spp. appeared only in Period 2 (Table 1).
125	Variation in $\%FO$ was also observed in several fruits between the two periods. In fall, the $\%FO$ of A.
126	<i>arguta</i> was significantly higher during Period 2 ($\chi^2 = 3.9$, $df = 1$, $p = 0.049$). In winter, the %FOs of

127	<i>Rubus</i> spp. ($\chi^2 = 4.7$, $df = 1$, $p = 0.030$) and <i>Diospyros kaki</i> ($\chi^2 = 51.2$, $df = 1$, $p < 0.001$) were
128	significantly higher in Period 1, while the % <i>FO</i> of <i>A</i> . arguta ($\chi^2 = 10.1$, $df = 1$, $p = 0.002$) was higher in
129	Period 2. On an annual basis, the % <i>FO</i> s of <i>Rubus</i> spp. ($\chi^2 = 14.9$, $df = 1$, $p < 0.001$), <i>D. kaki</i> ($\chi^2 = 11.2$, df
130	= 1, p = 0.001), Akebia quinata (χ^2 = 14.1, df = 1, p < 0.001), and P . jamasakura (χ^2 = 15.7, df = 1, p <
131	0.001) were significantly higher in Period 1, while those of <i>A</i> . arguta ($\chi^2 = 45.5$, $df = 1$, $p < 0.001$) and <i>S</i> .
132	<i>praecox</i> ($\chi^2 = 8.5$, $df = 1$, $p = 0.003$) were significantly higher in Period 2 (Table 1).
133	
134	Discussion
135	Japanese martens in the Bonbori Forest Path fed mainly on animal materials and fruits during both study
136	periods. Their omnivorous diets were similar to what has been reported at other sites (Yamagishi 1990;
137	Tatara and Doi 1994; Arai et al. 2003). In terms of seasonal changes in food habits, the martens fed
138	frequently on fruits/seeds and insects throughout the year in both periods, while other categories, like
139	mammals, showed seasonal variation.
140	We found variation in dietary composition between the two study periods: the annual $\% FO$ s of
141	mammals, reptiles/amphibians, and arthropods/other animals were higher, while those of some berry
142	species were lower in Period 1 than in Period 2. Since climatic conditions were similar between the two
143	periods (see Materials and methods), the results strongly suggest three possibilities: fruit production
144	varied annually, prey animal abundance varied annually, or both fruit production and prey animal

145	abundance varied annually. The availability of prey animals (Saito et al. 1998, 2007) and fruit production
146	(Komiyama et al. 1991; Suzuki et al. 2005) are known to vary annually in Japan. Thus, the martens at our
147	study site seem to adjust their dependence on animal materials in accordance with the availability of prey
148	animals and/or fruits, as do other mustelids (Buskirk et al. 1994; Pulliainen and Ollinmäki 1996; Zhou et
149	al. 2011; Caryl et al. 2012). In this study we could not quantify the food availability, and our
150	interpretation of the multi-yearly variation in the dietary composition is speculative. Collecting such
151	information would be useful to investigate how dietary preferences change with availability of their staple
152	foods.
153	We also found considerable variation in fruit occupation in the fecal composition between the two
154	study periods. A similar phenomenon was noted by Otani (2002) when studying martens in northern
155	Japan: he found differences in fruit composition among samples during a 2-year study; e.g., seeds of
156	Taxus cuspidata var. nana and Prunus nipponica were only found in feces in 1 year. These results can be
157	attributed to yearly variation in fruit production. In our study, for example, the availability of A. arguta
158	and S. praecox from fall to the next spring should have been greater in Period 2, while the availability of
159	Rubus sp. in all seasons except for fall, D. kaki and A. quinata in fall, and Prunus japonica in summer
160	should have been greater in Period 1. This implies that the role of Japanese martens as seed dispersal
161	agents would also vary annually according to fruit availability.
162	The annual %FO of other plant parts, mainly leaves, was higher in Period 2. Because we removed

