
Title Pullbacks of Hermitian Maass lifts

Author(s) Atobe, Hiraku

Citation Journal of Number Theory (2015), 153: 158-229

Issue Date 2015-03-04

URL http://hdl.handle.net/2433/198810

Right

© 2015 Elsevier Inc. Licensed under the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/. NOTICE:
this is the author's version of a work that was accepted for
publication in Journal of Number Theory. Changes resulting
from the publishing process, such as peer review, editing,
corrections, structural formatting, and other quality control
mechanisms may not be reflected in this document. Changes
may have been made to this work since it was submitted for
publication. A definitive version was subsequently published in
Journal of Number Theory, Volume 153, Pages 158‒229.
DOI:10.1016/j.jnt.2015.01.004.; 許諾条件により本文ファイ
ルは2017-03-07に公開.; This is not the published version.
Please cite only the published version. この論文は出版社版
でありません。引用の際には出版社版をご確認ご利用く
ださい。

Type Journal Article

Textversion author

Kyoto University

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Kyoto University Research Information Repository

https://core.ac.uk/display/39322124?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


PULLBACKS OF HERMITIAN MAASS LIFTS

HIRAKU ATOBE

Abstract. We consider pullbacks of hermitian Maass lifts of degree 2 to the submanifold of
diagonal matrices. By using these pullbacks, we give an explicit formula for central values of

L-functions for GL(2)×GL(2).

1. Introduction

Pullbacks of Siegel Eisenstein series have been studied by Böcherer [1], Garrett [8] and Heim
[13]. Pullbacks of hermitian Eisenstein series have been studied by Furusawa [5], Harris [10]
and Saha [23]. These pullbacks have been used to study the algebraicity of critical values of
certain automorphic L-functions. Moreover, one might consider pullbacks of cusp forms. The
(Gan–)Gross–Prasad conjecture [9], [6] would relate critical values of certain L-functions and
the pullbacks of an automorphic representation of SO(n + 1) to SO(n) or one of U(n + 1) to
U(n). For example, in [26], [15] and [7], the pullbacks of an automorphic representation of
SO(n + 1) to SO(n) for small n were studied. In [27] and [28], Zhang studied the Gan–Gross–
Prasad conjecture for U(n+ 1) to U(n) for general n assuming some additional conditions. On
the other hand, Ichino [14] gave an explicit formula for pullbacks of Saito–Kurokawa lifts, which
are Siegel cusp forms of degree 2, in terms of central critical values of L-functions for SL2×GL2.
Ichino and Ikeda [16] gave an explicit formula for the restriction of hermitian Maass lifts of
degree 2 to the Siegel upper half space of degree 2 in terms of central critical values of triple
product L-functions. These results may be also regarded as special cases of the Gross–Prasad
conjecture. In this paper, we relate pullbacks of hermitian Maass lifts of degree 2 to central
values of L-functions for GL2 ×GL2.

Let us describe our results. Let K = Q(
√
−D) be an imaginary quadratic field with dis-

criminant −D < 0. We denote the ideal class group of K by ClK and the class number of K
by hK . The primitive Dirichlet character corresponding to K/Q is denoted by χ. Let κ be
a positive integer and f ∈ S2κ+1(Γ0(D), χ) be a normalized Hecke eigenform. For an integral
ideal c of K which is prime to D, we denote by Fc the hermitian Maass lift of f which satis-
fies the Maass relation for c. The lift Fc is an automorphic form on the hermitian upper half

space H2 of degree 2 with respect to a certain arithmetic subgroup Γ
(2)
K [c] ⊂ U(2, 2)(Q). See

Sect. 2 for details. Let C = N(c) be the ideal norm of c and d(C) = diag(1, C) ∈ GL2(Q).
The pullback Fc|H×H is in S2κ+2(SL2(Z)) ⊗ S2κ+2(d(C)

−1SL2(Z)d(C)). For each normalized
Hecke eigenform g ∈ S2κ+2(SL2(Z)), we put gC(z) = g(z/C) ∈ S2κ+2(d(C)

−1SL2(Z)d(C)) and
consider the period integral ⟨Fc|H×H, g × gC⟩ given by

⟨Fc|H×H, g × gC⟩

=

∫
d(C)−1SL2(Z)d(C)\H

∫
SL2(Z)\H

Fc

((
z1 0
0 z2

))
g(z1)gC(z2)y

2κ
1 y2κ2 dz1dz2.

Let L(s, f × g) and L(s, f × g × χ) be the Rankin–Selberg L-function and its twist given by f
and g of degree 4. We put L∞(s) = ΓC(s + 2κ + 1/2)ΓC(s + 1/2) with ΓC(s) = 2(2π)−sΓ(s).
They satisfy the functional equation

L∞(s)L(s, f × g) = −D1−2s+2κaf (D)−2L∞(1− s)L(1− s, f × g × χ),

Key words and phrases. automorphic form; special value of L-functions; period.
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2 HIRAKU ATOBE

where af (D) is the D-th Fourier coefficient of f . Let L(s, χ) be the Dirichlet L-function asso-
ciated with χ.

Our main result is as follows.
Theorem 3.2. The identity

L

(
1

2
, f × g

)
=
L(1, χ)(4π)2κ+1

af (D)(2κ)!
· 1

hK

∑
[c]∈ClK

⟨Fc|H×H, g × gC⟩
⟨gC , gC⟩

holds.
Note that the period integrals do not appear in the (Gan–)Gross–Prasad conjecture. We

remark that the period integrals appearing in the right hand side are not square. This is a
difference to the results of [14] or [16], which relate the central critical values of certain L-
functions to the square of the absolute values of period integrals.

The sketch of proof is as follows. The lifts {Fc} give an automorphic form Lift (2)(f) on

U(2, 2)(AQ). We consider the restriction of Lift (2)(f) to (U(1, 1) × U(1, 1))(AQ). The group
U(2, 2) is closely related to O(4, 2) (see Sect. 6). So we may regard a certain theta lift on

O(4, 2)(AQ) as a function on U(2, 2)(AQ). First, we prove that the theta lift is equal to Lift (2)(f)
up to scalar multiplication (Proposition 6.2). The group U(1, 1) × U(1, 1) is closely related to
O(2, 2)×O(2) and the function g× gC gives an automorphic form on O(2, 2)(AQ) (see Sect. 7).
Therefore, by the following seesaw identity, we find that a sum of period integrals of {Fc} is
equal to a sum of central values of L(s, f × g) and its twists (Corollary 9.7).

SL2 × SL2 O(4, 2)

SL2

jjjjjjjjjjjjjjjjjj
O(2, 2)×O(2)

TTTTTTTTTTTTTTTT

.

Finally, we show that these equations and the genus theory imply the main theorem.
This paper is organized as follows. In Sect. 2, we review the theory of hermitian Maass

lifts. In Sect. 3, we state our main result. In Sects. 4 and 5, we recall the basic facts about
automorphic forms on GL2 and theta lifts, respectively. In Sect. 6, we study the hermitian
Maass lifting. In Sects. 7 and 8, we recall the theta correspondence for (GL2,GO(2, 2)) and
(SL2,O(2)), respectively. In Sect. 9, we prove identities for the above seesaw and we show that
these identities and the genus theory imply the main result.

Acknowledgments. The author would like to thank my advisor, Prof. Atsushi Ichino.
Without his helpful support, this work would not have been completed. The author is also
thankful to Prof. Tamotsu Ikeda for useful discussions.

Notation. Let K = Q(
√
−D) be an imaginary quadratic field with discriminant −D < 0.

We denote by o the ring of integers of K. Let x 7→ x be the non-trivial Galois automorphism of
K over Q. The primitive Dirichlet character corresponding to K/Q is denoted by χ. We regard
K1 = {α ∈ K×|NK/Q(α) = 1} as an algebraic group over Q. We denote by JDK (resp. JDo ) the
set of fractional ideals (resp. integral ideals) of K which are prime to D. Here, we say that a
fractional ideal c is prime to D if ordp(c) = 0 for each prime ideal p | D. Let ClK be the ideal
class group of K and hK = #ClK the ideal class number of K.

We define the algebraic group Her2 of hermitian matrices of size 2 with entries in K by

Her2(R) =

{(
a b+

√
−Dc

b−
√
−Dc d

)∣∣∣∣ a, b, c, d ∈ R

}
for any Q-algebra R.

For a number field F , we denote the adele ring of F by AF . The finite part of the adele ring
(resp. the idele group) of F is denoted by AF,fin (resp. A×

F,fin). Let ψ0 = ⊗vψv be the non-trivial

additive character of AQ/Q defined as follows:

• If v = p, then ψp(x) = e−2π
√
−1x for x ∈ Z[p−1].
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• If v = ∞, then ψ∞(x) = e2π
√
−1x for x ∈ R.

We call ψ0 (resp. ψv) the standard additive character of AQ (resp. Qv). We put Ẑ =
∏
p Zp.

Let χ = ⊗vχv be the character of the idele class group A×
Q/Q× determined by χ. Then

χ
v
is the character of Q×

v corresponding to Qv(
√
−D)/Qv and is given by the Hilbert symbol

χ
v
(x) = (−D,x)Qv .
Let

B =

{(
∗ ∗
0 ∗

)
∈ SL2

}
and N =

{
n(x) =

(
1 x
0 1

)∣∣∣∣x ∈ Ga
}

be the standard Borel subgroup of SL2 and the unipotent radical of B, respectively. We write

a(x) =

(
x 0
0 1

)
, d(x) =

(
1 0
0 x

)
, t(x) =

(
x 0
0 x−1

)
and

diag(x, y) =

(
x 0
0 y

)
, kθ =

(
cos θ sin θ
− sin θ cos θ

)
.

We put GL2(R)+ = {g ∈ GL2(R)|det(g) > 0}. For N ∈ Zp, we define

K0(N ;Zp) =
{(

a b
c d

)
∈ GL2(Zp)

∣∣∣∣ c ∈ NZp
}

and K0(N ;Zp) = K0(N ;Zp) ∩ SL2(Zp).
Let H = {z ∈ C|Im(z) > 0} be the complex upper half plane. For z = x +

√
−1y ∈ H,

we put dz = dxdy and q = e2π
√
−1z. Here dx, dy are the Lebesgue measures. Note that

vol(SL2(Z)\H, y−2dz) = π/3.
For an algebraic group G over Q, we put [G] = G(Q)\G(AQ).

We put ΓR(s) = π−s/2Γ(s/2), ΓC(s) = 2(2π)−sΓ(s) and ξQ(s) = ΓR(s)ζ(s).
Measures. Let dx∞ be the Lebesgue measure on R. For each prime p, let dxp be the Haar

measure on Qp with vol(Zp, dxp) = 1. We take the Haar measure d×xv = |xv|−1
v dxv on Q×

v .
We normalize the Haar measures on SL2(Zp) and SO(2) so that the total volumes are equal

to 1. For a place v of Q, we define a Haar measure dgv on SL2(Qv) by

dgv = |av|−2
v dxvd

×avdkv

for gv = n(xv)t(av)kv with xv ∈ Qv, av ∈ Q×
v , and

kv ∈

{
SL2(Zp) if v = p,

SO(2) if v = ∞.

We take the product measure dg =
∏
v dgv on SL2(AQ). Note that the measure ξQ(2)

−1dg is
the Tamagawa measure on SL2(AQ). For another connected linear algebraic group G over Q, we
take the Tamagawa measure on G(AQ). In particular, for a quadratic space V over Q which is
neither a hyperbolic plane nor dim(V ) = 1, we have vol([SO(V )]) = 2. We normalize the Haar
measure on O(V )(AQ) so that vol([O(V )]) = 1.

2. Hermitian Maass lifts

In this section, we review the theory of hermitian modular forms and hermitian Maass lifts.
See [17].

2.1. Hermitian modular forms. The similitude unitary group GU(2, 2) is an algebraic group
over Q defined by

GU(2, 2)(R) = {g ∈ GL4(K ⊗R)|tgJg = λ(g)J, λ(g) ∈ R×}
with

J =

(
0 −12

12 0

)
∈ GL4
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for any Q-algebra R. The homomorphism λ : GU(2, 2) → GL1 is called the similitude norm. Let
U(2, 2) = ker(λ) be the unitary group and SU(2, 2) = U(2, 2)∩ResK/Q(SL4) the special unitary
group.

We define the hermitian upper half space H2 of degree 2 by

H2 =

{
Z ∈ M2(C)

∣∣∣∣ 1

2
√
−1

(Z − tZ) > 0

}
.

For a fractional ideal c of K, we define a subgroup Γ
(2)
K [c] of U(2, 2)(Q) by

Γ
(2)
K [c] =

g ∈ U(2, 2)(Q)

∣∣∣∣∣∣∣∣g


o
c
o
c−1

 =


o
c
o
c−1


 ,

where c is the conjugate ideal of c. Let C = N(c) ∈ Q>0 be the ideal norm of c. We put

Λc
2(o) =

{(
n α
α m/C

)
∈ Her2(Q)

∣∣∣∣n,m ∈ Z, α ∈
√
−D

−1
c−1

}
.

The set of positive definite elements of Λc
2(o) is denoted by Λc

2(o)
+.

Let GU(2, 2)(R)+ = {g ∈ GU(2, 2)(R)|λ(g) > 0}. Note that GU(2, 2)(R)+ is generated by its
center and U(2, 2)(R). We put

g⟨Z⟩ = (AZ +B)(CZ +D)−1 and j(g, Z) = det(CZ +D)

for Z ∈ H2 and

g =

(
A B
C D

)
∈ GU(2, 2)(R)+.

We find that g⟨·⟩ gives an action of GU(2, 2)(R)+ on H2 and the center of GU(2, 2)(R)+ acts
trivially. For a holomorphic function F on H2, an even integer l and g ∈ GU(2, 2)(R)+, we
define

(F ∥l g)(Z) = det(g)l/2F (g⟨Z⟩)j(g, Z)−l.
We put

Ml(Γ
(2)
K [c], det−l/2) =

{
F
∣∣∣F ∥l γ = F for any γ ∈ Γ

(2)
K [c]

}
.

Then F ∈Ml(Γ
(2)
K [c], det−l/2) has a Fourier expansion of the form

F (Z) =
∑

H∈Λc
2(o),H≥0

A(H) exp(2π
√
−1Tr(HZ)).

The space of cusp forms Sl(Γ
(2)
K [c], det−l/2) is defined by

Sl(Γ
(2)
K [c],det−l/2) = {F ∈Ml(Γ

(2)
K [c], det−l/2)|A(H) = 0 unless H ∈ Λc

2(o)
+}.

2.2. Hermitian Maass lifts. For x ∈ Q× and each prime p, we put

x′ =
∏
p∤D

pordp(x) and xp = pordp(x).

Let QD be the set of all primes which divide D. We define a primitive Dirichlet character χp by

χp(n) =

{
χ(m) if (n, p) = 1,

0 if p | n,

where m is an integer such that

m ≡

{
n mod Dp,

1 mod D−1
p D.
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One should not confuse χp with χ
p
. For Q ⊂ QD, we set

χQ =
∏
p∈Q

χp and χ′
Q =

∏
p∈QD\Q

χp.

Note that χ∅ = 1 and χQD = χ.
Let κ be a positive integer. We fix a normalized Hecke eigenform f =

∑
n>0 af (n)q

n ∈
S2κ+1(Γ0(D), χ). By Theorem 4.6.16 of [20], for each subset Q ⊂ QD, there exists a normalized
Hecke eigenform

fQ =
∑
n>0

afQ(n)q
n ∈ S2κ+1(Γ0(D), χ)

such that for each prime p, the Fourier coefficient afQ(p) satisfies

afQ(p) =

{
χQ(p)af (p) if p ̸∈ Q,

χ′
Q(p)af (p) if p ∈ Q.

We fix c ∈ JDo and put C = N(c) ∈ Z>0. Note that χ(C) = 1. Following [17] Definition 15.2,
we define

f c∗ =
∑

Q⊂QD

χQ(−C)fQ.

Lemma 2.1. The Fourier coefficients of f c∗ are purely imaginary.

Proof. In the case when c = o, the assertion is Lemma 1.1 of [16]. Let Q ⊂ QD and put
Q′ = QD \Q. Then we find that

afQ′ (n) = afQ(n)

for all n ∈ Z>0. Since (D,−C) = 1, we have χQ′(−C) = χ(−C)χQ(−C)−1 = χ(−1)χQ(−C) =
−χQ(−C). Therefore, the Fourier coefficients of χQ(−C)fQ+χQ′(−C)fQ′ are purely imaginary.

□
By [17] Corollary 15.5, the n-th Fourier coefficient of f c∗ is given by

afc∗(n) = acD(n)αFc
(n),

where

acD(n) =
∏
p|D

(1 + χp(−Cn)), αFc
(n) = af (n

′)
∏

p|(D,n)

(
af (np) + χ

p
(−Cn)af (np)

)
.

By [17] §16, we can define Fc ∈ S2κ+2(Γ
(2)
K [c],det−κ−1) by

Fc(Z) =
∑

H∈Λc
2(o)

+

 ∑
d|ε(H)

d2κ+1αFc

(
CD det(H)

d2

) exp(2π
√
−1Tr(HZ)).

Here
ε(H) = εc(H) = max{m ∈ Z>0|m−1H ∈ Λc

2(o)}.
We call Fc the hermitian Maass lift of f which satisfies the Maass relation for c.

Lemma 2.2. Let c ∈ JDo and α ∈ K× such that αc ∈ JDo . Then

Fc(Z) = Fαc(d(α)Zd(α)).

Proof. Since t(d(α)Zd(α)) = d(α)tZd(α), we find that d(α)Zd(α) ∈ H2 for all Z ∈ H2. Note
that Tr(Hd(α)Zd(α)) = Tr(d(α)Hd(α)Z). The map

H 7→ d(α)Hd(α)

gives a bijection Λαc2 (o)+ → Λc
2(o)

+ which satisfies

εc(d(α)Hd(α)) = εαc(H) and N(αc)D det(H) = N(c)D det(d(α)Hd(α)).

This completes the proof. □
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By Lemma 2.2, we can define Fc ∈ S2κ+2(Γ
(2)
K [c],det−κ−1) for a fractional ideal c ∈ JDK by

the same formula. Moreover the function

H× H ∋ (z1, z2) 7→ Fc (diag(z1, Cz2))

depends only on the ideal class of c and defines an element in S2κ+2(SL2(Z))⊗ S2κ+2(SL2(Z)).
Lemma 2.3. Let T (p) be the Hecke operator on S2κ+2(SL2(Z)). Then

(T (p)⊗ id)(Fc(diag(z1, Cz2))) = (id⊗ T (p))(Fc(diag(z1, Cz2)))

for all primes p.

Proof. The proof is similar to that of Lemma 1.1 of [14]. □

3. Statement of the main theorem

In this section, we state the main theorem and we give numerical examples.
Let κ be a positive integer and

f(z) =
∞∑
n=1

af (n)q
n ∈ S2κ+1(Γ0(D), χ)

be a normalized Hecke eigenform. For c ∈ JDK , let Fc ∈ S2κ+2(Γ
(2)
K [c], det−κ−1) be the hermitian

Maass lift of f defined in the previous section. Let C = N(c) ∈ Q>0 be the ideal norm of c. For
each normalized Hecke eigenform

g(z) =

∞∑
n=1

ag(n)q
n ∈ S2κ+2(SL2(Z)),

we set gC(z) = g(z/C). Note that gC ∈ S2κ+2(d(C)
−1SL2(Z)d(C)). We consider the period

integral ⟨Fc|H×H, g × gC⟩ given by

⟨Fc|H×H, g × gC⟩

=

∫
d(C)−1SL2(Z)d(C)\H

∫
SL2(Z)\H

Fc

((
z1 0
0 z2

))
g(z1)gC(z2)y

2κ
1 y2κ2 dz1dz2.

Define the Petersson norms of g and gC by

⟨g, g⟩ =
∫
SL2(Z)\H

|g(z)|2y2κdz, ⟨gC , gC⟩ =
∫
d(C)−1SL2(Z)d(C)\H

|gC(z)|2y2κdz.

By Lemma 2.2, we get the following lemma.

Lemma 3.1. The map

JDK ∋ c 7→ ⟨Fc|H×H, g × gC⟩
⟨g, g⟩⟨gC , gC⟩

∈ C

factors through the ideal class group ClK .

For p ̸∈ QD, we define the Satake parameter {αf,p, χ(p)α−1
f,p} of f at p by

1− af (p)X + χ(p)p2κX2 = (1− pκαf,pX)(1− pκχ(p)α−1
f,pX).

