-

View metadata, citation and similar papers at core.ac.uk brought to you byj’f CORE

provided by Kyoto University Research Information Repository

Bl
6
Kyoto University Research Information Repository > KYOTO UNIVERSITY

Title Pullbacks of Hermitian Maass lifts

Author(s) | Atobe, Hiraku

Citation Journal of Number Theory (2015), 153: 158-229

Issue Date | 2015-03-04

URL http://hdl.handle.net/2433/198810

© 2015 Elsevier Inc. Licensed under the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/. NOTICE:
this is the author's version of a work that was accepted for
publication in Journal of Number Theory. Changes resulting
from the publishing process, such as peer review, editing,
corrections, structural formatting, and other quality control
Right mechanisms may not be reflected in this document. Changes

9 may have been made to this work since it was submitted for
publication. A definitive version was subsequently published in
Journal of Number Theory, Volume 153, Pages 158-229.
DOI:10.1016/j.jnt.2015.01.004.; D O O OO OO0 OODOO
00 00 2017-03-070 O O .; This is not the published version.
Please cite only the published version. 0 O O OO0 O 0O 0O O
00000DbO00oOoOo0obOooobooOooooooag
oooad

Type Journal Article

Textversion | author

Kyoto University


https://core.ac.uk/display/39322124?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

PULLBACKS OF HERMITIAN MAASS LIFTS

HIRAKU ATOBE

ABSTRACT. We consider pullbacks of hermitian Maass lifts of degree 2 to the submanifold of
diagonal matrices. By using these pullbacks, we give an explicit formula for central values of
L-functions for GL(2) x GL(2).

1. INTRODUCTION

Pullbacks of Siegel Eisenstein series have been studied by Bocherer [1], Garrett [8] and Heim
[13]. Pullbacks of hermitian Eisenstein series have been studied by Furusawa [5], Harris [10]
and Saha [23]. These pullbacks have been used to study the algebraicity of critical values of
certain automorphic L-functions. Moreover, one might consider pullbacks of cusp forms. The
(Gan—)Gross—Prasad conjecture [9], [6] would relate critical values of certain L-functions and
the pullbacks of an automorphic representation of SO(n + 1) to SO(n) or one of U(n + 1) to
U(n). For example, in [26], [15] and [7], the pullbacks of an automorphic representation of
SO(n 4 1) to SO(n) for small n were studied. In [27] and [28], Zhang studied the Gan—Gross—
Prasad conjecture for U(n + 1) to U(n) for general n assuming some additional conditions. On
the other hand, Ichino [14] gave an explicit formula for pullbacks of Saito—Kurokawa lifts, which
are Siegel cusp forms of degree 2, in terms of central critical values of L-functions for SLy x GLo.
Ichino and Tkeda [16] gave an explicit formula for the restriction of hermitian Maass lifts of
degree 2 to the Siegel upper half space of degree 2 in terms of central critical values of triple
product L-functions. These results may be also regarded as special cases of the Gross—Prasad
conjecture. In this paper, we relate pullbacks of hermitian Maass lifts of degree 2 to central
values of L-functions for GLy X GLs.

Let us describe our results. Let K = Q(v/—D) be an imaginary quadratic field with dis-
criminant —D < 0. We denote the ideal class group of K by Cli and the class number of K
by hgk. The primitive Dirichlet character corresponding to K/Q is denoted by x. Let x be
a positive integer and f € Sa,11(To(D), x) be a normalized Hecke eigenform. For an integral
ideal ¢ of K which is prime to D, we denote by F, the hermitian Maass lift of f which satis-
fies the Maass relation for ¢. The lift F. is an automorphic form on the hermitian upper half
space Ho of degree 2 with respect to a certain arithmetic subgroup Fg) [c] € U(2,2)(Q). See
Sect. 2 for details. Let C' = N(c) be the ideal norm of ¢ and d(C) = diag(1,C) € GL2(Q).
The pullback F|gxs is in Saut2(SLa(Z)) ® Saut2(d(C)~1SLa(Z)d(C)). For each normalized
Hecke eigenform g € Sa.12(SLa(Z)), we put go(2) = g(2/C) € Saxi2(d(C)1SLy(Z)d(C)) and
consider the period integral (Fi|nxp,9 X go) given by

(Feloxs,9 % gc)

z 0 ——— 2k 2k
=/ / F. ((01 )) 9(z1)gc (22)yi Y3  dz1dzo.
d(C)~1SL(Z)d(C)\$ JSL2(Z)\$ “2

Let L(s, f x g) and L(s, f x g X x) be the Rankin-Selberg L-function and its twist given by f
and g of degree 4. We put Loo(s) = T'c(s + 2k + 1/2)Tc(s + 1/2) with Tc(s) = 2(27)~°T(s).
They satisfy the functional equation

Loo(8)L(s, f x g) = —D1_28+2“af(D)_2LOO(1 —$)L(1—s,f x g %xXx),

Key words and phrases. automorphic form; special value of L-functions; period.
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2 HIRAKU ATOBE

where a¢(D) is the D-th Fourier coefficient of f. Let L(s, x) be the Dirichlet L-function asso-
ciated with y.

Our main result is as follows.
Theorem 3.2. The identity

L(;,fxg>:W. 1 Z (Feloxs,9 X 9c)

ap(D)(2k)!  hx (9c,9¢)

[c]JeClk

holds.

Note that the period integrals do not appear in the (Gan—)Gross—Prasad conjecture. We
remark that the period integrals appearing in the right hand side are not square. This is a
difference to the results of [14] or [16], which relate the central critical values of certain L-
functions to the square of the absolute values of period integrals.

The sketch of proof is as follows. The lifts {F.} give an automorphic form Liﬁ(g)( f) on
U(2,2)(Ag). We consider the restriction of Lift P (f) to (U(1,1) x U(1, 1))(Ag). The group
U(2,2) is closely related to O(4,2) (see Sect. 6). So we may regard a certain theta lift on
0(4,2)(Ag) as a function on U(2, 2)(Ag). First, we prove that the theta lift is equal to Lift®(f)
up to scalar multiplication (Proposition 6.2). The group U(1,1) x U(1,1) is closely related to
0(2,2) x O(2) and the function g x g¢ gives an automorphic form on O(2,2)(Ag) (see Sect. 7).
Therefore, by the following seesaw identity, we find that a sum of period integrals of {F.} is
equal to a sum of central values of L(s, f x g) and its twists (Corollary 9.7).

SL2 X SL2 0(47 2)

=

SL, 0(2,2) x 0(2)

Finally, we show that these equations and the genus theory imply the main theorem.

This paper is organized as follows. In Sect. 2, we review the theory of hermitian Maass
lifts. In Sect. 3, we state our main result. In Sects. 4 and 5, we recall the basic facts about
automorphic forms on GLy and theta lifts, respectively. In Sect. 6, we study the hermitian
Maass lifting. In Sects. 7 and 8, we recall the theta correspondence for (GLg2, GO(2,2)) and
(SLa, O(2)), respectively. In Sect. 9, we prove identities for the above seesaw and we show that
these identities and the genus theory imply the main result.

Acknowledgments. The author would like to thank my advisor, Prof. Atsushi Ichino.
Without his helpful support, this work would not have been completed. The author is also
thankful to Prof. Tamotsu Ikeda for useful discussions.

Notation. Let K = Q(v/—D) be an imaginary quadratic field with discriminant —D < 0.
We denote by o the ring of integers of K. Let x — T be the non-trivial Galois automorphism of
K over Q. The primitive Dirichlet character corresponding to K/Q is denoted by x. We regard
K' ={a € K*|Ng/g(a) = 1} as an algebraic group over Q. We denote by JZ (resp. JZ) the
set of fractional ideals (resp. integral ideals) of K which are prime to D. Here, we say that a
fractional ideal ¢ is prime to D if ord,(c) = 0 for each prime ideal p | D. Let Clx be the ideal
class group of K and hx = # Clk the ideal class number of K.

We define the algebraic group Hers of hermitian matrices of size 2 with entries in K by

)= { (o Ve )

a7b,c7d€R}

for any Q-algebra R.

For a number field F', we denote the adele ring of F' by Agr. The finite part of the adele ring
(resp. the idele group) of F is denoted by Ag s, (resp. Afﬂ’ﬁn). Let 19 = ®,%, be the non-trivial
additive character of Ag/Q defined as follows:

o If v = p, then ¥, () = e 2™V=1% for z € Z[p~!].
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o If v = 0o, then ¢ () = 2™V~ for z € R.
We call 1y (resp. v,) the standard additive character of Ag (resp. Q,). We put Z = I1, Zy.
Let x = Qv X, be the character of the idele class group Aé /Q* determined by x. Then
X, is the character of Q} corresponding to Q,(v/—D)/Q, and is given by the Hilbert symbol
X.(@) = (~D,a)q,.
T € Ga}

Let
B:{<(’§ I)eSLZ} and Nz{n(x)=<(1) :16)

be the standard Borel subgroup of SLs and the unipotent radical of B, respectively. We write

a(x)—@ ?) d(x)—<(1) 2) t(x)—@ x(_)1>

. z 0 cosf sinf
diag(w, y) = (O y) o ko= ( sinf cos 0) :
We put GL2(R)™ = {g € GL2(R)|det(g) > 0}. For N € Z,, we define

Koiz) = { (& 1) < GLa(@)

and Ko(N;Z,) = Ko(N;Zp) N SLa(Zy,).

Let § = {z € C|Im(z) > 0} be the complex upper half plane. For z = x + /—1y € 9,
we put dz = dzxdy and ¢ = e2™V=1z Here dx,dy are the Lebesgue measures. Note that
vol(SLa(Z)\$, y~2dz) = /3.

For an algebraic group G over Q, we put [G] = G(Q)\G(Aq).

We put T'r(s) = 77%/2T'(5/2), T'c(s) = 2(27)~*T'(s) and &g(s) = Tr(s)((s).

Measures. Let dz, be the Lebesgue measure on R. For each prime p, let dz, be the Haar
measure on Q, with vol(Z,,dz,) = 1. We take the Haar measure d*x, = |z,|, 'dz, on Q.

We normalize the Haar measures on SL2(Z,,) and SO(2) so that the total volumes are equal
to 1. For a place v of Q, we define a Haar measure dg, on SL2(Q,) by

dg, = |ay|;, 2dz,d* a,dk,
for g, = n(z,)t(ay)k, with z, € Qy,a, € Q, and
{ SLs(Z,) if v=p,

and

ce NZp}

SO(2) if v=o00.

We take the product measure dg = [[, dg, on SL2(Ag). Note that the measure {g(2)~'dg is
the Tamagawa measure on SLo(Ag). For another connected linear algebraic group G over Q, we
take the Tamagawa measure on G(Ag). In particular, for a quadratic space V over Q which is
neither a hyperbolic plane nor dim(V) = 1, we have vol([SO(V)]) = 2. We normalize the Haar
measure on O(V)(Ag) so that vol([O(V)]) = 1.

2. HERMITIAN MAASS LIFTS

In this section, we review the theory of hermitian modular forms and hermitian Maass lifts.
See [17].

2.1. Hermitian modular forms. The similitude unitary group GU(2,2) is an algebraic group
over Q defined by

GU(2,2)(R) = {g € GL4(K @ R)|'gJg = Ag)J, A(g) € R*}

(0 -1,
J<12 O)GGL4

with
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for any Q-algebra R. The homomorphism A: GU(2,2) — GL; is called the similitude norm. Let
U(2,2) = ker(A) be the unitary group and SU(2,2) = U(2,2) NResk/q(SL4) the special unitary
group.

We define the hermitian upper half space Hs of degree 2 by

Ho = {z € My(C) ‘%E(z_tz) > 0}.
For a fractional ideal ¢ of K, we define a subgroup Fg) [c] of U(2,2)(Q) by
0 0
rP=Sgev2@lo| o |=| ¢ |
71 71

where ¢ is the conjugate ideal of ¢. Let C' = N(c¢) € Qs be the ideal norm of ¢. We put
c _ n «a — -1
AQ(o)—{<a m/0>€Her2(Q) n,méeZ,a e V—D ¢ }

The set of positive definite elements of A§(0) is denoted by AS(o)*.
Let GU(2,2)(R)" = {g € GU(2,2)(R)|A(g) > 0}. Note that GU(2,2)(R)" is generated by its
center and U(2,2)(R). We put

9(Z) = (AZ+B)(CZ+D)™' and j(g,%)=det(CZ + D)

for Z € Ho and
_(A B +
g= (C' D) € GU(2,2)(R)™.

We find that g(-) gives an action of GU(2,2)(R)" on Hs and the center of GU(2,2)(R)" acts
trivially. For a holomorphic function F on Hs, an even integer | and g € GU(2,2)(R)", we
define

(F |l 9)(2) = det(g)'*F(9(2))j(9, 2)~".
We put
Ml(Fg)[c],detflm) = {F ‘F |l v = F for any v € Fg)[c] } .

