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In SU(3) lattice QCD, we study diagonal and off-diagonal gluon propagators in the maximally

Abelian gauge with Uð1Þ3 � Uð1Þ8 Landau gauge fixing. These propagators are studied both in the

coordinate space and in the momentum space. The Monte Carlo simulation is performed on 164 at

� ¼ 6:0 and 324 at � ¼ 5:8 and 6.0 at the quenched level. In the four-dimensional Euclidean space-

time, the effective mass of diagonal gluons is estimated as Mdiag ’ 0:3 GeV and that of off-diagonal

gluons as Moff ’ 1 GeV in the region of r ¼ 0:4–1:0 fm. In the momentum space, the effective mass of

diagonal gluons is estimated as Mdiag ’ 0:3 GeV and that of off-diagonal gluons as Moff ’ 1 GeV in the

region of p < 1:1 GeV. The off-diagonal gluon propagator is relatively suppressed in the infrared region

and seems to be finite at zero momentum, while the diagonal gluon propagator is enhanced.

Furthermore, we also study the functional form of these propagators in momentum space. These

propagators are well fitted by Z=ðp2 þm2Þ� with fit parameters, Z, m, and � in the region of

p < 3:0 GeV. From the fit results and lattice calculations, all of the spectral functions of diagonal

and off-diagonal gluons would have negative regions.

DOI: 10.1103/PhysRevD.87.074506 PACS numbers: 12.38.Gc, 12.38.Aw, 14.70.Dj

I. INTRODUCTION

Quantum chromodynamics (QCD) is the fundamental
gauge theory of the strong interaction based on quarks and
gluons. There are a variety of nonperturbative phenomena
in low energy QCD such as color confinement and chiral
symmetry breaking. These nonperturbative phenomena
have been much studied [1–3]; however, there are still
open problems in QCD. In particular, it is thought that
the confinement mechanism, how quarks and gluons are
confined, is a considerably difficult problem.

Nowadays, there are several confinement scenarios
in various gauges. In the Landau gauge, confinement is
related to the (deep) infrared behavior of the gluon
propagator and the ghost propagator from the scenarios
suggested by Kugo and Ojima, Gribov, and Zwanziger
[4–6]. These propagators have been much studied from
the analytical frameworks such as Schwinger-Dyson equa-
tions [7] and functional renormalization group equations
[8] and lattice QCD calculations [9–11].

On the other hand, the maximally Abelian (MA) gauge
has mainly been investigated from the viewpoint of the
dual-superconductor picture [12–26], which is one of the
confinement scenarios suggested by Nambu, ’t Hooft, and
Mandelstam [27]. This picture is based on the electro-
magnetic duality and the analogy with the one-dimensional
squeezing of the magnetic flux in the type-II superconduc-
tor. In this picture, there occurs color magnetic monopole
condensation, and then the color-electric flux between the
quark and the antiquark is squeezed as a one-dimensional
tube due to the dual Higgs mechanism. From the viewpoint

of the dual-superconductor picture in QCD, however,
there are two assumptions of Abelian dominance [28,29]
and monopole condensation. Here, Abelian dominance
means that only the diagonal gluon component plays the
dominant role for the nonperturbative QCD phenomena
like confinement.
The various lattice QCD Monte Carlo simulations show

that theMAgauge fixing seems to support these assumptions
[15–25]. In fact, the diagonal gluons seem to be significant to
the infrared QCD physics, which is called ‘‘infrared Abelian
dominance.’’ Thus, the difference between the diagonal
gluon propagator and the off-diagonal gluon propagator in
the infrared region seems to be significant.
From this viewpoint, the gluon propagators in the MA

gauge have been investigated in SU(2) lattice simulations
[24,25,30] and in the SU(3) lattice simulation [23]. From
these lattice simulations, the off-diagonal gluons do not
propagate in the infrared region due to the large effective
massMoff ’ 1 GeV, while the diagonal gluon widely prop-
agates. In addition, the study of Schwinger-Dyson equa-
tions also supports the infrared Abelian dominance from
the behavior of the scaling solutions; i.e., as momentum
goes to zero, the diagonal gluon propagator is divergent
and the off-diagonal gluon propagator is vanishing [14].
The aim of this paper is to investigate the gluon propa-

gators in the MA gauge of SU(3) lattice gauge theory. In
Sec. II, we briefly summarize the definition of the MA
gauge with Uð1Þ3 � Uð1Þ8 and some properties of lattice
gluon propagators in this gauge. In Sec. III, we show the
method of estimating the effective mass in coordinate
space and in momentum space. We study the gluon propa-
gators in coordinate space in Sec. IV, and their functional
form in momentum space in Sec. V. Section VI is devoted
to the summary.
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II. SU(3) FORMALISM AND GLUON
PROPAGATORS IN MA GAUGE WITH
THE Uð1Þ3�Uð1Þ8 LANDAU GAUGE

Using SU(3) lattice QCD, we calculate the gluon propa-
gators in the MA gauge with the Uð1Þ3 � Uð1Þ8 Landau
gauge fixing. In the MA gauge, SU(3) gauge symmetry is
partially fixed, and only Uð1Þ3 � Uð1Þ8 Abelian gauge
symmetry remains. Accordingly, while diagonal gluons
Aa
�ðxÞ (a ¼ 3, 8) behave as Abelian gauge fields, off-

diagonal gluons Aa
�ðxÞ (a � 3, 8) behave as Uð1Þ3 �

Uð1Þ8 charged matter fields. In the MA gauge, to investigate
the gluon propagators, we use the gluon fields extracted
directly from the link variables [23,31]. Here, we analyti-
cally extract gluon fields A�ðxÞ from the link variables

U�ðxÞ ¼ eiagA�ðxÞ with the lattice spacing a and the gauge

coupling g as follows:

A�ðxÞ ¼ 1

iag
�y

�ðxÞLnUd
�ðxÞ��ðxÞ; (1)

where Ln is the natural logarithm defined on complex
numbers, Ud

�ðxÞ is the diagonalized unitary matrix of

U�ðxÞ, and ��ðxÞ is the diagonalization unitary matrix:

Ud
�ðxÞ ¼ ��ðxÞU�ðxÞ�y

�ðxÞ: (2)

We can obtain Ud
�ðxÞ and ��ðxÞ analytically by solving a

cubic equation with real coefficients using Cardano’s
method [23].

