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Quark motional effects on the interquark potential in baryons
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We study the heavy-heavy-light quark (QQq) system in a nonrelativistic potential model, and
investigate the quark motional effect on the inter-two-quark potential in baryons. We adopt the
Hamiltonian with the static three-quark potential which is obtained by the first-principle calculation of
lattice QCD, rather than the two-body force in ordinary quark models. Using the renormalization-group
inspired variational method in discretized space, we calculate the ground-state energy of QQq systems
and the light-quark spatial distribution. We find that the effective string tension between the two heavy
quarks is reduced compared to the static three-quark case. This reduction of the effective string tension
originates from the geometrical difference between the interquark distance and the flux-tube length, and is
conjectured to be a general property for baryons.
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I. INTRODUCTION

In hadron physics, the interquark interaction is one of
essential properties reflecting the nonperturbative gluon
dynamics based on the SU(3) gauge symmetry.
Particularly the quark confinement is a nontrivial, non-
perturbative, and unsolved problem even in static quark
cases. The interaction between finite-mass quarks would
include more complicated effects. Additionally, in contrast
to mesons, quarks in baryons have various kinds of motion,
configuration, and so on, and such a quark degree of free-
dom would be important for the interquark interaction. The
inter-two-quark potential in baryons can be influenced by
such nontrivial effects of the other quark.

To investigate such finite-mass-quark ‘‘motional’’ ef-
fects on the effective inter-two-quark potential, we study
the heavy-heavy-light quark (QQq) system in this work.
We treat the two heavy quarks in the QQq system as
infinitely heavy, keeping the light-quark mass finite. We
artificially change the inter-heavy-quark distance R, and
calculate the energy of the QQq system as a function of R,
which we call the QQq potential. This QQq potential
includes not only the gluonic effect but also the nontrivial
light-quark effect, and would differ from the static three-
quark (3Q) potential.

From our previous lattice QCD study [1], the QQq
potential is almost described as a linear and one-gluon-
exchange Coulomb potential, like the quark-antiquark
(Q �Q) potential. However, the effective string tension be-
tween two heavy quarks is reduced compared to the static
Q �Q or 3Q case, 0.89 GeV/fm. This reduction would be the
result from nontrivial light-quark effects. Lattice QCD is a
powerful tool for calculating hadron masses, potentials,
and several QCD properties, but has a difficulty to clarify
the light-quark wave function. Instead, in this paper, we
employ a simple potential model, and calculate the QQq
potential and the spatial distribution of the light-quark
wave function, in order to explain the reduction mecha-
nism of the effective string tension.

In most ordinary quark models and potential models, the
quark confining force in baryons is the simple two-body
force [2– 4]. However, it is recently found that the confine-
ment potential in baryons is expressed by the Y-type flux-
tube picture [5–10]. For more accurate calculations, quark
models and potential models need to treat the confinement
force in baryons as the three-body force. In particular,
since we are now interested in the light-quark effects on
the interquark potential, the accurate treatment for the
three-quark interaction is important. Hence, we adopt the
three-quark potential from the lattice QCD result, which is
the nonperturbative first-principle calculation.

As an example of realistic QQq baryons, the doubly
charmed baryon is experimentally observed. In 2002, the
SELEX Collaboration at Fermilab observed ��cc�dcc�
through a weak decay ��cc ! ��c K��� [11]. They also
confirmed another decay process ��cc ! pD�K� [12]. In
their experiments, the mass is measured about 3519 MeV.
Doubly charmed baryons are also theoretically investi-
gated in lattice QCD [13], potential model [4,14], and other
approaches [15].

We already know analogous systems to this QQq
baryon, for example, the H�2 ion in molecular physics,
which is also the bound state of two heavy and one light
particles. However, the interaction in the ground-state
QQq system is attractive, while the H�2 ion includes
Coulomb repulsive force between the two protons.
Additionally, as stated above, the confining force in the
QQq baryon is a purely three-body force, not a sum of two-
body forces, and has the characteristic geometrical struc-
ture. Then the QQq potential is expected to include non-
trivial effects from this feature.