Then F' € Ml(Fg) [c],det™"/?) has a Fourier expansion of the form

F(Z)= > A(H)exp(2ry/—1Tx(HZ)).

HeAS (o), H>0
The space of cusp forms SZ(F(I?) [c], det™"/?) is defined by
Sy T[], det™/?) = {F € M(T'P[¢], det /)| A(H) = 0 unless H € A(0)*}.
2.2. Hermitian Maass lifts. For x € Q* and each prime p, we put
7 = Hpordp(w) and T, = pordp(w).

ptD
Let Qp be the set of all primes which divide D. We define a primitive Dirichlet character x, by

(n) = x(m) i (n,p) =1,

= if p|n,

where m is an integer such that

n mod D,,
m = 1
1 mod D, " D.
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One should not confuse x, with X, For Q C Qp, we set

xe=][x and xg= [[ x»
PEQ PEQD\Q

Note that xp =1 and xq, = X

Let # be a positive integer. We fix a normalized Hecke eigenform f = > _ ay(n)¢" €
Sor+1(To(D), x). By Theorem 4.6.16 of [20], for each subset Q C @ p, there exists a normalized
Hecke eigenform

fo=>_as,(n)g" € Saxi1(To(D),X)
n>0
such that for each prime p, the Fourier coefficient ay,, (p) satisfies

) = xq(pas(p)  ifp&Q

af — .

N XoPas(p)  ifpeq.

We fix ¢ € JP and put C = N(c) € Z~o. Note that x(C) = 1. Following [17] Definition 15.2,

we define
=3 xel=O)fo
QCQp

Lemma 2.1. The Fourier coefficients of f* are purely imaginary.

Proof. In the case when ¢ = o, the assertion is Lemma 1.1 of [16]. Let Q@ C Qp and put
Q' = Qp\ Q. Then we find that

afq () = agqy(n)
for all n € Z~q. Since (D, —C) = 1, we have xo/(—C) = x(—C)xq(—C) ™! = x(-1)xo(-C) =
—x0o(—C). Therefore, the Fourier coefficients of xqo(—C) fo+xq' (—C) fq: are purely imaginary.
O

By [17] Corollary 15.5, the n-th Fourier coefficient of f¢* is given by
afe-(n) = ap(n)ar (n),

where
ap(n) = [+ x(~Cn), arm)=asm) T] (as(ny)+x,(~Cr)asn,)).
p|D pl(D,n)
By [17] §16, we can define F, € SQ,.H_Q( H det ") by
F(Z)= ) > d*ap, (CD‘i;t(m> exp(2mv/—1Tr(H Z)).
HeAS (o)t \d|e(H)
Here

e(H) = .(H) = max{m € Zsolm 'H € A5(0)}.
We call F, the hermitian Maass lift of f which satisfies the Maass relation for «.
Lemma 2.2. Let ¢ € JP and o € K* such that ac € JP. Then
F(Z) = Fy(d(a)Zd(@)).
Proof. Since t(d(a)Zd(@)) = d(a)'Zd(@), we find that d(a)Zd(@) € Hs for all Z € Hy. Note
that Tr(Hd(o)Zd(@)) = Tr(d(@)Hd(«)Z). The map
H w— d(@)Hd(a)
gives a bijection AS(0)" — A$(0)™ which satisfies
ec(d(@Hd(a)) =eac(H) and N(ac)Ddet(H) = N(c)D det(d(a)Hd(x)).
This completes the proof. O
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By Lemma 2.2, we can define F, € SQK+2(F(I?) [c],det ") for a fractional ideal ¢ € J2 by
the same formula. Moreover the function

HXH 3 (21, 2) — F. (diag(z1, Cz2))
depends only on the ideal class of ¢ and defines an element in So.42(SLa(Z)) ® Sa,42(SLa(Z)).
Lemma 2.3. Let T(p) be the Hecke operator on Sa.12(SLa(Z)). Then
(T(p) © i) (F.(diag(s1, C22)) = (id © T(p)) (Fe(diag(z1, C=2)))
for all primes p.

Proof. The proof is similar to that of Lemma 1.1 of [14]. O

3. STATEMENT OF THE MAIN THEOREM

In this section, we state the main theorem and we give numerical examples.
Let k be a positive integer and

f(Z) = Z af(n)qn S SQH+1(FO(D)7X)

be a normalized Hecke eigenform. For ¢ € J2, let F, € SQH+2(Fg§) [c], detf'{fl) be the hermitian
Maass lift of f defined in the previous section. Let C'= N(c) € Q¢ be the ideal norm of ¢. For
each normalized Hecke eigenform

9(2) = D ag(n)q" € Sau12(SLa(2)),

we set go(z) = g(2/C). Note that go € Soxi2(d(C)~tSLa(Z)d(C)). We consider the period
integral (Fgx5,9 X go) given by

(Feloxsn:9 X go)

Z 0 o ok
- / / Fe ((01 )) 9(21)gc (22)y3"y3" dz1d2s.
d(C)~1SL2(Z)d(C)\$ JSL2(Z)\$H 29

Define the Petersson norms of g and go by

(9,9) = / 9(2) 2y dz, (g0, 9c) = / g0 (2) Py d.
SLa(Z)\$ d(C)~1SL2(Z)d(C)\$H

By Lemma 2.2, we get the following lemma.

Lemma 3.1. The map
(Feloxs,9 X gc)
(9:9){(9c, 9¢)

JRscm
factors through the ideal class group Cly .
For p ¢ Qp, we define the Satake parameter {ay p, X(p)a;’;} of f at p by
1—ar(p)X +x(p)p*" X = (1 —pTasp, X)(1 = px(p)aj,X).
For p € Qp, we put ay, = p "as(p). For each prime p, we define the Satake parameter
{agp ay,} of g at p by
L= ag ()X + 771X = (1= p %0, X)(1 = p %0 X).

The Ramanujan conjecture proved by Deligne states that |ay,| = |ag,| = 1 for all p. In
particular, we have |D~*a;(D)| = 1 and a,(n) € R for all n € Z~o. We put

Afp 0 .
B fptD,
A, = ( 0 X(p)af;;> ifpt and B, = (ag’p 91> .

0 «
afp if p| D, 9P
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Define the L-functions L(s, f X g) and L(s, f X g x x) by Euler products
L(s,f x g) = Hdet 1, - A, @B, -p~ ¥ 1><1_[det 1,- A, @B, -p ),

ptD p|D
L(s,f x gxx)=[[det(la — A, @ B, - p~*) 7" x [[ det(1a — A" @ B, -p~)~".
ptD p|D

for Re(s) > 0. Note that L(s, f x g x x) = L(8, f X g) by the Ramanujan conjecture. We also

define
Zn ar(n Zn ar(n)ag(n).

Then, by [24] Lemma 1, we have
D(s+2k+1,f,g)=L(2s+1,x) 'L(s+1/2,f x g),

where L(s, x) is the Dirichlet L-function associated to .
Let A(s, f x g) and A(s, f x g X x) be the completed L-functions given by

A(s, f xg)=Tc(s+1/2)T¢c(s+ 26+ 1/2)L(s, f X g),
Als,fxgxx)=Tc(s+1/2)Tc(s+2x+1/2)L(s, f x g X ).

By [18] Theorem 19.14, they have meromorphic continuations to the whole s-plane and satisfy
the functional equation

As, [ xg) =e(s, f x g)A(L =5, f x g xX).
Here, (s, f x g) is the e-factor which will be defined in the next section.
Our main result is as follows.

Theorem 3.2. The identity

1 _ L(1,x)(dm)>tt 1 (Felgxs,9 % go)
L(2’fxg> GO e 2= (gorgc)

[C] €Clg
holds.

Remark 3.3. A special case of a result of Shimura ([24] Theorem 3) asserts that
n= @ (g, g) 7' D(2k + 1, f.9) € Q())Q9) € Q
and for all o € Aut(C), one has
[, )T Dk + 1, £g)| T =77 ) TID2R 4 1, £, 6.

Here Q(f) (resp. Q(g)) is the algebraic number field generated by the coefficients {as(n)} of f
(resp. {ag(n)} of g). Note that in Shimura’s paper, one takes the measure on SLa(Z)\$) so that
vol(SLa(Z)\$) = 1. Since

<FC|5’J><3')7g X gc>
PRSP Q(f)Q(9)

and for all o € Aut(C), one has

(Felsxn,9x 90) 17 _ (Floxs.97 x 92)
(9¢:9c)(9.9) (92 9E){97:97)
we find that Theorem 3.2 is compatible with this result.

)

Remark 3.4. Let g, g1, 92 € S2x12(SLa(Z)) be normalized Hecke eigenforms. If g1 # g, then
(Feloxs,91 x (92)c) =0

by Lemma 2.8 and the multiplicity one theorem. On the other hand, by Lemma 2.1, we find that
(Feloxs,9 % go) € V-1R.
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Example 3.5. We discuss the case D = 3 and k = 5. Then the class number of K = Q(v/—3)
is hg = 1. Let f € S11(T0(3), x) be the Hecke eigenform such that

f(2) = q+aqg® + (9a — 27)q> + 304¢* — 106aq® + (—27a — 6480)¢° + 17234¢" + O(¢®),

with a = 124/—=5. Here we have used MAGMA [2]. Let g € S12(SLa(Z)) be the normalized Hecke
eigenform. We put A = {a € \/—D710|N(0z) < 1}. Then we have

(Foloxs,9x9) _ 1«
W = D%J;O(F D det a 1 .
It is easy to see that
.A—{ a n (1++—D)b
~lv-D 2v/—D

Since x,(—3) = —1, we have

(a,b) € {(0,+£1), (1,-1),(£1,0),(0,0), (-1, 1)}} .

F, ,g X
W = ap(3) + 6ap(2) = (as(3) + x,(~3)as(3) ) + 6a;(2) = 24a.
On the other hand, by the Dirichlet class number formula, we have

2w 21 s
hK = = 5
wi VD 6v3  3V3

where wg s the number of roots of unity contained in K.
Next, by using Dokchitser’s program [4], we have computed

L(LX) =

(g, 9) = 0.00000103536205680432092234781681222516459322490796 - - - ,
L(1/2.f x g) = (0.56063396812989843884129232097782681505979754470872 - - - )

—(0.06268078316169517780418095155244859459590450529843 - - - )/ —1.
Therefore we have

L(1/2, f x g)af(D)(2k)!
L(1, x)(4m)%"*t1(g, 9)
= (643.987577519939432565842016594607555806898087568119408590018 - - - )/—1.

This numerical value coincides with 24a = 24 x 12+/—5.

Example 3.6. We discuss the case D = 15 and k = 5. Then the class number of K = Q(v/—15)
ishxg =2. Let ¢ =p = (17,(—11++/—15)/2). This is a prime ideal above p = N(p) = 17. The
set {o,p} C JE gives a complete system of representatives of Cly. By using MAGMA [2], we
find that there is a normalized Hecke eigenform f € S11(To(15),x) given by

f(2) = q+(50.905---)g® + ((190.983 - - - ) + (150.247 - - - )v/—1)¢>

+ (1567.405 - - - )g* + ((=553.573 -+ ) + (3075.578 - - - )v/—1)¢* + O(¢%).
This satisfies [Q(f) : Q] = 16. Let g € S12(SL2(Z)) be the normalized Hecke eigenform. Then

ar(15) = —(567822.22270986528973314404962089700180196520977555 - - - )
+ (504210.58499582110937058027520540332841350431820609 - - - v/ —1)
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and

<F0‘f)><f)ag X g>
(9,9)?
= —(1835447.760700852448788571784258603965801252414612281062 - - - )/—1,

<FP|55><5’J79 X gp>
(9, 9)(9p> 9p)
= (3003750.957757391660006591292629544475281083622485436259 - - - )v/—1.

Next, by using Dokchitser’s program [4], we have computed

L(1,x) = 1.6223114703894447587811843081191756199820036252694 - - - ,
L(1/2, f x g) = (0.2917406142511291654221274607868148913729458549395 - - - )

— (0.3285468591267089836525964409676435446168105516850 - - - )+/—1.

Therefore the numerical values of

L(1/2,f x gla;(D)2x)! . 1 (<F|mﬁ,g X g) N (Fyloxs,9 x gp>)
L(1, x)(4m)?" (g, g) hi (9,9)2 (9,9)(9p> 9p)

are both

(584151.598528269605609009754185470254739915603936577598344426 - - - )v/—1.

4. AUTOMORPHIC FORMS ON GLg
In this section, we recall the theory of automorphic forms on GLs.

4.1. Automorphic forms and representations. Let f be an automorphic form on GL2(Ag)
and x be a character of A(S /Q*. We say that f has a central character x if f satisfies

flag) = x(a)f(9)

for a € A6 and g € GL2(Ag). Let ¥ = 1 be the standard character of Ag. For £ € Q, we
define the £-th Fourier coefficient Wy ¢ of f by

Wiye(g) :/Q\A f(n(z)g)y(¢x)da.