The MA gauge fixing is performed by the maximi-
zation of

RMA � X
x

X4
�¼1

tr½U�ðxÞ ~HUy
�ðxÞ ~H�; (3)

where ~H ¼ ðT3; T8Þ is the Cartan generator. In the contin-
uum limit, agA�ðxÞ ! 0, this gauge fixing is given by the

minimization of

X
a�3:8

Z
d4xAa

�ðxÞAa
�ðxÞ: (4)

Thus, this gauge fixing corresponds to minimizing the off-
diagonal gluons under the gauge transformation.

In this gauge fixing, there remains Uð1Þ3 � Uð1Þ8 gauge
symmetry. In order to study the gluon propagators, we fix
the residual gauge. After the Cartan decomposition for
the SU(3) link variables as U�ðxÞ � M�ðxÞu�ðxÞ with

u�ðxÞ � eif�3ðxÞT3þ�8ðxÞT8g 2 Uð1Þ3 � Uð1Þ8 and M�ðxÞ ¼
ei
P

a�3;8
�aðxÞTa 2 SUð3Þ=Uð1Þ3 � Uð1Þ8, the residual gauge

fixing is performed by the maximization of

RUð1ÞL � X
x

X4
�¼1

Re tr½u�ðxÞ�: (5)

In our calculation, this procedure corresponds to a
‘‘minimal’’ MA gauge, and a random Gribov copy is taken

in the Gribov region [26]. After gauge fixing completely,
we study the diagonal (Abelian) gluon propagator as

G
diag
�� ðx� yÞ � 1

2

X
a¼3;8

hAa
�ðxÞAa

�ðyÞi; (6)

and the off-diagonal gluon propagator as

Goff
��ðx� yÞ � 1

6

X
a�3;8

hAa
�ðxÞAa

�ðyÞi: (7)

Note thatGdiag
�� ðx� yÞ andGoff

��ðx� yÞ are expressed as the
function of the four-dimensional Euclidean distance r �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� � y�Þ2

q
. When we consider the renormalization,

these propagators are multiplied by an x-independent con-
stant according to the renormalized gluon fields obtained
by multiplying a constant renormalization factor.
Furthermore, on the periodic lattice of L1 � L2 � L3 �

L4, we consider the momentum-space gluon propagator,
which is defined as

Gdiag
�� ðpÞ � 1

2

X
a¼3;8

h ~Aa
�ð~pÞ ~Aa

�ð�~pÞi; (8)

Goff
��ðpÞ � 1

6

X
a�3;8

h ~Aa
�ð~pÞ ~Aa

�ð�~pÞi; (9)

where ~p and p are defined as

~p� � 2�n�

aL�

; p� � 2

a
sin

�
~p�a

2

�
; (10)

with n� ¼ 0; 1; 2; . . . ; L� � 1, and ~Aa
�ð~pÞ is defined as

~A a
�ð~pÞ ¼

X
x

e�i~p�x��i
2~p�aAa

�ðxÞ: (11)

Note that when the local Landau gauge fixing is satisfied as
@�A

a
�ðxÞ ¼ 0, this condition is expressed by

p�
~Aa
�ð~pÞ ¼ 0 ðLandauÞ (12)

in momentum space. In the continuum limit, agA�ðxÞ ! 0,

the global gauge fixing condition to maximize RUð1ÞL
in Eq. (5) reduces to the local Uð1Þ3 � Uð1Þ8 Landau
condition @�A

a
�ðxÞ ¼ 0 (a ¼ 3, 8). Therefore, Eq. (12) is

satisfied for the diagonal components in momentum space.
Then, the diagonal gluon propagator has only the trans-
verse component Tdiagðp2Þ:

Gdiag
�� ðpÞ ¼

�
��� �

p�p�

p2

�
Tdiagðp2Þ: (13)

On the other hand, the off-diagonal gluon propagator
consists of two components corresponding to longitudinal
and transverse components. In the continuum limit, the
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local gauge fixing condition for the off-diagonal gluons is
given by [21]

½ ~H; ½D̂�; ½D̂�; ~H��� ¼ 0; (14)

with the covariant derivative D̂�, and this condition is

different from the Landau gauge fixing (12). Therefore,
the off-diagonal gluon propagator has the longitudinal
component even in the continuum limit. Then, the off-
diagonal gluon propagator is expressed by

Goff
��ðpÞ¼

�
����

p�p�

p2

�
Toffðp2Þþp�p�

p2
Loffðp2Þ; (15)

with the longitudinal component Loffðp2Þ and the trans-
verse component Toffðp2Þ. These two functions are derived
from the off-diagonal gluon propagator as follows:

Loffðp2Þ ¼ p�p�

p2
Goff

��ðpÞ; (16)

Toffðp2Þ ¼ 1

3

�
Goff

��ðpÞ �
p�p�

p2
Goff

��ðpÞ
�
: (17)

In this way, we also study the transverse function of the
diagonal propagator, and the transverse and longitudinal
functions of the off-diagonal propagator in momentum
space.

