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In the lattice QCD formalism, we investigate the relation between confinement and chiral symmetry
breaking. A gauge-invariant analytical relation connecting the Polyakov loop and the Dirac modes is
derived on a temporally odd-number lattice, where the temporal lattice size is odd, with the normal
(nontwisted) periodic boundary condition for link variables. This analytical relation indicates that low-
lying Dirac modes have little contribution to the Polyakov loop, and it is numerically confirmed at the
quenched level in both confinement and deconfinement phases. This fact indicates no direct one-to-one
correspondence between confinement and chiral symmetry breaking in QCD. Using the relation, we also
investigate the contribution from each Dirac mode to the Polyakov loop. In the confinement phase, we find
a new “positive/negative symmetry” of the Dirac-mode matrix element of the link-variable operator, and
this symmetry leads to the zero value of the Polyakov loop. In the deconfinement phase, there is no such
symmetry and the Polyakov loop is nonzero. Also, we develop a new method for spin-diagonalizing the
Dirac operator on the temporally odd-number lattice modifying the Kogut-Susskind formalism.
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I. INTRODUCTION

Color confinement and chiral symmetry breaking are
very important phenomena in nuclear and elementary
particle physics and have been investigated as interesting
nonperturbative phenomena in low-energy QCD in many
analytical and numerical studies [1–4]. However, their
properties are not sufficiently understood directly from
QCD. The Polyakov loop is an order parameter for quark
confinement [3]. At the quenched level, the Polyakov loop
is the exact order parameter for quark confinement, and its
expectation value is zero in the confinement phase and
nonzero in the deconfinement phase. As for chiral sym-
metry, the order parameter of chiral symmetry breaking is
chiral condensate, and low-lying Dirac modes are essential
for chiral symmetry breaking in QCD, for example,
according to the Banks-Casher relation [5].
The properties of confinement and chiral symmetry

breaking in QCD are an interesting and challenging subject,
and so is their relation [6–16]. From some studies, it is
suggested that confinement and chiral symmetry breaking
are strongly correlated. In finite temperature lattice QCD
calculation, some studies tell that the transition temper-
atures of deconfinement phase transition and chiral resto-
ration are almost the same [9]. Also, by removing QCD

monopoles in the maximally Abelian gauge, both confine-
ment and chiral symmetry breaking are simultaneously lost
in lattice QCD [7,8]. However, there is an opposite study
that the transition temperatures of deconfinement phase
transition and chiral restoration are not the same [14].
In recent lattice-QCD numerical studies, it is suggested

that the properties of confinement are not changed by
removing low-lying Dirac modes from the QCD vacuum
[16]. Since low-lying Dirac modes are essential for chiral
symmetry breaking, this calculation indicates that there is
no one-to-one correspondence between confinement and
chiral symmetry breaking in QCD.
To investigate the relation between confinement and

chiral symmetry breaking, the analytical relation between
the Polyakov loop and Dirac modes is very useful. For
example, the Polyakov loop is expressed in terms of Dirac
eigenvalues under the twisted boundary condition for link
variables [11]. However, the (anti)periodic boundary con-
dition is physically important for the imaginary-time
formalism at finite temperature. Recently, we derived a
relation between the Polyakov loop and Dirac modes on a
temporally odd-number lattice, where the temporal lattice
size is odd, with the normal nontwisted periodic boundary
condition for link variables [17,18].
In this study, we analytically and numerically investigate

the relation between confinement and chiral symmetry
breaking. In Sec. II, we derive an analytical relation
connecting the Polyakov loop and Dirac modes on the
temporally odd-number lattice. In Sec. III, we develop a
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new method for spin-diagonalizing the Dirac operator
applicable to the temporally odd-number lattice modifying
the Kogut-Susskind (KS) formalism [2]. In Sec. IV, for
more detailed analysis, we perform the numerical analysis
based on the relation. Section V is summary and discussion.

II. THE RELATION BETWEEN THE POLYAKOV
LOOP AND DIRAC MODES ON THE

TEMPORALLY ODD-NUMBER LATTICE

In this section, we derive the relation between the
Polyakov loop and Dirac modes on the temporally odd-
number lattice with the normal (nontwisted) periodic
boundary condition for link variables in both temporal
and spatial directions [17,18].

A. Operator formalism and Dirac mode in lattice QCD

As the preparation, we review operator formalism and
Dirac modes in the SUðNcÞ lattice QCD. We use a standard
square lattice with spacing a, and the notation of sites
s ¼ ðs1; s2; s3; s4Þðsμ ¼ 1; 2;…; NμÞ, and link variables
UμðsÞ ¼ eiagAμðsÞ with gauge fields AμðsÞ ∈ suðNcÞ and
gauge coupling g. In this paper, we define all the γ matrices
to be Hermite as γ†μ ¼ γμ.
We define the link-variable operator Û�μ by the matrix

element,

hsjÛ�μjs0i ¼ U�μðsÞδs�μ̂;s0 ; ð1Þ

where μ̂ is the unit vector in direction μ in the lattice unit.
Using the link-variable operator, the Polyakov loop LP is
expressed as

LP ¼ 1

3V
TrcfÛN4

4 g ¼ 1

3V

X
s

trc

�YN4−1

i¼0

U4ðsþ i4̂Þ
�
; ð2Þ

with the 4D lattice volume V ¼ N1N2N3N4. Here, “Trc”
denotes the functional trace of Trc ≡Pstrc with the trace
trc over color index.
Also, using the link-variable operator, covariant deriva-

tive operator D̂μ on the lattice is expressed as

D̂μ ¼
1

2a
ðÛμ − Û−μÞ: ð3Þ

Thus, in the lattice QCD, the Dirac operator D̂ is expres-
sed as

D̂ ¼ γμD̂μ ¼
1

2a

X4
μ¼1

γμðÛμ − Û−μÞ; ð4Þ

and its matrix element is explicitly expressed as

Ds;s0 ¼
1

2a

X4
μ¼1

γμ½UμðsÞδsþμ̂;s0 −U−μðsÞδs−μ̂;s0 �; ð5Þ

with U−μðsÞ≡U†
μðs − μ̂Þ. Since the Dirac operator is anti-

Hermite in this definition of γμ, the Dirac eigenvalue
equation is expressed as

D̂jni ¼ iλnjni; ð6Þ

with the Dirac eigenvalue iλn (λn ∈ R) and the Dirac
eigenstate jni. These Dirac eigenstates have the complete-
ness of

P
njnihnj ¼ 1. According to fD̂; γ5g ¼ 0, the

chiral partner γ5jni is also an eigenstate with the eigenvalue
−iλn. Using the Dirac eigenfunction ψnðsÞ≡ hsjni, the
explicit form for the Dirac eigenvalue equation is written by

1

2a

X4
μ¼1

γμ½UμðsÞψnðsþ μ̂Þ −U−μðsÞψnðs − μ̂Þ�

¼ iλnψnðsÞ: ð7Þ

The Dirac eigenfunction ψnðsÞ can be numerically obtained
in lattice QCD, besides a phase factor. By the gauge
transformation of UμðsÞ → VðsÞUμðsÞV†ðsþ μ̂Þ, ψnðsÞ
is gauge-transformed as

ψnðsÞ → VðsÞψnðsÞ; ð8Þ

which is the same as that of the quark field, although, to be
strict, there can appear an irrelevant n-dependent global
phase factor eiφn½V�, according to arbitrariness of the phase
in the basis jni [16].
The Dirac-mode matrix element of the link-variable

operator Ûμ can be expressed with ψnðsÞ:

hmjÛμjni ¼
X
s

hmjsihsjÛμjsþ μ̂ihsþ μ̂jni

¼
X
s

ψ†
mðsÞUμðsÞψnðsþ μ̂Þ: ð9Þ

Note that the matrix element is gauge invariant, apart from
an irrelevant phase factor. Actually, using the gauge trans-
formation Eq. (8), we find the gauge transformation of the
matrix element as [16]

hmjÛμjni ¼
X
s

ψ†
mðsÞUμðsÞψnðsþ μ̂Þ

→
X
s

ψ†
mðsÞV†ðsÞ · VðsÞUμðsÞV†ðsþ μ̂Þ

· Vðsþ μ̂Þψnðsþ μ̂Þ
¼
X
s

ψ†
mðsÞUμðsÞψnðsþ μ̂Þ ¼ hmjÛμjni: ð10Þ

To be strict, there appears an n-dependent global phase
factor, corresponding to the arbitrariness of the phase in the
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basis jni. However, this phase factor cancels as
eiφn½V�e−iφn½V� ¼ 1 between jni and hnj, and does not appear
for physical quantities such as the Wilson loop and the
Polyakov loop [16].
Note also that a functional trace of a product of the link-

variable operators corresponding to the nonclosed path is
exactly zero because of the definition of the link-variable
operator Eq. (1):