In this paper, we study finite-mass-quark effects on the
inter-two-quark potential in baryons through the investiga-
tion of QQq systems with a nonrelativistic potential
model. The article is organized as follows. In Sec. II, we
introduce the Hamiltonian with the confinement potential
obtained from recent lattice QCD calculations, and present
the formalism of the renormalization-group inspired varia-
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tional calculation in a discretized space to solve the
Schrödinger equation. In Sec. III, we show the numerical
results of the QQq potential, and discuss the finite-mass-
quark effect for the reduction of the effective string tension
between the two heavy quarks inQQq systems. Section IV
is devoted to the summary and the conclusion.

II. FORMALISM

A. Hamiltonian

The Hamiltonian of three quarks in baryons is con-
structed from kinetic terms and a three-quark interaction
term as

 H �
X3

i�1

Ti � V� ~r1; ~r2; ~r3�: (1)

In the QQq system, we treat two heavy quarks as infinitely
heavy particles, and one light quark as a nonrelativistic
constituent quark with the constituent mass Mq. The non-
relativistic quark model is one of the successful models to
describe baryons even for the light-quark sector, and has
been used for the study of baryons by many theoretical
physicists even at present [16]. Apart from irrelevant con-
stants, the Hamiltonian is simplified as

 H � Mq �
1

2Mq

@2

@~r2
3

� V� ~r1; ~r2; ~r3�; (2)

where the subscripts 1, 2, and 3 mean the two heavy quarks
and the light quark, respectively. Although we adopt the
nonrelativistic formalism, we still call this finite-mass
quark the ‘‘light’’ quark in this paper.

As the three-quark interaction V�~r1; ~r2; ~r3�, to treat the
light-quark effect as precisely as possible, we adopt the
lattice QCD result of the static 3Q potential [5]. This 3Q
potential includes the confining potential as the three-body
force, instead of the simple sum of the two-body force in
ordinary quark models. The static 3Q potential obtained by
quenched lattice QCD is

 V�~r1; ~r2; ~r3� � �3QLmin �
X
i<j

A3Q

rij
� C3Q; (3)

 �3Q ’ 0:89 GeV=fm; A3Q ’ 0:13; (4)

where rij � j ~ri � ~rjj, and these values in Eq. (4) are
related to the Q �Q case as �3Q ’ �Q �Q and A3Q ’ AQ �Q=2
[5]. Since we are not interested in a constant shift of the
energy in the nonrelativistic formalism, we set C3Q � 0.
The symbol Lmin is the length of the color flux tube
minimally connecting the three quarks, which is described
as follows. When all the angles of the 3Q triangle are less
than 2�=3, the Y-type flux tube is formed and

 Lmin �
1��
2
p �r2

12 � r
2
13 � r

2
23

�
����������������������������������������������������������������������������
3�r12 � r13 � r23���r12 � r13 � r23�

q

�
���������������������������������������������������������������������
�r12 � r13 � r23��r12 � r13 � r23�

q
�1=2: (5)

When one of the angles of the 3Q triangle exceeds 2�=3,

 Lmin � r12 � r13 � r23 �max�r12; r13; r23�: (6)

Once the heavy-quark coordinates ~r1 and ~r2 are fixed, the
interaction depends only on the light-quark coordinate ~r3.
We can calculate the ground-state light-quark wave func-
tion  �~r3�with the variational principle of the energy of the
system

 E�R� �

R
d3r3 

	� ~r3�H � ~r3�R
d3r3j � ~r3�j

2 : (7)

We determine the ground-state QQq potential VQQq�R� by
minimizing E�R�.

Here, we comment on the three-quark interaction
V� ~r1; ~r2; ~r3� with finite-mass quarks. The finite-mass effect
changes the simple Coulomb interaction to the Fermi-Breit
interaction [14], which includes spin-spin and spin-orbit
interactions. These relativistic corrections are suppressed
by the inverse of the quark mass. In the QQq system with
infinitely heavy quarks, most of them give zero contribu-
tions as 1=MQ ! 0, and the interaction remains the simple
form. However, the finite-mass effect on the quark con-
finement potential is unknown. Here, for simplicity, we
assume that V�~r1; ~r2; ~r3� in the QQq system can be written
with the static one. Equivalently, the finite-mass effect is
assumed to be taken only via the light-quark wave function
spreading.

B. The renormalization-group (RG) inspired
variational calculation

We exactly solve the energy variational problem in
discretized space. We take a cylindrical coordinate
��; �; z�, and locate the two heavy quarks on �0; 0; R=2�
and �0; 0;�R=2�. The ground-state light-quark wave func-
tion is mirror symmetric to the z � 0 plane and rotational
symmetric around the z-axis. Thus, we have only to cal-
culate on the two-dimensional plane ��; z� (� 
 0, z 
 0).
We discretize the space with an ‘‘isotropic’’ mesh as �� �
�z, and vary the light-quark wave function on each site to
minimize E�R�. This is equivalent to solving the
Schrödinger equation exactly, and we have no Ansatz
about the functional form of the light-quark wave function.