The Monte Carlo simulation is performed with the stan-
dard plaquette action on the 164 lattice with � ¼ 6:0 and
on the 324 lattice with � ¼ 5:8 and 6.0 at the quenched
level. The lattice spacings a are determined so as to re-
produce the string tension � ’ 0:89 GeV=fm. At � ¼ 5:8
and 6.0, the lattice spacings a are estimated as a ’ 0:186
and 0.152 fm, respectively [32]. All measurements are
done every 500 sweeps after a thermalization of 10000
sweeps using the pseudo heat-bath algorithm. We mainly
use 50 configurations for the 164 lattice and 20 configura-
tions for the 324 lattice at each �. The error is estimated
with the jackknife analysis.

III. PROPAGATOR IN THE PROCA
FORMALISM

Next, we investigate the effective gluon mass. We start
from the Lagrangian of the free massive vector field A�

with the mass M � 0 in the Proca formalism,

L ¼ 1

4
ð@�A� � @�A�Þ2 þ 1

2
M2A�A�; (18)

in the Euclidean metric. The scalar combination of the
propagator G��ðr;MÞ can be expressed with the modified

Bessel function K1ðzÞ as

G��ðr;MÞ ¼ hA�ðxÞA�ðyÞi

¼
Z d4k

ð2�Þ4 e
ik�ðx�yÞ 1

k2 þM2

�
4þ k2

M2

�

¼ 3
Z d4k

ð2�Þ4 e
ik�ðx�yÞ 1

k2 þM2
þ 1

M2
�4ðx� yÞ

¼ 3

4�2

M

r
K1ðMrÞ þ 1

M2
�4ðx� yÞ: (19)

In the infrared region with large Mr, Eq. (19) reduces to

G��ðr;MÞ ’ 3
ffiffiffiffiffi
M

p

2ð2�Þ32
e�Mr

r
3
2

; (20)

using the asymptotic expansion,

K1ðzÞ ’
ffiffiffiffiffi
�

2z

r
e�z

X1
n¼0

�ð32 þ nÞ
n!�ð32 � nÞ

1

ð2zÞn ; (21)

for large Re z. Here � is the gamma function. Then, from

the slope of the lattice QCD data of ln ðr3=2G��ðrÞÞ, the
effective gluon mass is estimated.
On the other hand, the propagator in momentum space

~G��ðp;MÞ can be expressed by

~G��ðp;MÞ ¼
�
��� �

p�p�

p2

�
1

p2 þM2
þ p�p�

M2
: (22)

Therefore, the longitudinal component Lðp2Þ and the trans-
verse component Tðp2Þ in the Proca-formalism propagator
are regarded as

Lðp2Þ ¼ 1

M2
; Tðp2Þ ¼ 1

p2 þM2
: (23)

Thus, by comparing the lattice QCD data of Lðp2Þ and
Tðp2Þ with Eq. (23), the effective gluon mass can be
estimated.

IV. ANALYSIS OF GLUON PROPAGATORS IN
MA GAUGE IN COORDINATE SPACE

We show in Fig. 1 the lattice QCD result for the diagonal
gluon propagator GAbel

�� ðrÞ and the off-diagonal gluon

propagator Goff
��ðrÞ in the MA gauge with the Uð1Þ3 �

Uð1Þ8 Landau gauge fixing on the 324 lattice with � ¼
5:8 and 6.0. At the long distance, the off-diagonal gluon
propagator is largely reduced, while the diagonal gluon
propagator takes a large value. The infrared Abelian domi-
nance is thus found in the MA gauge.
To evaluate the infrared Abelian dominance quantita-

tively, we estimate the diagonal and off-diagonal gluon
masses in coordinate space from the slope on the logarith-

mic plots of r3=2Gdiag
�� ðrÞ and r3=2Goff

��ðrÞ, respectively. In
Fig. 2, we show the logarithmic plots of r3=2Goff

��ðrÞ and
r3=2Gdiag

�� ðrÞ as the function of the distance r in the MA
gauge with the Uð1Þ3 � Uð1Þ8 Landau gauge fixing. Note
that the gluon-field renormalization does not affect the

GLUON PROPAGATORS IN MAXIMALLYABELIAN GAUGE . . . PHYSICAL REVIEW D 87, 074506 (2013)

074506-3



gluon mass estimate, since it gives only an overall constant
factor for the propagator. We summarize in Table I the
effective off-diagonal gluon mass Meff and the diagonal
gluon mass Mdiag obtained from the slope analysis in the

range of r ¼ 0:4–0:8 fm at � ¼ 5:8 and 6.0 on 324. The
off-diagonal gluons seem to have a large effective mass of
Moff ’ 1:1 GeV, while the diagonal gluon mass seems to
be Mdiag ’ 0:3 GeV. This means that only the diagonal

gluons A3
�, A

8
� in the MA gauge propagate over the long

distance and the infrared Abelian dominance is found in

the MA gauge. This result approximately coincides with
our previous work [23].
Here, these effective masses are to be considered to give

the exponential damping of the correlation, and they are
not simple pole masses. Actually, as will be shown in
Sec. VC, the functional form of the gluon propagator
does not indicate a simple massive propagator with a
definite pole mass.
Note that, because of Moff � Mdiag, the diagonal gluon

propagation is dominant at the long distance as

Goff
��ðrÞ

G
diag
�� ðrÞ �

e�Moffr

e�Mdiagr
� e�ðMoff�MdiagÞr ! 0; (24)

and, accordingly, the diagonal gluon contribution becomes
decisively dominant in the infrared region. In this way, the
quantitative difference between the diagonal and the off-
diagonal effective mass leads to the qualitative difference
for the long-distance physics. This situation is similar to
the pion contribution to the nuclear force. At the long

 0.001

 0.01

 0.1

 1

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

r3/
2 G

µµ
(r

) 
[G

eV
1/

2 ]

r [fm]

