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In SU(3) lattice QCD formalism, we propose a method to extract gauge fields from link variables

analytically. With this method, we perform the first study on effective mass generation of off-diagonal

gluons and infrared Abelian dominance in the maximally Abelian gauge in the SU(3) case. Using SU(3)

lattice QCD, we investigate the propagator and the effective mass of the gluon fields in the maximally

Abelian gauge with Uð1Þ3 � Uð1Þ8 Landau gauge fixing. The Monte Carlo simulation is performed on 164

at � ¼ 5:7, 5.8, and 6.0 at the quenched level. The off-diagonal gluons behave as massive vector bosons

with the approximate effective mass Moff ’ 1:0–1:1 GeV in the region of r ¼ 0:3–0:8 fm, and the

propagation is limited within a short range, while the propagation of diagonal gluons remains even in

a large range. In this way, infrared Abelian dominance is shown in terms of short-range propagation of off-

diagonal gluons. Furthermore, we investigate the functional form of the off-diagonal gluon propagator.

The functional form is well described by the four-dimensional Euclidean Yukawa-type function e�moffr=r

with moff ’ 1:2–1:3 GeV for r ¼ 0:1–0:8 fm. This also indicates that the spectral function of off-diagonal

gluons has the negative-value region.

DOI: 10.1103/PhysRevD.86.094018 PACS numbers: 12.38.Aw, 12.38.Gc, 14.70.Dj

I. INTRODUCTION

Quantum chromodynamics (QCD) is the fundamental
gauge theory of the strong interaction based on quarks and
gluons. There are a variety of nonperturbative phenomena
in low-energy QCD such as color confinement and chiral
symmetry breaking. These nonperturbative phenomena
have been studied both in analytical frameworks and in
lattice QCD [1–3].

On the quark-confinement mechanism, Nambu, ’t Hooft,
and Mandelstam suggested the dual-superconductor pic-
ture [4]. This picture is based on the electromagnetic
duality and the analogy with the one-dimensional squeez-
ing of the magnetic flux in the type-II superconductor. In
this picture, there occurs color magnetic monopole con-
densation, and then the color-electric flux between the
quark and the antiquark is squeezed as a one-dimensional
tube due to the dual Higgs mechanism. From the viewpoint
of the dual-superconductor picture in QCD, however, there
are two assumptions of Abelian dominance [5,6] and
monopole condensation. Here, Abelian dominance means
that only the diagonal gluon component plays the domi-
nant role for the nonperturbative QCD phenomena like
confinement.

The maximally Abelian (MA) gauge has mainly been
investigated from the viewpoint of the dual-superconductor
picture [7–19] and the various lattice QCD Monte Carlo

simulations show that the MA gauge fixing seems to sup-
port these assumptions [10–19].
According to these studies, the diagonal gluons seem

to be significant to the infrared QCD physics, which is
called ‘‘infrared Abelian dominance.’’ Infrared Abelian
dominance means that off-diagonal gluons do not contrib-
ute to infrared QCD. Therefore, the essence of infrared
Abelian dominance is the behavior of the off-diagonal
gluon propagator.
The gluon propagators in the MA gauge has been inves-

tigated in SU(2) lattice Monte Carlo simulations [18–20].
To investigate the gluon propagators in the MA gauge, it is
desired to extract the gluons exactly from the link variables,
because the link variable cannot be expanded even for a
small lattice spacing due to the large fluctuation of gluons.
In SU(2) lattice case, the extraction is easy to be done
without any approximation, because of the SU(2) property.
With this extraction, the SU(2) lattice simulation suggests
that the off-diagonal gluons do not propagate in the infrared
region due to the effective mass Moff ’ 1:2 GeV, while the
diagonal gluon widely propagates [18].
The aim of this paper is to propose a method to extract

the gluons from the link variable directly and generally in
SU(3) lattice QCD, and to investigate the gluon propaga-
tors in the MA gauge.