Let f = >, 0ar(n)q" € Saut1(Lo(D),x) and g = 7, yae(n)q" € Sax42(SL2(Z)) be
normalized Hecke eigenforms. The automorphic form f gives a cusp form f on GL3(Ag) by the
formula

f(a) = x(d)(flas)(V=1)
for o = yaook € GL2(Ag) with v € GL2(Q), e € GL2(R)" and

k:(i Z)GKO(D;Z), where KO(D;Z):{(Z Z)GGLQ(Z)‘CGDZ}.

Note that the central character of f is x. The automorphic form g gives a cusp form g on
GL2(Ag) by the formula

g(8) = (918)(V-1)

for B = ' Bock’ with 4/ € GL2(Q), B € GLy(R)t and k' € GLy(Z). Note that the central
character of g is the trivial character.

Let mp & &) 7y, (resp. mg = @) m,,) be the irreducible cuspidal automorphic representation
of GL2(Ag) generated by f (resp. g). Then the central character of 7y (resp. my) is x (resp. the
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trivial character). The oco-component 7f o, (resp. my o) is the (limit of) discrete series repre-
sentation of GLg(R) with minimal weight £(2x + 1) (resp. £(2k + 2)). The p-component 7y,
(resp. mgy,p) is the principal series representation

71'f,pghldCB;ﬁ“'|1pr®>(| p 77, (resp. 7rg7p%Indg:(\ [y B |qu))_

Here we put G, = GL2(Qp) and we denote B,, the Borel subgroup of G, consisting all upper
triangle matrices, and sy, s,, € C satisfy |p|;”” = ay, and |p[p*" = agp. The restric-
tion of 7o to SLa(R) is the direct sum of two irreducible representations 71'? and T, e,
T f 00 |SLa (R) = 71'? @ ;. Here, 77}r (resp. 7, ) is the holomorphic (resp. anti-holomorphic) dis-
crete series representation of SLo(R) with minimal weight 2k 4+ 1 (resp. —(2x + 1)). Note that
fen®(@msp)

4.2. The L-functions. Let m = 7y x m,. Then by [18] §14, §17 and §19, we can define the
L-functions and the e-factor

T = HL(s,m), L(s,nV) = HL(S,WX), e(s,m) = HE(S,ﬂ'v,iﬁv)

where 7V is the contragredient representation of 7. By [18] Theorem 19.14, we have the func-
tional equation
L(s,m) =¢e(s,m)L(1 —s,m).
Let A(s, f x g) and A(s, f X g X x) be the completed L-functions defined in Sect. 3.
Lemma 4.1. We have
A(s, f x g) = L(s,m), A(s,fxgxx)=L(s,m).

and
(s, m) = =D 2+2rq (D)2,
Proof. Since [],_ Xp(_l) = X(—I)Xw(—l)*l = —1, it is enough to show the equations
L(s,m,) = det(1, — A, ® B, -p~*) "1,
L(s,my) = det(1, — A, @ B, -p~°) 71,
e(s,mp, ¥p) = X, (1) (") 72 ay (p?) 2

for p < 0o with d = ord, (D) and

4 if pt D,
"TY2 ifp|D,

and
L(s,mo0) = L(s,7%) =Tc(s +1/2)c(s + 2k + 1/2),
(8, Moo, Yoo) = 1.
For v = p < oo, by [18] Theorem 15.1, we have
(5, Ty ) = £(5, 1 @ |- 57, U)o, 1 @] - 5597, )
= (s e, |-|Sf‘”*59’p,wp)
o, | e, T )
=e(s—spptsgpX ad’p) (5= Sfp — Sgpr X ﬂ/’p)

If pt D, then the character X, is unramified. So we have

e(s,mp, ) = 1= x (=) 7> ay (p?) 7>
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If p| D, then d = ord,(D) > 0. Let UISO) = Z, and U,E") =1+4+p"Z, for n > 1. We have
Kp|Uéd) =1 and Xp|Uéd_l) # 1. Then it is well-known that

€(S,Xp, wp) = pd(1/2_5)5(1/25 Xp’ wp)
(see e.g., [3] 23.5 Theorem). So we have
5(8, 7Tp7 1/’1)) = pd(1725)p2d8f‘p€(1/27 Xp’ ¢p)2~

It is well-know that 5(1/2,&), Pp)? = Xp(_l) (see e.g., [3] 23.4 Corollary 2). On the other hand,

we have p?®5r = oz;;d = (p~"ar(p))~2* = (p?)**a;(p?)~2. This gives the desired formula for

(s, mp,¥p). By calculations similar to that of (s, 7, 1), we have the desired formulas for
L(s,mp) and L(s, ).

Next, we assume that v = co. Let W = CX U jC* be the Weil group of R with j2 = —1
and jzj~! =z for 2 € C*. Let pfoo (resp py.c) be the two dimensional representation of Wg
which corresponds to mf o (resp. my.00) by the local Langlands correspondence. Then by [18]
Proposition 17.3, we have

L(S77TOO) = L(37pf»00 ® pg700)7 L(377T<\>/o) = L(S,p}/’oo ®p;]/,oo)’
5<5a77007'(/)oo) = E(sapf,oo ® pg,ooawoo)'

For n € Z, we define the two dimensional representation p,, of Wg by

pn: Wr = C* U jC* — GLy(C),
ny/—16 _1\n
/~To eV 0 . 0 (-1)
reV =1 ( 0 e n ﬁl(,), J = (1 0 .

Then we have p_,, = p, for n € Z. Hence p, is a self-dual representation. Moreover, for
N1, g € Z, we have pn, ® Pny, = Prnytns B Pry—ny- FOr n € Zs o, the L-function and the e-factor
associated to p, are given by

L(s,pn) = Te(s +1/2), (s, pn, o) = V1"
See [25]. It is well-known that pf oo = pax and pg oo = p2kt+1. So we have
L(s,700) = L(s,m%) = Tc(s + 2k + 1/2)c(s + 1/2),
(5, oo o) = \/j1(4n+2)+2 1
This completes the proof. O

We put e(s, f x g) = €(s,m). Then we have the functional equation noted in Sect. 3. In
particular, this functional equation and the Ramanujan conjecture imply that

af(D)D™"A(1/2, f x g) = —(ag(D)D™")"'A(1/2, f x g x x) = —ay(D)D=<A(1/2, f x g).
So we find that
ap(D)L(1/2, f x g) € V—1R.

4.3. The Whittaker function on GL3. Let ¢ = 9y be the standard character of Ag. The
Whittaker function W (resp. Wyg) of f (resp. g) is defined by

We(a) :/Q\A f (n(z)a) Y (z)dx (resp. We (o) :/
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Note that Wre(a) = We(a(§)a) and Wee(a) = We(a(§)w) for &€ € Q*. The function We
(resp. Wg) has a product expansion W = [[, Wg,,, (resp. Wg =[], Wg,v), where
eQWﬁyxn+(1/2)e—2ﬂweJj1(25+1)9 if 2> 0,

0 if x <0,
eQﬂ\/jlny+16—27T$e\/jl(2K+2)9 if > 0,

0 if x <0.

Wi oo (n(y)a(z)ke) = {

We 0o (n(y)a(x)kg) = {

For p 1 D, the function W ,, satisfies Wt ,,(ak) = W () for all o € GL(Q,) and k € GLa(Zy).
For p | D, the function Wg ), satisfies W p(ak) = Kp(k)Wﬂp(Oé) for all @ € GL2(Q,) and

k € Ko(D;Z,). Here, we define

=P —=p

X (k) = x (d), for k= (‘; Z) € Ko(D;7Z,).

For each prime p, the function Wy , satisfies Wy ,(ak) = Wy () for all o € GL2(Q,) and
k € GLs (Zp)

The following lemma is a reformulation of Lemma 6.3 of [16] in terms of the Fourier coefficients
of f and g. Here, we put ay(z) = 0 and ay(z) = 0 unless x € Zso. For z = p"u € Q) with

u € Z, , we set x, = p".

Lemma 4.2. We put d = ord,(D), (s = exp(mv/—1/4),

1 if Xp(_l) =1,
°T { VET iy (<) = -1,

0 —1 1 0 1 0
w:<1 0)’ kl:(pdl 1)’ k2:<pd2 1)'

(1) For each prime p, we have

and

Wepla(x)) = |2l ag ().
(2) Forpt D, we have
We,p (a(@)) = |zly ™ ay(ap).
(3) Forp| D, we have
Wiy (a(@)w) = x (~Dype)e ™ p~2as(D,) ol 2 (D)),
(4) Forp=2| D, we have

K+1/2 —1 .
x ar(2 if ords(x) = —1,
Wey (a(a)hy) = { ) :(2)

otherwise.
(5) Forp=2,d=3 and x = 2"u with u € Z , we have

{21/2><p<u>s<g"|x|§“/2af<2>2 if ordy(z) = -2,

Wep (al@)k) = otherwise
wise.

5. WEIL REPRESENTATIONS AND THETA LIFTS

In this section, we recall the theory of Weil representations and theta lifts.
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5.1. Quadratic spaces. Let I be a field of characteristic not 2 and V' a quadratic space over F.
Namely, V is a vector space over F' of dimension m equipped with a non-degenerate symmetric
bilinear form (, ). We assume that m is even. Let @ denote the associated quadratic form on
V. Then

Qlz] 25(

for x € V. We fix a basis {v1,...,v,} of V and identify V' with the space of column vectors
F™. Define @ € GL,,,(F) by

x,x)

Q = ((vi,v)))i
and let det(V) denote the image of det(Q) in F*/F*2. Let
GO(V) = {h € GL,,|'"hQh = v(h)Q, v(h) € GL;}
be the orthogonal similitude group and v: GO(V) — GL; the similitude norm. We put
GSO(V) = {h € GO(V)| det(h) = v(h)™/?}.
Let O(V) = ker(v) be the orthogonal group and SO(V) = O(V) N SL,, the special orthogonal
group.

5.2. Weil representations. Let F' be a local field of characteristic not 2 and V a quadratic
space over F' of dimension m. We assume that m is even. We fix a non-trivial additive character
¢ of F. For a € F*, we define a non-trivial additive character aip of F' by (ay))(z) = 9(ax).
We define a quadratic character xy of F* by

xv(a) = (=)™ det(V),a)p
for a € F*, where (x,y)r is the Hilbert symbol of F. We define an 8-th root of unity vy by

1 1 \"
v = (den(v), 30 ) e (50) R
Here hp(V) is the Hasse invariant of V. Note that xy and 7y depend only on the anisotropic
kernel of V. To calculate vr(a, b)) and vp(at)), see [14] A.1.

Let w = wy,y denote the Weil representation of SLy(F) x O(V) on S(V') with respect to .
Let ¢ € S(V) and z € V. Then,

w(l h)p(@) = o(h~'a),
w (t(a), 1) plz) = xv (@)la[ 2 (za),
w0 (n(8), 1) () = ()b (BQ]),

w(w,1) p(x) = 75 /V D) (— (2 9))dy

fora € F*, b€ F and h € O(V)(F). Here, dy is the self-dual measure on V with respect to
¥((z,y)) given by

dy = | det(Q 1/2dej
where dy; is the self-dual measure on F' with respect to Y.

Following [11] §5.1, we extend the Weil representation w. We put
R = G(SLy x O(V)) = {(g,h) € GLy x GO(V)|det(g) = v(h)}.
For h € GO(V) and ¢ € S(V), we put
L(R)p(x) = () 2" (k)
for € V. Then we define the Weil representation w of R(F') on S(V) by
w(g,h) = w(g - d(det(g)™"),1) o L(h)

for (g,h) € R(F).
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5.3. Theta functions and theta lifts. Let V be a quadratic space over Q of even dimension
m and @ = ¢y the standard additive character of Ag. Let w denote the Weil representation of
R(Ag) on S(V(Ag)) with respect to 9. For (g,h) € R(Ag) and ¢ € S(V(Ag)), we put

0(g,hs0) = Y wlg, h)p(x).

eV (Q)

Then 6(g, h; ) is an automorphic form on R(Ag). The function 6(g, h;p) is called a theta
function.

Let f be a cusp form on GL2(Ag). For h € GO(V)(Ag), choose ¢ € GL3(Ag) such that
det(¢’) = v(h), and put

O(hs ) = /[SL 0o’ i) o

Note that this integral does not depend on the choice of ¢’. Then 0(f, ) is an automorphic
form on GO(V)(Ag). The function 0(f, ) is called a theta lift. Similarly, we define 6(f’, ¢) for
a cusp form f/ on GO(V)(Ag). More precisely, see [11].

5.4. Change of polarizations. Let F' be a field of characteristic not 2 and V a quadratic
space over F' of even dimension m. We assume that the matrix @ € GL,,(F') associated to V' is

of the form
1

0 0
Q=0 ¢ 0
1 0 0
for some Q1 € GL,,_o(F). Let V; = F™~2 be the quadratic space with bilinear form
(v,w) = "vQiw.

