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Abstract 

Phenoloxidase (PO), which is classified as a type 3 copper protein, catalyzes the hydroxylation of 

monophenol to o-diphenol and subsequent oxidation to the corresponding o-quinone. The geometry 

and coordination environment of the active site of the arthropod PO is very similar to that of the 

arthropod hemocyanin (Hc). However, unlike the POs, Hc is an oxygen carrier in crustaceans, and 

does not possess the PO activity in general. Recently, we identified a new type of proPO from a 

crustacean and designated it as proPO. This enzyme has many characteristics rather similar to Hc, 

such as its maturation, localization and oligomeric state. Here, we determined the crystal structure of 

proPO prepared from the hemolymph of kuruma prawns (Marsupenaeus japonicus) at 1.8 Å 

resolution. M. japonicus proPO forms a homo-hexamer rather similar to arthropod Hc. The geometry 

of the active copper site in proPO was nearly identical to that of arthropod Hc. Furthermore, the well 

characterized ‘place holder’ phenylalanine was observed (Phe72). However, the accessibility to the 

active site differed in several ways. First, another phenylalanine residue which shields the active site 

by interacting with a copper-coordinated histidine in crustacean Hc was substituted by valine in 

proPO structure. Second, two tyrosine residues, Tyr208 and Tyr209, both of which are absent in Hc, 

show the alternative conformations and form a pathway accessible to the reaction center. Thus, the 

present crystal structure clarified the similarities and differences in the activity of two closely related 

proteins, PO and Hc. 
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Introduction 

 Type 3 copper proteins are characterized by a coupled binuclear copper active site, in which each 

copper atom is coordinated by three -nitrogens of histidine residues [1]. In general, proteins in this 

class can incorporate a dioxygen reversibly between two coppers in a symmetric side on fashion that is 

required for the expression of their activities. Phenoloxidases (PO) or tyrosinase, which is a member 

of the type 3 copper proteins, catalyzes the hydroxylation of monophenol compounds to 

ortho-diphenol (mono-phenoloxidase activity) and subsequent oxidation to produce the corresponding 

o-quinone (o-diphenoloxidase activity). In contrast, a type 3 dicopper site containing members of a 

protein family called catechol oxidase catalyzes only the latter di-phenoloxidase reaction [2, 3]. PO is 

an indispensable component for innate immunity in arthropods [4]. However, its enzymatic activity 

should be strictly regulated, because PO generates reactive quinone species and triggers melanin 

formation. Accordingly, this class of enzyme is synthesized as a pro-form or inactive form, whose 

di-copper active center is shielded by itself or another protein. In general, arthropod PO is synthesized 

in hemocytes as an inactive pro-enzyme. It has been suggested that the activation of proPO requires 

several components [5]. One of the essential factors for this process is a clip domain serine protease 

variously called the prophenoloxidase activating protein (PAP), prophenoloxidase activating enzyme 

(PPAE) or prophenoloxidase activating factor (PPAF), which cleaves the propeptide of proPO [6-8]. 

This type of protease has a sequence homologous to the “easter” protease of drosophila, which is 

essential for pattern formation during embryonic development of drosophila [8-10]. In addition, 

several other factors, including serine protease homologues (SPHs), are also required for this 

activation process [11-13].  

  From the structural point of view, arthropod PO has a three-domain architecture resembling 

arthropod hemocyanin (Hc), another member of the type 3 copper proteins [14, 15]. In contrast to 

phenoloxidase, Hc lacks mono- or di-phenoloxidase activity under physiological conditions, but 

functions as an oxygen transport protein in mollusks and some arthropods, including crustaceans [16, 
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17]. One very intriguing phenomenon in regard to these two proteins is that PO oxidizes the mono- or 

di-phenol to the corresponding quinone, whereas Hc can only bind and transport molecular oxygen, 

although the two possess nearly identical active sites. In the last two decades, it has been suggested 

that arthropod or molluscan Hc will exhibit the o-diphenoloxidase activity under certain conditions 

which render the active site of Hc accessible to solvent and substrate [18-23].  

Recently, the three-dimensional structures of a phenoloxidase from an insect [24] and tyrosinases 

from bacteria and fungi have been solved [25-28], and have revealed both the precise 

three-dimensional structures of the active site and the overall structure. Surprisingly, the structures of 

the di-copper active sites are nearly identical—e.g., the distances between the two coppers and the 

geometry of coordinated histidine side chains are the same. The three-dimensional structure of 

tyrosinase from bacteria suggested that this enzyme is composed of a single globular domain, in which 

the four helix bundle harbors the di-copper active site [25, 27]. The fungal tyrosinase forms a tetramer 

composed of two H and two L subunits. In the structure of tetramer, the catalytically active H subunit 

has a compact architecture similar to bacterial tyrosinase [28]. On the other hand, the only available 

structure of arthropod prophenoloxidase (PPO) (PDB ID: 3HHS) is composed of a pro-region and 

three domains [24]. Among the domains, the active site is present in the domain II, which forms a 

4-helix bundle similar to the case of fungal and bacterial tyrosinases. Arthropod PO and Hc have 

similar three-domain architectures and similar active site structures (the main chain rmsd between 

3HHS and 1LLA was calculated to be 1.24 Å), and accordingly, they are suggested to be derived from 

a common ancestral protein [15]. One of the major differences is the quaternary structure; that is, the 

former forms a hetero-dimer [24] and the latter forms a hexamer as a single structural unit [29-31].  