TrcðÛμ1Ûμ2 � � � ÛμN Þ
¼ trc

X
s

hsjÛμ1Ûμ2 � � � ÛμN jsi

¼ trc
X
s

Uμ1ðsÞUμ2ðsþ μ̂1Þ � � �UμN

�
sþ

XN−1

k¼1

μ̂k

�

× hsþ
XN
k¼1

μ̂kjsi ¼ 0; ð11Þ

with
P

N
k¼1 μ̂k ≠ 0 for the nonclosed path and the length of

the pathN. This is easily understood from Elitzur’s theorem
[19] that the vacuum expectation values of gauge-variant
operators are zero.
Dirac modes are strongly related to the chiral condensate

according to the Banks-Casher relation [5]:

hq̄qi ¼ − lim
m→0

lim
V→∞

πhρð0Þi; ð12Þ

where the Dirac eigenvalue density ρðλÞ is defined by

ρðλÞ≡ 1

Vphys

X
n

hδðλ − λnÞi; ð13Þ

with the space-time volume Vphys. From Eq. (13), the chiral
condensate is proportional to the Dirac zero-eigenvalue
density. Since the chiral condensate is the order parameter
of chiral symmetry breaking, low-lying Dirac modes are
essential for chiral symmetry breaking. In general, instead
of D, one can consider any (anti-)Hermitian operator, e.g.,
D2 ¼ DμDμ, and the expansion in terms of its eigenmodes
[20]. To investigate chiral symmetry breaking, however, it
is appropriate to consider D and the expansion by its
eigenmodes.
Note here that, although the Polyakov loop is defined by

gauge fields alone, there can be some relation to the Dirac
modes, as will be shown later. This is because the Dirac
modes are strongly affected by the gauge fields. A similar
example is instantons. The instantons are defined by gauge
fields alone; however, they have a close connection to the
axial U(1) anomaly, which relates to a fermionic symmetry.
In fact, even though the Polyakov loop is defined by gauge
fields alone, it has a physical meaning to consider the
relation to some fermionic modes in QCD.
The role of the low-lying Dirac modes has been

studied in the context of chiral symmetry breaking in

QCD. In particular, the removal of low-lying Dirac modes
has been recently investigated to realize the world of
“unbreaking chiral-symmetry” [15,16]. For example,
propagators and masses of hadrons are investigated after
the removal of low-lying Dirac modes, and parity-doubling
“hadrons” can be actually observed as bound states in the
chiral unbroken world [15]. Also, after the removal of low-
lying Dirac modes from the QCD vacuum, the confinement
properties such as the string tension are found to be almost
kept, while the chiral condensate is largely decreased [16].

B. The relation between Polyakov loop and Dirac modes
on the temporally odd-number lattice

We consider the temporally odd-number lattice, where
the temporal lattice size N4 is odd, with the normal
(nontwisted) periodic boundary condition for link-variables
in both temporal and spatial directions. The spatial lattice
size N1∼3ð> N4Þ is taken to be even.
First, as a key quantity, we introduce

I ≡ Trc;γðÛ4D̂
N4−1Þ; ð14Þ

with the functional trace Trc;γ ≡Pstrctrγ including also the
trace trγ over spinor index. From Eq. (4), Û4D̂

N4−1 is
expressed as a sum of products of N4 link-variable
operators. In Fig. 1, an example of the temporally odd-
number lattice is shown and each line corresponds to each
term in Û4D̂

N4−1 in Eq. (14). Here, note that one cannot
make any closed loops using products of odd-number link-
variable operators on a square lattice. Since now N4 is odd
and we consider the square lattice, Û4D̂

N4−1 does not have
any operators corresponding to closed paths except for the
term proportional to ÛN4

4 which corresponds to a closed
path and is gauge invariant because of the periodic
boundary condition for time direction, which is propor-
tional to the Polyakov loop. Therefore using Eqs. (2), (3),
and (11), we obtain

FIG. 1 (color online). An example of temporally odd-number
lattice. This is the N4 ¼ 5, Ni ¼ 6ði ¼ 1; 2; 3Þ case. Each line
corresponds to each term in Û4D̂

N4−1 in Eq. (14). On a square
lattice, one cannot make any closed loops using products of odd-
number link-variable operators.
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I ¼ Trc;γðÛ4D̂
N4−1Þ

¼ Trc;γfÛ4ðγ4D̂4ÞN4−1g
¼ 4TrcðÛ4D̂

N4−1
4 Þ

¼ 4

ð2aÞN4−1
TrcfÛ4ðÛ4 − Û−4ÞN4−1g

¼ 4

ð2aÞN4−1
TrcfÛN4

4 g

¼ 12V
ð2aÞN4−1

LP: ð15Þ

On the other hand, taking Dirac modes as the basis for
the functional trace in Eq. (14), we find

I ¼
X
n

hnjÛ4D̂
N4−1jni

¼ iN4−1
X
n

λN4−1
n hnjÛ4jni: ð16Þ

Combining Eqs. (15) and (16), we obtain a relation
between the Polyakov loop LP and the Dirac eigenvalues
iλn:

LP ¼ ð2aiÞN4−1

12V

X
n

λN4−1
n hnjÛ4jni: ð17Þ

This is a relation directly connecting the Polyakov loop and
the Dirac modes, i.e., a Dirac spectral representation of the
Polyakov loop. Since the Polyakov loop is gauge invariant
and Dirac modes can be obtained gauge-covariantly, this
relation is gauge invariant. From the relation (17), we can
investigate each Dirac mode contribution to the Polyakov
loop individually.
Since the relation (17) is satisfied for each gauge

configuration, of course, the relation is satisfied for the
gauge-configuration average:

hLPi ¼
ð2aiÞN4−1

12V

�X
n

λN4−1
n hnjÛ4jni

�
: ð18Þ

The outermost bracket hi means gauge-configuration
average.
We can discuss the relation between confinement and

chiral symmetry breaking in QCD from the relation (17).
Dirac matrix element hnjÛ4jni is generally nonzero. Thus,
the contribution from low-lying Dirac modes with jλnj≃ 0
is relatively small in the sum of the rhs in Eq. (17)
compared to the other Dirac-mode contribution, because
of the damping factor λN4−1

n . In fact, the low-lying Dirac
modes have little contribution to the Polyakov loop. This is
consistent with the previous numerical lattice result that
confinement properties, such as interquark potential and the

Polyakov loop, are almost unchanged by removing low-
lying Dirac modes from the QCD vacuum [16]. Thus, we
conclude from the relation (17) that there is no one-to-one
correspondence between confinement and chiral symmetry
breaking in QCD.
The relation (17) is valid only on the temporally odd-

number lattice, but this constraint is not so serious because
we are interested in continuum QCD and the parity of the
lattice size is not important for physics. In fact, by a similar
manner on Eq. (17), we can also derive a relation which
connects the Polyakov loop and Dirac modes on the even
lattice (see Appendix A).
In the derivation of the relation (17), we use only the

following set-up:
(1) odd N4

(2) square lattice
(3) temporal periodicity for link variables

Therefore, the relation (17) is valid in full QCD and in finite
temperature and density, and furthermore regardless of the
phase of the system. In other words, the relation (17) holds
in confinement and deconfinement phases, and in chiral
broken and restored phases. Of course, the dynamical quark
effect appears in the Polyakov loop LP, the Dirac eigen-
value distribution ρðλÞ, and the matrix elements hnjÛμjmi.
However, the relation Eq. (17) holds even in the presence of
dynamical quarks.
For quantitative discussion, we numerically calculate

each term in the relation (17) and investigate each Dirac-
mode contribution to the Polyakov loop individually. Using
Dirac eigenfunction ψnðsÞ, Dirac matrix element hnjÛμjmi
is explicitly expressed as Eq. (9). Thus, the relation (17) is
expressed as

LP ¼ ð2aiÞN4−1

12V

X
n

λN4−1
n

X
s

ψ†
nðsÞU4ðsÞψnðsþ 4̂Þ: ð19Þ

Dirac eigenvalues λn and Dirac eigenfunctions ψnðsÞ in
Eq. (19) can be obtained by solving the Dirac eigenequa-
tion (7) using link variables in each gauge configuration.
However, the numerical cost for solving the Dirac eige-
nequation is very large because of the huge dimension of
the Dirac operator ð4 × Nc × VÞ2. The numerical cost can
be partially reduced without approximation using the
Kogut-Susskind formalism [2] discussed in the next
section.