We adopt the variational calculation inspired by the
renormalization group (RG) method. The schematic pro-
cedure is shown in Fig. 1, and its concrete process is as
follows. First, we start with a 2� 2 mesh and the spacings
���1� and �z�1�. We minimize E�R�, and then obtain the
2� 2-solution  �1��l;m�. Here the site �l;m� corresponds
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to ��; z� � �l���1�; m�z�1�� (l, m 2 Z). Next, we turn to a
4� 4 mesh with the twice finer mesh size, starting from
the initial condition  �2�0 �l

0; m0� from the 2� 2-mesh solu-
tion. The 2n�1 � 2n�1-mesh initial condition is set from
the 2n � 2n-mesh solution, as

 ���n�1� � 1
2��

�n�; (8)

 �z�n�1� � 1
2�z

�n�; (9)

  �n�1�
0 �2l; 2m� �  �n��l;m�; (10)

  �n�1�
0 �2l� 1; 2m� � 1

2f 
�n��l;m� �  �n��l� 1; m�g; (11)

  �n�1�
0 �2l; 2m� 1� � 1

2f 
�n��l;m� �  �n��l; m� 1�g; (12)

 

 �n�1�
0 �2l� 1; 2m� 1� � 1

2f 
�n��l;m�

�  �n��l� 1; m� 1�g: (13)

We repeat this procedure N times, and finally obtain the
2N � 2N-mesh solution with the spacings �� � ���N� and
�z � �z�N�. With this RG inspired variational calculation,
the solution is expected to converge rapidly to the absolute
minimum. To estimate the discretization error and the
finite-volume effect, we calculate with several mesh sizes
and mesh numbers.

III. RESULTS

A. The QQq potential

Three examples of the obtained light-quark spatial dis-
tribution are shown in Fig. 2. When R becomes large, the
light-quark distribution is broadened in the z direction. To
estimate the size of the light-quark spreading, we calculate��������
hz2i

p
and

��������
hx2i

p
�

��������������
h�2i=2

p
from the obtained wave func-

tion. Some typical examples of these values are shown in

Table I.
��������
hx2i

p
is almost R-independent, and is about 0.4 fm

for Mq � 330 MeV.
We fit the QQq potential with

 VQQq�R� � �effR�
Aeff

R
� Ceff (14)

as an analogy of the Q �Q potential. The ‘‘eff’’ means
effective values including the light-quark effect. The
best-fit parameters are summarized in Table II, and the
obtained QQq potential is shown in Fig. 3. This fitting
function is significantly suitable for VQQq. The effective
Coulomb coefficient Aeff is almost the same value as A3Q.
The effective string tension �eff is reduced about 10%–
20% compared to the string tension �3Q in the 3Q poten-
tial,

 �eff <�3Q ’ �Q �Q ’ 0:89 GeV=fm: (15)

This result means that the inter-two-quark confining force
in baryons is reduced due to the light-quark existence.

FIG. 2. The light-quark spatial distribution j �~r3�j
2 for Mq � 330 MeV with R � 0:06 fm (left), R � 1:2 fm (center), and R �

2:4 fm (right). The brighter region has higher probability, and the black circles denote the positions of the heavy quarks. The figure is a
part of the whole volume, and the actual calculation is performed in enough large volume.

FIG. 1. The schematic figure of the renormalization-group inspired variational calculation. The finer-mesh calculation is done with
the initial condition constructed from the rougher-mesh result.
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To estimate the discretization error and the finite-volume
effect, the results with different mesh numbers and mesh
sizes are shown in Table III. These results are different only
within a few percent. We can see that our variational
calculation is performed in enough large volume and
enough fine mesh.

In our previous lattice QCD study [1], we investigated
the same QQq potential in the region of R � 0:8 fm. For
example, in the Mq ’ 1 GeV case, the effective string
tension is 0:75
 0:08 GeV=fm. In order to compare with
the lattice QCD result, we calculate in the present potential
model with the same condition, Mq � 1 GeV and R �
0:8 fm, and then find �eff ’ 0:76 GeV=fm. Therefore,
the calculation of our simple potential model almost re-
produces the result of lattice QCD.