Previously, we identified a new type of PO from kuruma prawn (Marsupenaeus japonicus) and 

designated it as PO [32]. This protein has strong mono- and di-PO activity, and thus is clearly a 

member of the PO family. However, it also has some physiological and structural characteristics rather 

similar to crustacean Hc as follows. i) The biosynthesis and localization manner: the PO and 
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crustacean Hc are synthesized in the hepatopancreas with the N-terminal signal peptide (SP) [33], and 

present in hemolymph plasma [32], while the well known arthropod PO is synthesized in hemocyte 

cells without the SP, and present in hemocytes [34, 35]. ii) The quaternary structure: the proPO forms 

a hexamer similar to the case of Hc, while the arthropod PO usually forms a dimer [14, 24, 34-36]. In 

this study, we solved the crystal structure of the hexameric PO as a pro-enzyme prepared from the 

hemolymph of kuruma prawn at a resolution of 1.8 Å. This structural analysis provides clues to the 

mechanism underlying the gain or loss of PO activity in type 3 copper proteins. 

 

Results 

 Model quality and overall structure of proPO 

The structure of proPO from kuruma prawn was determined by the single wavelength anomalous 

dispersion (SAD) method using anomalous scattering of copper atoms in the active site. The final 

structure was refined to a resolution of 1.8 Å. The overall coordinate error of the final model, 

estimated from Luzzati plots, was 0.17 Å. Root mean square deviations (rmsd) of bond lengths and 

angles from the ideal values were calculated using the PHENIX program [37] and are listed in Table 1. 

These values are well within acceptable limits, indicating that all of the structures have tight 

stereochemical constraints. A Ramachandran plot of the final structure shows that 98.3% and 1.56% of 

all residues were in the most favorable and additional favorable regions, respectively. Only one residue 

(Phe686) was in the disallowed region of the plot. This residue is a component of the C-terminal small 

circular peptide (see below) and has unusual  and  angles. Refinement statistics are shown in Table 

1.  

The final model contained two subunits in the asymmetric unit of the H3 space group (Fig. 1a, b). 

When the 22
nd

 valine residue from the initiated methionine residue is defined as the first amino acid 

residue [33], the model of the monomer begins at 8 and ends at the C-terminal 687 of the proPO 

sequence (Fig. 2). Two copper atoms are present in the active site of each monomer (Fig. 1c). As 
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described in our previous report, proPO has some N-linked glycosylation sites [32], some of which 

appeared to have the electron densities of N-acetylglucosamines (Fig. 1d). The residues that appeared 

to be glycosylated were as follows, Asn317, Asn422, Asn427, Asn456, Asn470, and Asn550 of each 

subunit (Fig. 1c). The residues 1-7, 40-44, 558-564 and 600-613 were missing in the final model 

because of the disorder. The overall folding of the proPO subunit is similar to that of proPO from M. 

sexta [24] and arthropod Hcs [29-31]. The main chain rmsd of alignable regions between proPO and 

1LLA (Hc from L. Polyphemus), 1HC1 (Hc from European spiny lobster), and 3HHS 

(prophenoloxidase 1 from M. sexta) was calculated to 1.29, 1.59 and 1.68 Å with 24.2, 20.7 and 20.8% 

sequence identity, respectively (Fig. 2). According to the previous domain definition of arthropod PPO 

[24], the monomer subunit of proPO can be divided into three domains plus pro-region and 

additional C-terminal domain, e.g., the pro-region (1-52), the domain I (53-165), domain II (166-411), 

domain III (412-671), and the C-terminal domain (672-687) (Fig. 1c, 2). The C-terminal domain, 

which formed a circular peptide via a disulfide bond between Cys682 and the C-terminal Cys687 

(Fig.1e), is unique to the proPO. The pro-region consists of short helices and a flexible loop. 

Although the reported cleavage sequence of insect proPO (NRFG) [34, 35] is not present in the 

sequence, a putative cleavage site with similar sequence (DR
28

LG) is seen in the pro-region of proPO 

(Fig. 1c, Fig. 2). The pro-region faces to the surface of the domain I, and some interaction between 

them are seen. For examples, Phe15 (pro-region) interacts with Pro132 and Tyr117 (Domain I) via 

apolar contacts, while Tyr19 (pro-region) associates with Asp140 (Domain I) via a hydrogen bond. 

Although the overall structures of proPO and M.sexta PPO are closely related, the pro-regions of 

them highly vary each other, except the N-terminal short helix and the following loop (Glu8-Ser21 of 

proPO and Phe5-Pro18 of M. sexta PPO) (Fig. 2). Domain I and II have high content of -helix, 

while domain III consists of a twisted, 7-stranded, anti-parallel -sheet. Domain II is a catalytic 

domain harboring the type 3 copper site (Fig. 1c, 2). There are two disulfide bonds observed in domain 

III of each monomer (Cys572/Cys619 and Cys682/Cys687). However, proPO lacks another disulfide 



7 
 

bond that is well-conserved between PO (Cys586/Cys630 in PPO of M. sexta) and Hc 

(Cys534/Cys576 in L. polyphemus). The disulfide bond of the former (Cys572/Cys619 of proPO) is 

strictly conserved among the proPO, insect proPO [24], and arthropod Hcs [30], whereas the latter 

(Cys682/Cys687) is unique to proPO. The Cys687 is the C-terminal residue, and the disulfide bond 

with Cys682 forms a small circular peptide that lies on the neighboring 3-fold symmetric subunit and 

interacts with it (Fig.1e).  