II. SU(3) FORMALISM AND GLUON
PROPAGATORS IN MA GAUGE WITH

Uð1Þ3 � Uð1Þ8 LANDAU GAUGE

Using the SU(3) lattice QCD, we calculate the gluon
propagators in the MA gauge with the Uð1Þ3 � Uð1Þ8
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Landau gauge fixing. In the MA gauge, to investigate the
gluon propagators, we use the gluon fields extracted
directly from the link variables [21]. Here, we analytically
extract the gluon field A�ðxÞ from each link variableU�ðxÞ
as follows:

A�ðxÞ¼ 1

iag
LnU�ðxÞ¼ 1

iag
�y

�ðxÞLnUd
�ðxÞ��ðxÞ; (1)

where Ln is the natural logarithm defined on complex
numbers, Ud

�ðxÞ is the diagonalized unitary matrix,

and ��ðxÞ is the diagonalization unitary matrix of

eigenvectors.
TheMAgauge fixing is performed by themaximization of

RMA � X
x

X4
�¼1

tr½U�ðxÞ ~HUy
�ðxÞ ~H�; (2)

where ~H ¼ ðT3; T8Þ is the Cartan generator. In this gauge
fixing, there remains Uð1Þ3 � Uð1Þ8 gauge symmetry.
In order to study the gluon propagators, we fix the
residual gauge. After the Cartan decomposition for the

SU(3) link variables asU�ðxÞ � M�ðxÞu�ðxÞ with u�ðxÞ�
eið�3ðxÞT3þ�8ðxÞT8Þ2Uð1Þ3�Uð1Þ8 andM�ðxÞ¼ei

P
a�3;8

�aðxÞTa

2SUð3Þ=Uð1Þ3�Uð1Þ8, the residual gauge fixing is per-
formed by the maximization of

RUð1ÞL �X
x

X4
�¼1

Re tr½u�ðxÞ�: (3)

At� ¼ 5:7, 5.8, and 6.0, the lattice spacings a are estimated
asa ’ 0:186 fm, 0.152 fm, and 0.104 fm, respectively,which
lead to the string tension� ’ 0:89 GeV=fm in the interquark
potential [22].

After gauge fixing completely, we study the Euclidean
scalar combination of the diagonal (Abelian) gluon propa-
gator as

GAbel
�� ðrÞ � 1

2

X
a¼3;8

hAa
�ðxÞAa

�ðyÞi; (4)

and that of the off-diagonal gluon propagator as

Goff
��ðrÞ � 1

6

X
a�3;8

hAa
�ðxÞAa

�ðyÞi: (5)

These are expressed as the function of the four-

dimensional Euclidean distance r �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� � y�Þ2

q
. When

we consider the renormalization, these propagators are
multiplied by an r-independent constant, according to
the renormalized gluon fields obtained by multiplying a
constant renormalization factor.

The Monte Carlo simulation is performed with the stan-
dard plaquette action on the 164 lattice with � ¼ 5:7, 5.8,

and 6.0 at the quenched level. All measurements are done
every 500 sweeps after a thermalization of 10,000 sweeps
using the pseudo-heatbath algorithm. We prepare 50 gauge
configurations for the calculation at each �. The error is
estimated with the jackknife analysis.
We show in Fig. 1 the lattice QCD result for the

diagonal gluon propagator GAbel
�� ðrÞ and the off-diagonal

gluon propagator Goff
��ðrÞ in the MA gauge with the

Uð1Þ3 � Uð1Þ8 Landau gauge fixing. In the MA gauge,
GAbel

�� ðrÞ and Goff
��ðrÞ manifestly differ. The diagonal-gluon

propagator GAbel
�� ðrÞ takes a large value even at the long

distance. In fact, the diagonal gluons A3
�, A

8
� in the MA

gauge propagate over the long distance. On the other
hand, the off-diagonal gluon propagator Goff