B. The reduction of the effective string tension

To understand the reduction mechanism of �eff between
the two heavy quarks, we compare the definition of the
string tension with that of the effective string tension. The
string tension is the proportionality coefficient of the color
flux-tube length Lmin in the confinement potential.
Compared with this, the effective string tension is defined
as the effective confinement force between two quarks in

baryons in terms of the inter-two-quark distance R. The
schematic figure is depicted in Fig. 4. In the Q �Q case,
Lmin � R and the two definitions lead no difference, but in
the 3Q or QQq case, these are different from each other,
Lmin � R. The QQq flux-tube length is related to R
through complicated light-quark dynamics, and then the
QQq effective confinement potential is not necessarily a
linear function of R. Our results show that the effective
confinement potential is almost proportional to R, at least
in the region of R � 1:2 fm, with the proportionality co-
efficient �eff , which is reduced compared to the string
tension of mesons and the static cases. We conjecture
that the reduction of �eff originates from this difference
between the inter-heavy-quark distance R and the flux-tube
length Lmin.

The relation between R and the QQq flux-tube length
can be easily calculated in our potential model. The ex-
pectation value of the QQq flux-tube length hLmini is
shown in Table I and Fig. 5. As shown in Fig. 5 (solid

TABLE II. The best-fit parameters �eff , Aeff , and Ceff in
Eq. (14) with the fit range of R � 1:2 fm. The 128�
128-mesh is used. This Ceff differs from Ceff of the lattice result
in Ref. [1].

Mq [Gev] �z [fm] �eff [GeV/fm] Aeff Ceff [GeV]

0.33 0.08 0.74 0.12 1.06
0.10 0.73 0.12 1.07
0.12 0.73 0.12 1.07

0.50 0.08 0.75 0.12 1.11
0.10 0.75 0.12 1.10

1.0 0.05 0.80 0.12 1.41
0.10 0.78 0.12 1.42

2.0 0.05 0.84 0.12 2.23
0.08 0.83 0.11 2.24

TABLE I. Numerical results for the different light-quark masses Mq and the different mesh sizes �z�� ���. The calculation listed
here is done with the 128� 128-mesh. The omitted length unit is fm.

Mq [GeV] �z
��������
hx2i

p
(R � 0:06)

��������
hx2i

p
(R � 1:2)

��������
hz2i

p
(R � 0:06)

��������
hz2i

p
(R � 1:2) hLmini (R � 0:06) hLmini (R � 1:2)

0.33 0.08 0.41 0.42 0.43 0.53 0.67 1.61
0.10 0.42 0.41 0.45 0.53 0.67 1.60
0.12 0.40 0.40 0.46 0.55 0.68 1.60

0.50 0.08 0.36 0.36 0.39 0.47 0.58 1.53
0.10 0.35 0.35 0.39 0.49 0.59 1.53

1.0 0.05 0.27 0.29 0.30 0.42 0.46 1.44
0.10 0.27 0.28 0.32 0.42 0.47 1.43

2.0 0.05 0.20 0.23 0.23 0.37 0.35 1.36
0.08 0.20 0.22 0.24 0.37 0.36 1.36

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0  0.2  0.4  0.6  0.8  1  1.2

V
Q

Q
q(

R
) 

[G
eV

]

R [fm]

330 MeV
500 MeV

1 GeV
2 GeV

FIG. 3. The QQq potential VQQq�R� from the variational cal-
culation. The different four symbols denote the result with the
different four light-quark masses Mq � 0:33, 0.50, 1.0, 2.0 GeV.
The solid curves are the best-fit functions of Eq. (14).

ARATA YAMAMOTO AND HIDEO SUGANUMA PHYSICAL REVIEW D 77, 014036 (2008)

014036-4



line), hLmini is well described as hLmini ’ b0 � b1R in the
range of R � 1:2 fm, and its best-fit parameters are b0 ’
0:61 fm and b1 ’ 0:81. Apart from the light-quark kinetic
energy and the Coulomb contribution, we can explain the
reduction of �eff by the functional form of hLmini, that is,

 h�3QLmini ’ �b1�3Q�R� b0�3Q ’ �effR� const: (16)

Thus �eff is reduced as �eff ’ b1�3Q, and b1�<1� means
the reduction rate of �eff .