For p ∈ QD, we put αf,p = p−κaf (p). For each prime p, we define the Satake parameter
{αg,p, α−1

g,p} of g at p by

1− ag(p)X + p2κ+1X2 = (1− pκ+1/2αg,pX)(1− pκ+1/2α−1
g,pX).

The Ramanujan conjecture proved by Deligne states that |αf,p| = |αg,p| = 1 for all p. In
particular, we have |D−kaf (D)| = 1 and ag(n) ∈ R for all n ∈ Z>0. We put

Ap =


(
αf,p 0
0 χ(p)α−1

f,p

)
if p ∤ D,

αf,p if p | D,
and Bp =

(
αg,p 0
0 α−1

g,p

)
.
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Define the L-functions L(s, f × g) and L(s, f × g × χ) by Euler products

L(s, f × g) =
∏
p∤D

det(14 −Ap ⊗Bp · p−s)−1 ×
∏
p|D

det(12 −Ap ⊗Bp · p−s)−1,

L(s, f × g × χ) =
∏
p∤D

det(14 −A−1
p ⊗Bp · p−s)−1 ×

∏
p|D

det(12 −A−1
p ⊗Bp · p−s)−1.

for Re(s) ≫ 0. Note that L(s, f × g × χ) = L(s̄, f × g) by the Ramanujan conjecture. We also
define

D(s, f, g) =

∞∑
n=1

n−saf (n)ag(n) =

∞∑
n=1

n−saf (n)ag(n).

Then, by [24] Lemma 1, we have

D(s+ 2κ+ 1, f, g) = L(2s+ 1, χ)−1L(s+ 1/2, f × g),

where L(s, χ) is the Dirichlet L-function associated to χ.
Let Λ(s, f × g) and Λ(s, f × g × χ) be the completed L-functions given by

Λ(s, f × g) = ΓC(s+ 1/2)ΓC(s+ 2κ+ 1/2)L(s, f × g),

Λ(s, f × g × χ) = ΓC(s+ 1/2)ΓC(s+ 2κ+ 1/2)L(s, f × g × χ).

By [18] Theorem 19.14, they have meromorphic continuations to the whole s-plane and satisfy
the functional equation

Λ(s, f × g) = ε(s, f × g)Λ(1− s, f × g × χ).

Here, ε(s, f × g) is the ε-factor which will be defined in the next section.
Our main result is as follows.

Theorem 3.2. The identity

L

(
1

2
, f × g

)
=
L(1, χ)(4π)2κ+1

af (D)(2κ)!
· 1

hK

∑
[c]∈ClK

⟨Fc|H×H, g × gC⟩
⟨gC , gC⟩

holds.

Remark 3.3. A special case of a result of Shimura ([24] Theorem 3) asserts that

π−(2κ+1)⟨g, g⟩−1D(2κ+ 1, f, g) ∈ Q(f)Q(g) ⊂ Q
and for all σ ∈ Aut(C), one has[

π−(2κ+1)⟨g, g⟩−1D(2κ+ 1, f, g)
]σ

= π−(2κ+1)⟨gσ, gσ⟩−1D(2κ+ 1, fσ, gσ).

Here Q(f) (resp. Q(g)) is the algebraic number field generated by the coefficients {af (n)} of f
(resp. {ag(n)} of g). Note that in Shimura’s paper, one takes the measure on SL2(Z)\H so that
vol(SL2(Z)\H) = 1. Since

⟨Fc|H×H, g × gC⟩
⟨gC , gC⟩⟨g, g⟩

∈ Q(f)Q(g)

and for all σ ∈ Aut(C), one has[
⟨Fc|H×H, g × gC⟩
⟨gC , gC⟩⟨g, g⟩

]σ
=

⟨Fσc |H×H, g
σ × gσC⟩

⟨gσC , gσC⟩⟨gσ, gσ⟩
,

we find that Theorem 3.2 is compatible with this result.

Remark 3.4. Let g, g1, g2 ∈ S2κ+2(SL2(Z)) be normalized Hecke eigenforms. If g1 ̸= g2, then

⟨Fc|H×H, g1 × (g2)C⟩ = 0

by Lemma 2.3 and the multiplicity one theorem. On the other hand, by Lemma 2.1, we find that

⟨Fc|H×H, g × gC⟩ ∈
√
−1R.
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Example 3.5. We discuss the case D = 3 and κ = 5. Then the class number of K = Q(
√
−3)

is hK = 1. Let f ∈ S11(Γ0(3), χ) be the Hecke eigenform such that

f(z) = q + aq2 + (9a− 27)q3 + 304q4 − 106aq5 + (−27a− 6480)q6 + 17234q7 +O(q8),

with a = 12
√
−5. Here we have used MAGMA [2]. Let g ∈ S12(SL2(Z)) be the normalized Hecke

eigenform. We put A = {α ∈
√
−D−1

o|N(α) < 1}. Then we have

⟨Fo|H×H, g × g⟩
⟨g, g⟩2

=
∑
α∈A

αF

(
D det

(
1 α
α 1

))
.

It is easy to see that

A =

{
a√
−D

+
(1 +

√
−D)b

2
√
−D

∣∣∣∣ (a, b) ∈ {(0,±1), (1,−1), (±1, 0), (0, 0), (−1, 1)}
}
.

Since χ
3
(−3) = −1, we have

⟨Fo|H×H, g × g⟩
⟨g, g⟩2

= αF (3) + 6αF (2) =
(
af (3) + χ

3
(−3)af (3)

)
+ 6af (2) = 24a.

On the other hand, by the Dirichlet class number formula, we have

L(1, χ) =
2π

wK
√
D
hK =

2π

6
√
3
=

π

3
√
3
,

where wK is the number of roots of unity contained in K.
Next, by using Dokchitser’s program [4], we have computed

⟨g, g⟩ = 0.00000103536205680432092234781681222516459322490796 · · · ,
L(1/2.f × g) = (0.56063396812989843884129232097782681505979754470872 · · · )

−(0.06268078316169517780418095155244859459590450529843 · · · )
√
−1.

Therefore we have

L(1/2, f × g)af (D)(2κ)!

L(1, χ)(4π)2κ+1⟨g, g⟩
= (643.987577519939432565842016594607555806898087568119408590018 · · · )

√
−1.

This numerical value coincides with 24a = 24× 12
√
−5.

Example 3.6. We discuss the case D = 15 and κ = 5. Then the class number of K = Q(
√
−15)

is hK = 2. Let c = p = (17, (−11 +
√
−15)/2). This is a prime ideal above p = N(p) = 17. The

set {o, p} ⊂ JDK gives a complete system of representatives of ClK . By using MAGMA [2], we
find that there is a normalized Hecke eigenform f ∈ S11(Γ0(15), χ) given by

f(z) = q + (50.905 · · · )q2 + ((190.983 · · · ) + (150.247 · · · )
√
−1)q3

+ (1567.405 · · · )q4 + ((−553.573 · · · ) + (3075.578 · · · )
√
−1)q5 +O(q6).

This satisfies [Q(f) : Q] = 16. Let g ∈ S12(SL2(Z)) be the normalized Hecke eigenform. Then

af (15) = −(567822.22270986528973314404962089700180196520977555 · · · )

+ (504210.58499582110937058027520540332841350431820609 · · ·
√
−1)
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and

⟨Fo|H×H, g × g⟩
⟨g, g⟩2

= −(1835447.760700852448788571784258603965801252414612281062 · · · )
√
−1,

⟨Fp|H×H, g × gp⟩
⟨g, g⟩⟨gp, gp⟩

= (3003750.957757391660006591292629544475281083622485436259 · · · )
√
−1.

Next, by using Dokchitser’s program [4], we have computed

L(1, χ) = 1.6223114703894447587811843081191756199820036252694 · · · ,
L(1/2, f × g) = (0.2917406142511291654221274607868148913729458549395 · · · )

− (0.3285468591267089836525964409676435446168105516850 · · · )
√
−1.

Therefore the numerical values of

L(1/2, f × g)af (D)(2κ)!

L(1, χ)(4π)2κ+1⟨g, g⟩
and

1

hK

(
⟨F |H×H, g × g⟩

⟨g, g⟩2
+

⟨Fp|H×H, g × gp⟩
⟨g, g⟩⟨gp, gp⟩

)
are both

(584151.598528269605609009754185470254739915603936577598344426 · · · )
√
−1.

4. Automorphic forms on GL2

In this section, we recall the theory of automorphic forms on GL2.

4.1. Automorphic forms and representations. Let f be an automorphic form on GL2(AQ)
and χ be a character of A×

Q/Q×. We say that f has a central character χ if f satisfies

f(ag) = χ(a)f(g)

for a ∈ A×
Q and g ∈ GL2(AQ). Let ψ = ψ0 be the standard character of AQ. For ξ ∈ Q, we

define the ξ-th Fourier coefficient Wf,ξ of f by

Wf,ξ(g) =

∫
Q\AQ

f(n(x)g)ψ(ξx)dx.

Let f =
∑
n>0 af (n)q

n ∈ S2κ+1(Γ0(D), χ) and g =
∑
n>0 ag(n)q

n ∈ S2κ+2(SL2(Z)) be
normalized Hecke eigenforms. The automorphic form f gives a cusp form f on GL2(AQ) by the
formula

f(α) = χ(d)(f |α∞)(
√
−1)

for α = γα∞k ∈ GL2(AQ) with γ ∈ GL2(Q), α∞ ∈ GL2(R)+ and

k =

(
a b
c d

)
∈ K0(D; Ẑ), where K0(D; Ẑ) =

{(
a b
c d

)
∈ GL2(Ẑ)

∣∣∣c ∈ DẐ
}
.

Note that the central character of f is χ. The automorphic form g gives a cusp form g on
GL2(AQ) by the formula

g(β) = (g|β∞)(
√
−1)

for β = γ′β∞k
′ with γ′ ∈ GL2(Q), β∞ ∈ GL2(R)+ and k′ ∈ GL2(Ẑ). Note that the central

character of g is the trivial character.
Let πf ∼= ⊗′

vπf,v (resp. πg ∼= ⊗′
vπg,v) be the irreducible cuspidal automorphic representation

of GL2(AQ) generated by f (resp. g). Then the central character of πf (resp. πg) is χ (resp. the
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trivial character). The ∞-component πf,∞ (resp. πg,∞) is the (limit of) discrete series repre-
sentation of GL2(R) with minimal weight ±(2κ + 1) (resp. ±(2κ + 2)). The p-component πf,p
(resp. πg,p) is the principal series representation

πf,p ∼= Ind
Gp

Bp
(| · |sf,pp ⊠ χ

p
| · |−sf,pp ),

(
resp. πg,p ∼= Ind

Gp

Bp
(| · |sg,pp ⊠ | · |−sg,pp )

)
.

Here we put Gp = GL2(Qp) and we denote Bp the Borel subgroup of Gp consisting all upper
triangle matrices, and sf,p, sg,p ∈ C satisfy |p|sf,pp = αf,p and |p|sg,pp = αg,p. The restric-
tion of πf,∞ to SL2(R) is the direct sum of two irreducible representations π+

f and π−
f , i.e.,

πf,∞|SL2(R)
∼= π+

f ⊕ π−
f . Here, π+

f (resp. π−
f ) is the holomorphic (resp. anti-holomorphic) dis-

crete series representation of SL2(R) with minimal weight 2κ + 1 (resp. −(2κ+ 1)). Note that
f ∈ π+

f ⊗ (⊗′
pπf,p).

4.2. The L-functions. Let π = πf × πg. Then by [18] §14, §17 and §19, we can define the
L-functions and the ε-factor

L(s, π) =
∏
v

L(s, πv), L(s, π∨) =
∏
v

L(s, π∨
v ), ε(s, π) =

∏
v

ε(s, πv, ψv)

where π∨ is the contragredient representation of π. By [18] Theorem 19.14, we have the func-
tional equation

L(s, π) = ε(s, π)L(1− s, π∨).

Let Λ(s, f × g) and Λ(s, f × g × χ) be the completed L-functions defined in Sect. 3.

Lemma 4.1. We have

Λ(s, f × g) = L(s, π), Λ(s, f × g × χ) = L(s, π∨).

and

ε(s, π) = −D1−2s+2κaf (D)−2.

Proof. Since
∏
p<∞ χ

p
(−1) = χ(−1)χ∞(−1)−1 = −1, it is enough to show the equations

L(s, πp) = det(1r −Ap ⊗Bp · p−s)−1,

L(s, π∨
p ) = det(1r −A−1

p ⊗Bp · p−s)−1,

ε(s, πp, ψp) = χ
p
(−1)(pd)1−2s+2κaf (p

d)−2

for p <∞ with d = ordp(D) and

r =

{
4 if p ∤ D,
2 if p | D,

and

L(s, π∞) = L(s, π∨
∞) = ΓC(s+ 1/2)ΓC(s+ 2κ+ 1/2),

ε(s, π∞, ψ∞) = 1.

For v = p <∞, by [18] Theorem 15.1, we have

ε(s, πp, ψp) = ε(s, πf,p ⊗ | · |sg,pp , ψp)ε(s, πf,p ⊗ | · |−sg,pp , ψp)

= ε(s, | · |sf,p+sg,pp , ψp)ε(s, | · |
sf,p−sg,p
p , ψp)

× ε(s, χ
p
| · |−sf,p+sg,pp , ψp)ε(s, χp| · |

−sf,p−sg,p
p , ψp)

= ε(s− sf,p + sg,p, χp, ψp)ε(s− sf,p − sg,p, χp, ψp).

If p ∤ D, then the character χ
p
is unramified. So we have

ε(s, πp, ψp) = 1 = χ
p
(−1)(pd)1−2s+2κaf (p

d)−2.
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If p | D, then d = ordp(D) > 0. Let U
(0)
p = Z×

p and U
(n)
p = 1 + pnZp for n ≥ 1. We have

χ
p
|U (d)
p = 1 and χ

p
|U (d−1)
p ̸= 1. Then it is well-known that

ε(s, χ
p
, ψp) = pd(1/2−s)ε(1/2, χ

p
, ψp)

(see e.g., [3] 23.5 Theorem). So we have

ε(s, πp, ψp) = pd(1−2s)p2dsf,pε(1/2, χ
p
, ψp)

2.

It is well-know that ε(1/2, χ
p
, ψp)

2 = χ
p
(−1) (see e.g., [3] 23.4 Corollary 2). On the other hand,

we have p2dsf,p = α−2d
f,p = (p−κaf (p))

−2d = (pd)2κaf (p
d)−2. This gives the desired formula for

ε(s, πp, ψp). By calculations similar to that of ε(s, πp, ψp), we have the desired formulas for
L(s, πp) and L(s, π

∨
p ).

Next, we assume that v = ∞. Let WR = C× ∪ jC× be the Weil group of R with j2 = −1
and jzj−1 = z̄ for z ∈ C×. Let ρf,∞ (resp ρg,∞) be the two dimensional representation of WR
which corresponds to πf,∞ (resp. πg,∞) by the local Langlands correspondence. Then by [18]
Proposition 17.3, we have

L(s, π∞) = L(s, ρf,∞ ⊗ ρg,∞), L(s, π∨
∞) = L(s, ρ∨f,∞ ⊗ ρ∨g,∞),

ε(s, π∞, ψ∞) = ε(s, ρf,∞ ⊗ ρg,∞, ψ∞).

For n ∈ Z, we define the two dimensional representation ρn of WR by

ρn : WR = C× ∪ jC× → GL2(C),

re
√
−1θ 7→

(
en

√
−1θ 0

0 e−n
√
−1θ

)
, j 7→

(
0 (−1)n

1 0

)
.

Then we have ρ−n ∼= ρn for n ∈ Z. Hence ρn is a self-dual representation. Moreover, for
n1, n2 ∈ Z, we have ρn1 ⊗ ρn2

∼= ρn1+n2 ⊕ ρn1−n2 . For n ∈ Z>0, the L-function and the ε-factor
associated to ρn are given by

L(s, ρn) = ΓC(s+ n/2), ε(s, ρn, ψ∞) =
√
−1

n+1
.

See [25]. It is well-known that ρf,∞ ∼= ρ2κ and ρg,∞ ∼= ρ2κ+1. So we have

L(s, π∞) = L(s, π∨
∞) = ΓC(s+ 2κ+ 1/2)ΓC(s+ 1/2),

ε(s, π∞, ψ∞) =
√
−1

(4κ+2)+2
= 1.

This completes the proof. □

We put ε(s, f × g) = ε(s, π). Then we have the functional equation noted in Sect. 3. In
particular, this functional equation and the Ramanujan conjecture imply that

af (D)D−κΛ(1/2, f × g) = −(af (D)D−κ)−1Λ(1/2, f × g × χ) = −af (D)D−κΛ(1/2, f × g).

So we find that

af (D)L(1/2, f × g) ∈
√
−1R.

4.3. The Whittaker function on GL2. Let ψ = ψ0 be the standard character of AQ. The
Whittaker function Wf (resp. Wg) of f (resp. g) is defined by

Wf (α) =

∫
Q\AQ

f (n(x)α)ψ(x)dx

(
resp. Wg(α) =

∫
Q\AQ

g(n(x)α)ψ(x)dx

)
.
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Note that Wf ,ξ(α) = Wf (a(ξ)α) and Wg,ξ(α) = Wg(a(ξ)α) for ξ ∈ Q×. The function Wf

(resp. Wg) has a product expansion Wf =
∏
vWf ,v (resp. Wg =

∏
vWg,v), where

Wf ,∞ (n(y)a(x)kθ) =

{
e2π

√
−1yxκ+(1/2)e−2πxe

√
−1(2κ+1)θ if x > 0,

0 if x < 0,

Wg,∞ (n(y)a(x)kθ) =

{
e2π

√
−1yxκ+1e−2πxe

√
−1(2κ+2)θ if x > 0,

0 if x < 0.

For p ∤ D, the functionWf ,p satisfiesWf ,p(αk) =Wf ,p(α) for all α ∈ GL2(Qp) and k ∈ GL2(Zp).
For p | D, the function Wf ,p satisfies Wf ,p(αk) = χ

p
(k)Wf ,p(α) for all α ∈ GL2(Qp) and

k ∈ K0(D;Zp). Here, we define

χ
p
(k) = χ

p
(d), for k =

(
a b
c d

)
∈ K0(D;Zp).

For each prime p, the function Wg,p satisfies Wg,p(αk) = Wg,p(α) for all α ∈ GL2(Qp) and
k ∈ GL2(Zp).

The following lemma is a reformulation of Lemma 6.3 of [16] in terms of the Fourier coefficients
of f and g. Here, we put af (x) = 0 and ag(x) = 0 unless x ∈ Z>0. For x = pnu ∈ Q×

p with

u ∈ Z×
p , we set xp = pn.

Lemma 4.2. We put d = ordp(D), ζ8 = exp(π
√
−1/4),

ε =

{
1 if χ

p
(−1) = 1,

√
−1 if χ

p
(−1) = −1,

and

w =

(
0 −1
1 0

)
, k1 =

(
1 0

pd−1 1

)
, k2 =

(
1 0

pd−2 1

)
.

(1) For each prime p, we have

Wg,p(a(x)) = |x|κ+1
p ag(xp).

(2) For p ∤ D, we have

Wf ,p (a(x)) = |x|κ+1/2
p af (xp).

(3) For p | D, we have

Wf ,p (a(x)w) = χ
p
(−Dpx)ε

−1p−d/2af (Dp)
−1|x|κ+1/2

p af ((Dx)p).

(4) For p = 2 | D, we have

Wf ,p (a(x)k1) =

{
|x|κ+1/2

2 af (2)
−1 if ord2(x) = −1,

0 otherwise.

(5) For p = 2, d = 3 and x = 2nu with u ∈ Z×
2 , we have

Wf ,p (a(x)k2) =

{
2−1/2χ

p
(u)εζ−u8 |x|κ+1/2

2 af (2)
−2 if ord2(x) = −2,

0 otherwise.

5. Weil representations and theta lifts

In this section, we recall the theory of Weil representations and theta lifts.



PULLBACKS OF HERMITIAN MAASS LIFTS 13

5.1. Quadratic spaces. Let F be a field of characteristic not 2 and V a quadratic space over F .
Namely, V is a vector space over F of dimension m equipped with a non-degenerate symmetric
bilinear form ( , ). We assume that m is even. Let Q denote the associated quadratic form on
V . Then

Q[x] =
1

2
(x, x)

for x ∈ V . We fix a basis {v1, . . . , vm} of V and identify V with the space of column vectors
Fm. Define Q ∈ GLm(F ) by

Q = ((vi, vj))i,j

and let det(V ) denote the image of det(Q) in F×/F×2. Let

GO(V ) = {h ∈ GLm|thQh = ν(h)Q, ν(h) ∈ GL1}
be the orthogonal similitude group and ν : GO(V ) → GL1 the similitude norm. We put

GSO(V ) = {h ∈ GO(V )| det(h) = ν(h)m/2}.
Let O(V ) = ker(ν) be the orthogonal group and SO(V ) = O(V ) ∩ SLm the special orthogonal
group.