III. MODIFIED KOGUT-SUSSKIND FORMALISM
FOR TEMPORALLY ODD-NUMBER LATTICE

In our study, we need all the eigenvalues and the
eigenmodes of the Dirac operator D defined by Eq. (4).
This can be numerically performed by the diagonalization
of D. Here, to reduce the numerical cost, we use the
technique of the KS formalism for diagonalizing the Dirac
operator D. Note here that this procedure is just a
mathematical technique to diagonalize D, and this never
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means using a specific fermion like the KS fermion. In fact,
the diagonalization ofD is mathematically equivalent to the
use of the KS formalism.
The KS formalism is the method for spin-diagonalizing

the Dirac operator on the lattice. However, when the
periodic boundary condition is imposed on the lattice,
the original KS formalism is applicable only to the “even
lattice,” where all the lattice sizes are even number. In this
section, modifying the KS formalism, we develop the
“modified KS formalism” applicable to the temporally
odd-number lattice [18].

A. Normal Kogut-Susskind formalism for even lattice

First, we review the original KS formalism and consider
the even lattice, where all the lattice sizes N1∼4 are even
number. Using a matrix TðsÞ defined as

TðsÞ≡ γs11 γ
s2
2 γ

s3
3 γ

s4
4 ; ð20Þ

one can diagonalize all the γ matrices γμðμ ¼ 1; 2; 3; 4Þ:

T†ðsÞγμTðs� μ̂Þ ¼ ημðsÞ1; ð21Þ

where staggered phase ημðsÞ is defined as

η1ðsÞ≡ 1; ημðsÞ≡ ð−1Þs1þ���þsμ−1ðμ ≥ 2Þ: ð22Þ

Since the Dirac operator is expressed asD ¼ γμDμ, one can
spin-diagonalize the Dirac operatorX

μ

T†ðsÞγμDμTðsþ μ̂Þ

¼ diagðημDμ; ημDμ; ημDμ; ημDμÞ; ð23Þ

where the KS Dirac operator ημDμ is defined as

ðημDμÞss0 ¼
1

2a

X4
μ¼1

ημðsÞ½UμðsÞδsþμ̂;s0 − U−μðsÞδs−μ̂;s0 �:

ð24Þ

Equation (23) shows fourfold degeneracy of the Dirac
eigenvalue relating to the spinor structure of the Dirac
operator. Thus, one can obtain all the eigenvalues of the
Dirac operator by solving the KS Dirac eigenvalue equation

ημDμjnÞ ¼ iλnjnÞ; ð25Þ

with the KS Dirac eigenstate jnÞ. Since the KS Dirac
operator has only indices of sites and colors, the numerical
cost for solving the KS Dirac eigenvalue equation (25) is
smaller than that for solving the Dirac eigenvalue equa-
tion (7). Using the KS Dirac eigenfunction χnðsÞ≡ hsjnÞ,
the KS Dirac eigenvalue equation (25) is explicitly
expressed as

1

2a

X4
μ¼1

ημðsÞ½UμðsÞχnðsþ μ̂Þ − U−μðsÞχnðs − μ̂Þ�

¼ iλnχnðsÞ: ð26Þ

Also, KS Dirac matrix element ðnjÛμjmÞ is expressed as

ðnjÛμjmÞ ¼
X
s

ðnjsihsjÛμjsþ μ̂ihsþ μ̂jmÞ

¼
X
s

χnðsÞ†UμðsÞχmðsþ μ̂Þ: ð27Þ

Because of fourfold degeneracy of the Dirac eigenvalue,
there are four states whose eigenvalues are the same, and
we label these states with quantum number I ¼ 1; 2; 3; 4,
namely, jn; Ii [3]. In this notation, the Dirac eigenvalue
equation (7) is expressed as

Djn; Ii ¼ iλnjn; Ii: ð28Þ

The relation between the Dirac eigenfunction ψ I
nðsÞα ≡

hs; αjn; Ii and the spinless eigenfunction χnðsÞ is

ψ I
nðsÞα ¼ TðsÞαβCI

βχnðsÞ; ð29Þ

where C is defined as

CI
α ¼ δIα: ð30Þ

Substituting Eq. (30) for Eq. (29), one can obtain the
relation

ψ I
nðsÞα ¼ TðsÞαIχnðsÞ; ð31Þ

and quantum number I is mixed with spinor indices. This is
a natural result because the quantum number I is caused by
the fourfold degeneracy of the Dirac eigenvalue relating to
the spinor structure of the Dirac operator.
When one imposes the periodic boundary condition on

the lattice, the KS formalism is applicable only to the even
lattice. In fact, the periodic boundary condition of the
matrix TðsÞ is expressed as

Tðsþ Nμμ̂Þ ¼ TðsÞ ðμ ¼ 1; 2; 3; 4Þ; ð32Þ

and this relation is valid only on the even lattice. A spatial
periodic boundary condition is not necessarily needed
physically, but a temporal periodic boundary condition is
needed for the imaginary-time finite-temperature formal-
ism. Therefore, the original KS formalism is not applicable
to the temporally odd-number lattice.
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B. Modified Kogut-Susskind formalism for temporally
odd-number lattice

Now, we present the modified KS formalism as the
generalization applicable to the temporally odd-number
lattice, where the lattice size for temporal direction N4

is odd number and the lattice sizes for spatial direction
Niði ¼ 1; 2; 3Þ are even number.
Instead of the matrix TðsÞ, we define a matrix MðsÞ by

MðsÞ≡ γs11 γ
s2
2 γ

s3
3 γ

s1þs2þs3
4 : ð33Þ

The matrix MðsÞ is similar to the matrix TðsÞ, but
independent of the time component of the site s4. Using
the matrix MðsÞ, all the γ matrices are transformed to be
proportional to γ4:

M†ðsÞγμMðs� μ̂Þ ¼ ημðsÞγ4; ð34Þ
where ημðsÞ is the staggered phase given by Eq. (22). In the
Dirac representation, γ4 is diagonal as

γ4 ¼ diagð1; 1;−1;−1Þ ðDirac representationÞ; ð35Þ

and we take the Dirac representation in this paper. Thus,
one can spin-diagonalize the Dirac operator D ¼ γμDμ in
the case of the temporally odd-number lattice:X

μ

M†ðsÞγμDμMðsþ μ̂Þ

¼ diagðημDμ; ημDμ;−ημDμ;−ημDμÞ; ð36Þ

where ημDμ is the KS Dirac operator given by Eq. (24).
As a remarkable feature, the modified KS formalism

with the matrix MðsÞ is applicable to the temporally odd-
number lattice. In fact, the periodic boundary condition for
the matrix MðsÞ is given by

Mðsþ Nμμ̂Þ ¼ MðsÞ ðμ ¼ 1; 2; 3; 4Þ; ð37Þ

and the requirement is satisfied for all the μ on the
temporally odd-number lattice because the spatial lattice
sizes are even number and the matrix MðsÞ is independent
of the time component of the site s4. Moreover, the periodic
boundary condition for the staggered phase ημðsÞ is
satisfied on the temporally odd-number lattice because
the staggered phase ημðsÞ is also independent of the time
component of the site s4.
From Eq. (36), it is found that two positive modes and

two negative modes appear for each eigenvalue λn, relating
to the spinor structure of the Dirac operator on the
temporally odd-number lattice. Note also that the chiral
symmetry guarantees the chiral partner γ5jni to be an
eigenmode with the eigenvalue −iλn. Thus, like the case of
the even lattices, one can obtain all the eigenvalues of the
Dirac operator by solving the KS Dirac eigenvalue
equation (26).