 

Hexameric structure and inter-subunit interactions of proPO 

The native proPO formed a hexamer composed of six identical subunits (Fig. 3a, b). As described 

above, arthropod Hc also forms hexamer (Fig. 3c, d). Furthermore, there are 2- and 3-fold symmetry 

axes in the hexamers of both proPO and Hc. However, the overall packing differs between the two 

(Fig. 3). An asymmetric unit of the H3 crystal of proPO contains a dimer. Each subunit in an 

asymmetric unit is characterized by a 2-fold non-crystallographic symmetry axis (Fig. 1a). Along the 

symmetry axis, the helical (Val294-Met299) and loop (Leu288-Tyr293) regions in domain II interact 

with each other. The most prominent interaction occurs via - stacking between the two side chains 

of Tyr293 from the 2-fold symmetrical subunits (Fig. 1b). The dimer in the asymmetric unit can be 

assembled to the hexamer by a 3-fold symmetry operation. Hence, the hexamer of proPO has a 3-fold 

symmetry axis in its center (Fig. 3b left). In this respect, the hexamer consists of two trimers, which 

associate with each other in a face-to-face manner with a gap of 15 degrees. There is a large pore along 

the 3-fold symmetry axis of the hexameric proPO (Fig. 3b). The diameter of the pore is 

approximately 12.1 Å at the narrowest point, which is formed by three side chains of Asn519 (Fig. 3b 

right). Therefore, solvent and inorganic ions can penetrate freely along the central pore.  

 

Interaction between the pro-region and three-domain core 

 The average isotropic temperature factor of the pro-region, domains I, II, and III, and the C-terminal 
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domain of proPO were calculated to 46.9, 31.6, 20.7, 28.4 and 50.3 Å
2
. The high B value in the 

C-terminal domain can be attributed to the long disordered loop between the end of the domain III and 

the C-terminal circular peptide. In fact, the average B factor of the circular region (Cys682-687) was 

calculated to 28.5 Å
2
. Similarly, the pro-region also has high temperature factor. The pro-region can be 

further divided into two regions (pro-region_1 and pro-region_2) being separated by the putative 

processing site Arg28. The pro-region_1 is ranging from the N-terminal to Arg28, while the 

pro-region_2 ranging from Leu29 to Glu52 (Fig. 2). The average B-values of the pro-region_1 and 

pro-region_2 were calculated to be 41.4 and 53.5 Å
2
, respectively. The pro-region_1 interacted with 

the domain I by forming a hydrogen bond at the side chain of Tyr19 and the side chain of Asp140. 

This hydrogen bond weakly fixes the pro-region_1 to the three-domain core region, while the amino 

acid residues around the N-terminal and putative processing site are more flexible. The putative 

processing site (Arg28) is positioned at the end of a short helix (Fig. 1c, 2). The accessible surface 

areas (ASA) of the Arg28 were calculated as 59.7 Å
2
 (A chain) and 55.6 Å

2
 (B chain), and the main 

chain and side chain of the Arg28 had high temperature factors of more than 50 Å
2
. These values are 

sufficient to suggest the possibility that Arg28 is the processing site.  

 The pro-region_2 has a higher temperature factor than the pro-region_1. In addition, the pro-region_2 

contains a flexible loop that is missing in the current coordinate file. From the beginning of the 

pro-region_2 (Leu29) to Val46, no hydrogen bonds or apolar contacts with the three-domain core were 

observed. Judging from these observations, the pro-region_2 will become a disordered N-terminus 

after the processing at Arg28. 

Active site structure 

  The coupled binuclear copper site consists of two coppers, CuA and CuB. This site is present in the 

center of the 4-helix bundle of domain II (Fig. 1c). In the catalytic site, the distance between the two 

coppers is 3.6 Å. The UV/vis absorption spectrum shows apparent maximal absorbance at 340 nm (Fig. 

S1), which is an important characteristic of oxy form Hc, PO and tyrosinase [3, 38-40]. This maximal 
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absorbance was not increased by the addition of equivalent molar of hydrogen peroxide (Fig. S1). 

From these results, the status of di-copper active site was defined as oxy form, which is harboring two 

oxygen atoms between two coppers (Fig. 4a). The CuA is coordinated by the NEs of three histidines 

(His199, His203, and His226), while the coordination residues to CuB are His357, His361, and 

His397 (Fig. 4b). All of these coordinated ligand histidines are derived from the core 4-helix bundle of 

domain II. This coordination environment is similar to that of insect PO and Hc from crustaceans. In 

the structure of tyrosinase from Streptomyces, one coordinated histidine residue is derived from a 

flexible loop, resulting in its side chain flexibility and the instability of CuA [25]. In contrast, the side 

chain flexibility was not observed in the crystal structure of proPO. The covalent cysteine-histidine 

bond which is usually observed in the active site of eukaryotic tyrosinase or catechol oxidase [2, 28, 

41, 42] was not present in the proPO structure. 