��ðrÞ rapidly

decreases and is negligible for r * 0:4 fm in comparison
with GAbel

�� ðrÞ. Then, the off-diagonal gluons Aa
�ða � 3; 8Þ

seem to propagate only within the short range as
r & 0:4 fm. Thus, infrared Abelian dominance is found
in the MA gauge.
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FIG. 1 (color online). The SU(3) lattice QCD results of
GAbel

�� ðrÞ and Goff
��ðrÞ (top panel), and their logarithmic plots

(bottom panel) as the function of r �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� � y�Þ2

q
in the MA

gauge with the Uð1Þ3 � Uð1Þ8 Landau gauge fixing in the physi-
cal unit. The Monte Carlo simulation is performed on the 164

lattice with � ¼ 5:7, 5.8 and 6.0. The diagonal-gluon propagator
GAbel

�� ðrÞ takes a large value even at the long distance. On the

other hand, the off-diagonal gluon propagator Goff
��ðrÞ rapidly

decreases.
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III. ESTIMATION OF OFF-DIAGONAL GLUON
MASS IN MA GAUGE

Next, we investigate the effective gluon mass. We start
from the Lagrangian of the free massive vector field A�

with the mass M � 0 in the Proca formalism,

L ¼ 1

4
ð@�A� � @�A�Þ2 þ 1

2
M2A�A�; (6)

in the Euclidean metric. The scalar combination of the
propagator G��ðr;MÞ can be expressed with the modified

Bessel function K1ðzÞ as
G��ðr;MÞ ¼ hA�ðxÞA�ðyÞi

¼
Z d4k

ð2�Þ4 e
ik�ðx�yÞ 1

k2 þM2

 
4þ k2

M2

!

¼ 3
Z d4k

ð2�Þ4 e
ik�ðx�yÞ 1

k2 þM2
þ 1

M2
�4ðx� yÞ

¼ 3

4�2

M

r
K1ðMrÞ þ 1

M2
�4ðx� yÞ: (7)

In the infrared region with large Mr, Eq. (7) reduces to

G��ðr;MÞ ’ 3
ffiffiffiffiffi
M

p

2ð2�Þ32
e�Mr

r
3
2

; (8)

using the asymptotic expansion,

K1ðzÞ ’
ffiffiffiffiffi
�

2z

r
e�z

X1
n¼0

�ð32 þ nÞ
n!�ð32 � nÞ

1

ð2zÞn ; (9)

for large Rez.

In Fig. 2, we show the logarithmic plot of r3=2Goff
��ðrÞ and

r3=2GAbel
�� ðrÞ as the function of the four-dimensional

Euclidean distance r in the MA gauge with the Uð1Þ3 �
Uð1Þ8 Landau gauge fixing. From the linear slope on

r3=2Goff
��ðrÞ, the effective off-diagonal gluon mass Moff is

estimated. Note that the gluon-field renormalization does
not affect the gluon mass estimate, since it gives only an
overall constant factor for the propagator. We summarize in
Table I the effective off-diagonal gluon mass Meff obtained
from the slope analysis in the range of r ¼ 0:3–0:8 fm at
� ¼ 5:7, 5.8 and 6.0. The off-diagonal gluons seem to have
a large effective mass of Moff ’ 1:0–1:1 GeV. This result
approximately coincides with SU(2) lattice calculation [18].
Also for the diagonal gluon, we try to estimate its

effective mass Mdiag, although its propagator largely

depends on �, i.e., the volume or the spacing, as is indi-
cated in Fig. 2. We estimate the diagonal gluon mass Mdiag

from the slope analysis in the range of r ¼ 0:3–0:8 fm at
each �, and add the result in Table I. In any case, the
diagonal gluon seems to have a small effective mass
of Mdiag ’ 0:1–0:4 GeV. For the definite argument on

GAbel
�� ðrÞ and the diagonal gluon mass, more careful analy-

sis with a large-volume lattice would be needed.
Finally in this section, we discuss the relation between

infrared Abelian dominance and the off-diagonal gluon
mass. Due to the large effective massMoff , the off-diagonal
gluon propagation is restricted within about M�1

off ’ 0:2 fm
in the MA gauge. Therefore, at the infrared scale as
r � 0:2 fm, the off-diagonal gluons Aa

�ða � 3; 8Þ cannot
mediate the long-range force like the massive weak bosons
in theWeinberg-Salammodel, and only the diagonal gluons
A3
�, A

8
� can mediate the long-range interaction in the MA

gauge. In fact, in theMA gauge, the off-diagonal gluons are
expected to be inactive due to the large mass Moff in the
infrared region in comparison with the diagonal gluons.
Then, infrared Abelian dominance holds for r � M�1

off .