In the case of the temporally odd-number lattice,
according to the spinor structure of the Dirac operator
given by Eq. (36), we label the Dirac eigenstates with
quantum number I ¼ 1; 2; 3; 4, namely, jn; Ii. For each KS
Dirac mode jnÞ, we construct these four Dirac eigenfunc-
tions ψ I

nðsÞα ≡ hs; αjn; Ii using the KS Dirac eigenfunction
χnðsÞ ¼ hsjnÞ,

ψ I
nðsÞα ¼ MðsÞαβCI

βχnðsÞ; ð38Þ
where C is given by Eq. (30). The Dirac eigenstates jn; Ii
have the eigenvalue iλn in the case of I ¼ 1; 2 and have the
eigenvalue −iλn in the case of I ¼ 3; 4. (Recall that the
Dirac eigenstates with iλn and the Dirac eigenstates with
−iλn appear in pairs because of chiral symmetry.)
Substituting Eq. (30) for Eq. (38), one can obtain the relation

ψ I
nðsÞα ¼ MðsÞαIχnðsÞ: ð39Þ

Next, consider rewriting the relation (17) in terms of the
KS Dirac modes. Taking the structure of the Dirac
eigenfunction (38) into consideration, Eq. (17) should be
written correctly as

LP ¼ ð2aiÞN4−1

12V

X
n;I

λN4−1
n hn; IjÛ4jn; Ii: ð40Þ

Using the relation (see Appendix B 2)

hn; IjÛ4jn; Ii ¼ ðnjÛ4jnÞ; ð41Þ
the rhs of Eq. (40) can be rewritten in terms of the KS Dirac
modes:X
n;I

λN4−1
n hn; IjÛ4jn; Ii ¼

X
n;I¼1;2

λN4−1
n hn; IjÛ4jn; Ii

þ
X

n;I¼3;4

ð−λnÞN4−1hn; IjÛ4jn; Ii

¼
X

n;I¼1;2;3;4

λN4−1
n hn; IjÛ4jn; Ii

¼
X

n;I¼1;2;3;4

λN4−1
n ðnjÛ4jnÞ

¼ 4
X
n

λN4−1
n ðnjÛ4jnÞ; ð42Þ

whereN4 − 1 is even on the temporally odd-number lattice.
Thus, one can obtain the relation

LP ¼ ð2aiÞN4−1

3V

X
n

λN4−1
n ðnjÛ4jnÞ ð43Þ

using the modified KS formalism. Note that the (modified)
KS formalism is an exact mathematical method for diag-
onalizing the Dirac operator and is not an approximation,
so that Eqs. (40) and (43) are completely equivalent.
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Therefore, each Dirac-mode contribution to the Polyakov
loop can be obtained by solving the eigenvalue equation of
the KS Dirac operator whose dimension is ðNc × VÞ2
instead of the original Dirac operator whose dimension
is ð4 × Nc × VÞ2 in the case of the temporally odd-number
lattice.
Note again that we never use a specific fermion like the

KS fermion here. We only diagonalize the Dirac operatorD
defined by Eq. (4) using the technique of the KS formalism,
and obtain all the eigenvalues and the eigenfunctions of D.
Actually, even without use of the KS formalism, the direct
diagonalization of D gives the same results, although the
numerical cost is larger.

IV. LATTICE QCD NUMERICAL ANALYSIS
AND DISCUSSIONS

In this section, we numerically perform SU(3) lattice
QCD calculations and discuss the relation between confine-
ment and chiral symmetry breaking based on the relation
(43) connecting the Polyakov loop and Dirac modes on the
temporally-odd number lattice.
The SU(3) lattice QCD Monte Carlo simulations are

performed with the standard plaquette action at the
quenched level in cases of both confinement and deconfine-
ment phases. For the confinement phase, we use a 103 × 5

lattice with β≡ 2Nc
g2 ¼ 5.6 (i.e., a≃ 0.25 fm), correspond-

ing to T ≡ 1=ðN4aÞ≃ 160 MeV. For the deconfinement
phase, we use a 103 × 3 lattice with β≡ 2Nc

g2 ¼ 5.7 (i.e.,

a≃ 0.20 fm), corresponding to T ≡ 1=ðN4aÞ≃ 330 MeV.
For each phase, we use 20 gauge configurations, which are
taken every 500 sweeps after the thermalization of 5000
sweeps.

A. Numerical analysis of the relation between
Polyakov loop and Dirac modes

To confirm the relation (43) numerically, we calculate
independently the lhs and rhs of the relation (43) and
compare these values. A part of the numerical results in
confinement and deconfinement phases is shown in
Tables I and II, respectively.
From Tables I and II, it is found that the mathematical

relation (43) is exactly satisfied for each gauge configu-
ration in both confinement and deconfinement phases, and
this result is consistent with the analytical discussions in
Sec. II. Then, one can discuss the relation between

confinement and chiral symmetry breaking based on the
relation (43), even with one gauge configuration. Of course,
the relation is satisfied for the gauge-configuration average.
In the deconfinement phase, the Z3 center symmetry is

spontaneously broken, and the Polyakov loop is propor-
tional to ei

2π
3
jðj ¼ 0;�1Þ for each gauge configuration at

the quenched level [3]. In this paper, we name the vacuum
where the Polyakov loop is almost real (j ¼ 0) “real
Polyakov-loop vacuum” and the other vacua “Z3-rotated
vacua." At the quenched level, we have numerically
confirmed that the relation (43) is exactly satisfied in the
Z3-rotated vacua as well as the real Polyakov-loop vacuum.
When dynamical quarks are included, the real Polyakov-

loop vacuum is selected as the stable vacuum, and the
Z3-rotated vacua become metastable states. Then, the real
Polyakov-loop vacuum would be more significant than
other vacua in the deconfinement phase. Even in full QCD,
the mathematical relation (43) is expected to be valid, and
we will confirm the relation and perform the numerical
analysis in full QCD in the next study.

B. Contribution from low-lying Dirac modes
to Polyakov loop

Next, we numerically confirm that low-lying Dirac
modes have little contribution to the Polyakov loop based
on the relation (43). This is expected from the analytical
relation (43) as discussed below Eq. (17); however, such a
numerical analysis is also meaningful because the behavior
of the matrix element ðnjÛ4jnÞ is nontrivial.
Since the rhs of Eq. (43) is expressed as a sum of the

Dirac-mode contribution, we can calculate the Polyakov
loop without low-lying Dirac-mode contribution as

ðLPÞIR-cut ¼
ð2aiÞN4−1

3V

X
jλnj>ΛIR

λN4−1
n ðnjÛ4jnÞ; ð44Þ

with the infrared (IR) cutoff ΛIR for Dirac eigenvalue. The
chiral condensate hq̄qi is expressed as

hq̄qi ¼ −
1

V
Trc;γ

1

Dþm
¼ −

1

V

X
n

1

iλn þm

¼ −
1

V

 X
λn>0

2m
λ2n þm2

þ ν

m

!
; ð45Þ

TABLE I. Numerical results for the lhs and rhs of the relation (43) in lattice QCD with 103 × 5 and β ¼ 5.6 for each gauge
configuration, where the system is in the confinement phase.