  The coordinated histidine residues are stabilized by side chains of three phenylalanine residues 

(Phe72, Phe222, and Phe393) (Fig. 4b). The Phe72 corresponds to the “place-holder” residue Phe49 of 

the L. polyphemus Hc structure. To compare the structure around the di-copper active site of proPO 

to that of crustacean Hc, the superimposed structure is shown in Fig. 4c. As shown in Fig. 4c, there is 

additional one phenylalanine residue, Phe371, designated as F3 in the figure, around the active site of 

crustacean (P. interruptus) Hc (see also Table 2). Phe371 of crustacean Hc interacts with 

CuA-liganded histidine residue (HA2), while the corresponding residue of proPO is substituted by 

valine (Fig. 4c, Table 2). In the structure of proPO, a cavity is observed in the vicinity of the active 

site (Fig. 4d). A cavity is also observed in crustacean Hc (Fig. 4e). However, the cavity of crustacean 

Hc doesn’t expand to the active site, because F3 (Phe371) side chain which interacts with CuA 

liganded histidine (HA2) blocks the active site (Fig. 4e). The positions of other three phenylalanines 

(Phe72, Phe222, and Phe393 of proPO) which are designated as F1, F2, and F4, respectively, are 

highly conserved among arthropod proPO and Hc (Table 2, Fig. 5).  
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Accessibility to the di-copper active site 

  Since the ASA values of the six histidine residues (His199, His203, His226, His 357, His361 and 

His397) of the active site were calculated to be 0.70, 10.5, 3.40, 0.20, 0.10, and 1.00 Å
2
, the di-copper 

active site and coordinated histidine residues are almost completely buried in the structure of proPO. 

However, a cleft leading from the outside to the active site is observed (Fig. 6a, b). The amino acid 

residues separating the active site cavity from the cleft are Tyr208 and Tyr209 (Fig. 6c). The side 

chains of Tyr208 and Tyr209, whose ASA are calculated to be 29.1 and 25.3 Å
2
, respectively, face both 

the cleft and the active site cavity (Fig. 6c). The side chain of Tyr209 has two conformations, while 

that of Tyr208 is fixed by a hydrogen-bond with the main chain carbonyl oxygen of Ala71 (Fig. 6b). 

As shown in Fig. 4b, Phe72 (F1), which corresponds to the place-holder, interacts with the imidazole 

ring of copper-coordinated His361 (HB2) via - stacking. Thereby, the forward part of the domain I, 

especially from the Phe69 to the place-holder F1 (Phe72), and the cleft-shielding tyrosines (Tyr208 

and Tyr209) are critical for the accessibility to the active site. 

 

Mono- and di-PO activities of proPO and Hc 

  Since the PO is synthesized as an inactive pro-enzyme much as in the case of other arthropod 

prophenoloxidases, the enzymatic activity needs to be enhanced by treatment with detergents or 

proteinases in vitro [32]. When the pro-form of PO was mixed with o-diphenol substrate (1 mM of 

DOPA) and a detergent (0.1% sodium dodecylsulfate, SDS) as an activator, the proPO showed 

significant di-PO activity, while a trace amount of dopachrome was produced without adding the SDS 

(Fig. 7a). Purified Hc showed no detectable di-PO activity (Fig. 7a). Similarly, when mono-phenol (1 

mM tyramine) was used as a substrate, only SDS-treated proPO produced dopachrome actively (Fig. 

7b). In contrast, SDS-treated Hc and non-treated proPO showed little or no mono-PO activity under 

this condition and time course (Fig. 7b). However, when the incubation time was extended to 24 hours, 

the non-treated proPO showed trace mono-PO activity, which generated a detectable amount of 
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dopachrome, whereas Hc gained no mono-PO activity in spite of the SDS-treatment (Fig. 7c). These 

results indicated that the activity center was not fully blocked and a small amount of monophenol 

substrate can access the di-copper center, even if proPO was not activated by the addition of SDS or 

propeptide cleavage. On the other hand, purified Hc from the hemolymph of kuruma prawn could not 

be activated to gain mono- or di-phenoloxidase activity under these experimental conditions, 

irrespective of whether SDS was added.  

  The activity staining for di-PO activity was performed using 7.5% SDS-containing polyacrylamide 

gel after non-reducing SDS-PAGE. The PO activity was detected in the band of the purified proPO, 

whereas it was not detected in that of the purified Hc (Fig. S2). The apparent molecular weight of the 

band of proPO detected by CBB and activity staining was much larger than the 250 kDa marker. 

Judging from these results, activated proPO maintained the native hexameric conformation after 

treatment with the sample buffer containing 2% SDS.  

 

Discussion 

  Arthropod PO possesses a distinctive overall structure compared with the tyrosinases from bacteria, 

fungi and mammals. In fact, the three-domain architecture of the arthropod PO is more remindful of 

the Hc architecture. Hence, the high resolution crystallographic analysis of arthropod PO will provide 

clues to the reasons for the functional difference between these type 3 copper proteins. The present 

structure of proPO provides some specific structural features, e.g. hexameric quaternary structure and 

the C-terminal circular peptide linked via an intra-molecular disulfide bond (Fig. 1e). Since the cleft 

leading to the di-copper active site positions outside of the hexamer (Fig. 6d), this quaternary structure 

would not affect the phenoloxidase activity. In fact, this enzyme expresses the activity in its native 

hexameric form (Fig. S2). The C-terminal circular region associates with the surface of neighboring 

3-fold symmetry mate in the hexameric structure (Fig. 1e). It is possible that this hexameric structure 

is stabilized by this association to some extent. 
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In general, three or four phenylalanine residues, here designated the residues at positions F1, F2, F3, 

and F4, stabilize the conformation of the copper site, and sometimes they block the copper site to 

prevent non-specific oxidation of phenolic compounds. In regard to this surrounding of the active site, 

the present crystal structure reveals a distinctive difference compared with that of the crustacean Hc. 