Gµµ
diag,β=6.0,324

Gµµ
off ,β=6.0,324

Gµµ
diag,β=5.8,324

Gµµ
off ,β=5.8,324

FIG. 2 (color online). The logarithmic plots of r3=2Goff
��ðrÞ and

r3=2G
diag
�� ðrÞ as the function of the distance r in the MA gauge

with the Uð1Þ3 � Uð1Þ8 Landau gauge fixing, using the SU(3)
lattice QCD with 324 at � ¼ 5:8 and 6.0.
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G
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 [
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2 ]
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diag,β=6.0,324

Gµµ
off ,β=6.0,324

Gµµ
diag,β=5.8,324

Gµµ
off ,β=5.8,324

FIG. 1 (color online). The SU(3) lattice QCD results of gluon

propagators G
diag
�� ðrÞ and Goff

��ðrÞ (top), and their logarithmic

plots (bottom) as the function of r �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� � y�Þ2

q
in the MA

gauge with the Uð1Þ3 � Uð1Þ8 Landau gauge fixing in the physi-
cal unit. The Monte Carlo simulation is performed on the 324

lattice with � ¼ 5:8 and 6.0.

TABLE I. Summary table of conditions and results in the
SU(3) lattice QCD. The off-diagonal gluon mass Moff and the
diagonal gluon mass Mdiag are estimated from the slope analysis

of r3=2Goff
��ðrÞ and r3=2G

diag
�� ðrÞ for r ¼ 0:4–1:0 fm at each �. In

the MA gauge, the off-diagonal gluon mass is estimated as
Moff ’ 1:1 GeV, while the diagonal gluon mass estimated as
Mdiag ’ 0:3 GeV.

Lattice size � a½fm� Moff½GeV� Mdiag½GeV�
324 5.8 0.152 1.1 0.3

6.0 0.104 1.1 0.3
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distance, the nuclear force is well described by only one-
pion exchange, and the contribution from other heavy
mesons can be neglected. In fact, the long-distance physics
is dominated by light fields.

Next, we also consider the functional form of diagonal
and off-diagonal gluon propagators. In our previous work
[23], the off-diagonal gluon propagator is well described
by the four-dimensional Euclidean Yukawa function as
e�mr=r with the mass parameter m in the region of
r ¼ 0:1–0:8 fm. In Fig. 3, we show the logarithmic plots

of rGoff
��ðrÞ and rG

diag
�� ðrÞ as the function of the distance r

in the MA gauge with the Uð1Þ3 � Uð1Þ8 Landau gauge
fixing. The logarithmic plot of rGoff

��ðrÞ seems to be linear.

From the fit result by the four-dimensional Yukawa func-
tion in the region of r ¼ 0:1–1:0 fm, the mass parameterm
lies in 1.3 GeV for off-diagonal gluons.

On the other hand, from Fig. 3, the diagonal gluon
propagator is not well described by the four-dimensional
Yukawa function at least in short distance. In Sec. V, we
consider the functional form of the diagonal gluon propa-
gator in momentum space.

We comment on the two types of gluon-field definitions
on the lattice, and their coincidence on the gluon propa-
gator. In this paper, the gluon fields Aa

�ðxÞ are extracted

fromU�ðxÞ ¼ eiagA�ðxÞ. On the other hand, with the Cartan
decomposition of U�ðxÞ ¼ M�ðxÞu�ðxÞ, one can take

another definition of the diagonal gluons extracted from

u�ðxÞ ¼ eiag
P

a¼3;8
Aa

�ðxÞTa

and the off-diagonal gluons

extracted from M�ðxÞ ¼ eiag
P

a�3;8
Aa

�ðxÞTa

. In the contin-

uum limit, these two definitions of gluon fields coincide.
In our lattice calculation, even with these definitions of
gluons, we obtain almost the same results for both diagonal
and off-diagonal propagators. In Appendix A, we also esti-
mate the diagonal gluon mass in the Cartan-decomposition
formalism.

V. ANALYSIS OF GLUON PROPAGATORS IN
MA GAUGE IN MOMENTUM SPACE

A. Gluon propagators in MA gauge
in momentum space

In this section, we investigate the momentum-space
propagators in the MA gauge in SU(3) lattice QCD. In
Fig. 4, we show the transverse and longitudinal compo-
nents of the off-diagonal propagator and the transverse
component of the diagonal propagator. Here, we calculate
them with the two different lattice sizes, 164 and 324 at
� ¼ 6:0. As for the diagonal gluon propagator, we only
adopt 324, because its behavior largely depends on the

 0.001

 0.01
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rG
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FIG. 3 (color online). The logarithmic plots of rGoff
��ðrÞ and

rG
diag
�� ðrÞ as the function of the four-dimensional Euclidean

distance r in the MA gauge with the Uð1Þ3 � Uð1Þ8 Landau
gauge fixing with 324 at � ¼ 5:8 and 6.0. The solid line denotes
the best-fit four-dimensional Yukawa function. For rGoff

��ðrÞ, the
approximate linear correlation is found for Yukawa-fit mass
parameter m ’ 1:3 GeV.
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FIG. 4 (color online). The logarithmic plot of Toffðp2Þ,
Loffðp2Þ and Tdiagðp2Þ as the function of the momentum p �
ðp�p�Þ1=2 with 164 (top) and 324 (bottom) at � ¼ 6:0. The

diagonal gluon propagator is calculated only on 324 due to large
volume dependence. In the infrared region, the diagonal gluon
propagator is largely enhanced, while the longitudinal and
transverse parts in the off-diagonal gluon propagator are rela-
tively suppressed. The infrared Abelian dominance is found also
in momentum space.
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lattice size [23], while off-diagonal gluons have small
volume dependence. Note that, in MA gauge with the
Uð1Þ3 � Uð1Þ8 Landau gauge, there is almost no longitudi-
nal diagonal component, which is checked in Appendix B.