5.2. Weil representations. Let F be a local field of characteristic not 2 and V a quadratic
space over F of dimension m. We assume that m is even. We fix a non-trivial additive character
ψ of F . For a ∈ F×, we define a non-trivial additive character aψ of F by (aψ)(x) = ψ(ax).
We define a quadratic character χV of F× by

χV (a) = ((−1)m/2 det(V ), a)F

for a ∈ F×, where (x, y)F is the Hilbert symbol of F . We define an 8-th root of unity γV by

γV = γF

(
det(V ),

1

2
ψ

)
γF

(
1

2
ψ

)m
hF (V ).

Here hF (V ) is the Hasse invariant of V . Note that χV and γV depend only on the anisotropic
kernel of V . To calculate γF (a, bψ) and γF (aψ), see [14] A.1.

Let ω = ωV,ψ denote the Weil representation of SL2(F ) × O(V ) on S(V ) with respect to ψ.
Let φ ∈ S(V ) and x ∈ V . Then,

ω(1, h)φ(x) = φ(h−1x),

ω (t(a), 1)φ(x) = χV (a)|a|m/2F φ(xa),

ω (n(b), 1)φ(x) = φ(x)ψ(bQ[x]),

ω (w, 1)φ(x) = γ−1
V

∫
V

φ(y)ψ(−(x, y))dy

for a ∈ F×, b ∈ F and h ∈ O(V )(F ). Here, dy is the self-dual measure on V with respect to
ψ((x, y)) given by

dy = |det(Q)|1/2
∏
j

dyj

where dyj is the self-dual measure on F with respect to ψ.
Following [11] §5.1, we extend the Weil representation ω. We put

R = G(SL2 ×O(V )) = {(g, h) ∈ GL2 ×GO(V )| det(g) = ν(h)}.
For h ∈ GO(V ) and φ ∈ S(V ), we put

L(h)φ(x) = |ν(h)|−m/4F φ(h−1x)

for x ∈ V . Then we define the Weil representation ω of R(F ) on S(V ) by

ω(g, h) = ω(g · d(det(g)−1), 1) ◦ L(h)
for (g, h) ∈ R(F ).
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5.3. Theta functions and theta lifts. Let V be a quadratic space over Q of even dimension
m and ψ = ψ0 the standard additive character of AQ. Let ω denote the Weil representation of
R(AQ) on S(V (AQ)) with respect to ψ. For (g, h) ∈ R(AQ) and φ ∈ S(V (AQ)), we put

θ(g, h;φ) =
∑

x∈V (Q)

ω(g, h)φ(x).

Then θ(g, h;φ) is an automorphic form on R(AQ). The function θ(g, h;φ) is called a theta
function.

Let f be a cusp form on GL2(AQ). For h ∈ GO(V )(AQ), choose g
′ ∈ GL2(AQ) such that

det(g′) = ν(h), and put

θ(h; f, φ) =

∫
[SL2]

θ(gg′, h;φ)f(gg′)dg.

Note that this integral does not depend on the choice of g′. Then θ(f, φ) is an automorphic
form on GO(V )(AQ). The function θ(f, φ) is called a theta lift. Similarly, we define θ(f ′, φ) for
a cusp form f ′ on GO(V )(AQ). More precisely, see [11].

5.4. Change of polarizations. Let F be a field of characteristic not 2 and V a quadratic
space over F of even dimension m. We assume that the matrix Q ∈ GLm(F ) associated to V is
of the form

Q =

0 0 1
0 Q1 0
1 0 0


for some Q1 ∈ GLm−2(F ). Let V1 = Fm−2 be the quadratic space with bilinear form

(v, w) = tvQ1w.

The associated quadratic form on V1 is also denoted by Q1. For v ∈ V1, we define an element
ℓ(v) ∈ O(V )(F ) by

ℓ(v) =

1 −tvQ1 −Q1[v]
0 1m−2 v
0 0 1

 .

Let F = Qv (resp. F = Q) and ψ = ψv (resp. ψ = ψ0) be the standard character of Qv
(resp. AQ). For φ ∈ S(V ) (resp. φ ∈ S(V (AF ))), we define the partial Fourier transform by the
formula

φ̂(x1; y1, y2) =

∫
XF

φ

 z
x1
y1

ψ(y2z)dz

for x1 ∈ V1, y1, y2 ∈ Qv and XF = Qv (resp. x1 ∈ V1(AQ), y1, y2 ∈ AQ and XF = AQ). Here dz
is the self-dual measure on XF with respect to ψ. We define a representation ω̂ of R(XF ) on
S(V1(XF ))⊗ S(X2

F ) by

ω̂(g, h)φ̂ = (ω(g, h)φ)̂.

If φ̂ = φ1 ⊗ φ2 with φ1 ∈ S(V1)(XF ) and φ2 ∈ S(X2
F ), then

ω̂(g, 1)φ̂(x1; y1, y2) = ωV1,ψ(g, 1)φ1(x1) · φ2((y1, y2)g)

for g ∈ SL2(XF ). See also [14] §4.2.
Let f be a cusp form on GL2(AQ) and φ ∈ S(V (AQ)). For Ξ ∈ V1(Q), define the Ξ-th Fourier

coefficient WΞ = Wθ(f,φ),Ξ of θ(f, φ) by

WΞ(h) =

∫
V1(Q)\V1(AQ)

θ(ℓ(v)h; f, φ)ψ((Ξ, v))dv

for h ∈ GO(V )(AQ). We need a modification of Lemma 4.2 of [14].
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Lemma 5.1. (1) If Ξ ̸= 0, then for h ∈ GO(V )(AQ), we have

WΞ(h) =

∫
N(AQ)\SL2(AQ)

ω̂ (g · d(ν(h)), h) φ̂(−Ξ; 0, 1)Wf,−Q1[Ξ] (g · d(ν(h))) dg.

Here, Wf,ξ is the ξ-th Fourier coefficient of f defined in Sect. 4.
(2) For h ∈ GO(V )(AQ), we have

W0(h) =

∫
[SL2]

∑
x1∈V1(Q)

ω̂ (g · d(ν(h)), h) φ̂(x1; 0, 0)f (g · d(ν(h))) dg.

Proof. For h ∈ O(V )(AQ), apply Lemma 4.2 of [14] to f |SL2(AQ). In general, we put f ′(g) =
f (g · d(ν(h))). Then by [11] Lemma 5.1.7, we have

θ(ℓ(v)h; f, φ) = θ(ℓ(v); f ′, L(h)φ),

ω̂(g, 1)(L(h)φ)̂ (−Ξ, y1, y2) = ω̂(g · d(ν(h)), h)φ̂(−Ξ, y1, y2).

On the other hand, we have

Wf ′,ξ(g) =Wf,ξ (g · d(ν(h))) .
These equations imply the formulas. □

6. Theta correspondence for (GU(2, 2),GL2)

In this section, we study the hermitian Maass lifting in terms of theta lifts. The main

result of this section is Proposition 6.2 which states that the automorphic form Lift (2)(f) on
U(2, 2)(AQ) given by the hermitian Maass lifts {Fc} of f can be written by a certain theta lift
via a homomorphism ϕ : GU(2, 2)(AQ) → PGSO(4, 2)(AQ). This proposition is a key point of
the proof of Theorem 3.2.

6.1. Preliminaries. For a Q-algebra R, we define the similitude unitary group GU(2, 2) and
the similitude orthogonal groups GO(4, 2) by

GU(2, 2)(R) = {g ∈ GL4(K ⊗R)|tḡJg = λ(g)J, λ(g) ∈ R×},
GO(4, 2) = {g ∈ GL6|tgQg = ν(g)Q, ν(g) ∈ GL1}

with

Q =


1

1
2 0
0 2D

1
1

 ∈ GL6 and J =

(
0 −12

12 0

)
∈ GL4.

The homomorphisms λ : GU(2, 2) → GL1 and ν : GO(4, 2) → GL1 are the similitude norms. We
define the subgroups GSU(2, 2) of GU(2, 2) and GSO(4, 2) of GO(4, 2) by

GSU(2, 2) = {g ∈ GU(2, 2)| det(g) = λ(g)2},
GSO(4, 2) = {g ∈ GO(4, 2)| det(g) = ν(g)3}.

For α ∈ ResK/Q(GL1), we put

rα =


1 0 0 0
0 α 0 0
0 0 1 0
0 0 0 ᾱ−1

 ∈ U(2, 2).

Then we have an exact sequence

1 −−−−→ GL1
ι−−−−→ GSU(2, 2)⋊ ResK/Q(GL1)

ρ−−−−→ GU(2, 2) −−−−→ 1,
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where
ι(a) = (ra, a

−1) and ρ(h, α) = hrα.

For each p, we put GU(2, 2)(Zp) = GU(2, 2)(Qp) ∩ GL4(o ⊗Z Zp) and GSU(2, 2)(Zp) =
GU(2, 2)(Zp) ∩GSU(2, 2)(Qp).

Lemma 6.1. For g ∈ GU(2, 2)(Zp), there exist h ∈ GSU(2, 2)(Zp) and α ∈ (o ⊗Z Zp)× such
that

g = hrα.

Proof. Let op = o⊗Z Zp. We define the subgroups H and o1p of K1(Qp) by

H = {det(g)/λ(g)2|g ∈ GU(2, 2)(Zp)} and o1p = {α/α|α ∈ o×p }.

Note that H ⊃ o1p. It is enough to show that H = o1p. If g ∈ GU(2, 2)(Zp), then

g′ = g

(
12 0
0 λ(g) · 12

)−1

∈ U(2, 2)(Zp)

and we have det(g′)/λ(g′)2 = det(g′) = det(g)/λ(g)2. Hence we find that H = det(U(2, 2)(Zp)).
If p is split in K/Q, we have

K ⊗Qp ∼= Qp ×Qp, o⊗Z Zp ∼= Zp × Zp
and the non-trivial element of Gal(K/Q) acts by (x, y) 7→ (y, x). If g ∈ U(2, 2)(Zp), then we
have det(g) = (x, y) for some x, y ∈ Z×

p . Since det(g) ∈ K1(Qp), we have xy = 1, i.e., y = x−1.

So we have det(g) = α/α with α = (x, 1) ∈ o×p . Therefore we have H = o1p.
If p is inert in K/Q, we can regard p as a uniformizer of K ⊗ Qp. By Hilbert 90, we have

K1(Qp) = {α/α|α ∈ K(Qp)× = (K ⊗Qp)×}. Hence we have K1(Qp) = o1p. So we get H = o1p.
Now we assume that p is ramified in K/Q. Let p be the prime ideal of K above p. Then we

have op/p ∼= Fp and the non-trivial element of Gal(K/Q) acts on Fp by trivially. So we may
consider the reduction map

π : U(2, 2)(Zp) → Sp2(Fp).
Let

B =




∗ ∗ ∗ ∗
0 ∗ ∗ ∗
0 0 ∗ 0
0 0 ∗ ∗

 ∈ U(2, 2)

 = TN, B =




∗ ∗ ∗ ∗
0 ∗ ∗ ∗
0 0 ∗ 0
0 0 ∗ ∗

 ∈ Sp2


be Borel subgroups of U(2, 2) and Sp2, respectively. We denote by T the torus of diagonal
matrices, and by N the unipotent radical of B. Let I = π−1(B(Fp)) ⊂ U(2, 2)(Zp) denote the
Iwahori subgroup of U(2, 2)(Zp). Then, the Bruhat decomposition of Sp2 shows that there is a
subset W of U(2, 2)(Zp) such that U(2, 2)(Zp) is generated by I and W . We can take W such
that det(w) = 1 for all w ∈ W . Hence we have H = det(U(2, 2)(Zp)) = det(I). Moreover, by
the Iwahori decomposition, we have

I = (I ∩N−)(I ∩ T )(I ∩N),

where N− is the opposite of N . Since det(N) = det(N−) = {1}, we have det(I) = det(I ∩ T ).
Clearly, this is equal to o1p. Therefore we have H = o1p. □

As in [21] §2.1, we set the six dimensional vector space over Q by

V = {B(x1, . . . , x6) ∈ M4(K)|xi ∈ Q (1 ≤ i ≤ 6)}
where B(x1, . . . , x6) is defined by

B(x1, . . . , x6) =


0 x1 x3 + x4

√
−D x2

−x1 0 x5 −x3 + x4
√
−D

−x3 − x4
√
−D −x5 0 x6

−x2 x3 − x4
√
−D −x6 0

 .
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We define a mapping Ψ: V → Q by Ψ(B) = Tr(BJ tBJ). As in [21] §2.1, we have

Ψ(B(x1, . . . , x6)) = −4Q[t(x1, . . . , x6)].

As a basis for V , we may take ei = B(δi,1, . . . , δi,6) for 1 ≤ i ≤ 6. Then with respect to the
basis {ei|1 ≤ i ≤ 6}, we may identify GO(V ) as GO(4, 2).

We define homomorphisms

ϕ1 : GSU(2, 2) → GSO(V ) ∼= GSO(4, 2), ϕ1(g) : V ∋ B → gBtg ∈ V,

ϕ2 : K
× → GSO(V ) ∼= GSO(4, 2), ϕ2(α) : V ∋ B → αrαBrα ∈ V.

Note that ν(ϕ1(g)) = λ(g)2 for g ∈ GSU(2, 2) and ν(ϕ2(α)) = NK/Q(α) for α ∈ K×. For

α = x+ y
√
−D ∈ K×, we have

ϕ2(α) =


NK/Q(α)

1
x Dy
−y x

NK/Q(α)
1

 ∈ GSO(4, 2).

We find that ϕ1(GSU(2, 2)(Zp)) ⊂ GSO(V )(Zp). However, in general, it is not true that

α ∈ o⊗ Zp ⇒ ϕ2(α) ∈ GSO(V )(Zp).

For g ∈ GU(2, 2), we decompose g = hrα with h ∈ GSU(2, 2) and α ∈ K×. Then the image of
ϕ1(h)ϕ2(α) to PGSO(4, 2) does not depend on the choice of (h, α). We denote this element by
ϕ(g) ∈ PGSO(4, 2). Note that for all α ∈ K×, we have ϕ(α14) = 1 in PGSO(4, 2) and ϕ induces
an isomorphism

ϕ : PGU(2, 2)
∼=−→ PGSO(4, 2).

6.2. Theta lifts. Let K = GU(2, 2)(AQ,fin) ∩ (
∏
pGL4(op)), where op = o ⊗ Zp. Put K0 =

K ∩ U(2, 2)(AQ). We easily find that the canonical injection U(2, 2)(AQ) ↪→ GU(2, 2)(AQ)
induces a bijection

U(2, 2)(Q)\U(2, 2)(AQ)/U(2, 2)(R)K0 → GU(2, 2)(Q)\GU(2, 2)(AQ)/GU(2, 2)(R)+K.

By the Chebotarev density theorem, as a complete system of representatives of ClK , we can
take integral ideals c1 = o, c2, . . . , ch which are prime to 2D. We choose ti = (ti,p)p ∈ A×

K,fin

such that ordp(ti,p) = ordp(ci) for all prime ideals p of K. We put γi = rti ∈ U(2, 2)(AQ) and
Ci = N(ci) ∈ Z>0. Then by Lemma 13.1 of [17], the set {γ1, . . . , γh} gives a complete system
of U(2, 2)(Q)\U(2, 2)(AQ)/U(2, 2)(R)K0.

Let f ∈ S2κ+1(Γ0(D), χ) be a normalized Hecke eigenform and Fci the hermitian Maass lift
of f defined in Sect. 2. Then by a result of Ikeda ([17] Theorem 13.2 and Theorem 15.18), there

is an automorphic form Lift (2)(f) on U(2, 2)(AQ) defined by

Lift (2)(f)(uγixk) = C−κ−1
i (Fci ∥2κ+2 x)(i) = C−κ−1

i Fci(x⟨i⟩)j(x, i)−2κ−2(detx)κ+1

for u ∈ U(2, 2)(Q), x ∈ U(2, 2)(R) and k ∈ K0. Here, we put i =
√
−1 · 14 ∈ H2.

Let f be the cusp form on GL2(AQ) given by f . We define φ = ⊗vφv ∈ S(V (AQ)) as follows:

• If v = p <∞ and p ̸= 2, then φp is the characteristic function of V (Zp).
• If v = 2, then φ2 is the characteristic function of

L =

{
V (Z2) ∪ (Z2e1 + Z2e2 + 2−1Z×

2 e3 + 2−1Z×
2 e4 + Z2e5 + Z2e6) if D is odd,

V (Z2) + 2−1Z2e4 if D is even.

• If v = ∞, then

φ∞(x1, . . . , x6) = (−
√
−1x1 + x2 − x5 +

√
−1x6)

2κ+2e−π(x
2
1+x

2
2+2x2

3+2Dx2
4+x

2
5+x

2
6).
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We consider the theta lift θ(f , φ) on GO(V )(AQ). Recall that θ(f , φ) is defined by

θ(h; f , φ) =

∫
[SL2]

θ(α · αh, h;φ)f(α · αh)dα

for h ∈ GO(V )(AQ), where αh is an element in GL2(AQ) satisfying det(αh) = ν(h). In particular,
we can take αh = d(ν(h)). Note that ν(GSO(V )(AQ)) = NK/Q(A×

K). Since the central character
of f is χ = χV , by [11] Lemma 5.1.9, the center of GSO(4, 2) acts on θ(f , φ) trivially, i.e., the
quantity

θ(ϕ(g); f , φ) =

∫
[SL2]

θ(α · d(ν(hg)), hg;φ)f(α · d(ν(hg)))dα

does not depend on the choice of a representative hg ∈ GSO(V )(AQ) of ϕ(g) ∈ PGSO(V )(AQ).
Hence we may consider the function θ(ϕ(g); f , φ) on GU(2, 2)(AQ).

Proposition 6.2. For all g ∈ U(2, 2)(AQ), we have

θ(ϕ(g); f , φ) = (
∏
p|D

q−1
p ) · 22κ+2af (D)−1Lift (2)(f)(g),

where qp = (SL2(Zp) : K0(D;Zp)).
The rest of this section is devoted to the proof of Proposition 6.2. The proof is similar to that

of Lemma 7.1 of [14]. To prove this proposition, we compare Fourier coefficients of θ(ϕ(g); f , φ)

with those of Lift (2)(f).

6.3. Fourier coefficients of Lift (2)(f). For B ∈ Her2(Q), we define the B-th Fourier coefficient

WF,B (resp. WB) of F = Lift (2)(f) (resp. θ(f , φ)) by

WF,B(g) =

∫
[Her2]

F(n(X)g)ψ(Tr(BX))dX

for g ∈ U(2, 2)(AQ) (resp.

WB(g) =

∫
[Her2]

θ(ϕ(n(X)g); f , φ)ψ(Tr(BX))dX

for g ∈ GU(2, 2)(AQ)). Here we put

n(X) =

(
12 X
0 12

)
∈ U(2, 2) for X ∈ Her2.

Then, we have

F(g) =
∑

B∈Her2(Q)

WF,B(g) and θ(ϕ(g); f , φ) =
∑

B∈Her2(Q)

WB(g).

First, we compute WF,B in Proposition 6.5. We define K = {g ∈ U(2, 2)(R)|g⟨i⟩ = i} and
K0 = K ∩ SU(2, 2)(R).
Lemma 6.3. We have

K =

{(
α β
−β α

)∣∣∣∣α, β ∈ M2(C), tαβ = tβα, tαα+ tββ = 1

}
.

Proof. Let k =

(
A B
C D

)
∈ K with A,B,C,D ∈ M2(C). We put

X = A
√
−1 +B = −C +D

√
−1,

Y = A
√
−1 + C = −B +D

√
−1,

Z = B + C = (D −A)
√
−1.

Then, it is easily to check that tXX = 12,
tY Y = 12 and tZZ = tY Y − 12 = 02. Hence

Z = 02. □
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For X ∈ Her2(R) and A ∈ GL2(C), we put

n(X) =

(
12 X

12

)
and m(A) =

(
A

tA
−1

)
.

Lemma 6.4. Any element g in GU(2, 2)(R)+ can be written as

g = z14 · n(X) ·m(A) · k · rt,
where z ∈ C×, X ∈ Her2(R), A ∈ GL2(C) with det(A) ∈ R×, k ∈ K0 and t ∈ C×with |t| = 1.