In the structure of Hc from the crustacean P. interruptus, the F3 position is occupied by phenylalanine 

(Phe371), whose side chain interacts with the imidazole ring of histidine in the HA2 position via stable 

- stacking and seems to shield the access to the CuA and occupies the active site cavity (Fig. 4c, 4e). 

The bulky phenylalanine residue at the F3 position is highly conserved among crustacean Hc, whereas 

this part is substituted to a relatively small residue in the sequence of proPO and Hc of chelicerates; 

i.e., the F3 position of proPO, M. sexta PPO and L. polyphemus Hc is substituted by valine (Val384), 

glutamate (Glu395) and threonine (Thr351), respectively (Fig. 5). In contrast to the case of crustacean 

Hc, the F3 valine residue of proPO does not shield the di-copper site, especially in the CuA direction, 

that generates the active site cavity in the vicinity of the active site (Fig. 4d). In the case of M. sexta 

PPO, the substituted glutamate side chain is reported to be flexible, suggesting that the side chain does 

not occupy the active site cavity. Similarly, the F3 position of the chelicerate Hc is substituted to 

threonine (Thr351 in L. polyphemus HcII) (Fig. 5, Table 2). It has been suggested that the chelicerate 

Hc can acquire the PO activity by the treatment with SDS [20, 21]. However, one of these studies also 

pointed out that the crustacean-type Hc has only trace PO activity, even when activated [20]. In 

accordance with this observation, we failed to activate the Hc of kuruma prawn by SDS treatment (Fig. 

7, S2). Thus, it is possible that the F3 site has a critical role in determining whether or not the Hc can 

be activated to acquire the PO function. Similar substitution was observed between bacterial tyrosinase 

from Bacillus megaterium (TyrBm, PDB ID: 3NM8) [27] and catechol oxidase from sweet potato 

(PDB ID: 1BT1) [2]. Sendovski M. et al. discussed that the CuA shielding phenylalanine of catechol 

oxidase is substituted to valine in tyrosinase, and this substitution enable the hydroxylation of 

monophenol in tyrosinase [27]. More recently, to validate this hypothesis, this valine residue in TyrBm 
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was substituted to phenylalanine (V218F) and the enzymatic activity of the resultant mutant was 

assayed [43]. However, the mono-PO activity was not abolished, but rather enhanced by the 

substitution. This unexpected result is attributed to the flexibility of introduced phenylalanine residue, 

whose side chain is flipped out of the active site [43]. In contrast, the corresponding phenylalanine 

side chain of catechol oxidase (Phe361 of 1BT1) is fixed well and covers the active site. This 

observation further supports the significance of the aromatic side chain, which covers the CuA site by 

associating with the side chain of CuA liganded histidine residue. Until now, the Phe49 of Hc from L. 

polyphemus has been considered a place-holder residue that act as a barrier to prevent the phenolic 

compounds from accessing the Hc active site [2, 30]. However, the place-holder phenylalanine is 

present in PPO of M. sexta (Phe88) and proPO (Phe72), both of which can be converted easily to 

active PO by treatment with SDS. Therefore, the phenylalanine of the F3 position can be considered as 

another factor for determining the activity.  

Under the experimental conditions without the activator SDS, the di-copper active site is not 

directly exposed to the solvent and has a rigid conformation. However, leaky PO activity was observed 

without any activator (Fig. 7). One of the candidates for the entrance to the active site is a paired 

tyrosine residues (Tyr208 and Tyr209), which separates the active site cavity from the cleft (Fig. 6c). 

Accordingly, it is possible that these residues have a role for controlling the activity of this enzyme. 

Judging from their position, Tyr208 can be considered as a main shield of the active site cavity. The 

side chain of it is well fixed by the hydrogen bond with the main chain oxygen of Ala71 in the proPO. 

In contrast, the side chain of Tyr209 doesn’t form a typical interaction with others and has two side 

chain conformations. This flexibility may cause a partial disorder of the shield and the leaky 

enzymatic activity of proPO. 

As described above, the hydrophobic residues (Phe69, Phe70, Ala71, Phe72 (the place holder) have 

at least two structural roles, i.e. as a place holder for the CuB site (Phe72) (Fig. 4b) and a buckle for the 

shielding tyrosines (Ala71) (Fig. 6b). Thus, in order to fully open the activity center, the hydrophobic 
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amino acid residues (Phe69-Phe72) should be removed. This process may be achieved by SDS 

treatment in vitro, while it should be achieved by processing and other physiological activations in 

vivo. Over the last two decades, many components responsible for the arthropod proPO activation 

have been identified, mainly in insects [5]. An indispensable factor for the activation is one of the 

proPO activating factors (PPAFs): PPAF-I, II, and III [7, 8, 11, 44]. PPAF-I and –III belong to the 

catalytic group of clip domain serine proteases (SPs), while PPAF-II belongs to the non-catalytic 

group of the clip domain SP (serine protease homolog (SPH)). Although the processing of proPO by 

the protease is required for the activation, proPO does not acquire the PO activity by this pro-peptide 

cleavage alone [11, 12, 44]. The present structure supports this fact, because Phe69, Phe70, Ala71, and 

Phe72 (place-holder) very stably interact with the region in the vicinity of the di-copper active site 

(Fig. 6b). It is possible that SPHs such as PPAF-II, another essential factor for the activation of proPO, 

play a role in removing the region containing the place-holder from the di-copper active site, which is 

also resulting in the removal of the shield tyrosines. This idea is supported by the fact that PPAF-II has 

a hydrophobic cleft in its clip domain for association with the hydrophobic region of proPO [45].  