The associated quadratic form on V; is also denoted by (1. For v € Vi, we define an element
t(v) € O(V)(F) by

1 =@ —Qi[v]
Lv)=(0 1,9 v
0 0 1

Let FF = Q, (resp. F' = Q) and ¢ = v, (resp. ¥ = 1)g) be the standard character of Q,
(resp. Ag). For ¢ € S(V) (resp. p € S(V(AF))), we define the partial Fourier transform by the
formula

z

@(xl;yl,yz)=/ o | z1 | Y(y22)dz
Xr Y1

for x1 € V1, y1,92 € Q, and Xp = Q, (resp. 1 € V1(Ag), y1,¥2 € Ag and Xp = Ag). Here dz
is the self-dual measure on X with respect to ¢¥. We define a representation & of R(Xp) on
S(Vi(Xr)) ® S(XE) by

w(g,h)p = (w(g, h)g).
If ¢ = 1 @ o with 1 € S(V1)(XF) and @2 € S(X%), then

(g, Do(@1591,92) = wvi w(9, De1(x1) - w2((y1, y2)9)

for g € SLy(X ). See also [14] §4.2.
Let f be a cusp form on GLz2(Ag) and ¢ € S(V(Ag)). For = € V1(Q), define the =-th Fourier
coefficient Wz = Wy(y,,,),= of 0(f,¢) by

We(h) = / 0(L(0)h; £, o) H((E, 0))dw
Vi(Q@)\Vi(Ag)

for h € GO(V)(Ag). We need a modification of Lemma 4.2 of [14].
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Lemma 5.1. (1) IfE+#0, then for h € GO(V)(Ag), we have
W = | (g Al (h), ) 650, D, g, (9 (1) dy.
N(Ag)\SL2(Ag)

Here, Wy ¢ is the £-th Fourier coefficient of f defined in Sect. 4.
(2) For h € GO(V)(Ag), we have

Wo(h) = /{M m;(@) & (g - d(w(h)), h) @(x1:0,0)f (g - d(w(h))) dg.

Proof. For h € O(V)(Ag), apply Lemma 4.2 of [14] to f[sL,(ay)- In general, we put f'(g) =
f(g-dw(h))). Then by [11] Lemma 5.1.7, we have
O(L(v)h; £, ) = 0(E(v); ', L(h)p),
@(g, (L(h)e) (=B, y1,92) = (g - d(v(h)), h)(=E,y1,y2)-
On the other hand, we have
Wire(g) = Wie (g-d(v(h))) -
These equations imply the formulas. O

6. THETA CORRESPONDENCE FOR (GU(2,2), GLs)

In this section, we study the hermitian Maass lifting in terms of theta lifts. The main
result of this section is Proposition 6.2 which states that the automorphic form Liﬂ(Q)(f) on
U(2,2)(Ag) given by the hermitian Maass lifts {F.} of f can be written by a certain theta lift
via a homomorphism ¢: GU(2,2)(Ag) — PGSO(4,2)(Ag). This proposition is a key point of
the proof of Theorem 3.2.

6.1. Preliminaries. For a Q-algebra R, we define the similitude unitary group GU(2,2) and
the similitude orthogonal groups GO(4, 2) by

GU(2,2)(R) = {g € GL4y(K @ R)|'gJg = A(g)J, A(g) € R*},
GO(4,2) = {g € GL¢|'9Qg = v(9)Q, v(g) € GL1}
with

0 -1,

Q= € GLg and J=<12 0

) <L

The homomorphisms A: GU(2,2) — GL; and v: GO(4,2) — GL; are the similitude norms. We
define the subgroups GSU(2,2) of GU(2,2) and GSO(4,2) of GO(4,2) by

GSU(2,2) = {g € GU(2,2)| det(g) = A(9)*},
GSO(4,2) = {g € GO(4,2)| det(g) = v(g)*}.
For o € Resg /q(GL1), we put

e U(2,2).

To =

co o+
copR o
e R S )
oo o

Then we have an exact sequence

1 GL; —— GSU(2,2) x Resg/o(GL1) —*— GU(2,2) — 1,
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where
t(a) = (rq,a™') and p(h,a) = hrq.

For each p, we put GU(2,2)(Z,) = GU(2,2)(Qp) N GL4(0o ®z Zp) and GSU(2,2)(Z,) =
GU(2,2)(Z,) N GSU(2,2)(Qp)-
Lemma 6.1. For g € GU(2,2)(Z,), there exist h € GSU(2,2)(Z,) and o € (0 ®z Zy)* such
that

g = hry.
Proof. Let 0, = 0 ®z Z,. We define the subgroups H and o, of K'(Q,) by
H = {det(g)/\(g)?|lg € GU(2,2)(Z,)} and 011J = {a/ala € opx}.

Note that H D 0,13- It is enough to show that H = 0;. If g € GU(2,2)(Z,), then

-1
9':9(102 A(g)().lz) € U(2,2)(Z,)

and we have det(g’)/A(¢g')? = det(g’') = det(g)/A(g)?. Hence we find that H = det(U(2,2)(Z,)).

If p is split in K/Q, we have

K®Q,=Q,xQp, 0RzZ,=7Z,xZ,

and the non-trivial element of Gal(K/Q) acts by (z,y) — (y,z). If g € U(2,2)(Z,), then we
have det(g) = (z,y) for some z,y € ZX. Since det(g) € K'(Qp), we have zy =1, i.e., y =z~
So we have det(g) = a/a with a = (z,1) € oy. Therefore we have H = o}

If p is inert in K/Q, we can regard p as a uniformizer of K ® Q,. By Hilbert 90, we have
K'Y Q) = {o/ala € K(Q,)* = (K ®Q,)*}. Hence we have K'(Q,) = o). So we get H = o}.

Now we assume that p is ramified in K/Q. Let p be the prime ideal of K above p. Then we
have o,/p = F, and the non-trivial element of Gal(K/Q) acts on F, by trivially. So we may
consider the reduction map

m: U(2,2)(Zp) — Spy(Fp).

Let

€U2,2)y =TN, B= € Sp,

be Borel subgroups of U(2,2) and Sp,, respectively. We denote by T the torus of diagonal
matrices, and by N the unipotent radical of B. Let I = n~1(B(F,)) C U(2,2)(Z,) denote the
Iwahori subgroup of U(2,2)(Z,). Then, the Bruhat decomposition of Sp, shows that there is a
subset W of U(2,2)(Z,) such that U(2,2)(Z,) is generated by I and W. We can take W such
that det(w) = 1 for all w € W. Hence we have H = det(U(2,2)(Z,)) = det(I). Moreover, by
the Iwahori decomposition, we have

I=INN")INT)INN),

where N~ is the opposite of N. Since det(N) = det(N~) = {1}, we have det(I) = det(I NT).
Clearly, this is equal to oy. Therefore we have H = o). O

As in [21] §2.1, we set the six dimensional vector space over Q by
V ={B(z1,...,26) € Mu(K)|z; €Q (1 <i<6)}
where B(x1,...,2g) is defined by

0 z1 3+ x4V —D Z2
— 0 s —z3 +24v/=D
B .. =
(@1, 20) —r3 — x4V —D —I5 0 Tg

—XI2 XT3 — TaV -D —Tg 0
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We define a mapping ¥: V — Q by ¥(B) = Tr(BJ!BJ). As in [21] §2.1, we have
\IJ(B(Il, N ,Iﬁ)) = 74Q[t(131, N 7356)]'
As a basis for V, we may take e; = B(d;1,...,0;6) for 1 < ¢ < 6. Then with respect to the
basis {e;|1 < i < 6}, we may identify GO(V) as GO(4, 2).
We define homomorphisms
é1: GSU(2,2) — GSO(V) = GSO(4,2), ¢1(9): V> B —gB'geV,
¢o: K* — GSO(V) 2 GSO(4,2), ¢a(a): V> B —ar,Br, €V.

Note that v(¢1(g)) = A(g)? for g € GSU(2,2) and v(¢2(r)) = Ngjg(a) for a € K*. For
a=x+yv—D € K*, we have

Nk /gla)

1
Ba(a) = _xy Zy € GSO(4,2).
Nggla)
1
We find that ¢1(GSU(2,2)(Z,)) C GSO(V)(Z,). However, in general, it is not true that
a€0®Z,= pa(a) € GSO(V)(Zy).

For g € GU(2,2), we decompose g = hr,, with h € GSU(2,2) and o € K*. Then the image of
o¢1(h)pa2(a) to PGSO(4,2) does not depend on the choice of (h, ). We denote this element by
¢(g) € PGSO(4,2). Note that for all o € K™, we have ¢(als) = 1 in PGSO(4,2) and ¢ induces
an isomorphism

¢: PGU(2,2) = PGSO(4,2).

6.2. Theta lifts. Let £ = GU(2,2)(Aqg,fin) N ([, GLa(0p)), where 0, = 0 ® Z,. Put Ko =
KNU2,2)(Ag). We easily find that the canonical injection U(2,2)(Ag) — GU(2,2)(Ag)
induces a bijection
U(2,2)(Q)\U(2,2)(Ag)/U(2,2)(R)Ko — GU(2,2)(Q)\GU(2, 2)(Ag)/GU(2,2)(R) *K.

By the Chebotarev density theorem, as a complete system of representatives of Cly, we can
take integral ideals ¢; = o0,¢a,...,¢; which are prime to 2D. We choose t; = (t; ), € Af(,ﬁn
such that ord,(t;,) = ordy(c;) for all prime ideals p of K. We put v; = 1, € U(2,2)(Ag) and
C; = N(¢;) € Z~o. Then by Lemma 13.1 of [17], the set {v1,...,vn} gives a complete system
of U(2,2)(@)\U(2, 2)(A)/U(2, 2) (R)Ko.

Let f € Sa,41(To(D), x) be a normalized Hecke eigenform and F¢, the hermitian Maass lift
of f defined in Sect. 2. Then by a result of Ikeda ([17] Theorem 13.2 and Theorem 15.18), there
is an automorphic form Lift® (f) on U(2,2) (Ag) defined by

Lift® (f)(wrizk) = C7" N (Fe, Jlawre 2) (1) = C7 "7 Fe, (2 (3))j (2, 1) 7> (det )

for uw € U(2,2)(Q), z € U(2,2)(R) and k € Ky. Here, we put i = /=114 € Ha.
Let f be the cusp form on GLy(Ag) given by f. We define p = ®,¢, € S(V(Ag)) as follows:

o If v =p < oo and p # 2, then ¢, is the characteristic function of V(Z,).
o If v = 2, then s is the characteristic function of

V(Zg) U (del + ZQBQ —+ 27125 €3 + 27125 e4 + 2265 + 2266) if Dis Odd,
| V(Za2) + 27 Zoey if D is even.

e If v = oo, then

2 2 2 2 2 2
Goo(1, ... 26) = (—V/—1a1 + 29 — x5 + V/—lag) 2T 2e (@1 Hea+205+2Das+asdag)
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We consider the theta lift 0(f, ) on GO(V)(Ag). Recall that §(f, ¢) is defined by
oitit.) = [ ba-anhig)(a- an)da
[SL2]

for h € GO(V)(Ag), where oy, is an element in GLa(Ag) satisfying det(ay,) = v(h). In particular,
we can take o, = d(v(h)). Note that v(GSO(V)(Ag)) = Nk/g(A)). Since the central character
of f is x = xv, by [11] Lemma 5.1.9, the center of GSO(4,2) acts on 6(f, ) trivially, i.e., the
quantity

0000 £.0) = [ (e dlw(hy). hyi o)t d(u(y)))da

[SL2]
does not depend on the choice of a representative hy € GSO(V)(Aq) of ¢(g9) € PGSO(V)(Ag).
Hence we may consider the function 6(¢(g); f, ¢) on GU(2,2)(Ag).

Proposition 6.2. For all g € U(2 2)(A@) we have
0(6(9)if,0) = ([[ a5 ") - 22 2as (D) ' Lift® (£)(9),
p|D
where gp = (SLa(Zy) : Ko(D; Zp)).

The rest of this section is devoted to the proof of Proposition 6.2. The proof is similar to that
of Lemma 7.1 of [14]. To prove this proposition, we compare Fourier coefficients of 6(¢(g); f, ¢)
with those of Lift™®(f).

6.3. Fourier coefficients of Lift® (f). For B € Hery(Q), we define the B-th Fourier coefficient
We.p (resp. Wg) of F = Lift'® (f) (vesp. 0(f,¢)) by

We.s(g) = / F(n(X)g)p(Tr(BX))dX
[Hers]
for g € U(2,2)(Ag) (resp.
Wa(g) = / 0(6(n(X)g): £, o) H(THBX))dX
[Hers]

for g € GU(2,2)(Ag)). Here we put
n(X) = L X)) o U(2,2) for X € Hers,.
0 1,
Then, we have
Flg)= Y. Wrplg) and 6(6(9)if.0)= Y. Wslg.
BecHers (Q) BecHer2(Q)
First, we compute Wr g in Proposition 6.5. We define K = {g € U(2,2)(R)|g(i) = i} and

Ko =KnNSU(2,2)(R).