Configuration no. 1 2 3 4 5 6 7 8 9 10

ReL 0.00961 −0.00161 0.0139 −0.00324 0.000689 0.00423 −0.00807 −0.00918 0.00624 −0.00437
ImL −0.00322 −0.00125 −0.00438 −0.00519 −0.0101 −0.0168 −0.00265 −0.00683 −0.00448 0.00700
ð3VÞ−1Pnð2aiλnÞN4−1ReðnjÛ4jnÞ 0.00961 −0.00161 0.0139 −0.00324 0.000689 −0.00423 −0.00807 −0.00918 0.00624 −0.00437
ð3VÞ−1Pnð2aiλnÞN4−1ImðnjÛ4jnÞ −0.00322 −0.00125 −0.00438 −0.00519 −0.0101 −0.0168 −0.00265 −0.00683 −0.00448 0.00700
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wherem is the current quark mass and ν the total number of
zero modes of D.
We show the lattice QCD result of the Dirac eigenvalue

distribution ρðλÞ in confinement and deconfinement phases
in Fig. 2. In the deconfinement phase, the number of
low-lying Dirac modes is significantly reduced and
ρðλ ¼ 0Þ≃ 0, which means that the chiral condensate is
almost zero and the chiral symmetry is restored. Then, in
the deconfinement phase, it may be less interesting to
investigate the effect of low-lying Dirac modes to the
Polyakov loop, because low-lying Dirac modes are almost
absent.
The chiral condensate after the removal of contribution

from the low-lying Dirac modes below IR cutoff ΛIR is
expressed as

hq̄qiΛIR
¼ −

1

V

X
λn≥ΛIR

2m
λ2n þm2

: ð46Þ

In this paper, we take the IR cutoff of ΛIR ≃ 0.4 GeV. In
the confined phase, this IR Dirac-mode cut leads to

hq̄qiΛIR

hq̄qi ≃ 0.02 ð47Þ

and almost chiral-symmetry restoration in the case of
physical current-quark mass, m≃ 5 MeV [16].
A part of the numerical results for LP and ðLPÞIR-cut with

the IR cutoff of ΛIR ≃ 0.4 GeV in both confinement and
deconfinement phases is shown in Tables III and IV,
respectively.
From Tables III and IV, it is found that LP ≃ ðLPÞIR-cut is

almost satisfied for each gauge configuration in both
confinement and deconfinement phases. In the deconfine-
ment phase, we have confirmed that LP ≃ ðLPÞIR-cut is
satisfied for both the real Polyakov-loop vacuum and
Z3-rotated vacua. Thus, the configuration average hLPi≃
hðLPÞIR-cuti is of course almost satisfied. Therefore, the
low-lying Dirac modes have little contribution to the
Polyakov loop and are not essential for confinement.
From Eq. (47), however, the low-lying Dirac modes below
the IR cutoff jλnj < ΛIR ≃ 0.4 GeV are essential for chiral
symmetry breaking. Thus, we conclude that there is no one-
to-one correspondence between confinement and chiral
symmetry breaking. This result is consistent with the
previous numerical lattice analysis that the confinement
properties such as the Polyakov loop and the string tension,
or confinement force, are almost unchanged by removing
low-lying Dirac modes from QCD vacuum [16].

C. New “positive/negative symmetry” on Dirac matrix
element in confinement phase

Since Eq. (43) is the Dirac spectral expression of the
Polyakov loop, one can investigate the contribution from
each Dirac mode to the Polyakov loop. We calculate the
matrix element ðnjÛ4jnÞ and each Dirac-mode contribution
λN4−1
n ðnjÛ4jnÞ in both confinement and deconfine-
ment phases. The Polyakov loop is obtained by multi-
plying the sum of each Dirac-mode contributionP

nλ
N4−1
n ðnjÛ4jnÞ by the overall factor ð2aiÞN4−1=ð3VÞ

in Eq. (43).

TABLE II. Numerical results for the lhs and rhs of the relation (43) in lattice QCD with 103 × 3 and β ¼ 5.7 for each gauge
configuration, where the system is in the deconfinement phase.

Configuration no. 1 2 3 4 5 6 7 8 9 10

ReL 0.316 0.337 0.331 0.305 0.313 0.316 0.337 0.300 0.344 0.347
ImL −0.00104 −0.00597 0.00723 −0.00334 0.00167 0.000120 0.000482 −0.00690 −0.00102 −0.00255
ð3VÞ−1Pnð2aiλnÞN4−1ReðnjÛ4jnÞ 0.316 0.337 0.331 0.305 0.314 0.316 0.337 0.300 0.344 0.347

ð3VÞ−1Pnð2aiλnÞN4−1ImðnjÛ4jnÞ −0.00104 −0.00597 0.00723 −0.00334 0.00167 0.000120 0.000482 −0.00690 −0.00102 −0.00255
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FIG. 2 (color online). The lattice QCD result of the Dirac
eigenvalue distribution ρðλÞ in confinement and deconfine-
ment phases in the lattice unit. The upper figure shows ρðλÞ in
the confinement phase on a 103 × 5 lattice with β≡ 2Nc

g2 ¼ 5.6

(i.e., a≃ 0.25 fm). The lower figure shows ρðλÞ in the deconfine-
ment phase on a 103 × 5 lattice with β≡ 2Nc

g2 ¼ 6.0 (i.e.,

a≃ 0.10 fm).
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1. Confinement phase case

Figure 3 shows the numerical results for the matrix
elements ReðnjÛ4jnÞ and ImðnjÛ4jnÞ plotted against
Dirac eigenvalues λn in the lattice unit for one gauge
configuration in the confinement phase. Figure 4 shows
each Dirac-mode contribution to the Polyakov loop
λN4−1
n ReðnjÛ4jnÞ and λN4−1

n ImðnjÛ4jnÞ plotted against
Dirac eigenvalues λn in the lattice unit. In the confinement
phase, the real part of the matrix element ReðnjÛ4jnÞ is

generally nonzero in the whole region and is not small in
the low-lying Dirac-mode region from Fig. 3. However,
the Dirac-mode contribution to the Polyakov loop,
λN4−1
n ReðnjÛ4jnÞ, is small in the low-lying Dirac-mode
region because of the damping factor λN4−1

n from Fig. 4.
Thus, the damping factor λN4−1

n has an essential role
in Eq. (43).
On the other hand, from Fig. 3, the imaginary part

ImðnjÛ4jnÞ of the matrix element is relatively small in the

TABLE III. Numerical results for LP and ðLPÞIR-cut in lattice QCD with 103 × 5 and β ¼ 5.6 for each gauge configuration, where the
system is in the confinement phase.

Configuration no. 1 2 3 4 5 6 7 8 9 10

ReLP 0.00961 −0.00161 0.0139 −0.00324 0.000689 0.00423 −0.00807 −0.00918 0.00624 −0.00437
ImLP −0.00322 −0.00125 −0.00438 −0.00519 −0.0101 −0.0168 −0.00265 −0.00683 −0.00448 0.00700
ReðLPÞIR-cut 0.00961 −0.00160 0.0139 −0.00325 0.000706 0.00422 −0.00807 −0.00918 0.00624 −0.00436
ImðLPÞIR-cut −0.00321 −0.00125 −0.00437 −0.00520 −0.0101 −0.0168 −0.00264 −0.00682 −0.00448 0.00698

TABLE IV. Numerical results for LP and ðLPÞIR-cut in lattice QCD with 103 × 3 and β ¼ 5.7 for each gauge configuration, where the
system is in the deconfinement phase.