The present study demonstrated that the proPOs from crustaceans and insects have similar 

three-dimensional structures. Together with the fact that some orthologs of insect proPO-activating 

factors were identified in crustaceans [46, 47], this suggests that similar activation mechanisms may 

exist in crustaceans. However, in crustaceans, research on prophenoloxidase and its activation factors 

has been focused on well-known hemocyto-type proPOs. It would be of great interest to investigate 

whether the specific activation factors are present for proPO, and whether this hemolymph-type 

proPO also plays a significant role in the innate immunity of crustacean.   

 

Materials and Methods 

Protein preparation, crystallization, and data collection 

  The proPO and Hc were purified from the hemolymph of live kuruma prawns by hydrophobic, 
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anion exchange, and size exclusion chromatography. The detailed purification method for purifying 

this protein was described elsewhere [32]. The protein concentration was estimated by the absorbance 

at 280 nm from the amino acid composition [48].  

  Initial crystals of proPO were obtained by sparse matrix screening within two weeks at 20°C using 

the hanging drop vapor diffusion method with a Mosquito® crystallization robot. The optimized 

crystallization drops were prepared by mixing equal volumes of mother liquid composed of 1.1 M 

sodium malonate, 0.5% Jeffamine ED-2001 (Hampton Research, Aliso Viejo, CA, USA), 0.1 M 

HEPES-Na (pH 7.0) and protein solution containing 10 mg/ml of purified proPO. Rhombohedral 

crystals belonging to the space group of R3 appeared within two weeks at 20°C. Flash cooling was 

carried out in a nitrogen gas stream at 100 K after brief soaking of the crystals in the mother liquid 

containing 20% ethyleneglycol.  X-ray diffraction data from the crystals were collected up to 1.8 Å 

resolution at 100 K at the SPring-8 beamlines BL38B1, BL41Xu and BL26B1. The diffraction data 

were processed using hexagonal crystal settings (space group H3, a=b=156.7 Å, c=283.5 Å, a=b=90°, 

c=120°) using an HKL2000 software package (HKL Research, Charlottesville, VA, USA) [49]. 

Structural determination and refinement 

  SAD phases to 2.5 Å were calculated with the applications Autosol [50] and Phaser [51, 52] using 

data collected at an x-ray wavelength (1.3770 Å) corresponding to the peak of the x-ray fluorescence 

spectrum of copper. The improvement of the initial phases and peptide fragment modeling were 

performed using RESOLVE [53] and Autobuild [54]. The initial model was visualized and rebuilt 

using COOT 0.7 [55] and further modified on sigma-weighted (2 |Fo|-|Fc|) and (|Fo|-|Fc|) electron 

density maps, then refined with REFMAC5 [56] from the CCP4i suit 1.4.4 [57]. After repeated model 

rebuilding and refinement, the final model was refined using PHENIX [58] at 1.8 Å resolution. During 

the refinement, the di-copper sites were refined using a model containing two coppers and a water 

molecule without any restrains. Since the active site was defined as an oxy form by the resulting 

electron density maps and spectrophotometric analysis, refinement was carried out using the model 
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containing two oxygen atoms between two coppers under the restraint with modified cif file of Cu2O2 

(CUO.cif in CCP4i suit). Finally, Rwork dropped to 0.175 for all 239,448 reflections, and Rfree dropped 

to 0.196 for all 11,997 reflections. Figures 1, 3, 4, and 6 were produced by PyMOL (DeLano Scientific, 

San Carlos, CA, USA). The images of the electrostatic potential of the protein surface were generated 

using the APBS application [59, 60]. The accessible surface area of amino acid residues in proPO 

sequence were calculated with the “Accessible Surface Area” application in the CCP4i suite. 

UV/vis absorption spectrophotometry 

  The UV/vis absorption spectra were recorded using Hitachi U-2001 spectrophotometer (Hitachi, 

Tokyo, Japan) with a quartz cuvette of 1 cm path length. The concentration of purified proPO was 

12.5 M dissolved in 20 mM TrisHCl buffer (pH 7.8) containing 0.15 M NaCl. The spectrum was 

obtained by scaning the absorbance from 500 to 250 nm. Then, 12.5 M of hydrogen peroxide, which 

was equivalent to the concentration of the enzyme, was added for three times. After every step of 

addition of hydrogen peroxide, the spectrum was recorded. 

Analysis of PO enzymatic activity 

  To determine the enzymatic properties of the proPO and Hc from kuruma prawns, the 

concentrations of the purified proteins were adjusted to 0.3 mg ml
-1

. The volume of each assay system 

was 200 l, which contained the substrate (1 mM of L-DOPA or 1 mM of tyramine) in 20 mM 

Tris-HCl pH 7.4, 0.15 M NaCl, and 0.05 % (w/v) of SDS. The reaction was initiated by adding the 

enzyme to the final concentration of 7.5 g ml
-1

 to a preincubated substrate solution at 30°C. PO 

activity was determined for 60 min at 30°C by monitoring the formation of dopachrome at 490 nm 

using a microplate reader (Tecan, Männedorf, Switzerland). Data were collected from at least four 

independent experiments every 30 seconds.  