In the low momentum (p<�1 GeV), the behavior of the
longitudinal part is similar to that of the transverse part.
From the infrared behavior, these parts would be finite at
zero momentum,

Loffðp2Þ ’ Toffðp2Þ � 0: (25)

On the other hand, in high momentum, the longitudinal
part is further reduced than the transverse one. This behav-
ior indicates that the Proca propagator is not suitable for
the off-diagonal propagator as the functional form in the
whole momentum region.

The diagonal part is further enhanced in the infrared
region than in the off-diagonal parts and thus dominates the
infrared nonperturbative phenomena. This suggests the
infrared Abelian dominance. At zero momentum, we can-
not determine from the infrared behavior whether the
diagonal part is finite or not. As momentum goes to zero,
the diagonal propagator seems to be still finite; however,
for the definite argument in the deep infrared region, a
more careful analysis with a larger lattice size would be
needed.

B. Estimation of gluon mass in MA gauge
in momentum space

First, we estimate the effective mass of gluons by com-
paring the obtained gluon propagators with the massive
vector-boson propagator in momentum space. The longi-
tudinal and transverse components in the Proca formalism
have the common factor, according to a constant renormal-
ization factor Z of the renormalized gluon fields,

Lðp2Þ ¼ Z

M2
; Tðp2Þ ¼ Z

p2 þM2
: (26)

As for the off-diagonal propagator, the transverse com-
ponent is fitted by Z

p2þM2 with the fit parameters, Z and M,

in the region of p < pmax ¼ 1:1 GeV. Fixing the constant
Z, we also fit the longitudinal component by Z

p2þM2 with a

fit parameter M in the region of p < pmax .
The diagonal transverse component is also fitted in a

similar manner to the off-diagonal transverse one.
We summarize in Table II the fit results in the region of

p < pmax ¼ 1:1 GeV. The off-diagonal gluon masses
from the transverse and the longitudinal parts almost co-
incide as

MT
off ’ ML

off ’ 1 GeV: (27)

On the other hand, the diagonal gluon seems to behavewith
the effective mass MT

diag ’ 0:3 GeV from the transverse

part result. These results coincide with the coordinate
results in Sec. IV.

C. Analysis of functional forms in MA gauge in
momentum space

As the fit region increases, gluon propagators cannot be
described well with the massive vector-boson propagator,

Z
p2þM2 . In fact, in the region of p < 3:0 GeV, �2=N of the

off-diagonal transverse part is larger than 3, and that of the
diagonal transverse part is larger than 15. This result seems
to be consistent with our previous work [23]. In coordinate
space, the functional form of the off-diagonal gluon propa-
gator has not be described by the propagator of the Proca
formalism, but by the four-dimensional Euclidean Yukawa
function e�mr=r with a mass parameter m. The Fourier
transformation of this Yukawa function is expressed by

Z
d4xeip�x

e�mr

r
¼ 4�2

ðp2 þm2Þ3=2 : (28)

Thus, we fit the transverse and longitudinal part of the
off-diagonal propagator and the transverse part of the
diagonal propagator by

Z

ðp2 þm2Þ3=2 ; (29)

with the fit parameters Z and m in the region of
p < pmax ¼ 3:0 GeV. Note that Z cannot be regarded as
a renormalization constant, and, in general, the fit parame-
ters Z in the transverse part and the longitudinal part would
differ.
We show the fit results in Fig. 5 and the parameters in

Table III. As for the off-diagonal gluon propagator, both
the transverse part and longitudinal part are well described
by the four-dimensional Euclidean Yukawa function;
although, these parameters are a bit different. This result
coincides with our previous work [23] and this means that
the spectral function of off-diagonal gluons has a negative
region [23,32]. On the other hand, the diagonal gluon
propagator is not well described with the four-dimensional
Euclidean Yukawa function.
More generally, we fit the propagators by a more general

ansatz,
Z

ðp2 þm2Þ� ; (30)

TABLE II. Summary table of the gluon mass estimation in
momentum space. The off-diagonal gluon mass Moff and the
diagonal gluon mass Mdiag are estimated from the fit analysis by

the Proca propagator for p < 1:1 GeV. In the MA gauge, the off-
diagonal gluon mass is estimated as Moff ’ 1 GeV, while the
diagonal gluon mass estimated as Mdiag ’ 0:3 GeV. These re-

sults coincide with the coordinate results.

Lattice size pmax ½GeV� M½GeV� Z �2=N

Toff 324 1.1 0.93(2) 2.7(1) 0.9

Loff 324 1.1 1.00(2) 2.7(fix) 2.5

Tdiag 324 1.1 0.26(2) 22.0(8) 1.7
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with the fit parameters Z, m, and � in the region of p <
pmax ¼ 3:0 GeV. We call this the ‘‘� ansatz.’’ We show the
fit results in Fig. 5 and the parameters in Table IV. The
transverse and longitudinal parts of the off-diagonal propa-
gator have different functional forms: The transverse part
has � ’ 1:3–1:4 and the mass parameter m ’ 1 GeV and
the longitudinal part has � ’ 1:8 and m ’ 1 GeV. From
this result, the transverse part behaves like a four-
dimensional Yukawa function with the mass parameter

m ’ 1 GeV. On the other hand, the longitudinal part does
not behave like it (� ’ 1:8> 1:5); however, the mass
parameter takes a similar value, m ’ 1 GeV. Because of
this larger �, the longitudinal part is further reduced than
the transverse one in high momentum. The diagonal part
has � ’ 1:8 and the mass parameter 0.6 GeV. The diagonal
part is better described with these parameters than the four-
dimensional Yukawa function. Note that both diagonal and
off-diagonal gluon propagators show � � 1, which means
that they cannot be described by a simple massive propa-
gator with a definite pole mass.