Lemma 6.3. We have

<=1 (% %)

A B
¢ D

a, € My(C),"ap = "Ba, ‘an+ 8 = 1} :

Proof. Let k = ( > € K with A, B,C, D € M3(C). We put

X=AV—1+B=-C+Dv—1,
Y = AV—1+C=—-B+ Dv—1,
Z=B+C=(D-Av-1.

Then, it is easily to check that XX = 15, 'YY = 15 and 'ZZ = *YY — 1, = 0,. Hence
Z = 0s. O
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For X € Herz(R) and A € GL2(C), we put
1, X A
n(X) = ( 12> and m(4) = ( tA_1> .

Lemma 6.4. Any element g in GU(2,2)(R)T can be written as
g=2z14-n(X) -m(A4) k-,
where z € C*, X € Hery(R), A € GLo(C) with det(A) € R*, k € Ky and t € C*with |t| = 1.
Proof. Since GU(2,2)(R)*" is generated by its center and U(2,2)(R), it suffices to consider
g € U(2,2)(R). Since Z = g(i) € Ha, we fined that (Z + 'Z)/2 is a hermitian matrix and
(Z —'Z)/(2y/—1) is a positive definite hermitian matrix. So there exist A € GLy(C) and
X € Hery(R) such that B
g(i) = A"Ai+ X = (n(X) - m(A)) (i).

Hence we find k = (n(X)-m(A)) ' g € K. Since det(m(A)) = det(A)det(A)il, there exists
0 € R such that e*V=1¢ = det(m(A)). Then, we find that det(e"V~1A) € R and eV~1?1, € K.
Therefore we have the decomposition

g=n(X) -m(e VA (V).
We put k' = eV~1%% € K. Since Ng/r(det(k’)) = 1, there exists ¢ € C* so that |[t| = 1 and
det(k’) = t? = det(r;). Hence we have k'(r;)~! € K. O

The action of ; on F is trivial for all ¢ € C* with |¢| = 1. Let

k= (CYB g) € Kp.

Since det(k) = det(a+ v—18)(a—+/—18) = 1, the action of k on F is the scalar multiplication
of

Gk, 1) 72" 2 det (k)" = det(a — V—=18) 7272 = det(a + vV—18)*+2.

Proposition 6.5. Let 20 = n(X)-m(A) € U(2,2)(R), where X € Hera(R) and A € GL2(C)
with det(A) € RX . PutY = A'A. Then,

Wr B (Vitoo) = C; "~ det(Y)" ™ Ap, (B) exp(2mv/—1Tr(B(X + Yv/-1))).
Here, we set Ap, (B) =0 if B¢ Ay (0)".
Proof. We fix a Z-basis {A1, A2} of ¢;, i.e., ¢; = MZ + A\3Z. As a coordinate of Hers, we use

o n )\1a+)\2b
= ()\10,+/\2b Cim ) € Hers.

Then,

We.5(1izos) = /[H ()i U B )0

= [ FCunld(t) " 2d(E) e HRBZ)
(Zx[0,1))*

Write Z = Zgy + Zoo with Zg, € Hera(Ag an) and Zo, € Herg(R). If a,b,n,m € Z, then we find
that n(d(t;) ™' Zand(t;) ') € Ko. Hence Wr 5 (7i%) is equal to

( . w(Tr(BZﬁn))dZﬁn) </[ v F(”Yin(Zoo)xoo)'L/)(Tr(BZoo))dZoc> .
7 0,1
The first integral is not vanish if and only if Tr(BZz,) € 7. whenever a,b,n,m € 7. This

condition is equivalent to the condition that B € A(0). In this case, the first integral is equal
to 1.
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Since F(7in(Zoo)Too) = C; " Fdet(Y) 1 F, (X +Y/—1+ Zs), the second integral is equal
to

C; " hdet(Y)* T Y Ap, (H)exp(2ny/=1Tr(H(X + YV=1)))

HEAy' (o)*
X / exp(2mV —1Tr((H — B)Z))dZ oo -
[0,1)*
Since H — B € A5 (0), we find that
1 if B=H,
0 ifB+#H.
This completes the proof. O

/ exp(2mV/—1Tr((H — B)Zoo))dZ oo = {
[0,1)*

6.4. Fourier coefficients of 6(f,¢). Next we compute Wg(g). Let Vj = (e1,e6) and V; =
(ea, €3, €4, e5) be subspaces of V. We identify V; (resp. V;) with the space of column vectors Q?
(resp. Q%) via this basis. For

o 12 X . o T1 To + v —Da:3
n(X) = (O 12> € SU(2,2) with X = <x2 /"D s € Hero,
we have
1 x4 2x9 2Dx3 —2x1 T114 — x% — ng
0 1 0 0 0 1
10 0 1 0 0 —X
anX) =19 0 0 1 o0 —a3
0 0 O 0 1 —xy
0 0 O 0 0 1
There are two isomorphisms of the Q-vector spaces
il
) ~ M . T To + v —Duxs —X2
v: Her(Q) = V1(Q) =2 Q*, X = <x2 /"D o ) — |
24
—by

b b —Db —b
@ - @ @ = (g YT

b1
Put v = v(X) and 8 = (B). Then we have
ou(n(X)) = £v), Te(BX) = (B,v), —Qu[f] = det(B).
Hence we have Wg(g) = Wgs(h,), where Wy is the S-th Fourier coefficient of 6(f, ) defined in

Sect. 5.4.
For B =0, by Paul’s result [22], we get the following lemma.

Lemma 6.6. For all g € GU(2,2)(Ag), we have
Wol(g) = 0.

Proof. Let m; = Q! 7y, be the automorphic representation of GL2(Ag) generated by f. We write
f = @, f, with f, € 77,. As we noted in Sect. 4, we have 7y, o |3, () = W}“ ®m; and fo € 77;[,
where ﬂ}' (resp. m;) is the holomorphic (resp. anti-holomorphic) discrete series of SLy(R) with
minimal weight 2k + 1 (resp. —(2xk + 1)). Let g € GU(2,2)(Ag) and take a representative
hg € GSO(V)(Aq) of ¢(g) € PGSO(V)(Aq). Fix o € S(Vo(Ag)) and ¢} € @/ S(Vi(Qp)).
Consider the linear map

/

O wvl(R),woo ® T‘—; — C7 Y1 ® foo — WO(gye(foo & (®p<oofp)7800 &® (901 & 3011)))7
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where Wy(g; 0(f', ¢")) = Wo(hg; 0(f',¢')) is the 0-th Fourier coefficient of §(f', ') for £ € 7
and ¢’ € S(V(Ag)). Note that this integral does not depend on the choice of h, since f' =
foo ® (@< fp) has the central character x. It suffices to show that ® = 0.

Now, we claim that the linear map ®: wy, (r),y.. ® w]f — C is SLa(Ag)-invariant. Indeed, by
Lemma 5.1 (2), we find that Wy(g; 0(f', ¢')) is equal to

/ Y @la-dw(hy), he) (') (21;0,0)f (- d(v(hy))) da.
SL2) 2, evi()
We put

950(y17y2)=/ oz, y1)¥(y22)dz.

Ag
Then we have (o ® (01 @ ¢1)) (1391, y2) = Yo (Y1, y2) - (1 ® ¥])(21). As we noted in Sect. 5.4,
we then find that

(a0, 1) (w0 @ (p1 @ 1)) (2159) = Po(ya0) - Wy (ag),w (@0, 1) (w1 @ )] (21)
for y € Vo(Ag) = Ag and ag € SLy(Ag). In particular, for ag € SLy(R), we have
(':)(CVOa 1)(@0 ® (901 ® Qall))A (1‘1; 070) = @0(070) ! [wVI(AQ)vw(Oé()? 1)(901 ® 90/1)](1‘1)
= (0 ® ([wvy (&) e (@0 Dip1] @ 7)) (215 0,0).
This implies that
D ([wy, (B) oo (@0, Dp1] @ [1] (a0) foo]) = B(91 @ o)

for all oy € SLa(R) as desired.
We put g = Lie(SL2(R)) ®g C and K = SO(2). By [22] Theorem 15 and Corollary 23, we
find that

Hom(g, i) (wv; (8),poc > (7)) = 0,
since the Harish-Chandra parameter of (WJT)V =, is (—(26 + 1)) and O(V1)(R) = O(3,1).
Therefore, we have & = 0. d

Next, we consider the case B # 0. By Lemma 5.1 (1), we have
Wa(g) = / w(a - d(v(hg)), hg)P(=5; 0, 1)We aex(m) (a - d(v(hyg)))de,
N(Ag)\SL2(Aqg)

where hy = (hgu)y € GSO(V)(Ag) is a representative of ¢(g) € PGSO(V)(Ag). We put
& =det(B). If £ = 0, we find that Wg(g) = 0 since f is a cusp form. If & # 0, we find that
Wg(g) =1, Wa,v(gv), where for g € GU(2,2)(Q,), we put

Walo) = | e d(w(hg)). )2 (550, DWe, (al) - - d(v(hy))do.
N(Qu)\SL2(Qv)

The following lemma will be proved in the last section. Here, we use the coordinate

B— by by ++/—Dbs
= by — V=Dbs b :

Lemma 6.7. Fiz B € Hery(Q).

(1) Let x0 = (214) - n(X) - m(A) - k- ry € GU(2,2)(R)T for z € C*, X € Hera(R),
A € GL2(C) with det(A) € R*, t € C* with |t| =1, and

B «a
PutY = A'A and Z = X + Y/—1. Then, Wg o (o) is equal to
{225+2 det(y)fc+1é—n+(1/2)e2ﬂ¢j1Tr(BZ) det(a + \/j15)2m+2 if B>0,

0 otherwise.

k= (O‘ 5) € Ko = KN SU(2,2)(R).
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(2) Assume that pt D. We put
min(ord,(b1), ordy(bs), ord,(bs), ord,(bs)) if p#£2,
o= { min(ord,(b1), ordy(b2) + 1, ord,(bs) + 1, ord,(bs)) if p=2.
Then for all k € GU(2,2)(Z,), we have

WBp |§|g+1/2 Z 2n+1 p72n)p) )

n=0
(3) Assume that p | D. We put

min(ord,(by), ord,(b2), ord,(bs) + 1, ord,(bs)) if ord, (D)
mo = ¢ min(ord,(b1),ord,(b2) + 1, 0rd,(bs) + 2, ord,(bs)) if ord, (D)

min(ord,(b1), ord,(be) + 1, ord,(bs) + 3, ord,(bs)) if ord, (D)
Then for all k € GU(2,2)(Z,), we have

1
2
3

Wa (k) = q, 'as (D, 1I£|”+WZ )2 X,

where g, = (SL2(Zy) : Ko(D;Zyp)) and
1 if (DEp~2"), =1,
Xnp = —2n o .
ar ((DEp™*"),) + x, (~€)ay (DE™,)  otherwis.
(4) Assume that ord,(C;) # 0. Write t;p, =2, ® 14+ y, ® Vv—D € Q, ® K. Then for all
ke GU(2,2)(Zp), we have

Wi .p(Yipk) = \C\”“\SIZH/QZ% (tip)Bp ™" 0,0™)(P")* ay ((€Cip™"),) -

Here ¢'(t; ) € GL(V7) & GL4(QP) is given by

NKp/@p (ti,P)
() = N
' Yp Lp

which makes the following diagram commutative.
Hors(Q,) —"— Vi(Q))
AT ) Xdlts) | [
Hera(Q,) —"— Vi(Qy).
6.5. Proof of Proposition 6.2. The ring of integers o of K = Q(v/—D) is given by

z1TVD ;_DZ if D is odd,
0=
Z + %DZ if D is even.
So we change the coordinate B = B(hy, ..., hs) of Hery(Ag) such that d(¢;)Bd(t;) is equal to
hy (ha + h3/2)/v/—D + h3/2 . .
f D dd
((h2 +h3/2)/v/=D + hs/2 hy B oth

if D is even

I ho/ /=D + hs /2
—ha/N/=D + h3/2 ha
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for hy,...,hy € Ag. Note that B € A5 (o) if and only if ord,(h;) > 0 for all i =1,...,4 and all
prime p.
Lemma 6.8. We put m; = ord,(b;) and l; = ord,(h;).
(1) If pt2DC;, then we have
min(mq, ma, mg, my) = min(ly, la, 13, 14).
(2) If p#2 and p | D, then we have
min(mq, ma, ms3 + 1,my) = min(ly, lo, 3, ls).
(3) Let p=21D. Unless lo < min(ly,ls,14), we have
min(my, ma + 1,ms3 + 1,my) = min(ly, la, I3, 14).
In this case, we have
min(my,mo + 1,mg + 1,my) =l + 1, min(ly,ls,15,14) = lo,
and we have €/22(2+1) & 7,
(4) If p=2| D, then we have
min(my,mg + 1, mg + orda(D), my4) = min(ly, la, l3,14).
(5) If p| Cy, we have

min(l;)

> Gp(=¢ (tip) B 0,0 (") lag (ECp™")p) = > (™) ay ((€CP"),) -
n=0

n=0

Proof. (5) is easily followed from the last assertion of Lemma 6.7 (4). If D is even, the assertions
(1) to (4) are obvious. So we assume D is odd.