 Non-reduced SDS-PAGE was performed using 7.5% polyacrylamide gel containing 0.1% SDS. 5 g 

of each purified sample (proPO and Hc) was prepared by mixing with sample buffer containing final 

concentrations of 62.5 mM TrisHCl (pH 6.8), 2% SDS and 10% glycerol. After electrophoresis, one 
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gel was stained by CBB R-250, and another was dipped in a buffer containing 0.1% SDS and 1 mM of 

L-DOPA as a substrate. 

Accession numbers 

 Coordinates and structural factors of proPO have been deposited in Protein Data Bank with 

accession number 3WKY. 
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Supporting information 

Fig. S1 The Uv/vis absorption spectra of proPO and H2O2-treated proPO. 

Fig. S2 Non-reduced SDS-PAGE analysis of purified proPO and Hc. 
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Table 1 Data collection and refinement statistics for the crystals of proPO. 

 

          SAD     

Data collection statistics 

 Beamline   BL38B1   BL41Xu 

 Space group    H3   H3 

 Lattice parameter (Å)  a=b=156.0, c=283.7  a=b=156.7, c=283.5 

 Wavelength (Å)  1.3770   1.0000 

 Resolution (highest shell) (Å)
a
 50-2.51 (2.60-2.51)   50-1.80 (1.86-1.80) 

 No. of unique reflections
a
 176,001 (17,576)  239,565 (23,653) 

 Completeness (%)
a
  100 (100)   99.7 (98.4) 

 Data redundancy
 a

   5.8 (5.5)   3.3 (3.0) 

 Rmerge
b a

   0.064 (0.170)  0.052 (0.363) 

 I/(I)
 a

   24.2 (19.4)   11.9 (2.46) 

 Number of heavy atoms  4 

F.O.M. (Initial/Density modified) 0.39 / 0.72 

 

Refinement statistics 

Resolution (Å)
 a

     34.8-1.80 (1.82-1.80) 

Used reflections
 a

     239,452 (7,204) 

Residues in an asymmetric unit    1,310 

Number of Copper atoms  / water molecules   4/ 1,135 

Number of NAG residues / Etyleneglycol   14/ 9 

R/Rfree
c a

       0.175 (0.260) / 0.196 (0.275) 

Rms deviations from ideality 

 Bond length (Å)     0.007 

 Bond angle (deg.)     1.108 

Wilson B (Å2)     20.01 

Isotropic B factor (Å2) Protein/ Cu2O2/ solvents   28.3/ 27.5/ 34.5 

 

a 
Values in parentheses are for the highest resolution shell. 

b
 Rmerge=∑hkl∑i|Ii(hkl)−⟨I(hkl)⟩|/∑hkl∑i(hkl), where Ii(hkl) is the integrated intensity of a reflection, and ⟨I(hkl)⟩ is 

the mean intensity of multiple corresponding symmetry-related reflections. 

c R/Rfree =∑hkl||Fobs|−|Fcalc||/∑hkl|Fobs|, where R and Rfree are calculated using the test reflections, respectively. The 

test reflections (5 %) were held aside and not used during the entire refinement process. 
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Figure legends 

Figure 1 

Three-dimensional structure of M. japonicus proPO. (PDB ID: 3WKY) 

(a) Two subunits in an asymmetric unit of the H3 crystal are viewed down a 2-fold 

non-crystallographic symmetry axis. (b) Interaction of two symmetry-related subunits via - stacking 

between two side chains of Tyr293 in proPO. (c) Domains of a proPO subunit are viewed from two 

angles. The pro-domain, domains I, II, and III, and C-terminal domain are colored red, green, yellow, 

magenta, and blue, respectively. The putative processing site (Arg28), glycosylated asparagine 

residues and added N-acetyl-D-glucosamine residues are shown as sticks. To show clearly the position 

of the di-copper active site in a subunit of proPO, amino acid residues around the site are shown as 

sticks. Two copper atoms are shown as red spheres. (d) The structure of a glycosylated asparagine 

residue (Asn456) and adducted NAG residues. The electron density of the 2 |Fo|-|Fc| map for these 

residues is contoured at 1.5 and shown in light blue mesh. (e) Structure of the circular region of the 

C-terminal domain and its interaction with the surface of the neighboring subunit (stereoview). 

Amino acid residues forming the circular peptide are shown as sticks and the main chain of the 

original subunit of this circular region is shown as an orange line. The electron density for the circular 

region is contoured at 1.2 and shown in pink mesh. The surface of the neighboring subunit 

interacting with the circular peptide is depicted in grey. 

 

Figure 2 

Amino acid sequence alignment between the proPO and M. sexta PPO.  

Defined Domains (Signal peptide, Pro-domain, Domain I, II, III, and C-terminal domain) are indicated 

by bars colored in grey, red, green, yellow, magenta, and blue. The signal peptide and the C-terminal 

domain are specifically present in proPO sequence. The -helices and -strands assigned by the 

DSSP (http://swift.cmbi.ru.nl/gv/dssp/) application are shown by blue columns and red arrowheads, 

http://swift.cmbi.ru.nl/gv/dssp/
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respectively. The deduced processing sites of proPO and M. sexta PPO are shown as black 

highlighted. The copper coordinated histidine residues are highlighted in red, while the residues 

surrounding the active site are highlighted in blue (see also Table 2). Identical and similar amino acid 

residues are indicated by * and :, respectively. GenBank accession numbers of kuruma prawn proPO 

and M. sexta are AB617654 and 3HHS_A. 