D. Spectral function of gluons in MA gauge

The spectral function 	ð!Þ is given by the inverse
Laplace transformation of the zero-spatial-momentum
propagator D0ðtÞ. Then we define

	��ð!Þ ¼ 1

2�i

Z cþi1

c�i1
dte!tD��

0 ðtÞ; (31)

where D��
0 ðtÞ is defined with the gluon propagator

G��ðxÞ by
D��

0 ðtÞ �
Z

d3 ~xG��ð ~x; tÞ: (32)

Note that D��
0 ðtÞ and 	��ð!Þ no longer have the Lorentz

tensor structure due to the spatial integral. Corresponding
to the two components of the gluon propagator,

G��ðxÞ ¼
Z d4p

ð2�Þ4 e
ip�x

��
��� � p�p�

p2

�
Tðp2Þ

þ p�p�

p2
Lðp2Þ

�
; (33)
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FIG. 5 (color online). The logarithmic plots of Toffðp2Þ,
Loffðp2Þ, and Tdiagðp2Þ as the function of the momentum p �
ðp�p�Þ1=2 with 324 at � ¼ 6:0. The transverse and longitudinal

parts in the off-diagonal gluon propagator are well described
with the four-dimensional Yukawa function, while the diagonal
part is not well described in the infrared region. All parts of
gluon propagators are well described with the � ansatz (30) in
the whole region of p < 3:0 GeV.

TABLE III. The fit results of the off-diagonal parts and the
diagonal part by the four-dimensional Euclidean Yukawa func-
tion for p < 3:0 GeV. The transverse and longitudinal parts in
the off-diagonal gluon propagator are well described by the
four-dimensional Yukawa function with �2=N ’ 1:4, while the
diagonal gluon propagator is not well described from the large
�2=N (� 2:4).

Lattice size pmax ½GeV� m½GeV� Z �2=N

Toff 324 3.0 1.27(0) 6.08(4) 1.4

Loff 324 3.0 0.95(1) 3.22(3) 1.4

Tdiag 324 3.0 0.36(1) 17.7(1) 2.4

TABLE IV. The fit results of the off-diagonal parts and the
diagonal part by the � ansatz (30) for p < 3:0 GeV. All these
parts in gluon propagators are well described by this fit function
with corresponding parameters.

Lattice size pmax ½GeV� m½GeV� � Z �2=N

Toff 324 3.0 1.09(2) 1.34(2) 4.0(2) 1.2

Loff 324 3.0 1.21(4) 1.75(4) 6.0(7) 1.2

Tdiag 324 3.0 0.58(1) 1.76(1) 29(1) 1.2
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the zero-spatial-momentum propagator has also two
components,

D��
0 ðtÞ ¼ ð��� � ��4��4Þ

Z dp4

ð2�Þ e
ip4tTðp2

4Þ

þ ��4��4
Z dp4

ð2�Þ e
ip4tLðp2

4Þ
� ð��� � ��4��4ÞDTðtÞ þ ��4��4DLðtÞ: (34)

Note thatDTðtÞ is obtained from the space-space correlator
and DLðtÞ is from the time-time correlator. Thus, we can
define the two components of the spectral function as

	��ð!Þ ¼ ð��� � ��4��4Þ	Tð!Þ þ ��4��4	Lð!Þ; (35)

where

	T;Lð!Þ ¼ 1

2�i

Z cþi1

c�i1
dte!tDT;LðtÞ: (36)

	T;Lð!Þ denotes the spectral function of transverse and

longitudinal gluons. In the same way, we can define the
corresponding effective mass,

MT;LðtÞ � ln
DT;LðtÞ

DT;Lðtþ 1Þ : (37)

In the Landau gauge, as t increases, the effective mass
increases. If the spectral function 	ð!Þ is non-negative, the
effective mass MðtÞ should be a monotonically decreasing
function. In fact, if MðtÞ has an increasing part, 	ð!Þ
should have a negative region [33].

If the functional form of some part (longitudinal or
transverse part) of the gluon propagators is well described
by the � ansatz, Z

ðp2þm2Þ� ð� > 0Þ, the corresponding zero-

spatial-momentum propagator D�ðtÞ is obtained by

D�ðtÞ�
Z dp4

ð2�Þe
ip4t

Z

ðp2
4þm2Þ�

¼ Zffiffiffiffi
�

p
�ð�Þ

�
t

2m

�
��1=2

K��1=2ðmtÞ ðRet>0Þ; (38)

where K��1=2 is the modified Bessel function. Therefore,

the corresponding effective mass M�ðtÞ is expressed by

M�ðtÞ � ln
D�ðtÞ

D�ðtþ 1Þ

¼ ln
t��1=2K��1=2ðmtÞ

ðtþ 1Þ��1=2K��1=2ðmðtþ 1ÞÞ : (39)

The modified Bessel function is reduced to K��1=2ðmtÞ �
ðmtÞ�1=2e�mt for large mt, and thus

M�ðtÞ ’ ln
t��1

ðtþ 1Þ��1e�m
’ m� ð�� 1Þ 1

t
: (40)

This indicates that, if the functional form of the propagator
is well described by the � ansatz (30), M�ðtÞ increases for