If p t 2DC;, then we have my = Iy, mg = I3, mq = Iy and mg = ord,(he + h3/2). If s > I3,
then we have

ms = Ordp(hz + h3/2) > l3 = mo.
Hence we have
min(ml, mao,MmMs, m4) = min(ml, ma, m4) = min(ll, l3, l4) = min(ll, ZQ, l3, l4)

If I3 < I3, then we have mg = l5. So we have (1).

If p# 2 and p | D, then we have my = Iy, mg = l3, mq = l4 and m3 + 1 = ord,(ha + h3/2).
Then, the proof of (2) is similar to that of (1).

pr =2 f D, then we have my = 117 mo + 1= lg, my = l4 and ms + 1= OI‘dP(QhQ + hg) If
lo + 1 > I3, then we have

msg+1=1I13=mg+ 1.
Hence we have
min(my,mg + 1,mg + 1,my4) = min(mq, ma + 1,my)
= min(ll, l3, l4) = Hlil’l(ll, lg, 13, 14)
If I + 1 < I3, then we have
ms+1=Il+1<mo+1.
Hence we have
min(my,mo + 1,mg + 1,my4) = min(mq,ms + 1, my) = min(ly, lo + 1,14),
min(lh lg, 137 l4) = min(ll, 12, l4)
So if
min(ml, mo + ]., ms + ]., m4) 7é min(ll, lg, 13, 14)7

then we have Iy < min(ly,14) and

min(my,ma + 1,mg+1,my) =lo+1 and min(ly,ls,l3,1l1) = lo.
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In this case, we have Iy + 1y > 2ly, 2I3 — 2 > 2ly, and ordy(hy + h3/2)? = 2l. Now, we find that
h3 1 hs
f—det(H)—h1h4—4_D<h2 2)

Hence we have ordy(§) = 2l < 2(lo+1). If 3+ 1 =3, then we find ms+1 > lo+1 and I < 3.
So we have

min(my,ms + 1,mg + 1,my4) = min(ly, Iy + 1,14),
min(ly,ls,l3,14) = min(ly, lo, l4).

So if

min(my,mg + 1,mg + 1,my4) # min(ly, la,l3,14),
then we have lo < min(ly,l4) and

min(my,ma + 1,mg+ 1,my) =lo+1 and min(ly,ls,l3,1l4) = lo.
Since the rational numbers ho, hs satisfy that orda(he) = ords(hs/2), we have
orda(hg + h3/2) > orda(hsa) = lo.

However we have orda(hihy) = 1 + 1y > 2l and ordy(h3/4) = 2l3 — 2 = 2l,. Hence we have
orda(§) = 2ls < 2(I3 +1). We get (3). This completes the proof. O

Now, we start to prove Proposition 6.2. By Sect. 6.3 and Lemma 6.7, the compact group
K- Ko C U(2,2)(Ag) acts on F = Lift® (f) and on 6(f, ) by the same character. Hence, it
suffices to show that

%xOO = H 222 ( )71WF,B(71'$OO)
p|D

for all B € Her(Q) and zo = n(X)-m(A), where X € Hera(R), A € GLo(C) with det(A) € R*
and g, = (SL2(Z,) : Ko(D;Z,)). We may assume that B € A5 (o). Then Wp(viz) is equal
to

2254—2 det(y)n—&-leQﬂ-\/—ilTr(BZ)C;nfl H q—l af(D)—l

P
p|D
min(l;) min(l;)
H Z n 2;@-&-1 (é-cp—Qn)p) H Z 25+1X
ptD n=0 p|D n=0

_ 22&-&-2 det(Y)K+le2Tr\/ler(BZ)C;K71 H qp—l af(D)—l
p|D

X S @ tlag, <CiD2§t(B))

d‘(hl,hz,h37h4)

22K+2 Hq 0, 1VVF B(’ono)
p|D

This completes the proof of Proposition 6.2 using Lemma 6.7.
Corollary 6.9. The automorphic form Lift® (f) onU(2,2)(Aq) can be extended to GU(2,2)(Ag)

by
Lift? (f)(urizk) = C™* N (Fe [|lans2 ©) (1) = CF 7 Fe(w(i))j(x, 1) 7> (det )"+
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for all u € GU(2,2)(Q), z € GU(2,2)(R)*, k € K and t € Ak fn such that the ideal ¢ given by
t is in J2. Here, C = N(c) € Qs is the ideal norm of c. Moreover, it satisfies

0(0(9):f.0) = | [[ o | 22 2ap (D) Lift™® (f)(9)

p|D
for all g € GU(2,2)(Ag) with g, = (SLa(Z,) : Ko(D;Zp)).

Proof. This follows from Proposition 6.2 and Lemma 2.2. 0

7. THETA CORRESPONDENCE FOR (GL2, GO(2,2))

In this section, we recall the theta correspondence for (GLg2, GO(2,2)) following [14] §6. For
the proof of Theorem 3.2, we need Lemma 7.1 which calculates a certain theta lift on GLa(Ag).

Let M5 be the vector space of 2 x 2 matrices. We regard My as the quadratic space with the
quadratic form

Q[z] = det(z).
Let
G(SL2 X SLQ) = {(hl, hg) € GLQ X GLQ‘ det(hl) = det(hg)}

For (hi,h2) € G(SLy x SLz), we put A(hy,he) = det(hy) = det(ha). Recall that there is a
following exact commutative diagram:

1 GL, —* GLy x GL, —%— GSO(My) —— 1
1 GL; —— G(SL; x SLy) —%— SO(My) — 1,

where
(a) = (alg,aly) and  p(hy, he)z = hyzhy ',
for a € GL1, h1,he € GLy and =z € Ms.

Let V' be the subspace of V' generated by {e1,es,e5,e5}. Then there is an isomorphism of
quadratic spaces over QQ as follows:

=~ Ty —X
V/(@) — M2(Q), z1€1 + 2262 + T5€5 + TpE6 — (xz x51> .

Via this isomorphism, we regard p as a map p: GLa x GLy — GSO(V").
Let uo be the subgroup of O(Ms) generated be the involution x on My given by

T T T —X
T = 1 2 ot — 4 2 )
Tr3 T4 —XI3 X

Via the isomorphism My 2 V| the involution * on My corresponds to an element hy € O(V”)
given by
Tl = —x1, T2 > T5, T5 +— T2, T > —Tg.
For o € K*, we have ¢2(a)V’' C V'. We put ¢h(a) = ¢a(a)|y for @« € K*. Then we find
that

Nk /gla)
1

¢’2(Ol) = NK/Q(O‘)

= p (12, d(Nyg(a) 1)) € GSO(V").
1
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We extend g € SO(V’) to SO(V') by ges = e3 and gey = e4. We define the inclusion 7: G(SLg x
SLy) < GSU(2,2) by

aq 0 bl 0

a; by as b 0 azs 0 by

T ((Cl dl) ’ (62 d2)> - C1 0 d1 0
0 Co 0 d2

Then we find that the following diagram is commutative:

G(SLs x SLy) ~22)5 SO(V) x GL,

GSU(2,2) —2  GSO(V).
Here, the map SO(V) x GL; — GSO(V) is the multiplication (h,a) — ah.

For a normalized Hecke eigenform g € Sa,12(SL2(Z)), let g denote the cusp form on GL3(Ag)
given by g. Following [14] §6.3, we extend the cusp form g ® g on GSO(Mz2)(Ag) to a cusp form
G on GO(M3)(Ag) by G(hh') = G(h) for h € GO(M3)(Ag) and k'’ € ua(Ag).

We define ¢’ = ®¢), € S(V'(Ag)) as follows:

e If v =p < oo, then ¢, is the characteristic function of V'(Z,).
e If v = oo, then
ol (r1e1 + xaes + x5€5 + T6€6) = (—V =117 + T2 — T5 + \/—1x6)2”+26_”(“%+$§+“§+$2).
We may regard G as a cusp form on GO(V’)(Ag) via the isomorphism My = V’. So we can
consider the theta lift 6(G, ¢’) on GL2(Ag). The following lemma is Lemma 6.3 in [14].

Lemma 7.1. For all o € GLa(Ag), we have
0(c; G, ¢') = 2" 16g(2) (9, 9)8(a).

8. THETA CORRESPONDENCE FOR (SL2, O(2)) AND THE SIEGEL—WEIL FORMULA

In this section, we study the theta correspondence for (SLg, O(2)). For the proof of Theorem
3.2, we need the Siegel-Weil formula (Proposition 8.1) which calculates a certain theta lift on
SLa2(Ag).

We regard K as the quadratic space over Q with the bilinear form

(z,y) = Trgjo(2y).

Then the associated quadratic form is given by

Qz] = Nk yq(2).

Let V" be the subspace of V generated by {e3, e4}. Then there is an isomorphism of quadratic
spaces over QQ as follows:

£: Ki)V", x+yv—D — xes + yey.

This isomorphism induces an isomorphism of algebraic groups as follows:

K> = GSO(V") = GSO(2), = +yv/—D (g ‘fy).

The restriction of this map gives an isomorphism K1 =» SO(V").
For a € K*, we have ¢o(a)V” C V". We put ¢5(a) = ¢p2(c)|y». Then for o € K* and
x € K, we have

5()l(z) = L(ax),
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i.e., the following diagram is commutative:

K —— V"

al l«sg(a)

K v
For ¢" € S(V"(Ag)), we define
O(ar,5) = B(a, 5, ¢") = [w(e, )e"](0)|a(e)*
where if o = n(z)t(a)k € SL2(Ag) with x € Ag, a € Aj and k € SL»(Z)SO(2), then we put
la(a)] = |al.
Note that the quantity |a(«)| is well-defined. It satisfies that

@ (n(2)t(a)g, 5) = xvr(a)|a* ' @(g, )
for all z € Ag, a € AE) and g € SLy(Ag), ie., ® € IndSBL(X%@)(XVq -1%). Note that ®(a,s) =
[L, ®u(aw,s).
We define the Eisenstein series E(a, s) by
E(a,s) = Z O(ya, ).
YEB(Q\SL2(Q)

This is absolutely convergent for Re(s) > 1. The Eisenstein series E(a,s) has a meromorphic
continuation to the whole s-plane and is holomorphic at s = 0. The following proposition is
Main Theorem of [19].

Proposition 8.1 (Siegel-Weil formula). For ¢” € S(V"(Ag)), we have
1
9(0&; 1O(V”)(A@); (p”) = 5E(Oz, 0)
We define ¢ = ®,¢! € S(V"(Ag)) as follows:

e If v = p < oo and p # 2, then ¢} is the characteristic function of V" (Z,).
e If v =2, then ¢} is the characteristic function of

V" (Zo) U (2725 e3 + 27 2 ey)  if D is odd,
{deg + 27 Z0ey if D is even.
e If v = oo, then
ol (z) = e 27l
Here, Q" is the quadratic form of V' given by
Q" [r3e3 + x4e4] = 3 + Dz’
We will apply Proposition 8.1 to L(¢4(t))¢"” for some t € Agﬁn.
Lemma 8.2. Via the isomorphism £: K =2 V" the function cpg is the characteristic function of

the mazimal compact subring o ®z Z, of K ® Q,, for each p. In particular, for a € (0 ®z Zy)*,
we have

L(¢3(a))gy = ¢p-
Proof. This is obvious. O
We define

>

N ——1 ~
x=1]ex, ok=1{88 [Beox
p

and

C'=K'R)={z+yv—-D € Clz,y € R,2* + Dy* = 1}.
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Note that C! = {a € C*| || = 1}. We easily find that L(¢5(a))¢ = ¢ for a € C'. This
fact and Lemma 8.2 imply that the function
a— 0(g,¢5(a);¢")
on [K'] is right 0} C'-invariant for all g € SLo(Ag).
9. PROOF OF THEOREM 3.2

In this section, we prove Theorem 3.2 using Lemma 6.7 and Lemma 9.6, which will be proved
in the last section.

9.1. Seesaw identity. Let ¢ € JP and put C = N(c) € Z~g. Assume that C is a square free
integer. Let ¢t € Ay g such that ordy(t,) = ordy(c) for each prime ideal p of K. Note that

CNgq(ty)~" € Z for each p. We consider the integral

I(e) = / / O 1" 9o (0): £, )G, (1)) d
[O(VNH] J[O(V")]

Note that this integral does not depend on the choice of ¢ € AK fin- First, using Proposition 6.2,
we get the following expression of I(c) in terms of the period mtegrals.