From the different Mq results, we see the
Mq-dependence of the system. Intuitively, in the Mq !

1 limit, theQQq system becomes the static 3Q system and
then �eff approaches to �3Q. It is expected that, when Mq

increases, the reduction is weakened and �eff increases.
Similarly, since quarks are not spatially extended at all in
the 3Q case, the light-quark spatial distribution becomes
compact for large Mq. We can check these behaviors in
Tables I and II.

Now we investigate the contribution of the Coulomb
terms in Eq. (3). We artificially set A3Q � 0, and calculate
in the same scheme as above. We fit this ‘‘No-Coulomb’’
QQq potential with a functional form

 VNC
QQq�R� � �NC

eff R� C
NC
eff : (17)

The best-fit parameters are shown in Table IV. Also in this
case, the effective string tension �NC

eff is reduced, and
roughly equals to �eff . Therefore, the essential reason for
the reduction of �eff is the geometrical difference between
Lmin and R rather than the Coulomb contribution.

In Fig. 6, we separate the QQq potential with Mq �

330 MeV into the contributions from the expectation value
of the light-quark kinetic term, the 3Q confinement poten-
tial term, and the Coulomb term. The resulting QQq
potential is given as VQQq�R� � Mq � h�

1
2Mq
�

@2

@~r2
3
� �3QLmin �

P
i<j

A3Q

rij
i. We can confirm that the con-

finement part of the QQq potential originates mainly from
the 3Q confinement potential contribution.

C. The detail of the effective string tension

We note that the QQq potential is not perfectly fitted
with Eq. (14). For example, in the large R limit, R will
approach to the flux-tube length hLmini, so that �eff in-
creases and approaches to�3Q. Thus�eff should depend on
R. To investigate the more accurate R-dependence, we
enlarge the region of R to 2.4 fm. As mentioned above,
hLmini is determined by a nontrivial light-quark dynamics.
Then, in general, it is a function with higher-power terms
of R,

 0

 0.5

 1

 1.5

 2

 2.5

 0  0.5  1  1.5  2  2.5

<
 L

m
in

 >
 [f

m
]

R [fm]

FIG. 5. The relation between hLmini and R with Mq �
330 MeV. The symbol � denotes the result from the variational
calculation. The solid line is the best-fit function of b0 � b1R
with the fit range of R � 1:2 fm, and the dashed line is that of
b0 � b1R� b2R

2 with R � 2:4 fm.

R R

Lmin

Lmin

FIG. 4. The schematic figure of the flux-tube length Lmin and
the interquark distance R. The two definitions are the same,
Lmin � R, in the Q �Q case (left). These are different, Lmin � R,
in the 3Q or QQq case (right).

TABLE III. The different mesh results with Mq � 330 MeV.
�eff , Aeff , and Ceff are the best-fit parameters in Eq. (14) with the
fit range of R � 1:2 fm.

Mesh �z [fm] �eff [GeV/fm] Aeff Ceff [GeV]

64� 64 0.12 0.72 0.12 1.07
0.15 0.72 0.12 1.08

128� 128 0.08 0.74 0.12 1.06
0.10 0.73 0.12 1.07
0.12 0.73 0.12 1.07

256� 256 0.05 0.74 0.12 1.08

TABLE IV. The ‘‘No-Coulomb’’ (A3Q � 0) QQq potential
results with the 128� 128-mesh. �NC

eff and CNC
eff are the best-fit

parameters in Eq. (17) with the fit range R � 1:2 fm.

Mq [GeV] �z [fm] �NC
eff [GeV/fm] CNC

eff [GeV]

0.33 0.10 0.69 1.19
0.12 0.69 1.19

0.50 0.08 0.70 1.25
0.10 0.70 1.25
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 hLmini � b0 � b1R� b2R
2 � b3R

3 � � � � : (18)

If we fit hLmini up to the quadratic term with Mq �

330 MeV and R � 2:4 fm, we find that the best-fit parame-
ters are b0 ’ 0:62 fm, b1 ’ 0:77, and b2 ’ 0:037 fm�1. Its
best-fit function is shown in Fig. 5 (dashed line). In this
region, the linear function deviates from the result, and this
quadratic function seems suitable for fitting. In this case, if
the light-quark kinetic energy and the Coulomb contribu-
tion is ignored, the effective string tension is roughly
written as

 �eff�R� �
@VQQq�R�

@R

��������IR
’ b1�3Q � 2b2�3QR; (19)

where ‘‘IR’’ means the infrared region. Thus the effective
string tension actually depends on R. To investigate the
R-dependent effective string tension with the whole inter-
action of Eq. (3), we fit the QQq potential with

 VQQq�R� � �b1 � b2R��3QR�
Aeff

R
� Ceff (20)

in the range of R � 2:4 fm. The results are summarized in
Table V. From the fact that b2 is positive, �eff�R� is an
increasing function of R, as is expected. Of course, this
argument is restricted in the present range of R. For larger
R, higher-power terms are to be included.