� > 1 as t increases. Because of this, the spectral function
would have a negative region.
In fact, we calculate the off-diagonal effective masses

and the diagonal effective mass. There are two off-diagonal
effective masses corresponding to the longitudinal and
transverse parts; however, there is only the transverse
part in the diagonal effective mass, due to @�A

a
� ’ 0

(a ¼ 3, 8). In Fig. 6, we show these effective masses in
the SU(3) MA gauge with Uð1Þ3 � Uð1Þ8 Landau gauge.
We calculate the off-diagonal effective masses on 164

with � ¼ 6:0 and the diagonal effective mass on 324
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FIG. 6 (color online). The effective mass plot of the longitu-
dinal and transverse parts of off-diagonal gluons, MLðtÞ and
MTðtÞ, and the diagonal gluon. The off-diagonal effective masses
are obtained on the 164 lattice with � ¼ 6:0 using 200 configu-
rations, and the diagonal effective mass is obtained on the 324

lattice with � ¼ 6:0 using 40 configurations. Each effective
mass MðtÞ seems to be an increasing function of t.
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with � ¼ 6:0 due to the large dependence of the lattice
size. For the diagonal gluon and the off-diagonal transverse
or longitudinal gluons, each effective massMðtÞ is found to
be an increasing function of t at least in the small t region,
which leads to the existence of a negative region of the
spectral function of each gluon component [33].

VI. SUMMARYAND CONCLUDING REMARKS

We have studied the gluon propagators in the MA gauge
with the Uð1Þ3 � Uð1Þ8 Landau gauge fixing using the
SU(3) lattice QCD both in coordinate space and in
momentum space. The Monte Carlo simulation is per-
formed on the 164 lattice with � ¼ 6:0 and 324 with
� ¼ 5:8 and 6.0 at the quenched level.

In coordinate space, we have calculated the Euclidean
scalar combinations of the propagators G��ðrÞ in the

diagonal and the off-diagonal gluons and estimated each
gluon mass from the linear slope of the logarithmic plot of

r3=2G��ðrÞ. We have found that the off-diagonal gluons

behave as massive vector bosons with the effective mass
Moff ’ 1 GeV for r ¼ 0:4–1:0 fm, while the diagonal glu-
ons behave as lighter vector bosons with Mdiag ’ 0:3 GeV

for r ¼ 0:4–1:0 fm. Because of the larger off-diagonal
gluon mass, the off-diagonal gluons cannot mediate the
interaction over the large distance as r � M�1

off , while the

diagonal gluons can propagate in this region. Such a
behavior would lead infrared Abelian dominance in the
MA gauge.

Furthermore, we have investigated the diagonal gluon
propagator and off-diagonal gluon propagator in momen-
tum space. To our knowledge, the analysis of the gluon
propagators with the MA gauge of the SU(3) lattice in
momentum space is the first study. In the MA gauge with
the Uð1Þ3 � Uð1Þ8 Landau gauge, the diagonal propagator
has only one component and the off-diagonal propagator
has two components, the transverse part and the longitudi-
nal part. In the infrared region, the diagonal propagator is
enhanced, while the transverse and the longitudinal parts in
the off-diagonal propagator show the similar suppressed
behavior. In this way, the infrared Abelian dominance is
also found in momentum space as in coordinate space.
Furthermore, at zero momentum, the two components of
the off-diagonal propagator are finite and relatively sup-
pressed and the diagonal propagator seems to be finite and
enhanced. However, as for the diagonal propagator in the
deep infrared region, more careful analysis with a larger
lattice size would be required for the definite argument.

We have also estimated these gluon masses from these
components of the diagonal propagator and off-diagonal
propagator in momentum space by compared with the
Proca formalism in the region of p < 1:1 GeV as in coor-
dinate space. As a result, the off-diagonal gluon mass
seems to be Moff ’ 1 GeV and the diagonal gluon mass
seems to be Mdiag ’ 0:3 GeV. These results are consistent

with the analysis of coordinate space.

In addition, we have also investigated the functional
form of the propagator in the MA gauge. The gluon propa-
gators have been fitted by Z=ðp2 þm2Þ� with the parame-
ters, Z, m, and �, in the region of p < 3:0 GeV. These
propagators are well described with the functional form.
The best-fit results show that these mass parameters mdiag,

mT
off , andm

L
off have a relation,m

L
off ,m

T
off � mdiag and all of

these exponentiation parameters, �, are larger than unity.
Thus, even the functional form of the diagonal propagator
is further enhanced than that of the off-diagonal propagator
and would be found by infrared Abelian dominance.
Furthermore, from these fit results, in particular � > 1,
all of the corresponding spectral functions would have
negative regions as expected in our previous work [23].
In fact, we have calculated these zero-spatial-momentum
propagators, D0ðtÞ, and the corresponding effective mass,
MðtÞ � lnD0ðtÞ=D0ðtþ 1Þ. We expect the negative re-
gions of these spectral functions from the behaviors of
these effective masses.
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APPENDIX A: COMPARISON OF CARTAN
DECOMPOSITION AND ORDINARY

DECOMPOSITION

In the SUðNcÞ lattice QCD, the gluon field A� is usually

defined from the link variable U� based on [2]

U�ðxÞ ¼ eiagA�ðxÞ 2 SUðNcÞ; (A1)

which we call ordinary decomposition (OD). In our paper,
this gluon field A� is mainly used for the argument of

gluon propagators. However, in terms of the partial gauge
fixing in the MA gauge, one can take the other definition of
the gluon field A� based on the Cartan decomposition

(CD),

U�ðxÞ ¼ eiag
P

a�3;8
Aa

�ðxÞTa � eiag
P

a¼3;8
Aa

�ðxÞTa

2 SUðNcÞ=Uð1ÞNc�1 � Uð1ÞNc�1: (A2)

In the continuum limit, these two definitions of gluon
fields coincide. Actually, in our lattice calculation, even
with these two definitions of gluons, we obtain almost
the same results for both diagonal and off-diagonal
propagators.
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In this appendix, we compare the diagonal gluon propa-
gators with OD and CD, which are defined by

1

2

X
a¼3;8

hAa
�ðxÞAa

�ðyÞi ðODÞ;

1

2

X
a¼3;8

hAa
�ðxÞAa

�ðyÞi ðCDÞ:
(A3)

In Fig. 7, we show the logarithmic plot of the scalar
combination of the diagonal gluon propagators with OD
and CD in coordinate space. This result is obtained on 324

with � ¼ 6:0. These propagators have almost the same
behavior.