Configuration no. 1 2 3 4 5 6 7 8 9 10

ReLP 0.316 0.337 0.331 0.305 0.314 0.316 0.337 0.300 0.344 0.347
ImLP −0.00104 −0.00597 0.00723 −0.00334 0.00167 0.000120 0.0000482 −0.00690 −0.00102 −0.00255
ReðLPÞIR-cut 0.319 0.340 0.334 0.307 0.317 0.319 0.340 0.303 0.347 0.350
ImðLPÞIR-cut −0.00103 −0.00597 0.00724 −0.00333 0.00167 0.000121 0.0000475 −0.000691 −0.00102 −0.00256
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FIG. 3 (color online). The real part ReðnjÛ4jnÞ and the
imaginary part ImðnjÛ4jnÞ of the matrix element in the confine-
ment phase, plotted against the Dirac eigenvalue λn in the lattice
unit at β ¼ 5.6 on 103 × 5. There is the positive/negative
symmetry.
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FIG. 4 (color online). Each Dirac-mode contribution to the
Polyakov loop, λN4−1

n ReðnjÛ4jnÞ and λN4−1
n ImðnjÛ4jnÞ in the

confinement phase, plotted against the Dirac eigenvalue λn in
the lattice unit at β ¼ 5.6 on 103 × 5. There is the positive/
negative symmetry.
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low-lying Dirac-mode region, in comparison with
ReðnjÛ4jnÞ. In any case, λN4−1

n ImðnjÛ4jnÞ is small in
the low-lying Dirac-mode region as shown in Fig. 4.
Remarkably, as shown in Fig. 3, there is a new symmetry

of “positive/negative symmetry” in the confinement phase
for the distribution of Dirac-mode matrix element ðnjÛ4jnÞ,
i.e., ReðnjÛ4jnÞ and ImðnjÛ4jnÞ. Then, the distribution
of each Dirac-mode contribution to the Polyakov loop,
λN4−1
n ðnjÛ4jnÞ, has the same symmetry. Since the Polyakov
loop is proportional to the total sum of each Dirac-mode
contribution,

P
nλ

N4−1
n ðnjÛ4jnÞ, this new symmetry leads

to the zero value of the Polyakov loop, i.e., hLPi ¼ 0, in the
confinement phase. Moreover, the contribution to the
Polyakov loop from the arbitrary Dirac-mode region Λ1 ≤
λn ≤ Λ2 is zero due to the symmetry in the confinement
phase:X
Λ1≤λn≤Λ2

λN4−1
n ðnjÛ4jnÞ ¼ 0 ðconfinement phaseÞ: ð48Þ

This behavior in the confinement phase is consistent with
the previous works [16].
Note that the distribution of the matrix elements

ðnjÛ4jnÞ is not statistical fluctuation on the gauge ensem-
ble because the results shown here are for one configura-
tion. We find the same behavior for other gauge
configurations.
As for the N4 dependence of the matrix element

ðnjÛ4jnÞ in the confinement phase, we find almost the
same results, that there is the positive/negative symmetry
and low-lying Dirac modes have little contribution to the
Polyakov loop.

2. Deconfinement phase case

Since the deconfinement phase does not have confine-
ment and chiral symmetry breaking, it may be less
interesting to consider their relation there. In the deconfine-
ment phase, the Z3 center symmetry is spontaneously
broken, and there appear three types of vacua correspond-
ing to the Polyakov loop proportional to ei

2π
3
jðj ¼ 0;�1Þ,

while the confinement phase has a unique vacuum of
LP ≃ 0 on the Z3 symmetry. Here, we mainly consider the
real Polyakov-loop vacuum, since it is selected as the stable
vacuum when dynamical quarks are included.
We show in Figs. 5 and 6 the matrix elements ðnjÛ4jnÞ

and each Dirac-mode contribution λN4−1
n ReðnjÛ4jnÞ in the

deconfinement phase with real Polyakov loop, plotted
against the Dirac eigenvalue λn, in quenched lattice
QCD. The imaginary part ImðnjÛ4jnÞ of the matrix
element shows the same behavior as the case of the
confinement phase, where the gauge-configuration average
of the Polyakov loop is zero. [Compare Figs. 3(b) and 5(b).]
Then, we consider only the results for the real part of these
quantities in the deconfinement phase. Like the case of the
confinement phase, we show the results for one gauge

configuration since the results are almost the same for the
other configuration.
From Fig. 5, the real part of the matrix element,

ReðnjÛ4jnÞ, has a peak in the low-lying Dirac-mode
region. However, from Fig. 6, each Dirac-mode contribu-
tion λN4−1

n ReðnjÛ4jnÞ is relatively small in the low-lying
Dirac-mode region because of the damping factor λN4−1

n

like the case of the confinement phase. The Dirac-mode
contribution λN4−1

n ReðnjÛ4jnÞ takes a negative value for
most regions of λn, as shown in Fig. 6(a). This is consistent
with the positive value of the Polyakov loop and N4 ¼ 3,
considering the overall factor ð2aiÞN4−1=ð3VÞ in Eq. (43).
More quantitatively, only high-lying Dirac modes have
contribution to the nonzero value of the Polyakov loop
from Fig. 6.
In the deconfinement phase, there is no more positive/

negative symmetry for the distributions of the matrix
element ðnjÛ4jnÞ and each Dirac-mode contribution
λN4−1
n ðnjÛ4jnÞ, unlike the case of the confinement phase
with the symmetry. The Polyakov loop is nonzero because
of the asymmetry in the distribution of the matrix element
and each Dirac-mode contribution, while the Polyakov loop
in the confinement phase is zero because of the symmetry.
Thus, the appearance of the positive/negative symmetry on
the matrix element ðnjÛ4jnÞ is strongly related to the
deconfinement phase transition. This behavior is similar to
the Z3 center symmetry, which is not broken in the
confinement phase and is broken in the deconfinement
phase at the quenched level. Therefore, it is interesting to
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FIG. 5 (color online). The real part ReðnjÛ4jnÞ and the
imaginary part ImðnjÛ4jnÞ of the matrix element in the decon-
finement phase with real Polyakov loop, plotted against the Dirac
eigenvalue λn in the lattice unit at β ¼ 5.7 on 103 × 3.
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investigate the relation between the new positive/negative
symmetry and the Z3 center symmetry.
Next, we consider N4 dependence of the matrix element

ðnjÛ4jnÞ in the deconfinement phase with real Polyakov
loop. We numerically confirm that the relation (43) is
satisfied exactly and the contribution from the low-lying
Dirac modes to the Polyakov loop is negligible regardless
of the temporal lattice size N4. Figure 7 shows results for
the 103 × 5 lattice with β≡ 2Nc

g2 ¼ 6.0 (i.e., a≃ 0.10 fm),

corresponding to T ≡ 1=ðN4aÞ≃ 400 MeV. Since the
Polyakov loop is real in our calculation, we show only
the real part of the matrix element and each Dirac-mode
contribution in Fig. 7. There are some points in common
between the N4 ¼ 3 and the N4 ¼ 5 cases. We find again
no positive/negative symmetry and the real part of the
matrix element ReðnjÛ4jnÞ has a peak in the low-lying
Dirac-mode region and low-lying Dirac modes have little
contribution to the Polyakov loop because of the damping
factor λN4−1

n . However, there is a difference in the shape of
the distribution of the matrix element ReðnjÛ4jnÞ between
Figs. 5 and 7. The total sum of the Dirac-mode contribution
λN4−1
n ReðnjÛ4jnÞ is positive, as shown in Fig. 7(b). This is
consistent with the positive value of the Polyakov loop and
N4 ¼ 5, considering the overall factor ð2aiÞN4−1=ð3VÞ in
Eq. (43). In any case, independent of lattice size, the
positive/negative symmetry and the damping factor λN4−1

n

are important for the behavior of the Polyakov loop and the
low-lying Dirac-mode contribution.