IV. ANALYSIS OF FUNCTIONAL FORM OF OFF-
DIAGONAL GLUON PROPAGATOR INMAGAUGE

In this section, we investigate the functional form of the
off-diagonal gluon propagator in the MA gauge in SU(3)
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FIG. 2 (color online). The logarithmic plot of r3=2Goff
��ðrÞ and

r3=2GAbel
�� ðrÞ as the function of the four-dimensional Euclidean

distance r in the MA gauge with the Uð1Þ3 � Uð1Þ8 Landau
gauge fixing, using the SU(3) lattice QCD with 164 at � ¼ 5:7,
5.8 and 6.0. The solid line denotes the logarithmic plot of
r3=2G��ðrÞ � r1=2K1ðMrÞ in the Proca formalism.

TABLE I. Summary table of conditions and results in SU(3)
lattice QCD. The off-diagonal gluon massMoff is estimated from
the slope analysis of r3=2Goff

��ðrÞ for r ¼ 0:3–0:8 fm at each �.

In the MA gauge, the off-diagonal gluons seem to have a large
effective mass of Moff ’ 1:0–1:1 GeV. The best-fit mass
parameter moff is also listed at each �: Goff

��ðrÞ in the range of

r ¼ 0:1–0:8 fm is well described with the four-dimensional
Euclidean Yukawa function �e�moffr=r with moff ’ 1:2–1:3GeV.
Weadd thediagonal gluon effectivemassMdiag at each�, estimated

in a similar manner toMoff .

Lattice size � a [fm] Moff [GeV] moff [GeV] Mdiag [GeV]

5.7 0.186 1.1 1.2 0.1

164 5.8 0.152 1.0 1.2 0.3

6.0 0.104 1.0 1.3 0.4
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lattice QCD. In the previous section, we compare the gluon
propagator with the massive vector boson propagator
and estimate the gluon mass. In fact, as shown in Fig. 2,
the gluon propagator would not be described by a
simple massive propagator Eq. (7) in whole region of
r ¼ 0:1–0:8 fm.

There is the similar situation in the Landau gauge [22].
The functional form of the gluon propagator cannot be
described by the propagator of the Proca formalism in
whole region of r ¼ 0:1–1:0 fm. The appropriate form is
the four-dimensional Euclidean Yukawa-type function
expð�mrÞ=r with a mass parameter m.

In the same way, in the MA gauge, we also compare the
gluon propagator with the four-dimensional Euclidean
Yukawa function. In Fig. 3, we show the logarithmic plot
of rGoff

��ðrÞ and rGAbel
�� ðrÞ as the function of the distance r

in the MA gauge with the Uð1Þ3 � Uð1Þ8 Landau gauge
fixing. Note that, in the whole region of r ¼ 0:1–0:8 fm,
the logarithmic plot of rGoff

��ðrÞ is almost linear, and there-

fore the off-diagonal gluon propagator is well expressed by
the four-dimensional Euclidean Yukawa function,

Goff
��ðrÞ ’ A

e�moffr

r
; (10)

with a mass parameter moff and a dimensionless constant
A. The best-fit mass parameter moff is given in Table I at
each � ¼ 5:7, 5.8, and 6.0.