Proof. Since GU(2, 2)(R)+ is generated by its center and U(2, 2)(R), it suffices to consider
g ∈ U(2, 2)(R). Since Z = g⟨i⟩ ∈ H2, we fined that (Z + tZ)/2 is a hermitian matrix and
(Z − tZ)/(2

√
−1) is a positive definite hermitian matrix. So there exist A ∈ GL2(C) and

X ∈ Her2(R) such that
g⟨i⟩ = AtAi+X = (n(X) ·m(A)) ⟨i⟩.

Hence we find k = (n(X) ·m(A))
−1
g ∈ K. Since det(m(A)) = det(A)det(A)

−1
, there exists

θ ∈ R such that e4
√
−1θ = det(m(A)). Then, we find that det(e−

√
−1θA) ∈ R and e

√
−1θ14 ∈ K.

Therefore we have the decomposition

g = n(X) ·m(e−
√
−1θA) · (e

√
−1θk).

We put k′ = e
√
−1θk ∈ K. Since NC/R(det(k

′)) = 1, there exists t ∈ C× so that |t| = 1 and

det(k′) = t2 = det(rt). Hence we have k′(rt)
−1 ∈ K0. □

The action of rt on F is trivial for all t ∈ C× with |t| = 1. Let

k =

(
α β
−β α

)
∈ K0.

Since det(k) = det(α+
√
−1β)(α−

√
−1β) = 1, the action of k on F is the scalar multiplication

of
j(k, i)−2κ−2 det(k)κ+1 = det(α−

√
−1β)−2κ−2 = det(α+

√
−1β)2κ+2.

Proposition 6.5. Let x∞ = n(X) ·m(A) ∈ U(2, 2)(R), where X ∈ Her2(R) and A ∈ GL2(C)
with det(A) ∈ R× . Put Y = AtA. Then,

WF,B(γix∞) = C−κ−1
i det(Y )κ+1AFci

(B) exp(2π
√
−1Tr(B(X + Y

√
−1))).

Here, we set AFci
(B) = 0 if B ̸∈ Λci

2 (o)
+.

Proof. We fix a Z-basis {λ1, λ2} of c̄i, i.e., c̄i = λ1Z+ λ2Z. As a coordinate of Her2, we use

Z =

(
n λ1a+ λ2b

λ1a+ λ2b Cim

)
∈ Her2.

Then,

WF,B(γix∞) =

∫
[Her2]

F(n(Z)γix∞)ψ(Tr(BZ))dZ

=

∫
(Ẑ×[0,1))4

F(γin(d(ti)
−1Zd(ti)

−1)x∞)ψ(Tr(BZ))dZ.

Write Z = Zfin+Z∞ with Zfin ∈ Her2(AQ,fin) and Z∞ ∈ Her2(R). If a, b, n,m ∈ Ẑ, then we find
that n(d(ti)

−1Zfind(t̄i)
−1) ∈ K0. Hence WF,B(γix∞) is equal to(∫

Ẑ4

ψ(Tr(BZfin))dZfin

)(∫
[0,1)4

F(γin(Z∞)x∞)ψ(Tr(BZ∞))dZ∞

)
.

The first integral is not vanish if and only if Tr(BZfin) ∈ Ẑ whenever a, b, n,m ∈ Ẑ. This
condition is equivalent to the condition that B ∈ Λci

2 (o). In this case, the first integral is equal
to 1.



20 HIRAKU ATOBE

Since F(γin(Z∞)x∞) = C−κ−1
i det(Y )κ+1Fci(X +Y

√
−1+Z∞), the second integral is equal

to

C−κ−1
i det(Y )κ+1

∑
H∈Λ

ci
2 (o)+

AFci
(H) exp(2π

√
−1Tr(H(X + Y

√
−1)))

×
∫
[0,1)4

exp(2π
√
−1Tr((H −B)Z∞))dZ∞.

Since H −B ∈ Λci
2 (o), we find that∫
[0,1)4

exp(2π
√
−1Tr((H −B)Z∞))dZ∞ =

{
1 if B = H,

0 if B ̸= H.

This completes the proof. □
6.4. Fourier coefficients of θ(f , φ). Next we compute WB(g). Let V0 = ⟨e1, e6⟩ and V1 =
⟨e2, e3, e4, e5⟩ be subspaces of V . We identify V0 (resp. V1) with the space of column vectors Q2

(resp. Q4) via this basis. For

n(X) =

(
12 X
0 12

)
∈ SU(2, 2) with X =

(
x1 x2 +

√
−Dx3

x2 −
√
−Dx3 x4

)
∈ Her2,

we have

ϕ1(n(X)) =


1 x4 2x2 2Dx3 −x1 x1x4 − x22 −Dx23
0 1 0 0 0 x1
0 0 1 0 0 −x2
0 0 0 1 0 −x3
0 0 0 0 1 −x4
0 0 0 0 0 1

 .

There are two isomorphisms of the Q-vector spaces

v : Her2(Q) → V1(Q) ∼= Q4, X =

(
x1 x2 +

√
−Dx3

x2 −
√
−Dx3 x4

)
7→


x1
−x2
−x3
−x4

 ,

β : Her2(Q) → V1(Q) ∼= Q4, B =

(
b1 b2 +

√
−Db3

b2 −
√
−Db3 b4

)
7→


−b4
−b2
−b3
b1

 .

Put v = v(X) and β = β(B). Then we have

ϕ1(n(X)) = ℓ(v), Tr(BX) = (β, v), −Q1[β] = det(B).

Hence we have WB(g) = Wβ(hg), where Wβ is the β-th Fourier coefficient of θ(f , φ) defined in
Sect. 5.4.

For B = 0, by Paul’s result [22], we get the following lemma.

Lemma 6.6. For all g ∈ GU(2, 2)(AQ), we have

W0(g) = 0.

Proof. Let πf ∼= ⊗′
vπf,v be the automorphic representation of GL2(AQ) generated by f . We write

f = ⊗′
vfv with fv ∈ πf,v. As we noted in Sect. 4, we have πf,∞|SL2(R)

∼= π+
f ⊕ π−

f and f∞ ∈ π+
f ,

where π+
f (resp. π−

f ) is the holomorphic (resp. anti-holomorphic) discrete series of SL2(R) with
minimal weight 2κ + 1 (resp. −(2κ + 1)). Let g ∈ GU(2, 2)(AQ) and take a representative
hg ∈ GSO(V )(AQ) of ϕ(g) ∈ PGSO(V )(AQ). Fix φ0 ∈ S(V0(AQ)) and φ′

1 ∈ ⊗′
p<∞S(V1(Qp)).

Consider the linear map

Φ: ωV1(R),ψ∞ ⊗ π+
f → C, φ1 ⊗ f∞ 7→ W0(g; θ(f∞ ⊗ (⊗′

p<∞fp), φ0 ⊗ (φ1 ⊗ φ′
1))),
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where W0(g; θ(f
′, φ′)) = W0(hg; θ(f

′, φ′)) is the 0-th Fourier coefficient of θ(f ′, φ′) for f ′ ∈ π
and φ′ ∈ S(V (AQ)). Note that this integral does not depend on the choice of hg since f ′ =
f∞ ⊗ (⊗′

p<∞fp) has the central character χ. It suffices to show that Φ = 0.

Now, we claim that the linear map Φ: ωV1(R),ψ∞ ⊗ π+
f → C is SL2(AQ)-invariant. Indeed, by

Lemma 5.1 (2), we find that W0(g; θ(f
′, φ′)) is equal to∫

[SL2]

∑
x1∈V1(Q)

ω̂ (α · d(ν(hg)), hg) (φ′)̂ (x1; 0, 0)f
′ (α · d(ν(hg))) dα.

We put

φ̂0(y1, y2) =

∫
AQ

φ0(z, y1)ψ(y2z)dz.

Then we have (φ0⊗ (φ1⊗φ′
1))̂ (x1; y1, y2) = φ̂0(y1, y2) · (φ1⊗φ′

1)(x1). As we noted in Sect. 5.4,
we then find that

ω̂(α0, 1)(φ0 ⊗ (φ1 ⊗ φ′
1))̂ (x1; y) = φ̂0(yα0) · [ωV1(AQ),ψ(α0, 1)(φ1 ⊗ φ′

1)](x1)

for y ∈ V0(AQ) ∼= A2
Q and α0 ∈ SL2(AQ). In particular, for α0 ∈ SL2(R), we have

ω̂(α0, 1)(φ0 ⊗ (φ1 ⊗ φ′
1))̂ (x1; 0, 0) = φ̂0(0, 0) · [ωV1(AQ),ψ(α0, 1)(φ1 ⊗ φ′

1)](x1)

= (φ0 ⊗
(
[ωV1(R),ψ∞(α0, 1)φ1]⊗ φ′

1

)
)̂ (x1; 0, 0).

This implies that

Φ([ωV1(R),ψ∞(α0, 1)φ1]⊗ [π+
f (α0)f∞]) = Φ(φ1 ⊗ f∞)

for all α0 ∈ SL2(R) as desired.
We put g = Lie(SL2(R)) ⊗R C and K = SO(2). By [22] Theorem 15 and Corollary 23, we

find that
Hom(g,K)(ωV1(R),ψ∞ , (π

+
f )

∨) = 0,

since the Harish-Chandra parameter of (π+
f )

∨ ∼= π−
f is (−(2κ + 1)) and O(V1)(R) ∼= O(3, 1).

Therefore, we have Φ = 0. □
Next, we consider the case B ̸= 0. By Lemma 5.1 (1), we have

WB(g) =

∫
N(AQ)\SL2(AQ)

ω̂(α · d(ν(hg)), hg)φ̂(−β; 0, 1)Wf ,det(B)(α · d(ν(hg)))dα,

where hg = (hg,v)v ∈ GSO(V )(AQ) is a representative of ϕ(g) ∈ PGSO(V )(AQ). We put
ξ = det(B). If ξ = 0, we find that WB(g) = 0 since f is a cusp form. If ξ ̸= 0, we find that
WB(g) =

∏
vWB,v(gv), where for g ∈ GU(2, 2)(Qv), we put

WB,v(g) =

∫
N(Qv)\SL2(Qv)

ω̂(α · d(ν(hg)), hg)φ̂v(−β; 0, 1)Wf ,v(a(ξ) · α · d(ν(hg)))dα.

The following lemma will be proved in the last section. Here, we use the coordinate

B =

(
b1 b2 +

√
−Db3

b2 −
√
−Db3 b4

)
.

Lemma 6.7. Fix B ∈ Her2(Q).

(1) Let x∞ = (z14) · n(X) · m(A) · k · rt ∈ GU(2, 2)(R)+ for z ∈ C×, X ∈ Her2(R),
A ∈ GL2(C) with det(A) ∈ R×, t ∈ C× with |t| = 1, and

k =

(
α β
−β α

)
∈ K0 = K ∩ SU(2, 2)(R).

Put Y = AtA and Z = X + Y
√
−1. Then, WB,∞ (x∞) is equal to{

22κ+2 det(Y )κ+1ξκ+(1/2)e2π
√
−1Tr(BZ) det(α+

√
−1β)2κ+2 if B > 0,

0 otherwise.
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(2) Assume that p ∤ D. We put

m0 =

{
min(ordp(b1), ordp(b2), ordp(b3), ordp(b4)) if p ̸= 2,

min(ordp(b1), ordp(b2) + 1, ordp(b3) + 1, ordp(b4)) if p = 2.

Then for all k ∈ GU(2, 2)(Zp), we have

WB,p(k) = |ξ|κ+1/2
p

m0∑
n=0

(pn)2κ+1af
(
(ξp−2n)p

)
.

(3) Assume that p | D. We put

m0 =


min(ordp(b1), ordp(b2), ordp(b3) + 1, ordp(b4)) if ordp(D) = 1,

min(ordp(b1), ordp(b2) + 1, ordp(b3) + 2, ordp(b4)) if ordp(D) = 2,

min(ordp(b1), ordp(b2) + 1, ordp(b3) + 3, ordp(b4)) if ordp(D) = 3.

Then for all k ∈ GU(2, 2)(Zp), we have

WB,p(k) = q−1
p af (Dp)

−1|ξ|κ+1/2
p

m0∑
n=0

(pn)2κ+1Xn,p,

where qp = (SL2(Zp) : K0(D;Zp)) and

Xn,p =

{
1 if (Dξp−2n)p = 1,

af
(
(Dξp−2n)p

)
+ χ

p
(−ξ)af ((Dξp−2n)p) otherwise.

(4) Assume that ordp(Ci) ̸= 0. Write ti,p = xp ⊗ 1 + yp ⊗
√
−D ∈ Qp ⊗K. Then for all

k ∈ GU(2, 2)(Zp), we have

WB,p(γi,pk) = |Ci|κ+1
p |ξ|κ+1/2

p

∞∑
n=0

φ̂p(−ϕ′(ti,p)βp−n; 0, pn)(pn)2κ+1af
(
(ξCip

−2n)p
)
.

Here ϕ′(ti,p) ∈ GL(V1) ∼= GL4(Qp) is given by

ϕ′(ti,p) =


NKp/Qp

(ti,p)
xp −Dyp
yp xp

1

 ,

which makes the following diagram commutative.

Her2(Qp)
β−−−−→ V1(Qp)

d(t̄i,p)Xd(ti,p)

y yϕ′(ti,p)

Her2(Qp)
β−−−−→ V1(Qp).

6.5. Proof of Proposition 6.2. The ring of integers o of K = Q(
√
−D) is given by

o =


Z+

1 +
√
−D

2
Z if D is odd,

Z+

√
−D
2

Z if D is even.

So we change the coordinate B = B(h1, . . . , h4) of Her2(AQ) such that d(t̄i)Bd(ti) is equal to
(

h1 (h2 + h3/2)/
√
−D + h3/2

−(h2 + h3/2)/
√
−D + h3/2 h4

)
if D is odd,(

h1 h2/
√
−D + h3/2

−h2/
√
−D + h3/2 h4

)
if D is even
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for h1, . . . , h4 ∈ AQ. Note that B ∈ Λci
2 (o) if and only if ordp(hi) ≥ 0 for all i = 1, . . . , 4 and all

prime p.

Lemma 6.8. We put mi = ordp(bi) and li = ordp(hi).

(1) If p ∤ 2DCi, then we have

min(m1,m2,m3,m4) = min(l1, l2, l3, l4).

(2) If p ̸= 2 and p | D, then we have

min(m1,m2,m3 + 1,m4) = min(l1, l2, l3, l4).

(3) Let p = 2 ∤ D. Unless l2 < min(l1, l3, l4), we have

min(m1,m2 + 1,m3 + 1,m4) = min(l1, l2, l3, l4).

In this case, we have

min(m1,m2 + 1,m3 + 1,m4) = l2 + 1, min(l1, l2, l3, l4) = l2,

and we have ξ/22(l2+1) ̸∈ Z2.
(4) If p = 2 | D, then we have

min(m1,m2 + 1,m3 + ord2(D),m4) = min(l1, l2, l3, l4).

(5) If p | Ci, we have

∞∑
n=0

φ̂p(−ϕ′(ti,p)βp−n; 0, pn)(pn)2κ+1af
(
(ξCp−2n)p

)
=

min(li)∑
n=0

(pn)2κ+1af
(
(ξCp−2n)p

)
.

Proof. (5) is easily followed from the last assertion of Lemma 6.7 (4). If D is even, the assertions
(1) to (4) are obvious. So we assume D is odd.

If p ∤ 2DCi, then we have m1 = l1, m2 = l3, m4 = l4 and m3 = ordp(h2 + h3/2). If l2 ≥ l3,
then we have

m3 = ordp(h2 + h3/2) ≥ l3 = m2.

Hence we have

min(m1,m2,m3,m4) = min(m1,m2,m4) = min(l1, l3, l4) = min(l1, l2, l3, l4).

If l2 < l3, then we have m3 = l2. So we have (1).
If p ̸= 2 and p | D, then we have m1 = l1, m2 = l3, m4 = l4 and m3 + 1 = ordp(h2 + h3/2).

Then, the proof of (2) is similar to that of (1).
If p = 2 ∤ D, then we have m1 = l1, m2 + 1 = l3, m4 = l4 and m3 + 1 = ordp(2h2 + h3). If

l2 + 1 > l3, then we have
m3 + 1 = l3 = m2 + 1.

Hence we have

min(m1,m2 + 1,m3 + 1,m4) = min(m1,m2 + 1,m4)

= min(l1, l3, l4) = min(l1, l2, l3, l4).

If l2 + 1 < l3, then we have
m3 + 1 = l2 + 1 < m2 + 1.

Hence we have

min(m1,m2 + 1,m3 + 1,m4) = min(m1,m3 + 1,m4) = min(l1, l2 + 1, l4),

min(l1, l2, l3, l4) = min(l1, l2, l4).

So if
min(m1,m2 + 1,m3 + 1,m4) ̸= min(l1, l2, l3, l4),

then we have l2 < min(l1, l4) and

min(m1,m2 + 1,m3 + 1,m4) = l2 + 1 and min(l1, l2, l3, l4) = l2.
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In this case, we have l1 + l4 > 2l2, 2l3 − 2 > 2l2, and ord2(h2 + h3/2)
2 = 2l2. Now, we find that

ξ = det(H) = h1h4 −
h23
4

− 1

D

(
h2 +

h3
2

)2

.

Hence we have ord2(ξ) = 2l2 < 2(l2+1). If l2+1 = l3, then we find m3+1 ≥ l2+1 and l2 < l3.
So we have

min(m1,m2 + 1,m3 + 1,m4) = min(l1, l2 + 1, l4),

min(l1, l2, l3, l4) = min(l1, l2, l4).

So if

min(m1,m2 + 1,m3 + 1,m4) ̸= min(l1, l2, l3, l4),

then we have l2 < min(l1, l4) and

min(m1,m2 + 1,m3 + 1,m4) = l2 + 1 and min(l1, l2, l3, l4) = l2.

Since the rational numbers h2, h3 satisfy that ord2(h2) = ord2(h3/2), we have

ord2(h2 + h3/2) > ord2(h2) = l2.

However we have ord2(h1h4) = l1 + l4 > 2l2 and ord2(h
2
3/4) = 2l3 − 2 = 2l2. Hence we have

ord2(ξ) = 2l2 < 2(l2 + 1). We get (3). This completes the proof. □

Now, we start to prove Proposition 6.2. By Sect. 6.3 and Lemma 6.7, the compact group

K · K0 ⊂ U(2, 2)(AQ) acts on F = Lift (2)(f) and on θ(f , φ) by the same character. Hence, it
suffices to show that

WB(γix∞) =

∏
p|D

q−1
p

 22κ+2af (D)−1WF,B(γix∞)

for all B ∈ Her2(Q) and x∞ = n(X) ·m(A), where X ∈ Her2(R), A ∈ GL2(C) with det(A) ∈ R×

and qp = (SL2(Zp) : K0(D;Zp)). We may assume that B ∈ Λci
2 (o)

+. Then WB(γix∞) is equal
to

22κ+2 det(Y )κ+1e2π
√
−1Tr(BZ)C−κ−1

i

∏
p|D

q−1
p

 af (D)−1

×

∏
p∤D

min(li)∑
n=0

(pn)2κ+1af
(
(ξCip

−2n)p
)∏

p|D

min(li)∑
n=0

(pn)2κ+1Xn,p


= 22κ+2 det(Y )κ+1e2π

√
−1Tr(BZ)C−κ−1

i

∏
p|D

q−1
p

 af (D)−1

×
∑

d|(h1,h2,h3,h4)

d2κ+1αFci

(
CiD det(B)

d2

)

= 22κ+2

∏
p|D

q−1
p

 af (D)−1WF,B(γix∞).

This completes the proof of Proposition 6.2 using Lemma 6.7.

Corollary 6.9. The automorphic form Lift (2)(f) on U(2, 2)(AQ) can be extended to GU(2, 2)(AQ)
by

Lift (2)(f)(urtxk) = C−κ−1(Fc ∥2κ+2 x)(i) = C−κ−1Fc(x⟨i⟩)j(x, i)−2κ−2(detx)κ+1
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for all u ∈ GU(2, 2)(Q), x ∈ GU(2, 2)(R)+, k ∈ K and t ∈ AK,fin such that the ideal c given by
t is in JDK . Here, C = N(c) ∈ Q>0 is the ideal norm of c. Moreover, it satisfies

θ(ϕ(g); f , φ) =

∏
p|D

q−1
p

 22κ+2af (D)−1Lift (2)(f)(g)

for all g ∈ GU(2, 2)(AQ) with qp = (SL2(Zp) : K0(D;Zp)).