 

Figure 3 

Hexameric structure of proPO and Hc. 

(a)(b) Hexameric structure of proPO viewed down a 2-fold (a) and 3-fold symmetry axis (b). The 

residues Asn519, which form the internal surface of the 3-fold symmetry channel, are depicted as 

sticks. The enlarged image around the 3-fold symmetry axis (the boxed region in the left panel) is 

shown in right panel. (c)(d) Hexameric structure of the crustacean Hc from P. interruptus (PDB ID: 

1HCY) viewed down a 2-fold (c) and 3-fold symmetry axis (d). 

 

Figure 4 

Three-dimensional structure of the type 3 copper site of proPO. 

(a) The six copper-liganded histidines are shown as sticks. Two copper atoms are shown as red spheres, 

and the oxygen atoms between two coppers are shown as blue spheres. The electron density of the 2 

|Fo|-|Fc| map for the di-copper site is contoured at 2.0 and shown in light blue mesh. (b) Structure 

around the di-copper site of proPO together with the associated phenylalanine residues. (c) 

Superimposed structures of the di-copper active site of the proPO (the present structure, PDB ID: 

3WKY) (red) and crustacean Hc (1HC1) (cyan) (stereoview). The CuA-liganded histidines are 

designated HA1, HA2, and HA3. Similarly, the CuB-liganded histidines are designated HB1, HB2, and 

HB3. Those residues in the vicinity of the liganded histidines are designated F1, F2, F3, and F4. The 

corresponding amino acid residues of the two members, proPO, and P. interruptus Hc, are shown in 
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Table 2. (d)(e) Detailed structure around the di-copper active sites of proPO (d) and crustacean Hc (e). 

The discussed amino acid residues are shown as sticks, while the copper atoms are as red spheres. The 

culled cavities and pockets are shown as brown blobs. The F3 residues, which are Val384 in proPO 

and Phe371 in crustacean Hc, are indicated by circles.  

 

Figure 5 

Partial amino acid sequence alignment of proPOs and Hcs from arthropods.  

The amino acid sequences around the F3 position were aligned between the proPO and Hc of the 

following species. proPO: M. japonicus proPO, presented here; MsPO: chain A of M. sexta PPO 

(accession code: 3HHS_A); MjPO: M. japonicus proPO (BAB83773); PmPO2: Penaeus monodon 

proPO2 (ACJ31817); LpHcIV, IIIb, IIIa, II, and VI: L. polyphemus Hc subunits (CAJ91099, 

CCA94914, CAJ91098, CAJ91097 and CAJ91100, respectively); PmHc: P. monodon Hc 

(AEB77775); MjHcL and MjHcY: M. joponicus Hc L and Y subunits (ABR14693 and ABR14694); 

LvHc: Litopenaeus vannamei Hc (CAB85965); PlHc: Pacifastacus leniusculus Hc (AAM81357). 

 

Figure 6 

Active site cleft and di-copper active site of proPO. 

(a) The surface representation of a proPO monomer. The molecular surface of a proPO monomer is 

represented as gray. The copper coordinated histidine residues are shown as green sticks, while Tyr208 

and Ty209 are as red sticks. The exposed surface area of the tyrosine residues are shown as red. (b) An 

expanded image of the active site cleft (stereoview). The red portion of the surface represents the 

exposed surfaces of Tyr208 and Tyr209. The copper coordinated histidine residues, the place-holder 

phenylalanine (Phe72) and its neighboring residues (Phe69, Phe70 and Ala71) of the domain I are also 

shown as sticks. (c) A summarized figure of the positional relations among the cleft, cavity, and the 

di-copper active site of proPO (stereoview). The surfaces of the cleft and cavity are shown as brown.  
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To simplify the figure, the Cu-liganded histidine residues of proPO are represented as HA1, HA2, HA3, 

HB1, HB2 and HB3. The definitions of these histidine residues are shown in Table 2. (d) The surface of 

proPO hexamer is represented as brown. The red portion is the surface of the active site cleft shown 

in Figure 6a and 6b. 

 

Figure 7 

Mono- and o-diphenoloxidase activity of proPO and Hc of M. japonicas  

(a)(b) Progression plot of dopachrome formation monitored by the absorbance at 490 nm, when 

o-diphenol DOPA (a) and monophenol tyramine (b) were used as substrates. (c) An image of the 

microplate used in the mono-PO activity assay. After monitoring the absorbance at 490 nm, this plate 

was left in a dark room for 24 hrs at 25 °C. Under this condition, the proPO samples, which were not 

activated with SDS, also generated detectable dopachrome from monophenol substrate tyramine. Data 

are represented as mean +/- SD. 
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Figure S1 
The Uv/vis absorption spectra of proPOβ and H2O2-treated proPOβ. The enzyme 
concentration was 12.5 mM, and 1, 2, 3 equivalent molar of H2O2 was added to 
the enzyme mixture. 
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Fig. S2 

Non-reduced SDS-PAGE analysis of purified proPOβ and Hc. 
Purified proPOβ and Hc were separated by non-reduced SDS-
PAGE, followed by the detection with CBB R250 staining (a) and 
activity staining using L-DOPA as a substrate (b). 