Proposition 9.1. The integral I(c) is equal to

1 L (Fac| g % gac)(g,9)

—1 2/<;+1 1 ac(HxNs )

@ | [Ie" ) 2 a0 a3 .
p|D #(CZK) [a]e CI2, <gAC7gAC>

Here, we put g, = (SLa(Z,) : Ko(D;Z,)), A= N(a) and Cl3 = {[6]?| [b] € Clk}.
Proof. We define hj, € O(V') by
Tl +— —x1, T2 — Ts, T +— T2, T —> —Te,

and hy € O(V") by
T3 = —T3, Tqa+—> T4.
We put B, = & () ke (£)~, B! = ¢4 ()hld(t)~L. Then we find that

O(R'By R 1Y d2(1): £, 0)G (W1 ¢ (1)) = O(R'R" d2(t); £, 0)G (W 65 (1))
for all (h/,h") € O(V')(Ag) x O(V")(Ag). Hence we have

10 =22 [ N gale)it, ) GG
[SO(V")] J[SO(V")]
Since the isomorphism K! = SO(V") < SO(V) is given by a — ¢,(a), we find that

j= ot / / B(R 62(0)3(1); £, )G G5 (1) dadh.
so(v)] JKN\AL /6t.Ct

We see that the map § — 537 gives an isomorphism
K*X\A/63C* = KNAL /65 CL

Since there is a canonical isomorphism K*\Ax /67.C* = Clg, we have

1 & — -
= — o(n' 0 i f, h @y (t))dh,
(ORE > ) IR (G B AD)

where {f1,...,Bn,} is a complete system of representatives of K*\Ay /6,C*. We may take
f; such that the ideal b; defined by 8; is in JZ for i = 1,..., hx. We identify G(SLa x SL2) as
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a subgroup of GU(2,2) via the inclusion 7 defined in Sect. 7. If ' = p(x1,22) with (z1,22) €
G(SLz x SL2), by Corollary 6.9, we have

(h¢2(55 ); £ (Hq )QQHH s(D )71Lift(2)(f)(7'(131,.TQ)’I’BEflt)v

p|D
and
G(W' ¢5(1)) = g(z1)g(22 - d(Ng/o(t) ™).
Moreover we see that the automorphic form g(z - d(Ng,q(t)™!)) is given by glox42d(C) =
C~""lgc. So we have

20 [ L) e, ) SO
[SO(V)]
=2~ / C_K_l[FbV?—lc ||2,{+2 T(Z’l,xg)](i)
[G(SLa xSL2)/GL1] "'
x g(z1)g(x2 - d(Nk/o(t)1))d(w1, x2)
= (3/m)?C™"HE, 51 lnxn,9 X (CT"g0))
= (260(2)) 2CTHTH(E, 51 w9 X 90)-

Now we have
(90, 9c) = C*" D (g|d(C), g|d(C)) = C*= (g, g).

Since [b;] = [b;]~! in Clx, by Lemma 3.1, we have
_ o 1 (Fyg=1lox9n:9 X 9c)(9.9)
2m+2,, 1 2 1 bb ¢
(Hq ) 2 2a (D) (260(2) - > 0o 40}
p|D [b]eClx

=27"6(2) (Hq )22~+1 D)t 3 e, 0 X 0ac)9.9),

oD #(Clx) (aje o2, (9ac,94c)
This completes the proof using Lemma 6.7. O
Next, we give another expression of I(c). To do this, we need the following lemmas.

Lemma 9.2. We have
=¢ ®¢".
In particular, we have
0(g - d(v o ¢a(t)), h'h"¢a(t); )
=0(g - d(v o d5(t)), h'd5(t);¢)0(g - d(v o 5(t)), " ¢5 (t); ¢”).
Proof. This is obvious. O

Lemma 9.3. The integral
Lo [ ot de sa(o). " 6a(0)s 8 - dlw o 0GR | dgal
[O(VN)] J[O(V")] /[SLe]

18 finite.

Proof. By the above lemma, this integral is equal to

/O(V’ /SL g d(NK/Q( )) h¢2() ) (g d(NK/Q( )))W‘

X (/ |0(g - d(Nrcja(t), h" g(t)up”ﬂdh") dgdh’.
[O(vV)]
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Since V" is anisotropic over Q, the space [O(V")] is compact. Hence the inner integral converges
and it is slowly increasing function on [SLy]. Since f and G are cusp forms, they are rapidly
decreasing. Moreover the function

(', g) = 0(g - d(Nrjq(t), V' ¢5(t); &)

is slowly increasing on [O(V”)] x [SLg]. Therefore the function

09 d(Nic/a(0)), W' 6h(t); (- d(NK/@<t>>>9<h'¢'2<t>>\

X </ 10(g - d(Nxjo(t)), h"d5 (t) |dh”>
[O(V™)]
is bounded on [O(V')] x [SLgy]. This completes the proof. O

Proposition 9.4. Put q, = (SL2(Z,) : Ko(D;Z,)). Then

I(c) = 27%4g(2) (qu ) ~Cr g (D)71(26) g, 9)

p|D

x L(1,x)7" Y xa(=Case(D)L(1/2, fq x g).
QCQp

Proof. By Lemma 7.1, Proposition 8.1 and Lemma 9.3, we have

0= [ (26 . ogla i) (52600 ) o dNio(0)io

= 2712260 (2) 79, 9) /[SL ]E(O‘vo)f(a ~d(Ngo(t))g(a - d(Nk/q(t)))da.

Here, the Eisenstein series F(q, s) is defined by using the section
D(a, s, L(¢5(t)¢")).
We put

I(c,s) = - E(a, s)f(a- d(Ng /o (t)))g(ex - d(Nkjo(t)))der.

Then, we have

I(e) = 272" ¢0(2) (g, 9)1 (¢, ) |s=0-
We formally compute I(¢, s) for Re(s) > 0. Note that C = N(¢) € Q* C Aj, g has the trivial
central character and f, g are left GLy(Q)-invariant. So we have

)= | D(a, $)f(a - d(Nie/g(t))(a - d(Nr g(0))da
B(Q)\SL2(Ag)
-/ ®(a.5)f(a(C)ad(Nie/ol6)Jga(Clad Nic o)
B(Q)\SL2(Ag)
:/ B (0, 5)E(a(Chad(Nk /o(1)) S Welal€O)ad(Nr g H))do.
B(@)\SLQ(AQ) EGQX
Note that
> Welal€C)ad(Ngjo(t))da = D7 Y Wela(@r?Clad(Ni/q(t)))da
£eQx £eQ*x /Q*2 v€Q>0
5 XY Wela€Omad(Nr g (0)der

EEQX QXZ ’)’EQX
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Hence I

—~

¢) is equal to

/ O(ar, 8)f(a(C)ad(Nk o(t))Wg (a(§C)ad(Nk o (t)))do
N(Q)\SL2(Ag)

N =

£eQx/Qx?
1

/ D(a, s)
£EQX /Qx2 N(Q)\SIQ(AQ)

x Y We(a(€'C)ad(Nijo(t) We (aléC)ad(Nk (1)) da
¢'eQ~

1 -
_ de; Cr)d
2 2 2 /Nmm\smm@) ( @\A@Mg ) x)

§EQX/Q*2 ¢reQx

x ®(a, 5)We(a(€'C)ad(Nk /o(t) We (a(§C)ad(Nk q(t)))dor
1

/ D(a, s)
2 g g2 /N (8)\SLa(he)

x We(a(§C)ad(Ng o (1)) We (a(§C)ad(Nk o (t)))da

= % Z HIU(C,S,f) = Z HIU(C,S,f)-

£eQx/Q*%2 v EEL v

square free

DN =

Here, Z means the sum over all square free integers, and we put

134
square free

Iv<ca S, 5)

‘/JV(QU)\SLQ(Qv)

This calculation is justified by the following lemma.

Lemma 9.5. We define J,(¢,s,&,£') by

/N(Qv)\SLz(QU
If Re(s) > 6, then

Z Z HJU(C,S,f,f/) < 00.

§€Z  ¢eQx v
square free

Proof. We need the following lemma which will be proved in the last section.
Lemma 9.6. We put o = Re(s) > 6.

(1) For v = o0, we have

(477)_(3/2+2K+1)|C§|;S/2+1/2F (5/2 + 2% + 1) if § > O7
IOO(C’S’g) =

0 if £<0.
If £,¢ > 0, then

Jool6,5,6,€') < (dm) (/21 (C) = A2 (CE) T 0 /2 + 205 1-1)
and otherwise, J(c,s,&,¢&) =0.
(2) Forv=ptCD, we have

(e, 5,&,7) = €,/ 2T2 N " [ep™ /225 ap ((6p°")p)ag ((€07™)p)

n=0

D, (a, s)We o (a(§C)d(Nic jq(t) ) ) We,o (a(§C)ad(Nie jq(t)y) ) dar.

) ‘(I)v(a, S)Wf,v(a(glc)ad(NK/Q(t)v))Wg,v (a(fc)ad(NK/Q(t)v))‘ da.

31
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and
Tole,s,6,€) = (652 3007 Lap(€9P),)a (@7,
n=0
(3) Forv=p| D, we have
Ip(c, 5,€) = 1 af(Dp)71|§|;8/2H/2 i |§p2n|z/2+2n+1

B2 Zy) - Kol Z,) 2
X [af((DfPQn)p) + Xp(—Cﬁ)af((Dfp%)p)}ag((fpz")p)

and

s 2|aF( ) Kl el rt1/2

x Z@*")M“”] F(DEP™),)a,((€77),)|.
n=0
(4) Forv=p|C, we have

Iy(c,5,6) =p *”27’ “’ |£\ps/2“/2Z|§p2”|s/2+2““ £((€p°™)p)ag ((Ep7),)

n=0
and
Toeis,6€) = P gl
x Z(;rf")”“*“+2 1 (€P*")p)ag(€r7m))|-
n=0

By this lemma, there is a constant M; = M; (o) > 0 which does not depend on &, ¢ and
satisfies

H J’U(c7 85 f? 6/)

< My )T AR TN (07 R ag (DED™)p)ag ((6977),)

p<oo n=0

_ M1§70/47n71/2(51)70/47571/2 Z m7(0+4n+2)|af(D§/m2)W|

m=1

if £,¢ > 0. Otherwise, [], Ju(c,s,£,&) =0. We put t = 0/4+ k4 1/2. Then we have

Z Z HJq)(C,S’€7£I)

€2 geQx v
square free

<Y Y S ) m ap(DEm?)a, (Em)|

m=1 £€Zso §’€QX0
square free >

Unless £’ € (Dm?)™'Z, we have |af(D&'m?)a,(Eém?)| = 0. So we have

Yoo > I(es68)

§ELZ  geQx v
square free

SMli Z Zf_t(D

m=1 E€Z>o n€Zso
square free

") g )y (€.
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It is well-known that
lag(n)] = O(n*1/%),  ag(n)] = O(n"*).

Hence, there exists a constant My > 0 such that

Z Z H‘]U(c7 5757 6/)

(€L geQx v
square free

< M, Z Z Z & (DmQ) *4tnﬁ+1/2(£m2)n+1

m=1 §€Z>o nEZL>o
square free

oo o0 oo

< M,Dt Z Z Zg—o/4+l/2m—0/2+ln—o/4

m=1¢=1n=1
= My DY (o /4~ 1/2)((0/2 — 1)((0/2).
This is finite if o > 6. O
We return to the proof of Proposition 9.4. By Lemma 9.6, for Re(s) > 0, we have

I(C78):% Z HIv(casvg)

EEZ v
square free

1
- §(477)—(s/2+2n+1)C—s/2r($/2 Y2+ 1) H q + qu—l
qalC p|D

xap(D)™h Y Y (gn?) 22 g (DEn?)ay(€n?)

§€L>g n=1
square free

L\ (s/242k41) s ¢ +q -
= 5 (4m) (/2221 (s/2 4 25+ 1) | ] : 1S
q|C p|D

x ay(D Z m~ /2254 o (Dm)ag(m).