Proof. This follows from Proposition 6.2 and Lemma 2.2. □

7. Theta correspondence for (GL2,GO(2, 2))

In this section, we recall the theta correspondence for (GL2,GO(2, 2)) following [14] §6. For
the proof of Theorem 3.2, we need Lemma 7.1 which calculates a certain theta lift on GL2(AQ).

Let M2 be the vector space of 2× 2 matrices. We regard M2 as the quadratic space with the
quadratic form

Q[x] = det(x).

Let

G(SL2 × SL2) = {(h1, h2) ∈ GL2 ×GL2| det(h1) = det(h2)}.

For (h1, h2) ∈ G(SL2 × SL2), we put ∆(h1, h2) = det(h1) = det(h2). Recall that there is a
following exact commutative diagram:

1 −−−−→ GL1
ι−−−−→ GL2 ×GL2

ρ−−−−→ GSO(M2) −−−−→ 1∥∥∥ x x
1 −−−−→ GL1

ι−−−−→ G(SL2 × SL2)
ρ−−−−→ SO(M2) −−−−→ 1,

where

ι(a) = (a12, a12) and ρ(h1, h2)x = h1xh
−1
2 ,

for a ∈ GL1, h1, h2 ∈ GL2 and x ∈ M2.
Let V ′ be the subspace of V generated by {e1, e2, e5, e6}. Then there is an isomorphism of

quadratic spaces over Q as follows:

V ′(Q)
∼=−→ M2(Q), x1e1 + x2e2 + x5e5 + x6e6 7→

(
x2 −x1
x6 x5

)
.

Via this isomorphism, we regard ρ as a map ρ : GL2 ×GL2 → GSO(V ′).
Let µ2 be the subgroup of O(M2) generated be the involution ∗ on M2 given by

x =

(
x1 x2
x3 x4

)
7→ x∗ =

(
x4 −x2
−x3 x1

)
.

Via the isomorphism M2
∼= V ′, the involution ∗ on M2 corresponds to an element h′0 ∈ O(V ′)

given by

x1 7→ −x1, x2 7→ x5, x5 7→ x2, x6 7→ −x6.

For α ∈ K×, we have ϕ2(α)V
′ ⊂ V ′. We put ϕ′2(α) = ϕ2(α)|V ′ for α ∈ K×. Then we find

that

ϕ′2(α) =


NK/Q(α)

1
NK/Q(α)

1

 = ρ
(
12, d(NK/Q(α)

−1)
)
∈ GSO(V ′).
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We extend g ∈ SO(V ′) to SO(V ) by ge3 = e3 and ge4 = e4. We define the inclusion τ : G(SL2×
SL2) ↪→ GSU(2, 2) by

τ

((
a1 b1
c1 d1

)
,

(
a2 b2
c2 d2

))
7→


a1 0 b1 0
0 a2 0 b2
c1 0 d1 0
0 c2 0 d2

 .

Then we find that the following diagram is commutative:

G(SL2 × SL2)
(ρ,∆)−−−−→ SO(V )×GL1

τ

y y
GSU(2, 2)

ϕ1−−−−→ GSO(V ).

Here, the map SO(V )×GL1 → GSO(V ) is the multiplication (h, a) 7→ ah.
For a normalized Hecke eigenform g ∈ S2κ+2(SL2(Z)), let g denote the cusp form on GL2(AQ)

given by g. Following [14] §6.3, we extend the cusp form g⊗g on GSO(M2)(AQ) to a cusp form
G on GO(M2)(AQ) by G(hh′) = G(h) for h ∈ GO(M2)(AQ) and h

′ ∈ µ2(AQ).
We define φ′ = ⊗φ′

v ∈ S(V ′(AQ)) as follows:

• If v = p <∞, then φ′
p is the characteristic function of V ′(Zp).

• If v = ∞, then

φ′
∞(x1e1 + x2e2 + x5e5 + x6e6) = (−

√
−1x1 + x2 − x5 +

√
−1x6)

2κ+2e−π(x
2
1+x

2
2+x

2
5+x

2
6).

We may regard G as a cusp form on GO(V ′)(AQ) via the isomorphism M2
∼= V ′. So we can

consider the theta lift θ(G, φ′) on GL2(AQ). The following lemma is Lemma 6.3 in [14].

Lemma 7.1. For all α ∈ GL2(AQ), we have

θ(α;G, φ′) = 22κ+1ξQ(2)
−2⟨g, g⟩g(α).

8. Theta correspondence for (SL2,O(2)) and the Siegel–Weil formula

In this section, we study the theta correspondence for (SL2,O(2)). For the proof of Theorem
3.2, we need the Siegel–Weil formula (Proposition 8.1) which calculates a certain theta lift on
SL2(AQ).

We regard K as the quadratic space over Q with the bilinear form

(x, y) = TrK/Q(xȳ).

Then the associated quadratic form is given by

Q[x] = NK/Q(x).

Let V ′′ be the subspace of V generated by {e3, e4}. Then there is an isomorphism of quadratic
spaces over Q as follows:

ℓ : K
∼=−→ V ′′, x+ y

√
−D 7→ xe3 + ye4.

This isomorphism induces an isomorphism of algebraic groups as follows:

K× ∼=−→ GSO(V ′′) ∼= GSO(2), x+ y
√
−D 7→

(
x −Dy
y x

)
.

The restriction of this map gives an isomorphism K1
∼=−→ SO(V ′′).

For α ∈ K×, we have ϕ2(α)V
′′ ⊂ V ′′. We put ϕ′′2(α) = ϕ2(α)|V ′′ . Then for α ∈ K× and

x ∈ K, we have

ϕ′′2(α)ℓ(x) = ℓ(αx),
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i.e., the following diagram is commutative:

K
ℓ−−−−→ V ′′

α

y yϕ′′
2 (α)

K
ℓ−−−−→ V ′′.

For φ′′ ∈ S(V ′′(AQ)), we define

Φ(α, s) = Φ(α, s, φ′′) = [ω(α, 1)φ′′](0)|a(α)|s

where if α = n(x)t(a)k ∈ SL2(AQ) with x ∈ AQ, a ∈ A×
Q and k ∈ SL2(Ẑ)SO(2), then we put

|a(α)| = |a|.
Note that the quantity |a(α)| is well-defined. It satisfies that

Φ(n(x)t(a)g, s) = χV ′′(a)|a|s+1Φ(g, s)

for all x ∈ AQ, a ∈ A×
Q and g ∈ SL2(AQ), i.e., Φ ∈ Ind

SL2(AQ)
B(AQ)

(χV ′′ | · |s). Note that Φ(α, s) =∏
v Φv(αv, s).
We define the Eisenstein series E(α, s) by

E(α, s) =
∑

γ∈B(Q)\SL2(Q)

Φ(γα, s).

This is absolutely convergent for Re(s) > 1. The Eisenstein series E(α, s) has a meromorphic
continuation to the whole s-plane and is holomorphic at s = 0. The following proposition is
Main Theorem of [19].

Proposition 8.1 (Siegel-Weil formula). For φ′′ ∈ S(V ′′(AQ)), we have

θ(α;1O(V ′′)(AQ), φ
′′) =

1

2
E(α, 0).

We define φ′′ = ⊗vφ′′
v ∈ S(V ′′(AQ)) as follows:

• If v = p <∞ and p ̸= 2, then φ′′
p is the characteristic function of V ′′(Zp).

• If v = 2, then φ′′
2 is the characteristic function of{
V ′′(Z2) ∪ (2−1Z×

2 e3 + 2−1Z×
2 e4) if D is odd,

Z2e3 + 2−1Z2e4 if D is even.

• If v = ∞, then

φ′′
∞(x) = e−2πQ′′[x].

Here, Q′′ is the quadratic form of V ′′ given by

Q′′[x3e3 + x4e4] = x23 +Dx24.

We will apply Proposition 8.1 to L(ϕ′′2(t))φ
′′ for some t ∈ A×

K,fin.

Lemma 8.2. Via the isomorphism ℓ : K ∼= V ′′, the function φ′′
p is the characteristic function of

the maximal compact subring o⊗Z Zp of K ⊗Qp for each p. In particular, for α ∈ (o⊗Z Zp)×,
we have

L(ϕ′′2(α))φ
′′
p = φ′′

p .

Proof. This is obvious. □

We define
ô×K =

∏
p

o×Kp
, ô1K = {ββ−1|β ∈ ô×K}

and
C1 = K1(R) = {x+ y

√
−D ∈ C|x, y ∈ R, x2 +Dy2 = 1}.
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Note that C1 = {α ∈ C×| |α| = 1}. We easily find that L(ϕ′′2(α))φ
′′
∞ = φ′′

∞ for α ∈ C1. This
fact and Lemma 8.2 imply that the function

α 7→ θ(g, ϕ′′2(α);φ
′′)

on [K1] is right ô1KC1-invariant for all g ∈ SL2(AQ).

9. Proof of Theorem 3.2

In this section, we prove Theorem 3.2 using Lemma 6.7 and Lemma 9.6, which will be proved
in the last section.

9.1. Seesaw identity. Let c ∈ JDo and put C = N(c) ∈ Z>0. Assume that C is a square free
integer. Let t ∈ A×

K,fin such that ordp(tp) = ordp(c) for each prime ideal p of K. Note that

CNK/Q(tp)
−1 ∈ Z×

p for each p. We consider the integral

I(c) =

∫
[O(V ′)]

∫
[O(V ′′)]

θ(h′h′′ϕ2(t); f , φ)G(h′ϕ′2(t))dh′′dh′.

Note that this integral does not depend on the choice of t ∈ A×
K,fin. First, using Proposition 6.2,

we get the following expression of I(c) in terms of the period integrals.

Proposition 9.1. The integral I(c) is equal to

2−1ξQ(2)
−2

∏
p|D

q−1
p

 22κ+1af (D)−1 1

#(Cl2K)

∑
[a]∈Cl2K

⟨Fac|H×H, g × gAC⟩⟨g, g⟩
⟨gAC , gAC⟩

.

Here, we put qp = (SL2(Zp) : K0(D;Zp)), A = N(a) and Cl2K = {[b]2| [b] ∈ ClK}.

Proof. We define h′0 ∈ O(V ′) by

x1 7→ −x1, x2 7→ x5, x5 7→ x2, x6 7→ −x6,

and h′′0 ∈ O(V ′′) by

x3 7→ −x3, x4 7→ x4.

We put h′1 = ϕ′2(t)h
′
0ϕ

′
2(t)

−1, h′′1 = ϕ′′2(t)h
′′
0ϕ

′′
2(t)

−1. Then we find that

θ(h′h′1h
′′h′′1ϕ2(t); f , φ)G(h′h′1ϕ′2(t)) = θ(h′h′′ϕ2(t); f , φ)G(h′ϕ′2(t))

for all (h′, h′′) ∈ O(V ′)(AQ)×O(V ′′)(AQ). Hence we have

I(c) = 2−2

∫
[SO(V ′)]

∫
[SO(V ′′)]

θ(h′h′′ϕ2(t); f , φ)G(h′ϕ′2(t))dh′′dh′.

Since the isomorphism K1
∼=−→ SO(V ′′) ↪→ SO(V ) is given by α 7→ ϕ2(α), we find that

I(c) = 2−1

∫
[SO(V ′)]

∫
K1\A1

K/ô
1
KC1

θ(h′ϕ2(α)ϕ2(t); f , φ)G(h′ϕ′2(t))dαdh′.

We see that the map β 7→ ββ
−1

gives an isomorphism

K×\A×
K/ô

×
KC× ∼=−→ K1\A1

K/ô
1
KC1.

Since there is a canonical isomorphism K×\A×
K/ô

×
KC× ∼= ClK , we have

I(c) =
1

2hK

hK∑
i=1

∫
[SO(V ′)]

θ(h′ϕ2(βiβi
−1
t); f , φ)G(h′ϕ′2(t))dh′,

where {β1, . . . , βhK} is a complete system of representatives of K×\A×
K/ô

×
KC×. We may take

βi such that the ideal bi defined by βi is in J
D
K for i = 1, . . . , hK . We identify G(SL2 × SL2) as
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a subgroup of GU(2, 2) via the inclusion τ defined in Sect. 7. If h′ = ρ(x1, x2) with (x1, x2) ∈
G(SL2 × SL2), by Corollary 6.9, we have

θ(h′ϕ2(ββ
−1
t); f , φ) =

∏
p|D

q−1
p

 22κ+2af (D)−1Lift (2)(f)(τ(x1, x2)rββ−1
t
),

and
G(h′ϕ′2(t)) = g(x1)g(x2 · d(NK/Q(t)−1)).

Moreover we see that the automorphic form g(x · d(NK/Q(t)−1)) is given by g|2κ+2d(C) =

C−κ−1gC . So we have

2−1

∫
[SO(V ′)]

Lift (2)(f)(τ(x1, x2)rββ−1
t
)G(h′ϕ′2(t))dh′

= 2−1

∫
[G(SL2×SL2)/GL1]

C−κ−1[F
bibi

−1
c
∥2κ+2 τ(x1, x2)](i)

× g(x1)g(x2 · d(NK/Q(t)−1))d(x1, x2)

= (3/π)2C−κ−1⟨F
bibi

−1
c
|H×H, g × (C−κ−1gC)⟩

= (2ξQ(2))
−2C−2κ−2⟨F

bibi
−1

c
|H×H, g × gC⟩.

Now we have
⟨gC , gC⟩ = C2(κ+1)⟨g|d(C), g|d(C)⟩ = C2(κ+1)⟨g, g⟩.

Since [bi] = [bi]
−1 in ClK , by Lemma 3.1, we have

I(c) =

∏
p|D

q−1
p

 22κ+2af (D)−1(2ξQ(2))
−2 1

hK

∑
[b]∈ClK

⟨F
bb

−1
c
|H×H, g × gC⟩⟨g, g⟩
⟨gC , gC⟩

= 2−1ξQ(2)
−2

∏
p|D

q−1
p

 22κ+1af (D)−1 1

#(Cl2K)

∑
[a]∈Cl2K

⟨Fac|H×H, g × gAC⟩⟨g, g⟩
⟨gAC , gAC⟩

.

This completes the proof using Lemma 6.7. □
Next, we give another expression of I(c). To do this, we need the following lemmas.

Lemma 9.2. We have
φ = φ′ ⊗ φ′′.

In particular, we have

θ(g · d(ν ◦ ϕ2(t)), h′h′′ϕ2(t);φ)
= θ(g · d(ν ◦ ϕ′2(t)), h′ϕ′2(t);φ′)θ(g · d(ν ◦ ϕ′′2(t)), h′′ϕ′′2(t);φ′′).

Proof. This is obvious. □
Lemma 9.3. The integral∫

[O(V ′)]

∫
[O(V ′′)]

∫
[SL2]

∣∣∣θ(g · d(ν ◦ ϕ2(t)), h′h′′ϕ2(t);φ)f(g · d(ν ◦ ϕ2(t)))G(h′ϕ′2(t))∣∣∣ dgdh′′dh′
is finite.

Proof. By the above lemma, this integral is equal to∫
[O(V ′)]

∫
[SL2]

∣∣∣θ(g · d(NK/Q(t)), h′ϕ′2(t);φ′)f(g · d(NK/Q(t)))G(h′ϕ′2(t))
∣∣∣

×

(∫
[O(V ′′)]

∣∣θ(g · d(NK/Q(t)), h′′ϕ′′2(t);φ′′)
∣∣ dh′′) dgdh′.
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Since V ′′ is anisotropic over Q, the space [O(V ′′)] is compact. Hence the inner integral converges
and it is slowly increasing function on [SL2]. Since f and G are cusp forms, they are rapidly
decreasing. Moreover the function

(h′, g) 7→ θ(g · d(NK/Q(t)), h′ϕ′2(t);φ′)

is slowly increasing on [O(V ′)]× [SL2]. Therefore the function∣∣∣θ(g · d(NK/Q(t)), h′ϕ′2(t);φ′)f(g · d(NK/Q(t)))G(h′ϕ′2(t))
∣∣∣

×

(∫
[O(V ′′)]

∣∣θ(g · d(NK/Q(t)), h′′ϕ′′2(t);φ′′)
∣∣ dh′′)

is bounded on [O(V ′)]× [SL2]. This completes the proof. □

Proposition 9.4. Put qp = (SL2(Zp) : K0(D;Zp)). Then

I(c) = 2−2ξQ(2)
−2

∏
p|D

q−1
p

 (2π)−(2κ+1)af (D)−1(2κ)!⟨g, g⟩

× L(1, χ)−1
∑

Q⊂QD

χQ(−C)afQ(D)L(1/2, fQ × g).

Proof. By Lemma 7.1, Proposition 8.1 and Lemma 9.3, we have

I(c) =

∫
[SL2]

(
22κ+1ξQ(2)

−2⟨g, g⟩g(α · d(NK/Q(t)))
)(1

2
E(α, 0)

)
f(α · d(NK/Q(t)))dα

= 2−122κ+1ξQ(2)
−2⟨g, g⟩

∫
[SL2]

E(α, 0)f(α · d(NK/Q(t)))g(α · d(NK/Q(t)))dα.

Here, the Eisenstein series E(α, s) is defined by using the section

Φ(α, s, L(ϕ′′2(t)φ
′′)).

We put

I(c, s) =

∫
[SL2]

E(α, s)f(α · d(NK/Q(t)))g(α · d(NK/Q(t)))dα.

Then, we have

I(c) = 2−122κ+1ξQ(2)
−2⟨g, g⟩I(c, s)|s=0.

We formally compute I(c, s) for Re(s) ≫ 0. Note that C = N(c) ∈ Q× ⊂ A×
Q , g has the trivial

central character and f ,g are left GL2(Q)-invariant. So we have

I(c, s) =

∫
B(Q)\SL2(AQ)

Φ(α, s)f(α · d(NK/Q(t)))g(α · d(NK/Q(t)))dα

=

∫
B(Q)\SL2(AQ)

Φ(α, s)f(a(C)αd(NK/Q(t)))g(a(C)αd(NK/Q(t)))dα

=

∫
B(Q)\SL2(AQ)

Φ(α, s)f(a(C)αd(NK/Q(t)))
∑
ξ∈Q×

Wg(a(ξC)αd(NK/Q(t)))dα.

Note that∑
ξ∈Q×

Wg(a(ξC)αd(NK/Q(t)))dα =
∑

ξ∈Q×/Q×2

∑
γ∈Q>0

Wg(a(ξγ2C)αd(NK/Q(t)))dα

=
1

2

∑
ξ∈Q×/Q×2

∑
γ∈Q×

Wg(a(ξC)t(γ)αd(NK/Q(t)))dα.
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Hence I(c) is equal to

1

2

∑
ξ∈Q×/Q×2

∫
N(Q)\SL2(AQ)

Φ(α, s)f(a(C)αd(NK/Q(t)))Wg

(
a(ξC)αd(NK/Q(t))

)
dα

=
1

2

∑
ξ∈Q×/Q×2

∫
N(Q)\SL2(AQ)

Φ(α, s)

×
∑
ξ′∈Q×

Wf (a(ξ
′C)αd(NK/Q(t)))Wg

(
a(ξC)αd(NK/Q(t))

)
dα

=
1

2

∑
ξ∈Q×/Q×2

∑
ξ′∈Q×

∫
N(AQ)\SL2(AQ)

(∫
Q\AQ

ψ(ξ′Cx)ψ(ξCx)dx

)

× Φ(α, s)Wf (a(ξ
′C)αd(NK/Q(t)))Wg

(
a(ξC)αd(NK/Q(t))

)
dα

=
1

2

∑
ξ∈Q×/Q×2

∫
N(AQ)\SL2(AQ)

Φ(α, s)

×Wf (a(ξC)αd(NK/Q(t)))Wg

(
a(ξC)αd(NK/Q(t))

)
dα

=
1

2

∑
ξ∈Q×/Q×2

∏
v

Iv(c, s, ξ) =
1

2

∑
ξ∈Z

square free

∏
v

Iv(c, s, ξ).

Here,
∑
ξ∈Z

square free

means the sum over all square free integers, and we put

Iv(c, s, ξ)

=

∫
N(Qv)\SL2(Qv)

Φv(α, s)Wf ,v(a(ξC)αd(NK/Q(t)v))Wg,v

(
a(ξC)αd(NK/Q(t)v)

)
dα.

This calculation is justified by the following lemma.