leaves that were attached to the surface of fecal samples at collection, detected leaves were likely to be food-originated. Folivory by Japanese martens has been reported at other study sites (e.g., Shiratsuki et al. 1973; Yamagishi 1990). Whether folivory is a "side effect" of capturing insects on leaves or a separate feeding strategy of the martens is not clear. The amount of leaves in feces, however, was very low (Yamagishi 1990), and the relative importance of leaves for martens seems lower than that of fruits and animal matter. We demonstrated that multi-annual studies are required to fully understand temporal variation in marten diet. Furthermore, monitoring the availability of plant and prey animals is necessary to explain multi-annual variation in the foraging behaviors performed by martens (e.g., Pulliainen and Ollinmäki 1996; Ben-David et al. 1997; Caryl et al. 2012) and to confirm their role as a seed dispersal agent (Otani 2002; Tsuji et al. 2011a). Accumulating such fundamental data from multiple time points and localities would be useful to meta-analyses investigating large-scale drivers of prey availability and diet. Acknowledgments This study was supported in part by the Cooperative Research Fund of the Wildlife Research Center, Kyoto University, and Grants-in-Aid from the Department of Academy and Technology of Japan (No. 20255006). We would like to thank handling editor and two anonymous reviewers for their constructive comments on an earlier version of our manuscript.

1	
2 3 4	181
5 6 7	182
9 10 11	183
12 13 14	184
15 16 17	185
18 19 20	186
21 22 23	187
24 25 26	188
27 28 29 20	189
30 31 32 33	190
34 35 36	191
37 38 39	192
40 41 42	193
43 44 45	194
46 47 48	195
49 50 51	196
52 53 54	197
55 56 57 58	198
59 60	
62 63	
64 65	

181 **References**

Arai S, Adachi T, Kawahara Y, Yoshida K (2003) Food habit of Japanese marten (Martes melampus) at

- 83 Kuju Highland in Kyushu, Japan. Mamm Sci 43:19-28 [in Japanese with English summary]
- 184 Ben-David M, Flynn RW, Schell DM (1997) Annual and seasonal changes in diets of martens: evidence
- from stable isotope analysis. Oecologia 111:280-291
- 186 Buskirk SE, Harestad AS, Raphael MG, Powell RA (1994) Martens, sables and fishers: biology and
- 187 conservation. Cornell University Press, Ithaca
- 188 Caryl FM, Raynor R, Quine CP, Park KJ (2012) The seasonal diet of British pine marten determined from
- 189 genetically identified scats. J Zool Lond 288: 252-259
- 190 Hanya G, Tsuji Y, Grueter CC (2013) Fruiting and flushing phenology in Asian tropical and temperate
- 191 forests: implications for primate ecology. Primates 54:101-110
- 192 Helldin JO (1999) Diet, body condition, and reproduction of Eurasian pine martens *Martes martes* during
- 193 cycles in microtine density. Ecography 22:324-336

194 Herrera CM, Jordano P, Guitian J, Traveset A (1998) Annual variability in seed production by woody

- plants and the masting concept: reassessment of principles and relationship to pollination and seed
- 196 dispersal. Am Nat 152:576–594
- 197 Koike S (2010) Long-term trends in food habits of Asiatic black bears in the Misaka Mountains on the
 - 198 Pacific coast of central Japan. Mamm Biol 75:17–28

199	Komiyama A, Wada K, Kuga H (1991) Annual fluctuation of seed-fall amounts in the basin of Yokoyu
200	River, Shiga Heights. Bull Gifu Univ Exp Forest 56:166-174 [in Japanese with English summary]
201	McShea WJ (2000) The influence of acorn crops on annual variation in rodent and bird populations.
202	Ecology 81:228–238
203	Nakamura T, Kanzaki N, Maruyama N (2001) Seasonal changes in food habits of Japanese martens in
204	Hinode-cho and Akiruno-shi, Tokyo. Wildl Cons Japan 6:15-24 [in Japanese with English summary]
205	Nakayama S, Inokuchi M, Minamitani T (2000) Encyclopedia of plant seeds of Japan. Tohoku University
206	Press, Sendai [in Japanese]
207	Naves J, Fernández-Gil A, Rodorĭguez C, Delibes M (2006) Brown bear food habits at the border of its
208	range: a long-term study. J Mamm 87:899-908
209	O'Donoghue M, Boutin S, Krebs CJ, Zuleta G, Murray DL, Hofer EJ (1998) Functional responses of
210	coyotes and lynx to the snowshoe hare cycle. Ecology 79:1193-1208
211	Otani T (2002) Seed dispersal by Japanese marten Martes melampus in the subalpine shrubland of
212	northern Japan. Ecol Res 17:29–38
213	Pulliainen E, Ollinmäki P (1996) A long-term study of winter food niche of the pine marten Martes
214	martes in northern boreal Finland. Acta Theriol 41:337-352
215	Rosalino LM, Santos-Reis M (2009) Fruit consumption by carnivores in Mediterranean Europe. Mamm
216	Rev 39:67–78