Furthermore, we estimate each diagonal gluon mass

from the slope on the logarithmic plot of r3=2G
diag
�� ðrÞ as

in Sec. IV. In Fig. 8, we show the logarithmic plot of

r3=2G
diag
�� ðrÞ with OD and CD. These gluon masses are

obtained from the slope analysis in the range of r ¼
0:4–0:8 fm. In both cases, the diagonal gluon mass seems
to be about 0.3 GeV. Also for the off-diagonal gluons, the
CD results are almost the same as the OD results.

APPENDIX B: THE LONGITUDINAL PART
OF THE DIAGONAL PROPAGATOR

The lattice global Landau gauge fixing is given by the
maximization of

R½U� ¼ ReTr
X
�;x

U�ðxÞ: (B1)

From this global gauge condition, the local gauge fixing is
derived as

�R � R½UV� � R½UV¼1�
¼ ReTr

X
�

½VU�ðxÞ þU�ðx� �̂ÞVy � ðV ¼ 1Þ�

� 0; (B2)

where V 2 SUð3Þ denotes the arbitrary local gauge trans-
formation on the site x. By expanding the local gauge
transformation as V � ei�

aTa ’ 1þ i�aTa, the local gauge
formation is obtained:

TrTa
X
�

fU�ðxÞ �Uy
�ðxÞ � ðU�ðx� �̂Þ �Uy

�ðx� �̂ÞÞg

¼ 0: (B3)

In the Landau gauge, the gluons are usually defined by

A�ðxÞ � 1

2i
fU�ðxÞ �Uy

�ðxÞg � ðtrace partÞ: (B4)

With this definition, the local gauge fixing is expressed by
the ordinary Landau gauge fixing:

TrTa
X
�

fA�ðxÞ � A�ðx� �̂Þg ¼ 0: (B5)

However, with our definition of gluons, Eq. (1), the local
gauge fixing condition is given by

TrTa
X
�

fsinA�ðxÞ � sinA�ðx� �̂Þg ¼ 0; (B6)

where we use the precise relation of sinA�ðxÞ � 1
2i �

fU�ðxÞ �Uy
�ðxÞg. In small lattice spacing, this local gauge

fixing corresponds to the ordinary Landau gauge. In gen-
eral, however, this gauge fixing condition does not coincide
with the ordinary gauge fixing condition, and thus, the
gluon propagator with our definition of gluons in momen-
tum space would have the longitudinal part as well as the
transverse part.
The similar situation arises for diagonal gluons in the

MA gauge with Uð1Þ3 � Uð1Þ8 Landau gauge fixing,
because the gauge fixing for the Uð1Þ3 � Uð1Þ8 part is
given by the maximization of

 0.001

 0.01

 0.1

 1

 0.2  0.4  0.6  0.8  1  1.2  1.4  1.6

G
µµ

 (
r)

 [
G

eV
2 ]

r [fm]

Gµµ
diag,β=6.0,OD

Gµµ
diag,β=6.0,CD

FIG. 7 (color online). The SU(3) lattice QCD results of

G
diag
�� ðrÞ with CD and OD in the MA gauge with the Uð1Þ3 �

Uð1Þ8 Landau gauge fixing. The Monte Carlo simulation is
performed on the 324 lattice with � ¼ 6:0. The CD gluon
propagator almost coincides with the OD gluon propagator.
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FIG. 8 (color online). The logarithmic plot of r3=2Gdiag
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CD and OD in the MA gauge with the Uð1Þ3 � Uð1Þ8 Landau
gauge fixing on the 324 lattice at � ¼ 6:0. The slopes of these
plots in the region of r ¼ 0:4–1:0 fm are almost the same.
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RUð1ÞL � X
x

X4
�¼1

Re tr½u�ðxÞ�: (B7)

Thus, the local condition is given byX
�

fsinAa
�ðxÞ�sinAa

�ðx��̂Þg¼0 ða¼3;8Þ; (B8)

where ~A�ðxÞ ¼ ðA3
�ðxÞ;A8

�ðxÞÞ is defined by u�ðxÞ ¼
eiag

P
a¼3;8

Aa
�ðxÞTa

. This condition (B8) is satisfied accu-
rately in the numerical calculation. In this gauge, even
with small lattice spacing, it is not so trivial whether the
local gauge condition (B8) coincides with the ordinary
Landau gauge due to the large fluctuation of diagonal
gluons. Note that there are two different definitions of
diagonal gluons,Aa

�ðxÞ and Aa
�ðxÞ; however, the behavior

of these gluon propagators would be similar, as shown in
Appendix A.

In Fig. 9, we show the longitudinal part and the trans-
verse part of the diagonal propagators. The transverse part
is dominated in the whole momentum region:

Ldiagðp2Þ 	 Tdiagðp2Þ: (B9)

Therefore, there would be only the transverse part in the
diagonal gluon propagator evenwith our definition of gluons:

Gdiag
�� ðpÞ ’

�
��� �

p�p�

p2

�
Tdiagðp2Þ: (B10)

Note that as for the off-diagonal gluon propagator, there
are both longitudinal and transverse parts even in the
continuum limit:

Goff
��ðpÞ ¼

�
��� �

p�p�

p2

�
Toffðp2Þ þ p�p�

p2
Loffðp2Þ:

(B11)
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