Lemma 9.5. We define Jv(c, s, ξ, ξ
′) by∫

N(Qv)\SL2(Qv)

∣∣∣Φv(α, s)Wf ,v(a(ξ
′C)αd(NK/Q(t)v))Wg,v

(
a(ξC)αd(NK/Q(t)v)

)∣∣∣ dα.
If Re(s) > 6, then ∑

ξ∈Z
square free

∑
ξ′∈Q×

∏
v

Jv(c, s, ξ, ξ
′) <∞.

Proof. We need the following lemma which will be proved in the last section.

Lemma 9.6. We put σ = Re(s) > 6.

(1) For v = ∞, we have

I∞(c, s, ξ) =

{
(4π)−(s/2+2κ+1)|Cξ|−s/2+1/2

∞ Γ (s/2 + 2κ+ 1) if ξ > 0,

0 if ξ < 0.

If ξ, ξ′ > 0, then

J∞(c, s, ξ, ξ′) ≤ (4π)−(σ/2+2κ+1)(Cξ)−σ/4+1/2(Cξ′)−σ/4Γ(σ/2 + 2κ+ 1)

and otherwise, J∞(c, s, ξ, ξ′) = 0.
(2) For v = p ∤ CD, we have

Ip(c, s, ξ, γ) = |ξ|−s/2+1/2
p

∞∑
n=0

|ξp2n|s/2+2κ+1
p af ((ξp

2n)p)ag((ξp2n)p)
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and

Jp(c, s, ξ, ξ
′) = |ξ|κ+1

p |ξ′|κ+1/2
p

∞∑
n=0

(p−n)σ+4κ+2
∣∣∣af ((ξ′p2n)p)ag((ξp2n)p)∣∣∣ .

(3) For v = p | D, we have

Ip(c, s, ξ) =
1

(SL2(Zp) : K0(D;Zp))
af (Dp)

−1|ξ|−s/2+1/2
p

∞∑
n=0

|ξp2n|s/2+2κ+1
p

× [af ((Dξp
2n)p) + χ

p
(−Cξ)af ((Dξp2n)p)]ag((ξp2n)p)

and

Jp(c, s, ξ, ξ
′) ≤ 2|aF (Dp)|−1

(SL2(Zp) : K0(D))
|ξ|κ+1
p |ξ′|κ+1/2

p

×
∞∑
n=0

(p−n)σ+4κ+2
∣∣∣af ((Dξ′p2n)p)ag((ξp2n)p)∣∣∣ .

(4) For v = p | C, we have

Ip(c, s, ξ) = p−1/2 p
s + p

1 + p
|ξ|−s/2+1/2
p

∞∑
n=0

|ξp2n|s/2+2κ+1
p af ((ξp

2n)p)ag((ξp2n)p)

and

Jp(c, s, ξ, ξ
′) = p−1/2 p

σ + p

1 + p
|ξ|κ+1
p |ξ′|κ+1/2

p

×
∞∑
n=0

(p−n)σ+4κ+2
∣∣∣af ((ξ′p2n)p)ag((ξp2n)p)∣∣∣ .

By this lemma, there is a constant M1 = M1(σ) > 0 which does not depend on ξ, ξ′ and
satisfies∏

v

Jv(c, s, ξ, ξ
′)

≤M1ξ
−σ/4−κ−1/2(ξ′)−σ/4−κ−1/2

∏
p<∞

∞∑
n=0

(p−n)σ+4κ+2|af ((Dξ′p2n)p)ag((ξp2n)p)|

=M1ξ
−σ/4−κ−1/2(ξ′)−σ/4−κ−1/2

∞∑
m=1

m−(σ+4κ+2)|af (Dξ′m2)ag(ξm2)|

if ξ, ξ′ > 0. Otherwise,
∏
v Jv(c, s, ξ, ξ

′) = 0. We put t = σ/4 + κ+ 1/2. Then we have∑
ξ∈Z

square free

∑
ξ′∈Q×

∏
v

Jv(c, s, ξ, ξ
′)

≤M1

∞∑
m=1

∑
ξ∈Z>0

square free

∑
ξ′∈Q×

>0

ξ−t(ξ′)−tm−4t|af (Dξ′m2)ag(ξm2)|.

Unless ξ′ ∈ (Dm2)−1Z>0, we have |af (Dξ′m2)ag(ξm2)| = 0. So we have∑
ξ∈Z

square free

∑
ξ′∈Q×

∏
v

Jv(c, s, ξ, ξ
′)

≤M1

∞∑
m=1

∑
ξ∈Z>0

square free

∑
n∈Z>0

ξ−t
( n

Dm2

)−t
m−4t|af (n)ag(ξm2)|.
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It is well-known that
|af (n)| = O(nκ+1/2), |ag(n)| = O(nκ+1).

Hence, there exists a constant M2 > 0 such that∑
ξ∈Z

square free

∑
ξ′∈Q×

∏
v

Jv(c, s, ξ, ξ
′)

≤M2

∞∑
m=1

∑
ξ∈Z>0

square free

∑
n∈Z>0

ξ−t
( n

Dm2

)−t
m−4tnκ+1/2(ξm2)κ+1

≤M2D
t

∞∑
m=1

∞∑
ξ=1

∞∑
n=1

ξ−σ/4+1/2m−σ/2+1n−σ/4

=M2D
tζ(σ/4− 1/2)ζ(σ/2− 1)ζ(σ/2).

This is finite if σ > 6. □
We return to the proof of Proposition 9.4. By Lemma 9.6, for Re(s) ≫ 0, we have

I(c, s) =
1

2

∑
ξ∈Z

square free

∏
v

Iv(c, s, ξ)

=
1

2
(4π)−(s/2+2κ+1)C−s/2Γ(s/2 + 2κ+ 1)

∏
q|C

qs + q

1 + q

∏
p|D

q−1
p


× af (D)−1

∑
ξ∈Z>0

square free

∞∑
n=1

(ξn2)−(s/2+2κ+1)αFc
(Dξn2)ag(ξn2)

=
1

2
(4π)−(s/2+2κ+1)C−s/2Γ(s/2 + 2κ+ 1)

∏
q|C

qs + q

1 + q

∏
p|D

q−1
p


× af (D)−1

∞∑
m=1

m−(s/2+2κ+1)αFc
(Dm)ag(m).

Recall that afc∗(Dm) = acD(Dm)αFc
(Dm). By definition of acD, we have acD(Dm) = 1. So we

have

αFc
(Dm) = afc∗(Dm) =

∑
Q⊂QD

χQ(−C)afQ(Dm) =
∑

Q⊂QD

χQ(−C)afQ(D)afQ(m).

Hence we have
∞∑
m=1

m−(s/2+2κ+1)αFc
(Dm)ag(m)

=
∑

Q⊂QD

χQ(−C)afQ(D)

∞∑
m=1

m−(s/2+2κ+1)afc∗(m)ag(m)

=
∑

Q⊂QD

χQ(−C)afQ(D)D(s/2 + 2κ+ 1, fQ, g)

=
∑

Q⊂QD

χQ(−C)afQ(D)L(s+ 1, χ)−1L(s/2 + 1/2, fQ × g).

This completes the proof of Proposition 9.4 using Lemma 9.6. □
By Proposition 9.1 and 9.4, we get the following corollary using Lemma 6.7 and Lemma 9.6.
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Corollary 9.7. For c ∈ JDo such that C = N(c) is a square free integer, we have∑
Q⊂QD

χQ(−C)afQ(D)L(1/2, fQ × g)

=
2L(1, χ)(4π)2κ+1

(2κ)!

1

#(Cl2K)

∑
[a]∈Cl2K

⟨Fac|H×H, g × gAC⟩
⟨gAC , gAC⟩

.

9.2. Genus theory. We recall the genus theory (see e.g., Hecke [12] §48). Let G = ClK/Cl
2
K .

Note that the canonical homomorphism JDo → G is surjective by the Chebotarev density theo-
rem. Let N : JDo → Z>0 be the ideal norm map. For Q ⊂ QD, the map χQ ◦ N : JDo → {±1}
gives a character of G. Moreover, for Q,Q′ ⊂ QD, we see that χQ ◦N = χQ′ ◦N if and only if
Q′ = Q or Q′ = QD \Q. In particular, χQ ◦N is the trivial character of G if and only if Q = ∅
or Q = QD. So if we choose c1, . . . , cl ∈ JDo such that they give a complete system of G, then
we have

1

(ClK : Cl2K)

l∑
j=1

χQ(−N(cj)) =


1 if Q = ∅,
− 1 if Q = QD,

0 otherwise

since χ(−1) = −1. We may assume that Cj = N(cj) is a square free integer for each j = 1, . . . , l.

Considering (ClK : Cl2K)−1
∑l
j=1 I(cj), by Corollary 9.7 and Lemma 3.1, we have

af∅(D)L(1/2, f∅ × g)− afQD
(D)L(1/2, fQD × g)

=
2L(1, χ)(4π)2κ+1

(2κ)!

1

#(Cl2K)

1

(ClK : Cl2K)

l∑
j=1

∑
[a]∈Cl2K

⟨Facj |H×H, g × gACj ⟩
⟨gACj , gACj ⟩

=
2L(1, χ)(4π)2κ+1

(2κ)!

1

hK

∑
[c]∈ClK

⟨Fc|H×H, g × gC⟩
⟨gC , gC⟩

.

Now we find that

af∅(D)L(1/2, f∅ × g) = af (D)L(1/2, f × g),

afQD
(D)L(1/2, fQD

× g) = af (D)L(1/2, f × g).

Since af (D)L(1/2, f × g) ∈
√
−1R, we have

af∅(D)L(1/2, f∅ × g)− afQD
(D)L(1/2, fQD

× g) = 2af (D)L(1/2, f × g).

This completes the proof of Theorem 3.2 using Lemma 6.7 and Lemma 9.6.

10. The local integrals

In this section, we prove Lemma 6.7 and Lemma 9.6. We show these lemmas only when
v = ∞, v = p = 2 or v = p | Ci (or v = p | C). The other cases are shown similarly.

10.1. Preliminaries. Through this section, we use the notation

B =

(
b1 b2 +

√
−Db3

b2 −
√
−Db3 b4

)
and we put ξ = det(B), β = β(B), mi = ordp(bi) and l = ordp(ξ) when we prove Lemma 6.7 as
in Sect. 6.4. We fix a place v of Q. Let ψ = ψv be the standard character of Qv.

Since the anisotropic kernel of V is isomorphic to the one of V ′′ over Q, we find that γV (Qv) =
γV ′′(Qv) and χV (Qv) = χV ′′(Qv) = χ

v
. Moreover, we have γV ′(Qv) = 1 and χV ′(Qv) = 1. We simply

denote γV (Qv) by γV and χV (Qv) by χV . It is easily seen that vol(V (Zp)) = vol(V ′′(Zp)) =

|4D|1/2p and vol(V ′(Zp)) = 1 if v = p <∞, and

γV = γV ′′ = (2,−1)QvγQv (D,ψ)γQv (ψ)
2.
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Let φ′ ∈ S(V ′(Qv)) and φ′′ ∈ S(V ′′(Qv)) and we put φ = φ′ ⊗ φ′′ ∈ S(V (Qv)). Then we
have

ωV (g, 1)φ = (ωV ′(g, 1)φ′)⊗ (ωV ′′(g, 1)φ′′).

for g ∈ SL2(Qv). If v = p < ∞, for open compact subsets A,B ⊂ Qp, we denote the char-
acteristic function of of Ae3 + Be4 ⊂ V ′′(Qp) by φ′′(A,B) ∈ S(V ′′(Qp)). Let φ′ ∈ S(V ′(Qp))
be the characteristic function of V ′(Zp). Then we find that φ′ is SL2(Zp)-invariant. We put
φ(A,B) = φ′ ⊗ φ′′(A,B) ∈ S(V (Qp)).

Let v = p < ∞. We put qp = (SL2(Zp) : K0(D;Zp)). It is well-known that for N ∈ pZp, a
complete system of representatives of SL2(Zp)/K0(N ;Zp) is given by

A(N ;Zp) =
{(

1 0
c 1

)∣∣∣∣ c ∈ Zp/NZp
}
∪
{(

a −1
1 0

)∣∣∣∣ a ∈ pZp/NZp
}
.

Note that (
1 0
c 1

)
= −w · n(−c) · w,

(
a −1
1 0

)
= n(a) · w.

If c ̸= 0, we have −w · n(−c) · w = t(c−1) · n(c) · w · n(c−1).

10.2. The archimedean case. We will prove Lemma 6.7 (1) and Lemma 9.6 (1). Let v = ∞.
We define the functions f and q′ on V ′(R) and q′′ on V ′′(R) by

f(u′) = −
√
−1u1 + u2 − u5 +

√
−1u6 and

q′(u′) = u21 + u22 + u25 + u26, q′′(u′′) = 2u23 + 2Du24 = 2Q′′[u′′]

for u′ = u1e1 + u2e2 + u5e5 + u6e6 ∈ V ′(R) and u′′ = u3e3 + u4e4 ∈ V ′′(R). We regard
f as a function on V (R) by f(u′ + u′′) = f(u′) for u′ ∈ V ′(R) and u′′ ∈ V ′′(R). We put
q(u) = q′(u′) + q′′(u′′) for u = u′ + u′′ ∈ V (R) with u′ ∈ V ′(R) and u′′ ∈ V ′′(R). We consider

φ′(u′) = f(u′)2κ+2e−πq
′(u′) ∈ S(V ′(R)), φ′′(u′′) = e−πq

′′(u′′) ∈ S(V ′′(R)),

and we put φ = φ′ ⊗ φ′′ ∈ S(V (R)).

Proposition 10.1. For kθ ∈ SO(2), we have

ωV ′(R)(kθ, 1)φ
′(u′) = e−

√
−1(2κ+2)θφ′(u′), ωV ′′(R)(kθ, 1)φ

′′(u′′) = e
√
−1θφ′′(u′′).

So we have

ωV (R)(kθ, ϕ1(k
′)ϕ2(t))φ(u) = e−

√
−1(2κ+1)θ det(α+

√
−1β)2κ+2φ(u)

for

k′ =

(
α β
−β α

)
∈ K0

and t ∈ C1. In particular, the functions

SL2(R) ∋ g 7−→ ω̂V (R)(g, ϕ1((z14)n(X)m(A)k′)ϕ2(t))φ̂(−β; 0, 1)Wf ,∞(a(ξ)g),

SL2(R) ∋ g 7−→ Φ(g, s, φ′′)Wf ,∞(a(ξ′)g)Wg,∞(a(ξ)g)

are SO(2)-invariant for all z ∈ C×, X ∈ Her2(R), A ∈ GL2(C) with det(A) ∈ R×, k′ ∈ K0,
t ∈ C× with |t| = 1 , ξ, ξ′ ∈ Q× and s ∈ C.

Proof. Note that k′−1 = tk′ and det(k′) = det(α +
√
−1β) det(α −

√
−1β) = 1. By a simple

calculation, we have

f(ϕ2(t)
−1ϕ1(k)

−1u) = det(α+
√
−1β)f(u), q(ϕ2(t)

−1ϕ1(k)
−1u) = q(u)

for u ∈ V (R). These equations give the actions of k′ and t.
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To study the action of SO(2) on S(V ′(R)) and on S(V ′′(R)), consider the action of the Lie
algebra Lie(SL2(R)). Note that kθ = exp(θ(X1 −X2)) with

X1 =

(
0 1
0 0

)
, X2 =

(
0 0
1 0

)
∈ Lie(SL2(R)).

By the classical Fourier analysis, we can calculate the actions of X1 and X2. □

Now, we start to prove Lemma 6.7 (1). The proof of Lemma 6.7 (1) is similar to that of
Lemma 7.6 of [14]. By Proposition 10.1, we may assume that x∞ = n(X)m(A). By [14] Lemma
7.4, we find that φ̂(x; y1, y2) is equal to

(2
√
π)−(2κ+2)H2κ+2(

√
π(x1 − x4 +

√
−1y1 + y4))

× exp(−π((x1 − x4 + y2)
2 − 2y2(x1 − x4) + 2Q1[x] + y21))

for x = t(x1, x2, x3, x4) ∈ V1(R) and y1, y2 ∈ R. Here,

Hn(x) = (−1)nex
2 dn

dxn

(
e−x

2
)

is the Hermite polynomial. For A ∈ GL2(C) with det(A) ∈ R×, we have

ϕ1(m(A)) =

det(A) 0 0
0 h1 0
0 0 det(A)−1


with some h1 ∈ GSO(3, 1)(R). By a simple calculation, we have

−(h−1
1 β)1 + (h−1

1 β)4 = det(A)−1Tr(BAtA) = det(A)−1Tr(BY ).

Let v = v(X) as in Sect. 6.4. Then we have ϕ1(n(X)) = ℓ(v), (v, β)V1 = Tr(BX) andQ1[h
−1
1 β] =

Q1[β] = − det(B) = −ξ. So we have

ω̂ (t(x), ϕ (n(X)m(A))) φ̂(−β; 0, 1)

= χV (x)|x|3∞
∫
R
φ

xdet(A)−1z − x det(A)−1(v, β)
−h−1

1 βx
0

 e2π
√
−1zdz

= χV (x)|x|2∞| det(A)|∞e2π
√
−1Tr(BX)φ̂(−h−1

1 βx; 0, det(A)x−1)

= χV (x)|x|2∞| det(A)|∞e2π
√
−1Tr(BX)H2κ+2(

√
π[det(A)−1xTr(BY ) + det(A)x−1])

× (4π)−κ−1 exp(−π[det(A)−1xTr(BY ) + det(A)x−1]2) exp(2πTr(BY ) + 2πx2ξ).

By the formula of Wf ,∞ in Sect. 4.3, we have WB,∞(n(X)m(A)) = 0 if ξ < 0. If ξ > 0, then
WB,∞(n(X)m(A)) is equal to∫

R×
ω̂(t(x), ϕ1(n(X)m(A)))φ̂(−β; 0, 1)Wf ,∞(a(ξ)t(x))|x|−2

∞ d×x

= 2

∫ ∞

0

ω̂(t(x), ϕ1(n(X)m(A)))φ̂(−β; 0, 1)Wf ,∞(a(ξ)t(x))x−3dx

= 2| det(A)|2κ+2e2π
√
−1Tr(B(X−Y

√
−1))(4π)−κ−1ξκ+(1/2)

×
∫ ∞

0

x2κe−π[xTr(BY )+x−1]2H2κ+2(
√
π[xTr(BY ) + x−1])dx.

By [14] Lemma 7.5, the last integral is equal to{
22(2κ+2)−1πκ+1e4π

√
−1Tr(BY

√
−1) if B > 0,

0 if B < 0.

Since Y = AtA, we have det(Y ) = | det(A)|2. This completes the proof of Lemma 6.7 (1).
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Lemma 9.6 (1) follows from the equation Φ(t(x), s, φ′′) = χV ′′(R)(x)|x|s+1
∞ , the formulas of

Wf ,∞ and Wg,∞ in Sect. 4.3, and the well-known formula∫
R×

|x|se−ax
2

d×x = a−s/2Γ(
s

2
)

for a > 0.

10.3. The unramified 2-adic case. We will prove Lemma 6.7 (2) and Lemma 9.6 (2) for
p = 2. Let v = 2 ∤ D. So we find that D ≡ 3 mod 4.

In this case, we have (2,−1)Q2 = 1, γQ2(D,ψ) =
√
−1 and γQ2(ψ) = ζ−1

8 . Hence we have
γV = γV ′′ = 1.

Let φ′′ = φ′′(Z2,Z2) + φ′′(2−1Z×
2 , 2

−1Z×
2 ) and φ′′

0 = φ′′(Z2,Z2) ∈ S(V ′′(Q2)). We put
φ = φ′ ⊗ φ′′ and φ0 = φ′ ⊗ φ′′

0 .

Lemma 10.2. We have

φ′′(u) = 2

∫
SL2(Z2)

ω(k, 1)φ′′
0(u)dk and so φ(u) = 2

∫
SL2(Z2)

ω(k, 1)φ0(u)dk.

In particular, φ and φ′′ is SL2(Z2)-invariant. Moreover φ is also ϕ1(GSU(2, 2)(Z2))ϕ2((o ⊗Z
Z2)

×)-invariant.

Proof. It is easy that φ′′
0 is K0(4;Z2)-invariant. For a, c ∈ Z2, we have

ω(−w · n(−c) · w, 1)φ′′
0(u) = ω(−w, 1)[(ω(w, 1)φ′′

0 ](u))ψ(−cQ′′[u]),

ω(n(a)w, 1)φ′′
0 = [ω(w, 1)φ′′

0 ](u)ψ(aQ
′′[u]).