218	rufocanus in Hokkaido, Japan. Res Pop Ecol 40:61-76
219	Saitoh T, Osawa J, Takanishi T, Hayakashi S, Ohmori M, Morita T, Uemura S, Vik JO, Stenseth NC,
220	Maekawa K (2007) Effects of acorn masting on population dynamics of three forest-dwelling rodent
221	species in Hokkaido, Japan. Pop Ecol 49:249-256
222	Shiratsuki N, Asahi M, Yoshida H (1973) Food habit of Japanese marten Martes melampus, with
223	consideration on the home range. Bull Mukogawa Women Univ 20/21:45-56 [in Japanese with
224	English summary]
225	Suzuki W, Osumi K, Masaki T (2005) Mast seeding and its spatial scale in Fagus crenata in northern
226	Japan. For Ecol Manage 205:105-116
227	Tatara M, Doi T (1994) Comparative analyses on food habits of Japanese marten, Siberian weasel and
228	leopard cat in the Tsushima islands, Japan. Ecol Res 9:99-107
229	Tsuji Y, Fujita S, Sugiura H, Saito C, Takatsuki S (2006) Long-term variation in fruiting and the food
230	habits of wild Japanese macaques on Kinkazan Island, northern Japan. Am J Primatol 68:1068-1080

Saitoh T, Stenseth NC, Bjørnstad ON (1998) The population dynamics of the vole Clethrionomys

- Tsuji Y, Tatewaki T, Kanda E (2011a) Endozoochorous seed dispersal by sympatric mustelids, Martes
- melampus and Mustela itatsi, in western Tokyo, central Japan. Mamm Biol 76:628-633
- Tsuji Y, Uesugi T, Shiraishi T, Miura S, Yamamoto Y, Kanda E (2011b) Faecal size criteria to discriminate
- Japanese marten (Martes melampus) and Japanese weasel (Mustela itatsi). J Zoo and Aquarium

5 52:8-15 [in Japanese with English summary]

Wilson MF (1993) Mammals as seed-dispersal mutualists in North America. Oikos 67:159-176

237 Yamagishi M (1990) Seasonal food habits of the Japanese marten. Bull Exp Forest Univ Tokyo 83:9-18

[in Japanese with English summary]

39 Zhou YB, Newman C, Xu WT, Buesching CD, Zalewski A, Kaneko Y, Macdonald DW, Xie ZQ (2011)

Biogeographical variation in the diet of Holarctic martens (genus *Martes*, Mammalia: Carnivora:

Mustelidae): adaptive foraging in generalists J Biogeogr 38:137–147

Table 1. Seasonal change in food habits	of Japanese marter	ns in Bonbori Forest P	ath, western Tokyo	o, central Japan based	l on fecal analyses :	and expressed as freq	uency of occurrenc	e (%FO) from the fec	es.			
	Spring (Ma	arch-May)	Summer (June-August)		Fall (September-November)		Winter (December-February)		Annual		Season	l Change
Food Item	Period 1	Period 2	Period 1	Period 2	Period 1	Period 2	Period 1	Period 2	Period 1	Period 2	Period 1	Period 2
	N = 40	N = 33	N = 49	N = 20	N = 48	N = 26	N = 31	N = 178	N = 168	N = 257		
Animal materials	85.0	72.7 ^{NS}	71.4	90.0 NS	66.7	46.2 NS	45.2	50.6 NS	92.9	69.6 ^{NS}	NS	NS
Mammak	42.5	36.4 ^{NS}	28.6	30.0 ^{NS}	-	-	12.9	6.2 ^{NS}	20.8	11.3 *	*** (Sp = Su = Wi)	*** (Su > Wi, Sp > Wi)
Birds	12.5	15.2 ^{NS}	2.0	10.0 ^{NS}	2.1	3.8 ^{NS}	16.1	1.1 ***	6.5	3.9 ^{NS}	* $(Sp = Su = Fa = Wi)$	** (Sp > Wi)
Reptiles/amphibians	10.0	-	-	-	6.3	-	-	1.1	4.2	0.8 *	NS	NS
Insects	37.5	48.5 ^{NS}	51.0	80.0 ^{NS}	64.6	42.3 ^{NS}	32.3	49.4 NS	48.8	51.0 ^{NS}	NS	NS
Arthropods/other animals	37.5	3.0 ^{NS}	6.1	20.0 ^{NS}	2.1	-	3.2	1.1 ^{NS}	11.9	2.7 ***	*** (Sp > Su, Sp > Fa Sp > Wi)	*** (Su > Wi)
Diante	55.0	07.0 NS	65.2	05.0 NS	07.0	100.0 NS	06.8	100.0 NS	80.0	100.0 NS	NC	NC
Fruits and seeds	52.5	84.8 NS	63.3	70.0 NS	97.9	96.2 NS	96.8	90.4 NS	77.4	94.9 NS	NS	NS
Pubue onn	17.5	04.0	14.2	70.0	21	90.2	12.0	2.2 *	11.3	1.6 ***	145	143
Diamana kaki	11.5		14.3	_	2.1	NS	12.9	(2)***	17.0	1.0 E 0 ***		
Diospyros kaki Akabia avinata	25	3.0	_	-	60.4	29.5 NS	83.9	0.2	17.9	5.4 ***		
Acadidetra alation	2.5	5.0	_	_	00.4	38.5	3.2	1.7	19.0	3.4		
A solution	2.5	- 20.4		_			- 10.4		16.6			
Actiniata arguta	_	39.4	8.2	-	33.3	00.8	19.4	81.5	13.3	14.4 **		
Monus hombuois	_	15.2	_	45.0	14.0	5.6	_	12.9	4.2	5.4		
Moras bombyers		15.2	_	45.0	- 40	_	_		- 12	1.2 NS		
novenia aucis Bunus mulfolia	_	6.1	_	-	4.2	-	_	0.8	1.2	1.2		
Cable do male		2.0	_	_	_	- 20	_	2.4		2.1		
Ant much a series		3.0	_	_	_	5.6	_	3.4		0.4		
Apnananine aspera Bhusalie alkakenoi	_	3.0	_	-	_	-	_	-	-	0.4		
Physiais aikekengi		5.0	-	- 10.0 NS		-	_	-	- 10.7	0.4		
Prunus jamasakura	_	-	36.7	10.0	_	-	_	0.6	10.7	1.2		
Broussonelia kazmoki		-	6.1	-	- (2	- 2.0 NS	_		1.8	- 1.2 NS		
Actiniaia polygama		-	-	_	0.5	5.8	_	1.1	1.8	1.2		
Cunnamomum campnora	-	-	-	-	2.1	-	-	-	0.0	-		
Viburnum auaiaium	-	-	-	-	-	3.8	-	-	-	0.4		
Coccuus orbiculatus	-	-	-	-	_	3.8	-	_	-	0.4		
Configuration of the second	-	-	-	-	-	5.8	- 22	-	-	0.4		
Caraiospermum naucacabum		-	-	-	_	-	3.2	-	0.6	-		
Motugo verticitata	-	-	-	-	_	-	3.2	_	0.6	-		
Franus spp.	-	-	-	-	-	-	5.2	- 17	0.0	- 12		
Vuis spp.	- 10.0	_	_	_		_	_	1.7	- 20	1.2		
Nuls D	10.0	- 20	-	-	2.1	-	_	- 17	5.0	- 14		
Poaceae	_	3.0	-	-	_	-	_	1.7	-	1.0		
Polygonaceae	- 25.0	5.0	-	-	- 21	-	-	-		0.4		
Other seeds	23.0	-	-	-	2.1	-	6.5		1.1		210	210
Other plants	5.0	/5.8	4.1	85.0	4.2	50.0	9.7	57.9	5.4	61.5	NS	NS
Fungi	2.5	6.1 ^{NS}	_	_	_	_	_	2.3	0.6	2.5 NS		
Others/unidentified materials	5.0	6.1 ^{NS}	2.0	5.0 ^{NS}	6.3	-	_	2.3	3.6	2.5 NS		
Effects of study periods on the %FO at	re also shown for ea	ich season (performed	by chi-square test	s for independence).	***: p < 0.001. **	p < 0.01, *; p < 0.01	05. NS: not signific	ant $(p > 0.05)$				
Results of multiple comparison (Renformanitests in which similifying laws (a) are existed to 0.013 (A) comparisons) and 0.017 (A) comparisons) are chosen in parenthesis												
Period 1: 1997-1998 (from Nakamura	et al 2001)	,		pinterio, and o	(c tempartor	.,,,						
Period 2: 2007-2008												

The English in this document has been checked by at least two professional editors,

both native speakers of English. For a certificate, please see:

1 2 3	246	http://www.textcheck.com/certificate/kd7Oi1
4 5	- 10	
6 7 8		
9 10		
11 12 13		
14 15		
16 17 18		
19 20		
21 22 22		
23 24 25		
26 27		
28 29 30		
31 32		
33 34 35		
36 37		
38 39 40		
41 42		
43 44 45		
46 47		
48 49 50		
51 52		
53 54		
55 56 57		
58 59		
60 61 62		
63 64		
65		