We comment on the four-dimensional Euclidean
Yukawa-type propagator [22]. If the functional form of
the off-diagonal gluon is well described by the four-
dimensional Yukawa function, we analytically calculate
the off-diagonal zero-spatial-momentum propagator,

Doff
0 ðtÞ �

Z
d3xGoff

��ðrÞ; (11)

and obtain the spectral function �ð!Þ by the inverse
Laplace transformation. Also in theMA gauge, the spectral
function is found to have the negative-value region, as in
the Landau gauge [22–24].

V. SUMMARYAND CONCLUDING REMARKS

We have performed the first study on the gluon propa-
gators in the MA gauge with the Uð1Þ3 � Uð1Þ8 Landau
gauge fixing using the SU(3) lattice QCD. To investigate
the gluon propagators in the MA gauge, we have consid-
ered to derive the gluon fields from the SU(3) link vari-
ables. In this method, the gauge fields have been extracted
by diagonalizing the link variables and taking the loga-
rithm. Owing to this method, any quantity expressed by
the gluon fields can be calculated directly from link
variables, even if jagA�ðxÞj � 1 does not satisfy. As

one of the general merits of this method, we can directly
check the correspondence between gluon fields and the
continuum gauge fixing in arbitrary lattice gauge fixing
performed with link variables. In principle, with this
method, continuum gauge fixing with gluon fields can
be also performed directly.
With this method, we have measured the Euclidean

scalar combinations of the propagators G��ðrÞ for the

diagonal and the off-diagonal gluons, and found the
infrared Abelian dominance. The Monte Carlo simula-
tion is performed on the 164 lattice with � ¼ 5:7, 5.8,
and 6.0 at the quenched level. We have found that
the off-diagonal gluons behave as massive vector bosons
with the effective mass Moff ’ 1:0–1:1 GeV for r ¼
0:3–0:8 fm. The effective gluon mass has been estimated
from the linear fitting analysis of the logarithmic plot of

r3=2Goff
��ðrÞ. Due to the large value, the finite-size effect

for the off-diagonal gluon mass is expected to be ignored.
The large gluon mass shows that the off-diagonal gluons
cannot mediate the interaction over the large distance
as r � M�1

off , and such an infrared inactivity of the off-

diagonal gluons would lead infrared Abelian dominance
in the MA gauge.
On the other hand, from the behavior of the diagonal

gluon propagator GAbel
�� ðrÞ and r3=2GAbel

�� ðrÞ, the diagonal

gluons seem to behave as light vector bosons with the
effective mass Mdiag ’ 0:1–0:4 GeV for r ¼ 0:3–0:8 fm,

although careful analysis with a large-volume lattice is
needed for more definite argument on GAbel

�� ðrÞ.
Finally, we have also investigated the functional form

of the propagator in the MA gauge. We show that the
off-diagonal gluon propagator Goff

��ðrÞ is well described
by the four-dimensional Euclidean Yukawa-type form
with the mass parameter moff ’ 1:2–1:3 GeV in the
region of r ¼ 0:1–0:8 fm. This indicates that the spectral
function �ð!Þ of the off-diagonal gluons in the MA
gauge has the negative-value region as in the Landau
gauge.
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FIG. 3 (color online). The logarithmic plot of rGoff
��ðrÞ and

rGAbel
�� ðrÞ as the function of the four-dimensional Euclidean

distance r in the MA gauge with the Uð1Þ3 � Uð1Þ8 Landau gauge
fixing, using the SU(3) lattice QCD with 164 at � ¼ 5:7, 5.8 and
6.0. For rGoff

��ðrÞ, the approximate linear correlation is found.
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On the other hand, the functional form of the diagonal
gluon propagator seems to be the four-dimensional
Euclidean Yukawa function with the lighter mass parame-
ter. However, to discuss the functional form clearly, the
finite size effect is to be checked carefully just like the
estimation of the diagonal effective gluon mass.

In this study, we investigate the off-diagonal gluon
propagator. To be strict, the off-diagonal gluon propagator
consists of two scalar functions corresponding to longitu-
dinal and transverse components. Therefore, we will inves-
tigate each effective mass and the functional form of these
components.
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