Now we find that ∑
c∈Z2/4Z2

ψ(−cQ′′[u]) =

{
4 if Q′′[u] ∈ Z2,

0 otherwise,

Hence, we have ∑
c∈Z2/4Z2

(ω(w, 1)φ′′
0(u))ψ(−cQ′′[u]) = 4vol(V ′′(Z2))φ

′′(u).

Similarly, we have ∑
a∈2Z2/4Z2

(ω(w, 1)φ′′
0(u))ψ(aQ

′′[u]) = 2vol(V ′′(Z2))φ
′′(u).

On the other hand, ω(w, 1)φ′′ is equal to

ω(w, 1)[φ′′(2−1Z2, 2
−1Z2)− φ′′(2−1Z2,Z2)− φ′′(Z2, 2

−1Z2) + 2φ′′(Z2,Z2)]

= vol(V ′′(Z2))[4φ
′′(Z2,Z2)− 2φ′′(Z2, 2

−1Z2)− 2φ′′(2−1Z2,Z2) + 2φ′′(2−1Z2, 2
−1Z2)].

Since vol(V ′′(Z2)) = |det(Q′′)|1/2 = 2−1, we have ω(w, 1)φ′′ = φ′′. Therefore we have∫
SL2(Z2)

ω(k, 1)φ′′
0(u)dk

= (SL2(Z2) : K0(4;Z2))
−1 [4vol(V ′′(Z2))φ

′′(u) + 2vol(V ′′(Z2))φ
′′(u)] = 2−1φ′′(u).

The equation for φ implies that φ is SL2(Z2)× ϕ1(GSU(2, 2)(Z2))-invariant. By Lemma 8.2,
we find that φ is ϕ2((o⊗Z Zp)×)-invariant. □
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Now, we start to prove Lemma 6.7 (2) for p = 2. By Lemma 6.1 and Lemma 10.2, we find
that WB,2 is right GU(2, 2)(Z2)-invariant. Moreover, we have

WB,2(1) =

∫
Q×

2

ω̂(t(x), 1)φ̂(−β; 0, 1)Wf ,2(a(ξ)t(x))|x|−2
2 d×x

=

∫
Q×

2

[χV (x)|x|22φ̂(−βx; 0, x−1)][χ
2
(x−1)Wf ,2(a(ξx

2))]|x|−2
2 d×x

=
∑
n∈Z

φ̂(−β2−n; 0, 2n)|ξ(2−n)2|κ+1/2
2 af

((
ξ(2−n)2

)
2

)
.

Note that φ = φ(2−1Z2, 2
−1Z2)− φ(2−1Z×

2 ,Z2)− φ(Z2, 2
−1Z×

2 ).

Lemma 10.3. We have∑
n∈Z

φ(2−1Z×
2 ,Z2)̂ (−β2−n; 0, 2n)|ξ2−2n|κ+1/2

2 af
((
ξ2−2n

)
2

)
= 0,

and ∑
n∈Z

φ(Z2, 2
−1Z×

2 )̂ (−β2−n; 0, 2n)|ξ2−2n|κ+1/2
2 af

((
ξ2−2n

)
2

)
= 0.

Proof. Since β = t(−b4,−b2,−b3, b1), we have φ(2−1Z×
2 ,Z2)̂ (−β2−n; 0, 2n) = 0 unless

n ≥ 0, m4 − n ≥ 0, m2 − n = −1, m3 − n ≥ 0, and m1 − n ≥ 0.

In this case, we have n = m2 + 1 ≤ min(m1,m3,m4). So we find that

l = ord2(ξ) = ord2(b1b4 − b22 −Db23) = 2m2 < 2n.

Therefore we have af
((
ξ2−2n

)
2

)
= 0. The second assertion is proved similarly. □

Let m0 = min(m1,m2 + 1,m3 + 1,m4). Then by this lemma, we have

WB,2(1) =
∑
n∈Z

φ(2−1Z2, 2
−1Z2)̂ (−β2−n; 0, 2n)|ξ2−2n|κ+1/2

2 af
((
ξ2−2n

)
2

)
= |ξ|κ+1/2

2

m0∑
n=0

(2n)2κ+1af
((
ξ2−2n

)
2

)
.

This completes the proof of Lemma 6.7 (2) for p = 2.
Next, we start to prove Lemma 9.6 (2) (for any p). Then we have

Jp(c, s, ξ, ξ
′) =

∫
Q×

p

∣∣∣Φ(t(x), s, φ′′)Wf ,p(a(ξ
′C)t(x))Wg,p(a(ξC)t(x))

∣∣∣ |x|−2
p d×x

=

∫
Q×

p

∣∣∣[χV ′′(Qp)(x)|x|
s+1
p ][χ

p
(x−1)|ξ′Cx2|κ+1/2

p af
(
(ξ′Cx2)p

)
]

×
[
|ξCx2|κ+1

p ag ((ξCx2)p)
]∣∣∣ |x|−2

p d×x

= |ξ|κ+1
p |ξ′|κ+1/2

p

∫
Q×

p

|x|σ+4κ+2
p

∣∣∣af ((ξ′x2)p) ag ((ξx2)p)∣∣∣ d×x.
Since ordp(ξ) = 0 or 1, this is equal to

|ξ|κ+1
p |ξ′|κ+1/2

p

∞∑
n=0

(p−n)σ+4κ+2
∣∣∣af ((ξ′p2n)p) ag ((ξp2n)p)∣∣∣ .

This is the desired formula for Jp(c, s, ξ, ξ
′). The formula for Ip(c, s, ξ) can be proved similarly.

These complete the proof of Lemma 9.6 (2) (for any p).
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10.4. The ramified 2-adic case. Let v = 2 | D. We will prove Lemma 6.7 (3) and Lemma
9.6 (3) for this case. We put d = ord2(D) ∈ {2, 3} and D′ = D/2d. Write D′ = δu0 with
δ ∈ {±1} and u0 ∈ 1+ 4Z2. Note that if d = 2, then δ = 1. In this case, we have (2,−1)Q2 = 1,
γQ2(ψ) = ζ−1

8 . If d = 2, then γQ2(D,ψ) = γQ2(D
′, ψ) = 1. If d = 3, then

χ
2
(2) =

{
1 if D′ ≡ ±1 mod 8,

− 1 if D′ ≡ ±3 mod 8,
γQ2(D,ψ) =


1 if D′ ≡ 1 mod 8,

−
√
−1 if D′ ≡ 3 mod 8,

− 1 if D′ ≡ 5 mod 8,
√
−1 if D′ ≡ 7 mod 8.

Hence we have γV ε = γV ′′ε = χ
2
(2d).

Let φ′′ = φ′′(Z2, 2
−1Z2), φ

′′
0 = φ′′(Z2,Z2), φ

′′
1 = φ′′(2−1Z2, (2D)−1Z2) ∈ S(V ′′(Q2)). We

put φ = φ′ ⊗ φ′′ and φi = φ′ ⊗ φ′′
i ∈ S(V (Q2)) for i = 0, 1. Clearly, φ0 is ϕ1(GSU(2, 2)(Z2))-

invariant. We find that

ω(w, 1)φ′′
0 = γ−1

V ′′vol(V
′′(Z2))φ

′′
1 and so ω(w, 1)φ0 = γ−1

V vol(V (Z2))φ1.

For

k =

(
a b
c d

)
= w−1 · n(−c/a) · w · t(a) · n(b/a) ∈ K0(4D;Zp),

we have

ω(k, 1)φ′′
0 = χV ′′(a)φ′′

0 and so ω(k, 1)φ0 = χV (a)φ0.

A complete system of representatives of K0(D;Z2)/K0(4D;Z2) is given by{(
1 0
c 1

)
= −w · n(−c) · w

∣∣∣∣ c ∈ DZ2/4DZ2

}
.

Lemma 10.4. We have∑
c∈DZ2/4DZ2

ω(−w · n(−c) · w, 1)φ′′
0 = 2φ′′ and so

∑
c∈DZ2/4DZ2

ω(−w · n(−c) · w, 1)φ0 = 2φ.

In particular, K0(D;Z2) acts on φ′′ (resp. φ) by the scalar multiplication of the character(
a b
c d

)
= w−1 · n(−c/a) · w · t(a) · n(b/a) 7→ χV ′′(a) (resp. χV (a)).

Moreover, we find that φ is ϕ1(GSU(2, 2)(Z2))ϕ2((o⊗Z Z2)
×)-invariant.

Proof. We have

ω(n(−c) · w, 1)φ′′(u) = γ−1
V ′′vol(V (Z2))φ

′′
1(u)ψ(−cQ′′[u]).

Note that ∑
c∈DZ2/4DZ2

ψ(−cQ′′[u]) =

{
4 if Q′′[u] ∈ D−1Z2,

0 if Q′′[u] ̸∈ D−1Z2.

We find that

{u ∈ V ′′(Qp)|φ′′
1(u) ̸= 0, Q′′[u] ∈ D−1Z2} = 2−1Z2e3 +D−1Z2e4.

Hence, we have ∑
c∈DZ2/4DZ2

ω(n(−c) · w, 1)φ′′
0 = 4γ−1

V ′′vol(V (Z2))φ
′′(2−1Z2, D

−1Z2).

Since

ω(w, 1)φ′′(2−1Z2, D
−1Z2) = γ−1

V ′′vol(2
−1Z2e3 +D−1Z2e4)φ

′′

= 21+dγ−1
V ′′vol(V (Z2))φ

′′,
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we have ∑
c∈DZ2/4DZ2

ω(−w · n(−c) · w, 1)φ′′
0(u) = 23+dvol(V (Z2))

2φ′′(−u) = 2φ′′(u).

Let k = w−1 · n(−c/a) · w · t(a) · n(b/a) ∈ K0(D;Z2) and c1, c2 ∈ DZ2. Then(
1 0
c1 1

)−1

k

(
1 0
c2 1

)
=

(
a+ bc2 ∗

∗ ∗

)
∈ K0(D;Z2)

and χV ′′(a+ bc2) = χV ′′(a). Therefore we have

ω(k, 1)φ′′ = χV ′′(a)φ′′.

The last assertion follows from Lemma 8.2. □

By this lemma, we find that the functions

SL2(Q2) ∋ g 7−→ ω̂(g, 1)φ̂(−β; 0, 1)Wf ,2(a(ξ)g),

SL2(Q2) ∋ g 7−→ Φ(g, s, φ′′)Wf ,2(a(ξ
′C)g)Wg,2(a(ξC)g)

are right K0(D;Z2)-invariant. Hence we have

WB,2(1) = (SL2(Z2) : K0(D;Z2))
−1

∑
k∈SL2(Z2)/K0(D;Z2)

ΩB,2(k),

I2(c, s, ξ) = (SL2(Z2) : K0(D;Z2))
−1

∑
k∈SL2(Z2)/K0(D;Z2)

ΛB,2(k),

where

ΩB,2(k) =

∫
Q×

2

ω̂(t(x)k, 1)φ̂(−β; 0, 1)Wf ,2(a(ξ)t(x)k)|x|−2
2 d×x,

ΛB,2(k) =

∫
Q×

2

Φ(t(x)k, s, φ′′)Wf ,2(a(ξC)t(x)k)Wg,2(a(ξC)t(x)k)|x|−2
2 d×x.

A complete system of representatives of SL2(Z2)/K0(D;Z2) is given by

A(D;Z2) = {−w · n(−c) · w, n(a) · w|c ∈ Z2/DZ2, a ∈ 2Z2/DZ2} .

Lemma 10.5. Let x ∈ Q×
2 . We put n = ord2(x) and l = ord2(ξ).

(1) For k = −w · n(−c) · w with c ∈ Z×
2 , we have

ω(t(x)k, 1)φ′′(u) = 2−d/2γ−1
V ′′χV ′′(xc−1)|x|2φ′′(2−1Z2, D

−1Z2)(ux)ψ(c
−1Q′′[ux])

so that

ω(t(x)k, 1)φ(u) = 2−d/2γ−1
V χV (xc

−1)|x|32φ(2−1Z2, D
−1Z2)(ux)ψ(c

−1Q[ux]),

and Wf ,2(a(ξ)t(x)k) is equal to

2−d/2ε−1ψ(ξx2c−1)χ
2
(x−1c)χ

2
(−2dξ)af (D2)

−1|ξx2|κ+1/2
2 af ((Dξx2)2).

(2) For k = n(a) · w with a ∈ 2Z2, we have

ω(t(x)k, 1)φ′′(u) = 2−d/2γ−1
V ′′χV ′′(x)|x|2φ′′(2−1Z2, D

−1Z2)(ux)ψ(aQ
′′[ux])

so that

ω(t(x)k, 1)φ(u) = 2−d/2γ−1
V χV (x)|x|32φ(2−1Z2, D

−1Z2)(ux)ψ(aQ[ux]),

and Wf ,2(a(ξ)t(x)k) is equal to

2−d/2ε−1ψ(aξx2)χ
2
(x−1)χ(−2dξ)af (D2)

−1|ξx2|κ+1/2
2 af ((Dξx2)2).



PULLBACKS OF HERMITIAN MAASS LIFTS 41

(3) For k = −w · n(−2d−1) · w = k1, we have

ω(t(x)k, 1)φ′′(u) = χV ′′(x)|x|2 ×

{
φ′′(2−1Z×

2 , 2
−2Z×

2 )(ux), if d = 2,

φ′′(Z2, 2
−2Z×

2 )(ux), if d = 3

so that

ω(t(x)k, 1)φ(u) = χV (x)|x|32 ×

{
φ(2−1Z×

2 , 2
−2Z×

2 )(ux), if d = 2,

φ(Z2, 2
−2Z×

2 )(ux), if d = 3

and

Wf ,2(a(ξ)t(x)k) =

{
χ
2
(x−1)|ξx2|κ+1/2

2 af (2)
−1 if l + 2n = −1,

0 otherwise.

(4) Assume that d = 3 and k = −w · n(±2) · w. Then ω(t(x)k, 1)φ′′(u) is equal to

2−1χV ′′(x)|x|2
×
[
φ′′(2−1Z×

2 , 2
−2Z2)± δ

√
−1
(
φ′′(2−1Z×

2 , 2
−2Z×

2 )− φ′′(2−1Z×
2 , 2

−1Z2)
)]

(ux)

so that ω(t(x)k, 1)φ(u) is equal to

2−1χV (x)|x|32
×
[
φ(2−1Z×

2 , 2
−2Z2)± δ

√
−1
(
φ(2−1Z×

2 , 2
−2Z×

2 )− φ(2−1Z×
2 , 2

−1Z2)
)]

(ux),

and Wf ,2(a(ξ)t(x)k) is equal to{
χ
2
(x−1)2−1/2χ

2
(∓η)εζ±η8 |ξx2|κ+1/2

2 af (2)
−2 if l + 2n = −2,

0 otherwise.

Proof. (1) Let k = −w · n(−c) · w = t(c−1) · n(c) · w · n(c−1). Then we have

ω(t(x)k, 1)φ′′(u) = ω(t(xc−1) · n(c) · w, 1)φ′′(u)

= γ−1
V ′′vol(Z2e3 + 2−1Z2e4)ω(t(xc

−1) · n(c), 1)φ′′(2−1Z2, D
−1Z2)(u)

= 2−d/2γ−1
V ′′χV ′′(xc−1)|xc−1|2φ′′(2−1Z2, D

−1Z2)(uxc
−1)ψ(cQ′′[uxc−1])

= 2−d/2γ−1
V ′′χV ′′(xc−1)|x|2φ′′(2−1Z2, 2

−2Z2)(ux)ψ(c
−1Q′′[ux]).

On the other hand, since a(ξ) · t(xc−1) · n(c) = n(ξx2c−1)a(ξ)t(xc−1), we have

Wf ,2(a(ξ)t(x)k) = ψ(ξx2c−1)χ
2
(x−1c)Wf ,2(a(ξx

2c−2)w)

= ψ(ξx2c−1)χ
2
(x−1c)χ

2
(−D2ξx

2)ε−12−d/2af (D2)
−1|ξx2|κ+1/2

2 af ((Dξx2)2).

(2) Let k = n(a) · w with a ∈ 2Z2. Then we have

ω(t(x)k, 1)φ′′(u) = γ−1
V ′′2

−d/2χV ′′(x)|x|2φ′′(2−1Z2, D
−1Z2)(ux)ψ(aQ

′′[ux]).

On the other hand, since a(ξ)t(x)n(a) = n(aξx2)a(ξ)t(x), we have

Wf ,2(a(ξ)t(x)k)

= ψ(aξx2)χ
2
(x−1)χ(−D2ξx

2)ε−12−d/2af (D2)
−1|ξx2|κ+1/2

2 af ((Dξx2)2).

(3) We assume that d = 3. The proof for d = 2 is similar. Let k = −w · n(−4) · w = k1. The
formula for Wf ,2(a(ξ)t(x)k1) follows from Lemma 4.2 immediately. On the other hand, we have

ω(n(−4) · w, 1)φ′′(u) = γ−1
V ′′vol(Z2e3 + 2−1Z2e4)φ

′′(2−1Z2, 2
−3Z2)(u)ψ(−4Q′′[u]).

Now we find that

ψ(−4Q′′[u3e3 + u4e4]) =

{
1 if u3 ∈ 2−1Z2, u4 ∈ 2−2Z2,

− 1 if u3 ∈ 2−1Z2, u4 ∈ 2−3Z×
2 .
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Hence we find that ω(n(−4) · w, 1)φ′′(u) is equal to

2−3/2γ−1
V ′′

[
φ′′(2−1Z2.2

−2Z2)− φ′′(2−1Z2, 2
−3Z×

2 )
]
(u).

Note that

ω(w, 1)φ′′(2−1Z2, 2
−2Z2)(u) = 21/2γ−1

V ′′

[
φ′′(Z2, 2

−1Z2) + φ′′(Z2, 2
−2Z×

2 )
]
(u),

ω(w, 1)φ′′(2−1Z2, 2
−3Z×

2 )(u) = 21/2γ−1
V ′′

[
φ′′(Z2, 2

−1Z2)− φ′′(Z2, 2
−2Z×

2 )
]
(u).

So we have

ω(w · n(−4) · w, 1)φ′′ = γ−2
V ′′φ

′′(Z2, 2
−2Z×

2 ).

Since γ2V ′′ = χ
2
(−1), we have

ω(t(x)k1, 1)φ
′′(u) = χV ′′(x)|x|2φ′′(Z2, 2

−2Z×
2 )(ux).

(4) Assume that d = 3. Let k = −w · n(±2) · w = a(∓1) · k2 · a(∓1). We write ξ = 2lη and
x = 2nu with η, u ∈ Z×

2 . Then Wf ,2(a(ξ)t(x)k) is equal to{
χ
2
(x−1)2−1/2χ

2
(∓ηu2)εζ±ηu

2

8 | ∓ ξx2|κ+1/2
2 af (2)

−2 if l + 2n = −2,

0 otherwise.

Since u2 ≡ 1 mod 8 for u ∈ Z×
2 , we get the desired formula for Wf ,2(a(ξ)t(x)k). On the other

hand, we have

ω(n(±2) · w, 1)φ′′(u) = γ−1
V ′′vol(Z2e3 + 2−1Z2e4)φ

′′(2−1Z2, 2
−3Z2)(u)ψ(±2Q′′[u]).

Since ±2Q′′[u3e3 + u4e4] =
(
±2(u23 + 8δu0u

2
4)
)
, we have

±2Q′′[u3e3 + u4e4] ≡


0 mod Z2 if u3 ∈ Z2, u4 ∈ 2−2Z2,

± δ · 4−1 mod Z2 if u3 ∈ Z2, u4 ∈ 2−3Z×
2 ,

± 2−1 mod Z2 if u3 ∈ 2−1Z×
2 , u4 ∈ 2−2Z2,

± 2−1 ± δ · 4−1 mod Z2 if u3 ∈ 2−1Z×
2 , u4 ∈ 2−3Z×

2 .

Since ψ(1/4) = −
√
−1, we find that ω(n(±2) · w, 1)φ′′(u) is equal to

2−3/2γ−1
V ′′

[
φ′′(Z2, 2

−2Z2)− φ′′(2−1Z×
2 , 2

−2Z2)

± δ
√
−1φ′′(2−1Z×

2 , 2
−3Z×

2 )∓ δ
√
−1φ′′(Z2, 2

−3Z×
2 )
]
(u).