Also, we investigate the Z3-rotated vacuum in the
deconfinement phase and the Dirac modes there, although
this vacuum is metastable and less significant when
dynamical quarks are included. The Z3-rotated vacuum
can be practically generated by changing the initial con-
dition in our Monte Carlo simulation. Using Z3 factors ω≡
e2πi=3 and ω2 ¼ e4πi=3, we denote the matrix element in the
ω-rotated configuration by ðnjÛ4jnÞω. For the comparison
between the matrix element ðnjÛ4jnÞω in the ω-rotated
configuration and ðnjÛ4jnÞ in the real Polyakov-loop
configuration, we define longitudinal and transverse matrix
elements, Reðω−1ðnjÛ4jnÞωÞ and Imðω−1ðnjÛ4jnÞωÞ, for
the ω-rotated configuration. The longitudinal and trans-
verse matrix elements correspond to ReðnjÛ4jnÞ and
ImðnjÛ4jnÞ in the real Polyakov-loop configuration,
respectively. Figure 8 shows the matrix elements
in the Z3-rotated vacuum by ω on the 103 × 5 lattice at
β≡ 2Nc

g2 ¼ 6.0 (i.e., a≃ 0.10 fm), corresponding to T≡
1=ðN4aÞ≃ 400 MeV. There is no positive/negative sym-
metry in the distribution of the longitudinal matrix elements
Reðω−1ðnjÛ4jnÞωÞ, as well as ReðnjÛ4jnÞ. There is
approximate positive/negative symmetry except for the IR
region in the distribution of the transverse matrix elements
Imðω−1ðnjÛ4jnÞωÞ, as well as ImðnjÛ4jnÞ. Here, the
asymmetry in the IR region of Imðω−1ðnjÛ4jnÞωÞ gives
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FIG. 6 (color online). Each Dirac-mode contribution to the
Polyakov loop, λN4−1

n ReðnjÛ4jnÞ and λN4−1
n ImðnjÛ4jnÞ, in the

deconfinement phase with real Polyakov loop, plotted against
the Dirac eigenvalue λn in the lattice unit at β ¼ 5.7 on 103 × 3.
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FIG. 7 (color online). The real part of the matrix element
ReðnjÛ4jnÞ and each Dirac-mode contribution to the Polyakov
loop λN4−1

n ReðnjÛ4jnÞ in the deconfinement phase with real
Polyakov loop, plotted against the Dirac eigenvalue λn in the
lattice unit at β ¼ 6.0 on 103 × 5. The sign of λN4−1

n ReðnjÛ4jnÞ
is different from Fig. 6 due to the overall factor
ð2aiÞN4−1=ð3VÞ in Eq. (43).
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almost no influence on the Polyakov loop because of the
damping factor λN4−1

n . Thus, the matrix elements
ω−1ðnjÛ4jnÞω and ðnjÛ4jnÞ have similar features, in spite
of some difference in the shape of the distribution. The
results for the Z3-rotated vacuum by ω2 are similar to those
for the ω-rotated one, which is natural because of the
complex conjugation symmetry.

V. SUMMARY AND CONCLUDING
REMARKS

In this study, we analytically and numerically have
discussed the relation between confinement and chiral
symmetry breaking based on the lattice QCD formalism.
First, we derive the analytical relation (17) connecting the
Polyakov loop and Dirac modes on the temporally odd-
number lattice with the normal periodic boundary condition
for link variables. Since the Polyakov loop is an order
parameter of quark confinement and low-lying Dirac
modes are essential for chiral symmetry breaking, this
relation is useful for discussing the relation between
confinement and chiral symmetry breaking. This relation
is valid not only at the quenched level also but in the full
QCD and in finite temperature/density. It is expected from
the relation (17) that low-lying Dirac modes have little
contribution to the Polyakov loop.
The numerical costs, in general, for solving the Dirac

eigenequation are very large. On even lattice, where all the

lattice sizes are even number, the numerical cost can be
reduced by using the KS formalism. Although the KS
formalism is not directly applicable to the temporally odd-
number lattice, we have developed the modified KS
formalism applicable to the temporally odd-number lattice.
Using the modified KS formalism, we derive the relation
(43) which is equivalent to the original relation (17).
Thus the numerical cost can be reduced on the temporally
odd-number lattice.
Next, we have performed the numerical lattice QCD

Monte Carlo calculation with the standard plaquette action
at the quenched level in both confinement and deconfine-
ment phases. Of course, we impose the periodic boundary
condition to the temporally odd-number lattice. Then we
have numerically confirmed that the relation (17) exactly
holds and low-lying Dirac modes have little contribution to
the Polyakov loop in both confinement and deconfinement
phases, where the damping factor λN4−1

n in the relation (17)
plays an important role. These facts are observed similarly
using the Z3-rotated gauge configurations. Thus, we con-
clude that the relation between confinement and chiral
symmetry breaking is not one-to-one correspondence
in QCD.
Also, we have investigated the property of the Dirac-

mode matrix element ðnjÛ4jnÞ which appears in the
relation (43). In the confinement phase, there is the
positive/negative symmetry in the distribution of the matrix
element ðnjÛ4jnÞ, and hence the Polyakov loop is zero. In
the deconfinement phase, however, the positive/negative
symmetry disappears in the distribution of the matrix
element ðnjÛ4jnÞ, and then the Polyakov loop is nonzero.
Corresponding to this, after the Z3 rotation in the decon-
finement phase, the distribution of the transverse matrix
elements has the positive/negative symmetry while the
distribution of the longitudinal matrix elements does not.
However, the transverse matrix elements have asymmetry
in the IR region of Dirac eigenvalues. Fortunately, this
asymmetry does not affect the Polyakov loop because of
the damping factor λN4−1

n in Eq. (43). In this way, we have
discovered a new symmetry of the matrix element
ðnjÛ4jnÞ, which distinguishes confinement and deconfine-
ment phases like the center symmetry in the pure-gauge
theory. Thus, it is interesting to investigate the relation
between the positive/negative symmetry and the center
symmetry, which is very related to confinement [4].
In this study, we have performed the numerical analysis

at the quenched level. However, the full QCD calculation is
desired for more quantitative discussion. In particular, it is
interesting to investigate the properties of the new positive/
negative symmetry of the matrix element ðnjÛ4jnÞ in the
full QCD calculation.
Recently, the importance of the ratio of susceptibility of

the Polyakov loop for the deconfinement transition was
pointed out. Strictly speaking, the Polyakov loop must be
renormalized for the physical continuum limit. However,

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

-2 -1  0  1  2

R
e(

ω
-1

(n
|U

4|n
) ω

)

λn[a-1]

-0.1
-0.05

 0
 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

-2 -1  0  1  2

Im
(ω

-1
(n

|U
4|n

) ω
)

λn[a-1]

FIG. 8 (color online). The longitudinal matrix element
Reðω−1ðnjÛ4jnÞωÞ and the transverse matrix element
Imðω−1ðnjÛ4jnÞωÞ in the Z3-rotated vacuum by ω in the
deconfinement phase, plotted against Dirac eigenvalues λn in
the lattice unit at β ¼ 6.0 on 103 × 5.
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one can discuss the deconfinement phase transition by
considering the ratio of susceptibility of the Polyakov loop
without uncertainties of renormalization of the Polyakov
loop. We are now investigating the relation between
confinement and chiral symmetry breaking using the ratio
of the susceptibility of the Polyakov loop [21].
Also, it is interesting to study the relation between theQCD

monopole and low-lying Dirac modes by using a gauge-
invariant Dirac-mode expansion [16]. This is because the
QCDmonopole in themaximally Abelian gauge is important
for nonperturbative phenomena of low-energy QCD, such as
confinement and chiral symmetry breaking [7,8].
Finally, we note as a consequence of our conclusion a

possible difference between confinement and chiral sym-
metry breaking in QCD, which our study indicates. These
results imply that QCD can show a new phase, where chiral
symmetry is restored but the quark is confined [14–16]. For
example, nontrivial effects of strong electromagnetic fields
on chiral symmetry can change the structure of the QCD
vacuum [22].
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APPENDIX A: DERIVATION OF A RELATION
BETWEEN THE POLYAKOV LOOP AND DIRAC

MODES ON THE EVEN LATTICE

In this paper, we consider the temporally odd-number
lattice, derive the analytical relation connecting the
Polyakov loop and Dirac modes and discuss the relation
between confinement and chiral symmetry breaking. In this
section, however, we derive the relation between the
Polyakov loop and Dirac modes on the even lattice where
all the lattice sizes are even number with the periodic
boundary condition for link variables.
First, corresponding to I in Eq. (14), we introduce

~IðN4Þ≡ Trc;γðγξðN4Þ
4 ÛN4=2þ1

4 D̂N4=2−1Þ; ðA1Þ

where ξðN4Þ is defined as

ξðN4Þ ¼
�
0 ðN4=2∶ oddÞ
1 ðN4=2∶ evenÞ : ðA2Þ

Like the case of the temporally odd-number lattice,
ÛN4=2þ1

4 D̂N4=2−1 is expressed as a sum of products of N4

link-variable operators. In Fig. 9, an example of the even
lattice is shown and each line corresponds with each term in
ÛN4=2þ1