D. Comments on the relativistic corrections

The nonrelativistic quark model has achieved consider-
able success in explaining low-energy hadron properties.
However, the relativistic treatment for the light quark can
give rise to the quantitative correction to some properties.
We give a brief comment on the relativistic correction to
our result.

In the relativistic formalism for the light quark, the
Hamiltonian (2) is modified as

 H �
�������������������
M2
q � ~p2

q
� V�~r1; ~r2; ~r3�; (21)

where ~p is the light-quark momentum. The interaction
term V�~r1; ~r2; ~r3� is again the general three-quark interac-
tion in QQq systems.

One of the relativistic corrections is the higher-order
kinetic term from �M2

q � ~p2�1=2 � �Mq � ~p2=2Mq�. If the
higher-order terms do not change the R-dependence of the
QQq potential, the nonrelativistic formalism works well.
As shown in Fig. 6, the leading-order kinetic term ~p2=2Mq

is almost R-independent, compared to the typical
R-dependence of the energy, namely �3Q ’

0:89 GeV=fm. We expect that the higher-order kinetic
terms also give rise to small R-dependent contributions,
at least in the large Mq case.

Another possible relativistic correction is modification
to V�~r1; ~r2; ~r3�. While we adopt the nonrelativistic 3Q
potential as the three-quark interaction in QQq systems,
it can be changed by the light-quark relativistic effect.
Several works have dealt the interquark potential in me-
sons and baryons with finite-mass quarks [15,17]. The
finite-mass-quark effect on the potential is rather compli-
cated, and there appears the relativistic correction with
nontrivial Mq-dependence, which for large Mq would be
expressed as a series of 1=Mq.

For the precise statement and quantitative accuracy, the
relativistic treatment is desired, particularly for the realistic
light-quark mass case, i.e., Mq ’ 330 MeV.

IV. SUMMARY AND CONCLUSION

From the above considerations, we can conclude that,
when finite-mass quarks exist in baryons, the effective
string tension between the other two quarks is reduced
compared to the static case. The essential reason for the
reduction is the geometrical difference between the inter-
quark distance R and the flux-tube length hLmini. As can be
seen from Fig. 4, this geometrical difference always exists
for more than the two-quark system, regardless of whether
the heavy-quark mass is infinite or finite. Then this is
expected to hold not only for QQq systems but also for
ordinary baryons, such as nucleons. Of course, the quanti-
tative difference would exist between QQq systems and
ordinary baryons. In addition, also in multiquark systems,
the effective string tension can be changed due to the
existence of other light quarks. In such systems, the effec-

TABLE V. The best-fit parameters of Eq. (20) with the fit
range of R � 2:4 fm. The calculation is done with Mq �

330 MeV and the 128� 128-mesh.

�z [fm] b1 b2 [fm�1] Aeff Ceff [GeV]

0.10 0.78 0.031 0.12 1.08
0.12 0.78 0.033 0.12 1.08
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FIG. 6. The component of the QQq potential with Mq �
330 MeV. The solid curve is the best-fit function VQQq�R� of
Eq. (14), and it is given as VQQq�R� � Mq � h ~p

2=2Mq �

�3QLmin �
P
i<jA3Q=riji.
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tive string tension between two finite-mass quarks would
include more complicated finite-mass effects.

In summary, we have studied theQQq potential with the
nonrelativistic potential model, and have investigated the
finite-mass-quark motional effect on the inter-heavy-quark
potential in baryons. We have found the significant reduc-
tion of the effective string tension �eff between the two
heavy quarks in QQq systems, compared to string tension
�3Q in the static 3Q case. The effective string tension �eff

depends on the light-quark mass Mq, and slightly depends

on R. The finite-mass-quark existence reduces the effective
confinement force, which is conjectured to be a general
property for baryons.
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