Note that

ω(w, 1)φ′′(Z2, 2
−2Z2) = 2−1/2γ−1

V ′′

×
[
φ′′(Z2, 2

−1Z2) + φ′′(2−1Z×
2 , 2

−1Z2) + φ′′(Z2, 2
−2Z×

2 ) + φ′′(2−1Z×
2 , 2

−2Z×
2 )
]
(u),

ω(w, 1)φ′′(2−1Z×
2 , 2

−2Z2) = 2−1/2γ−1
V ′′

×
[
φ′′(Z2, 2

−1Z2)− φ′′(2−1Z×
2 , 2

−1Z2) + φ′′(Z2, 2
−2Z×

2 )− φ′′(2−1Z×
2 , 2

−2Z×
2 )
]
(u),

ω(w, 1)φ′′(2−1Z×
2 , 2

−3Z×
2 ) = 2−1/2γ−1

V ′′

×
[
φ′′(Z2, 2

−1Z2)− φ′′(2−1Z×
2 , 2

−1Z2)− φ′′(Z2, 2
−2Z×

2 ) + φ′′(2−1Z×
2 , 2

−2Z×
2 )
]
(u),

ω(w, 1)φ′′(Z2, 2
−3Z×

2 ) = 2−1/2γ−1
V ′′

×
[
φ′′(Z2, 2

−1Z2) + φ′′(2−1Z×
2 , 2

−1Z2)− φ′′(Z2, 2
−2Z×

2 )− φ′′(2−1Z×
2 , 2

−2Z×
2 )
]
(u).

So we find that ω(w · n(±2) · w, 1)φ′′(u) is equal to

2−1γ−2
V ′′

[
φ′′(2−1Z×

2 , 2
−2Z2)± δ

√
−1
(
φ′′(2−1Z×

2 , 2
−2Z×

2 )− φ′′(2−1Z×
2 , 2

−1Z2)
)]

(u).
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Since γ2V ′′ = χV ′′(−1), we find that ω(t(x)k, 1)φ′′(u) is equal to

2−1χV ′′(x)|x|2
×
[
φ′′(2−1Z×

2 , 2
−2Z2)± δ

√
−1
(
φ′′(2−1Z×

2 , 2
−2Z×

2 )− φ′′(2−1Z×
2 , 2

−1Z2)
)]

(ux).

This completes the proof. □

Lemma 10.6. We put l = ord2(ξ), mi = ord2(bi) for i = 1, . . . , 4,

m0 = min(ord2(b1), ord2(b2) + 1, ord2(b3) + d, ord2(b4)),

m′
0 = min(ord2(b1), ord2(b2), ord2(b3) + 1, ord2(b4)),

and

δ2 =

{
1 if m1,m4 ≥ m2 + 1 = m3 + 2,

0 otherwise,

δ3 =

{
1 if m1,m2,m4 ≥ m3 + 2 and ord2(b1b4 − b22) > ord2(Db

2
3),

0 otherwise,

δ0 =

{
1 if m1,m3 + 2,m4 ≥ m2 + 1,

0 otherwise.

(1) For k = 12, we have

ΩB,2(12) = |ξ|κ+1/2
2

m′
0∑

n=0

(2n)2κ+1af
(
(ξ2−2n)2

)
,

ΛB,2(12) = |ξ|−s/2+1/2
2

∞∑
n=0

|ξ22n|s/2+2κ+1
2 af

(
(ξ22n)2

)
ag ((ξ22n)2).

(2) For k = −w · n(−c) · w with c ∈ Z×
2 or k = n(a) · w with a ∈ 2Z2, we have

ΩB,2(k) = 2−daf (D2)
−1|ξ|κ+1/2

2 χ
2
(−ξ)

m0∑
n=0

(2n)2κ+1af ((Dξ2−2n)2),

ΛB,2(k) = 2−daf (D2)
−1|ξ|−s/2+1/2

2 χ
2
(−ξC)

×
∞∑
n=0

|ξ22n|s/2+2κ+1
2 af ((Dξ22n)2) ag ((ξ22n)2).

(3) For k = −w · n(−2d−1) · w = k1, we have

ΩB,2(k) = δd|ξ|κ+1/2
2 (2ord2(b3)+2)2κ+1af (2)

−1,

ΛB,2(k) = 0.

(4) Assume that d = 3. Let k± = −w · n(±2) · w. Then we have

ΩB,2(k+) + ΩB,2(k−) = δ0|ξ|κ+1/2
2 (2ord2(b2)+1)2κ+1af (2)

−2,

ΛB,2(k±) = 0.

Proof. (1) is easy. (2) follows from Lemma 10.5. So we show (3) and (4).
We show (3) only when d = 2. Let k = −w · n(−2) · w = k1. Then ΩB,2(k) is equal to∫

Q×
2

[
χV (x)|x|22φ(2−1Z×

2 , 2
−2Z×

2 )̂ (−βx; 0, x−1)
]
Wf ,2(a(ξ)t(x)k1)|x|−2

2 d×x.

Let x ∈ Q×
2 and we put n = ord2(x). Since β = t(−b4,−b2,−b3, b1), we have φ(2−1Z×

2 , 2
−2Z×

2 )̂ (−βx; 0, x−1) ̸=
0 if and only if

n ≤ 0, m4 + n ≥ 0, m2 + n = −1, m3 + n = −2, m1 + n ≥ 0.
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In this case, we find that n = −ord2(b2)− 1 = −ord2(b3)− 2 and

m1,m4 ≥ m2 + 1 = m3 + 2.

Moreover, since ord2(b2) = ord2(2b3) and D
′ = D/4 ≡ 1 mod 4, we have

ord2(b
2
2 +Db23) = ord2(b

2
2 +D′(2b3)

2) = 2ord2(b2) + 1 < ord2(b1b4).

Hence, we have l = ord2(b1b4 − b22 −Db23) = 2ord2(b2) + 1 = −2n− 1. So in this case, we have

Wf ,2(a(ξ)t(x)k1) = χ
2
(x−1)|ξx2|κ+1/2

2 af (2)
−1.

Therefore, we have

ΩB,2(k1) = δ2|ξ|κ+1/2
2 (2−n)2κ+1af (2)

−1.

On the other hand, since Φ(t(x)k1, s) = 0 for all x ∈ Q×
2 and s ∈ C, we have ΛB,2(k1) = 0. The

proof of (3) for d = 3 is similar.
(4) We assume that d = 3. Let k± = −w · n(±2) ·w. Then we find that ΩB,2(k±) is equal to∫

Q×
2

2−1χV (x)|x|22
[
φ(2−1Z×

2 , 2
−2Z2)± δ

√
−1
(
φ(2−1Z×

2 , 2
−2Z×

2 )

− φ(2−1Z×
2 , 2

−1Z2)
)]̂

(−βx; 0, x−1)Wf ,2(a(ξ)t(x)k±)|x|−2
2 d×x.

Write ξ = 2lη with η ∈ Z×
2 . We assume that l + 2 ∈ 2Z and put n = (−l − 2)/2. Then we have

ΩB,2(k±) = 2−3/2χ
2
(∓η)εζ±η8 |ξ22n|κ+1/2

2 af (2)
−2
[
φ(2−1Z×

2 , 2
−2Z2)

± δ
√
−1
(
φ(2−1Z×

2 , 2
−2Z×

2 )− φ(2−1Z×
2 , 2

−1Z2)
) ]̂

(−β2n; 0, 2−n).

We put ρ = ε(χ
2
(−η)ζη8 +χ

2
(η)ζ−η8 ) and ρ′ = ε

√
−1δ(χ

2
(−η)ζη8 −χ

2
(η)ζ−η8 ). Then by a simple

calculation, we have

ρ =
√
2 and ρ′ =

{√
2 if η ≡ 1 mod 4Z2,

−
√
2 if η ≡ 3 mod 4Z2.

Since φ(2−1Z×
2 , 2

−2Z2) = φ(2−1Z×
2 , 2

−2Z×
2 )+φ(2

−1Z×
2 , 2

−1Z2), we find that ΩB,2(k+)+ΩB,2(k−)
is equal to

|ξ22n|κ+1/2
2 af (2)

−2 ×

{
φ(2−1Z×

2 , 2
−2Z×

2 )̂ (−β2n; 0, 2−n) if η ≡ 1 mod 4Z2,

φ(2−1Z×
2 , 2

−1Z2)̂ (−β2n; 0, 2−n) if η ≡ 3 mod 4Z2.

However, if φ(2−1Z×
2 , 2

−2Z×
2 )̂ (−β2n; 0, 2−n) ̸= 0, then we have

n ≤ 0, m4 + n ≥ 0, m2 + n = −1, m3 + n = −2, m1 + n ≥ 0.

In this case, we have

l = ord2(b1b4 − b22 −Db23) = ord2(b
2
2) = −2n− 2.

So we have

η = ξ2−l = 4(2nb1)(2
nb4)− (2−ord2(b2)b2)

2 − 8D′(2n+1b3)
2

≡ −(2−ord2(b2)b2)
2 − 2δ(2n+2b3)

2 mod 4Z2

≡ −1 + 2 ≡ 1 mod 4Z2.

Note that u2 ≡ 1 mod 4Z2 for all u ∈ Z×
2 and±2 ≡ 2 mod 4Z2. Similarly, if φ(2−1Z×

2 , 2
−1Z2)̂ (−β2n; 0, 2−n) ̸=

0, then we have l = −2n− 2 and η ≡ −1 mod 4Z2. Therefore we have

ΩB,2(k+) + ΩB,2(k−) = |ξ22n|κ+1/2
2 af (2)

−2φ(2−1Z×
2 , 2

−2Z2)̂ (−β2n; 0, 2−n)

= δ0|ξ|κ+1/2
2 (2ord2(b2)+1)2κ+1af (2)

−2.
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On the other hand, since Φ(t(x)k±, s) = 0 for all x ∈ Q×
2 and s ∈ C, we have ΛB,2(k±) = 0.

This completes the proof. □

Now, we start to prove Lemma 6.7 (3) for the case when p = 2 | D. First, we assume that
d = ord2(D) = 2. By Lemma 6.1 and Lemma 10.4, the function WB,2 is right GU(2, 2)(Z2)-
invariant. We put q2 = (SL2(Z2) : K0(D;Z2)). Then

WB,2(1) = q−1
2 |ξ|κ+1/2

2 af (D2)
−1

af (D2)

m′
0∑

n=0

(2n)2κ+1af
(
(ξ2−2n)2

)
+

m0∑
n=0

(2n)κ+1/2χ
2
(−ξ)af ((Dξ2−2n)2) + af (D2)δ2(2

m3+2)2κ+1af (2)
−1

]
.

For 0 ≤ n ≤ m′
0, we find that ξ2−2n ∈ Z2. Note that

m′
0 = min(m1,m2,m3 + 1,m4) ≤ m0 = min(m1,m2 + 1,m3 + 2,m4)

and m′
0 = m0 if and only if m′

0 = min(m1,m4). In this case, we have δ2 = 0. So we consider
the case when m0 ̸= m′

0. We divide the case into the three cases as follows.
If m1,m4 > m2 = m3 + 1, then we find that δ = 1, m0 = m2 + 1 and

l = ord2(b1b4 − b22 −Db23) = ord2(b
2
2 +D′(2b3)

2) = 2m2 + 1.

So we have (Dξ2−2m0)2 = 2. Moreover in this case we have

af (D2)δ2(2
m3+2)2κ+1af (2)

−1 = (2m0)2κ+1af (2).

If m1,m4 > m2 > m3 +1, then we have δ2 = 0, l = 2(m3 +1) and m0 = m3 +2. So we have
(Dξ2−2m0)2 = 1. In this case, since

−Dξ2−2m0 ≡ (Db32
−m0)2 ≡ 1 mod 4Z2

and (Z×
2 , 1 + 4Z2)Q2 = 1, we have

χ
2
(−ξ) = (−D,−ξ)Q2 =

(
−D,−Dξ2−2m0

)
Q2

=
(
−D′,−Dξ2−2m0

)
Q2

= 1.

If m1,m4 > m3 + 1 > m2, by the same calculation, we have δ = 0, m0 = m2 + 1 and
(Dξ2−2m0)2 = 1. Moreover, since

−Dξ2−2m0 ≡ D′(2b22
−m0)2 ≡ 1 mod 4Z2,

we have χ
2
(−ξ) = 1. This completes the proof of Lemma 6.7 (3) for the case when p = 2 and

ord2(D) = 2. The proof of Lemma 6.7 (3) for the case when p = 2 and ord2(D) = 3 is similar.
Next, we start to prove Lemma 9.6 (3) for the case when p = 2 | D. We put q2 = (SL2(Z2) :

K0(D;Z2)). By Lemma 10.6, we have

I2(c, s, ξ) = q−1
2 af (D2)

−1|ξ|−s/2+1/2
2

×
∞∑
n=0

|ξ22n|s/2+2κ+1
2

[
af
(
(Dξ22n)2

)
+ χ

2
(−ξC)af ((Dξ22n)2)

]
ag ((ξ22n)2).

This is the desired formula for I2(c, s, ξ). By a calculation similar to that of I2(c, s, ξ), we find
that J2(c, s, ξ, ξ

′) is equal to

q−1
2 |ξ′|κ+1/2

2 |ξ|κ+1
2 |af (D2)|−1

×
∞∑
n=0

|22n|σ/2+2κ+1
2

[∣∣af (D2)af
(
(ξ′22n)2

)∣∣+ ∣∣∣af ((Dξ′22n)2)∣∣∣] ∣∣∣ag ((ξ22n)2)∣∣∣ .
Since

∣∣af (D2)af
(
(ξ′22n)2

)∣∣ ≤ ∣∣af ((Dξ′22n)2)∣∣ for all ξ′ ∈ Q×, we get the desired estimation.
This completes the proof of Lemma 9.6 (3) for the case when p = 2.
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10.5. The case when ordp(C) ̸= 0. Finally, we will prove Lemma 6.7 (4) and Lemma 9.6 (4).

Lemma 10.7. For a ∈ Q×
p and f ∈ L1(SL2(Qp)), we have∫

SL2(Qp)

f(x)dx = |a|p
∫
B(Qp)

∫
d(a)SL2(Zp)d(a)−1

f(bk)dkdb.

Proof. This lemma is proved by a change of variables immediately. □

Now, we start to prove Lemma 6.7 (4). Let c be an integral ideal of K. We assume that c
is prime to 2D and p | C = N(c). Let t ∈ A×

K,fin such that ordp(tp) = ordp(c) for all prime

ideals p of K. Put γ = rt. Write tp = xp ⊗ 1 + yp ⊗
√
−D ∈ Qp ⊗ K. Note that φp is

ϕ1(GSU(2, 2)(Zp))ϕ2((o ⊗Z Zp)×)-invariant by Lemma 8.2. Therefore, by Lemma 6.1, we only
have to calculate WB,p(γp). Recall that WB,p(γp) is equal to∫

N(Qp)\SL2(Qp)

ω̂(α · d(NK/Q(tp)), ϕ2(tp))φ̂p(−β; 0, 1)Wf ,p(a(ξ)α · d(NK/Q(tp)))dα.

Since the integrand is right d(NK/Q(tp))SL2(Zp)d(NK/Q(tp))−1-invariant, by Lemma 10.7, we
have

WB,p(γp) = |NK/Q(tp)|p
∫
Q×

p

ω̂(t(x)d(NK/Q(tp)), ϕ2(tp))φ̂p(−β; 0, 1)

×Wf ,p(a(ξ)t(x)d(NK/Q(tp)))|x|−2
p d×x.

Note that |NK/Q(tp)|p = |C|p. We have

ω̂(t(x)d(NK/Q(tp)), ϕ2(t))φ̂p(−β; 0, 1)

=

∫
Qp

χV (x)|x|3p|NK/Q(tp)|−3/2
p φp

ϕ2(tp)−1

 zx
−βx
0

ψ(z)dz.

Since

ϕ2(tp)
−1 = NK/Q(tp)

−1

1
ϕ′(tp)

NK/Q(tp)

 ,

we find that ω̂(t(x) · d(NK/Q(tp)), ϕ2(t))φ̂p(−β; 0, 1) is equal to

χV (x)|x|2p|C|−1/2
p φ̂p(−NK/Q(tp)−1ϕ′(tp)βx; 0, NK/Q(tp)x

−1).

On the other hand, we have

Wf ,p(a(ξ)t(x)d(NK/Q(tp)))

= χ
p
(x−1NK/Q(tp))|ξx2NK/Q(tp)−1|κ+1/2

p af
(
(ξx2NK/Q(tp)

−1)p
)

= χ
p
(x−1)|ξx2NK/Q(tp)−2C|κ+1/2

p af
(
(ξx2NK/Q(tp)

−2C)p
)
.

Hence we have

WB,p(γp) = |C|κ+1
p |ξ|κ+1/2

p

∫
Q×

p

φ̂p(−ϕ′(tp)βx; 0, x−1)|x2|κ+1/2
p af

(
(ξx2C)p

)
d×x

= |C|κ+1
p |ξ|κ+1/2

p

∞∑
n=0

φ̂p(−ϕ′(tp)βp−n; 0, pn)(pn)2κ+1af
(
(ξCp−2n)p

)
as desired. The last assertion of Lemma 6.7 (4) is easy.

Next, we start to prove Lemma 9.6 (4). Let c ∈ JDo . We assume that C = N(c) is a square
free integer and p | C. Let t ∈ A×

K,fin such that ordp(tp) = ordp(c) for all prime ideals p
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of K. Hence, we have |NK/Q(tp)|p = |C|p = p−1 and C · NK/Q(tp)−1 ∈ Z×
p . Note that for

k′ ∈ K ′ = d(NK/Q(tp))SL2(Zp)d(NK/Q(tp))−1, we have

Φ(t(x)k′, s, L(ϕ′′2(tp))φ
′′
p)

= χV ′′(x)|x|s+1
p [ω(k′ · d(NK/Q(tp)), ϕ′′2(tp))φ′′

p ](0)|a(k′)|sp
= χV ′′(x)|x|s+1

p [L(ϕ′′2(tp))φ
′′
p ](0)|a(k′)|sp = χV ′′(x)|x|s+1

p |NK/Q(tp)|−1/2
p |a(k′)|sp.

By Lemma 10.7, Jp(c, s, ξ, ξ
′) is equal to∫

Q×
p

(
|NK/Q(tp)|p

∫
K′

∣∣∣χV ′′(x)|x|s+1
p |NK/Q(tp)|−1/2

p |a(k′)|sp
∣∣∣ dk′)

×
∣∣∣Wf ,p(a(ξ

′C)t(x)d(NK/Q(tp)))Wg,p(a(ξC)t(x)d(NK/Q(tp)))
∣∣∣ |x|−2

p d×x.

Now |a(k′)| is right (K ′ ∩ SL2(Zp))-invariant. Since ordp(NK/Q(tp)) = 1, a complete system of
representatives of K ′/K ′ ∩ SL2(Zp) is given by{(

1 b/p
0 1

)
,

(
0 p−1

−p 0

)∣∣∣∣ b ∈ Zp/pZp
}
.

Since

n(b/p) ∈ N(Qp) and

(
0 p−1

−p 0

)
=

(
p−1 0
0 p

)(
0 1
−1 0

)
,

we have ∣∣∣∣a(1 b/p
0 1

)∣∣∣∣ = 1 and

∣∣∣∣a( 0 p−1

−p 0

)∣∣∣∣ = |p−1|p = p.

Hence, we have ∫
K′

|a(k′)|sdk =
1

p+ 1
(p+ ps) =

ps + p

1 + p

for s ∈ C. Therefore we find that Jp(c, s, ξ, ξ
′) is equal to

p−1/2

∫
Q×

p

∣∣∣∣χV ′′(x)|x|σ+1
p

pσ + p

1 + p

∣∣∣∣
×
∣∣∣χ
p
(x−1NK/Q(tp))|ξ′Cx2NK/Q(tp)−1|κ+1/2

p af
(
ξ′Cx2NK/Q(tp)

−1
) ∣∣∣

×
∣∣∣|ξCx2NK/Q(tp)−1|κ+1

p ag
(
ξCx2NK/Q(tp)−1

)∣∣∣ |x|−2
p d×x

= p−1/2 p
σ + p

1 + p
|ξ′|κ+1/2

p |ξ|κ+1
p

×
∫
Q×

p

|x|σ+4κ+2
p

∣∣∣af (ξ′Cx2NK/Q(tp)−1
)
ag
(
ξCx2NK/Q(tp)−1

)∣∣∣ d×x
= p−1/2 p

σ + p

1 + p
|ξ′|κ+1/2

p |ξ|κ+1
p

∞∑
n=0

(p−n)σ+4κ+2
∣∣∣af (ξ′p2n) ag (ξp2n)∣∣∣ .

This is the desired formula for Jp(c, s, ξ, ξ
′). The formula for Ip(c, s, ξ) is proved similarly. This

completes the proof of Lemma 9.6 (4).
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