4 D̂N4=2−1 in Eq. (A1). Note that there are no closed
loops in ÛN4=2þ1

4 D̂N4=2−1 because the number of Û4 is
larger than that of Û−4. Thus, Û

N4=2þ1
4 D̂N4=2−1 does not

have any operators corresponding to closed paths except for
the term proportional to ÛN4

4 , which is proportional to the
Polyakov loop. Therefore using the periodic boundary
condition for temporal direction and Eqs. (2) and (11),
we obtain

~I ¼ Trc;γðγξðN4Þ
4 ÛN4=2þ1

4 D̂N4=2−1Þ
¼ Trc;γfγξðN4Þ

4 ÛN4=2þ1
4 ðγ4D̂4ÞN4=2−1g

¼ Trc;γðγξðN4ÞþN4=2−1
4 ÛN4=2þ1

4 D̂N4=2−1
4 Þ

¼ 4TrcðÛN4=2þ1
4 D̂N4=2−1

4 Þ

¼ 4

ð2aÞN4=2−1
TrcfÛN4=2þ1

4 ðÛ4 − Û−4ÞN4=2−1g

¼ 4

ð2aÞN4=2−1
TrcfÛN4

4 g

¼ 12V

ð2aÞN4=2−1
LP: ðA3Þ

On the other hand, taking Dirac modes as the basis for
the functional trace in Eq. (A1), we find

~I ¼
X
n

hnjγξðN4Þ
4 ÛN4=2þ1

4 D̂N4=2−1jni

¼ iN4=2−1
X
n

λN4=2−1
n hnjγξðN4Þ

4 ÛN4=2þ1
4 jni: ðA4Þ

Combining Eqs. (A3) and (A4), we derive the relation
between the Polyakov loop LP and the Dirac eigenvalues
iλn on the even lattice:

FIG. 9 (color online). An example of even lattice. This is the
Nμ ¼ 6ðμ ¼ 1; 2; 3; 4Þ case. Each line corresponds to each term

in ÛN4=2þ1
4 D̂N4=2−1 in Eq. (A1).
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LP ¼ ð2aiÞN4=2−1

12V

X
n

λN4=2−1
n hnjγξðN4Þ

4 ÛN4=2þ1
4 jni: ðA5Þ

Comparing Eqs. (17) and (A5), Eq. (17) is more simple
than Eq. (A5). However, physics should not depend on
temporal lattice size N4 and damping factor λN4=2−1

n is
expected to have an essential role in the rhs of Eq. (A5) like
the case of the temporally odd-number lattice.

APPENDIX B: THE RELATION BETWEEN
THE DIRAC MATRIX ELEMENT AND THE

KS DIRAC MATRIX ELEMENT

In this section, we consider the relation between the
Dirac matrix element and the KS Dirac matrix element in
both even and temporally odd-number lattices.

1. The case of the even lattice

First, we consider the even lattice and the original KS
formalism. Using Eq. (31), the Dirac matrix element of a
link variable operator hn; IjÛμjm; Ji can be expressed by
the KS Dirac eigenfunction as

hn; IjÛμjm; Ji
¼
X
s;α

ψ I
nðsÞ†αUμðsÞψJ

mðsþ μ̂Þα

¼
X
s;α

χnðsÞ†T†ðsÞIαUμðsÞTðsþ μ̂ÞαJχmðsþ μ̂Þ

¼
X
s

χnðsÞ†fT†ðsÞTðsþ μ̂ÞgIJUμðsÞχmðsþ μ̂Þ: ðB1Þ

T†ðsÞTðsþ μ̂Þ can be calculated from the definition of the
matrix TðsÞ (20):

T†ðsÞTðsþ μ̂Þ ¼ ~ηðEÞμ ðsÞγμ; ðB2Þ

where ~ηðEÞμ ðsÞ is a sign function defined as

~ηðEÞμ ðsÞ ¼ ð−1Þsμþ1þ���þs4ðμ ≤ 3Þ; ~ηðEÞ4 ðsÞ ¼ 1; ðB3Þ

which is similar to the staggered phase (22). Thus, the Dirac
matrix element is expressed as

hn; IjÛμjm; Ji
¼ ðγμÞIJ

X
s

~ηðEÞμ ðsÞχnðsÞ†UμðsÞχmðsþ μ̂Þ

¼ ðγμÞIJðnj ~̂ηðEÞμ ÛμjmÞ; ðB4Þ
where ~̂ηðEÞμ is an operator defined as

hsj ~̂ηðEÞμ js0i ¼ ~ηðEÞμ ðsÞδss0 ; ðB5Þ
corresponding to the sign function ~ηðEÞμ ðsÞ. In particular,
since ~ηðEÞ4 ðsÞ ¼ 1 is satisfied for μ ¼ 4, we obtain

hn; IjÛ4jm; Ji ¼ ðγ4ÞIJðnjÛ4jmÞ: ðB6Þ

Not only the Dirac matrix element of the one link-
variable operator hn; IjÛμjm; Ji, but also that of another
operator consisting of link-variable operators
hn; IjÔðÛÞjm; Ji can be evaluated in terms of the KS
Dirac matrix element or the KS Dirac eigenfunction χnðsÞ
by a similar calculation on the even lattice.

2. The case of the temporally odd-number lattice

Next, we consider the temporally odd-number lattice and
the modified KS formalism. Like the case of the even
lattice, using Eq. (39), the Dirac matrix element of a link
variable operator hn; IjÛμjm; Ji can be expressed by the KS
Dirac eigenfunction as

hn; IjÛμjm; Ji
¼
X
s;α

ψ I
nðsÞ†αUμðsÞψJ

mðsþ μ̂Þα

¼
X
s;α

χnðsÞ†M†ðsÞIαUμðsÞMðsþ μ̂ÞαJχmðsþ μ̂Þ

¼
X
s

χnðsÞ†fM†ðsÞMðsþ μ̂ÞgIJUμðsÞχmðsþ μ̂Þ:

ðB7Þ

Corresponding to Eq. (B2),M†ðsÞMðsþ μ̂Þ is expressed as

M†ðsÞMðsþ μ̂Þ ¼ ~ηðOÞμ ðsÞγμγ4; ðB8Þ

where ~ηðOÞμ ðsÞ is a sign function defined as

~ηðOÞμ ðsÞ ¼ ð−1Þs1þ���þsμðμ ≤ 3Þ; ~ηðOÞ4 ðsÞ ¼ 1; ðB9Þ

which is different from both the staggered phase ημðsÞ and
the sign function in the even lattice ~ηðEÞμ ðsÞ. Thus, the Dirac
matrix element is expressed as

hn; IjÛμjm; Ji
¼ ðγμγ4ÞIJ

X
s

~ηðOÞμ ðsÞχnðsÞ†UμðsÞχmðsþ μ̂Þ

¼ ðγμγ4ÞIJðnj ~̂ηðOÞμ ÛμjmÞ; ðB10Þ

where ~̂ηðOÞμ is an operator defined as

hsj ~̂ηðEÞμ js0i ¼ ~ηðEÞμ ðsÞδss0 ; ðB11Þ

corresponding to the sign function ~ηðOÞμ ðsÞ. In particular,

since ~ηðOÞ4 ðsÞ ¼ 1 is satisfied for μ ¼ 4, we obtain

hn; IjÛ4jm; Ji ¼ δIJðnjÛ4jmÞ: ðB12Þ
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For a more special case, the diagonal component
hn; IjÛ4jn; Ii is expressed as

hn; IjÛ4jn; Ii ¼ ðnjÛ4jnÞ: ðB13Þ

Like the case of the even lattice, one can evaluate the
Dirac matrix element of the other operator hn; IjÔðÛÞjm; Ji
using the KS Dirac matrix element or the KS Dirac
eigenfunction χnðsÞ on the temporally odd-number lattice.
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