Recall that age(Dm) = aD(Dm)ozFc (Dm). By definition of a$,, we have a$%,(Dm) = 1. So we
have

ap, (Dm) = age-(Dm) = Y xq(—C)aso(Dm) = > xq(—Cag,(D)ag,(m).
QCQp QCQp
Hence we have

S m 22D (Dm)ag(m)

= Y xo(=Clag(D) Y- m~ 22 g e (m)ag(m)

QCQp m=1

= Y xa(=Claso(D)D(s/2+2x + 1, fq.9)
QCQp
= > X(—=C)agy (D)L(s +1,x) " L(s/2+1/2, fq x g).
QCQp
This completes the proof of Proposition 9.4 using Lemma 9.6. d

By Proposition 9.1 and 9.4, we get the following corollary using Lemma 6.7 and Lemma 9.6.
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Corollary 9.7. For ¢ € JP such that C = N(c) is a square free integer, we have
> xe(=C)as, (D)L(1/2, fo x g)
QCQp

_ 2L(17X)(47r)2ﬁ+1 1 Z <Fac|.6><.679 X gAC>
(26)! #(Cl5) (94ac,940) ’

[aleCi2,

9.2. Genus theory. We recall the genus theory (see e.g., Hecke [12] §48). Let & = Cly/Cl%.
Note that the canonical homomorphism JP — & is surjective by the Chebotarev density theo-
rem. Let N: JP — Z-o be the ideal norm map. For Q C Qp, the map xg o N: JP — {+1}
gives a character of ®. Moreover, for Q,Q’ C Qp, we see that xg o N = x¢/ o N if and only if
Q' =Qor Q =Qp\ Q. In particular, xg o N is the trivial character of & if and only if Q =0
or Q@ = Qp. So if we choose ¢1,...,¢; € JP such that they give a complete system of &, then

we have
1 if Q =0,
-1 if @=0Qp,
(Cly - 012 ZXQ o
0 otherwise
since x(—1) = —1. We may assume that C; = N(c;) is a square free integer for each j =1,...,1.
Considering (Clg : Cl%)~! 22:1 I(c;), by Corollary 9.7 and Lemma 3.1, we have
afy(D)L(1/2, fo ¥ g) — ajq,, (D)L(1/2, for, X 9)
_2L(1L,)(¢dm)> 1 Z Z Fac;lox5,9 X gac;)
(2r)! #(Cl%) (Clg - 012 ajeoiz. (9ac;,94c;)
_ 2L(1,x)(dm)* 1 > <Fc|fam,g x gc)
= ' .
(2)! hie (o (9c 9¢)

Now we find that
afy (D)L(1/2, fo x g) = ay(D)L(1/2, f x g),
afq, (D)L(1/2, fo, % g) = ay(D)L(1/2, f x g).
Since af(D)L(1/2, f x g) € vV—1R, we have
as,(D)L(1/2, fp x g) — afe, (D)L(1/2, fo, % g9) =2ay(D)L(1/2, f x g).

This completes the proof of Theorem 3.2 using Lemma 6.7 and Lemma 9.6.

10. THE LOCAL INTEGRALS

In this section, we prove Lemma 6.7 and Lemma 9.6. We show these lemmas only when
v=o0,v=p=2orv=p|C; (or v=p|C). The other cases are shown similarly.

10.1. Preliminaries. Through this section, we use the notation

B— ( b1 by + \/ﬁb;{)
by — v/—Dbs ba
and we put £ = det(B), 8 = 5(B), m; = ord,(b;) and | = ord,(£¢) when we prove Lemma 6.7 as
in Sect. 6.4. We fix a place v of Q. Let @ = 9, be the standard character of Q,,.
Since the anisotropic kernel of V' is isomorphic to the one of V" over Q, we find that vy (q,) =
YW@y and Xv(Q,) = Xv7(@Q,) = X, Moreover, we have vy (g,) = 1 and xv(g,) = 1. We simply
denote vy (g,) by 7v and xy(q,) by xv. It is easily seen that vol(V(Z,)) = vol(V"(Z,)) =

|4D|,1,/2 and vol(V/'(Z,)) = 1if v = p < oo, and
w =vr = (2,-1o, 0. (DY), (%)
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Let ¢' € S(V'(Qy)) and ¢" € S(V"(Q,)) and we put ¢ = ¢’ ® ¢” € S(V(Qy)). Then we

have
wy (g, 1) = (wyv (g, 1)¢") ® (wyr (g, 1)¢").

for g € SL2(Qy). If v = p < oo, for open compact subsets A, B C Q,, we denote the char-
acteristic function of of Aez + Bes C V"' (Q,) by ¢"(A,B) € S(V"(Q,)). Let ¢’ € S(V'(Qp))
be the characteristic function of V'(Z,). Then we find that ¢’ is SLy(Z,)-invariant. We put
¢(4,B) = ¢' @ ¢"(A, B) € S(V(Qy))-

Let v = p < co. We put g, = (SL2(Z,) : Ko(D;Zp)). It is well-known that for N € pZ,, a
complete system of representatives of SLa(Z,)/Ko(N;Z,) is given by

A(N;Zp){(i ?) ceZ,,/NZp}U{(‘ll —01)

()i ¢ )

If ¢ # 0, we have —w - n(—c) - w =t(c™1) - n(c) - w-n(c1).

ac pr/NZp} .

Note that

10.2. The archimedean case. We will prove Lemma 6.7 (1) and Lemma 9.6 (1). Let v = cc.
We define the functions f and ¢’ on V'(R) and ¢” on V"'(R) by

f(u') = —v—=1uy +us —us +v—1ug and
() = dd il ) = 208+ 2Di8 = 20"

for u' = wuje; + uses + uses + ugeg € V/(R) and v’ = uges + ugey € V”(R). We regard
f as a function on V(R) by f(u' + u”) = f(u') for v’ € V/(R) and v” € V"(R). We put
q(u) = ¢ (W) +¢"(W") for u = +u” € V(R) with v’ € V/(R) and v” € V’(R). We consider

¢ (u) = )+ D e SVI(R)), ¢ () = e € S(VI(R)),
and we put ¢ = ¢’ ® ¢ € S(V(R)).
Proposition 10.1. For kg € SO(2), we have
wvimy (kg 1) (u) = eV TTEF20L (W), wyn iy (ke D) (u”) = V100" (u”).
So we have

wv @) (kg d1(K)da(t))p(u) = eI det(a + V=18)* 2 p(u)

k/ — <_a6 g) € KO

and t € C. In particular, the functions
SL2(R) 5 g — @y (=) (g, ¢1((21a)n(X)m(A)k")2(t)) (=55 0, 1) We 0 (a(€)g),
SL2(R) > g — ©(g, 5, ¢") W00 (a(£')9) We,o0 (a(€)g)

are SO(2)-invariant for all z € C*, X € Hera(R), A € GL2(C) with det(A) € R*, k¥’ € Ko,
teC* with |t|] =1, &8 € QX andsG(C

Proof. Note that k'~! = 'k’ and det(k') = det(a + /—18)det(a — /—18) = 1. By a simple
calculation, we have

Fe2() ™ o (k)" ) = det(a+ V=18)f(u),  q(d2(t) " ¢1(k)""u) = q(u)

for uw € V(R). These equations give the actions of k&’ and ¢.

for
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To study the action of SO(2) on S(V'(R)) and on S(V”(R)), consider the action of the Lie
algebra Lie(SLa(R)). Note that kg = exp(0(X; — X3)) with

X, = (8 (1]) X, = (‘i 8) € Lie(SLa(R)).

By the classical Fourier analysis, we can calculate the actions of X; and Xs. 0

Now, we start to prove Lemma 6.7 (1). The proof of Lemma 6.7 (1) is similar to that of
Lemma 7.6 of [14]. By Proposition 10.1, we may assume that 2o, = n(X)m(A). By [14] Lemma
7.4, we find that ¢(x;y1,y2) is equal to

(2v/m) " Hypo o (Vi (a1 — 24 4+ V=1y1 + ya))
x exp(—m((x1 — 24 + y2)? — 2y2(21 — 24) + 2Q1 [2] + ¥1))
for x = *(x1, 2, 23,24) € V1(R) and y1,92 € R. Here,

Ho() = (—1)ne L (e—wz)

dx™
is the Hermite polynomial. For A € GLy(C) with det(A) € R*, we have
det(A) 0 0
pr(m(A) =1 0 M 0

0 0 det(A)?
with some h; € GSO(3,1)(R). By a simple calculation, we have
—(h7'B)1 + (hy*B)4 = det(A) ' Tr(BAYA) = det(A) ' Tr(BY).

Let v = v(X) as in Sect. 6.4. Then we have ¢1(n(X)) = £(v), (v, 8)v, = Tr(BX) and Ql[hflﬁ] _
Q1]B) = —det(B) = —£. So we have

@ (t(z), ¢ (n(X)m(A))) $(=5;0,1)
rdet(A) 1z — zdet(A) " (v, B)

:XV(x)|x|‘Zo/ap fhl_lﬂx 2™V =1z,
R 0

= xv (@)]]%| det(A) |aee™™Y T EO (R ! Br; 0, det(A)z )
= xv (@) 2[% | det(A) sV EX Hy o (Va[det(A) 2 Tr(BY) + det(A)z 1))
x (4m) " Lexp(—m[det(A) 2 Tr(BY) + det(A)x ]?) exp(27Tr(BY) + 271x2€).
By the formula of Wr o in Sect. 4.3, we have Wg oo (n(X)m(A4)) = 0if £ < 0. If £ > 0, then
Whg oo (n(X)m(A)) is equal to
/RX W(t(x), ¢1(n(X)m(A)))o(—B;0, YWr oo (a(€)t(2)) |25 d* x

- 2/0°° G(t(x), ¢1(n(X)m(A))@(—B; 0, 1) W oo (a(€)t(x))z ™ da
=2| det(A)|2K+2€2wﬁTr(B(xfyﬁ))(4@7&715%(1/2)

X / w2 Bt P g (aeTe(BY) 4 o) da.
0
By [14] Lemma 7.5, the last integral is equal to
92(2k+2)—1__k+1 4my/=1Te(BY v/=1) if B> 0,
0 if B<O0.
Since Y = A'A, we have det(Y) = | det(A)|?. This completes the proof of Lemma 6.7 (1).
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Lemma 9.6 (1) follows from the equation ®(t(x),s,¢”) = xv @ (x)|z]|5F!, the formulas of
Wt oo and Wy o in Sect. 4.3, and the well-known formula

/ |x|se_‘”2dxx = a_S/QF(E)
RX 2
for a > 0.

10.3. The unramified 2-adic case. We will prove Lemma 6.7 (2) and Lemma 9.6 (2) for
p=2. Let v=2¢D. So we find that D = 3 mod 4.

In this case, we have (2,—1)g, = 1, vg,(D,%) = v/—1 and g, (%) = (5 *. Hence we have
ywo=vr =1

Let " = @"(Za,Z2) + ¢"(27125,27125) and ¢} = ¢"(Z2,72) € S(V"(Q2)). We put
p=¢"®¢" and pg = ¢’ @ .

Lemma 10.2. We have

" (u) = 2/ w(k, 1)y (u)dk and so ¢(u) = 2/ w(k, 1)po(u)dk.
SL2(Zs) SL2(Z2)

In particular, ¢ and ¢" is SLa(Zz)-invariant. Moreover ¢ is also ¢1(GSU(2,2)(Z2))¢2((0 @z
Zs)*)-invariant.

Proof. Tt is easy that ¢f is Ko(4; Zy)-invariant. For a,c¢ € Zy, we have
w(—w - n(—c) - w, 1)gg(u) = w(—w, 1)[(w(w, 1)gg](u))(—cQ"[u]),
w(n(a)w, 1)gg = [w(w, 1)eg](w)y(aQ” [u]).
Now we find that
" _ 4 if Qu[u] € ZLa,
Z Y(=eQul) = {0 otherwise,
CELy [4T

Hence, we have

Y (wlw, g () (=eQ"u]) = 4vol(V"(Z2)) " (u).

CE€EZso /AL

Similarly, we have

Y (wlw, g (w)e(aQ" [u]) = 2vol(V"(Z2)) " (u).

a€27, /AL
On the other hand, w(w, 1)¢" is equal to
w(w, )" (27 2,27 La) — ¢ (27 Lo, Lo) — "' (L2, 27 o) + 29" (L, o)
= vol(V"(Z))[4@" (Zg, Za) — 20" (Zy, 27 L) — 2¢" (27 Lo, L) 4 20" (27 2y, 271 2)].

Since vol(V"(Zz)) = | det(Q")|*/? = 271, we have w(w, 1)¢” = ¢". Therefore we have

/SL o )w(k, 1) g (u)dk
= (SLa(Zs) : Ko(4;Z2)) " [4vol(V"(Z2))¢" (u) 4 2vol(V" (Z2))" (u)] = 271" (u).

The equation for ¢ implies that ¢ is SLa(Z2) X ¢1(GSU(2,2)(Zz))-invariant. By Lemma 8.2,
we find that ¢ is ¢2((0 ®z Z,,)*)-invariant. O
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Now, we start to prove Lemma 6.7 (2) for p = 2. By Lemma 6.1 and Lemma 10.2, we find
that Wp o is right GU(2, 2)(Zs)-invariant. Moreover, we have

Waa(l) = [ o(t(w), 1)9(~5:0,)Wrala()t(z)aly*d"s

2

= /X[Xv(w)lw|§¢(—ﬂx;0’x_l)}[Xz(f_l)Wf,z(a(ﬁf))]|$|52dxl’

2

= > e(=B270,2m) 6275 2ay ((627)),)

nez
Note that ¢ = @©(271Z,271Zs) — ©(27YZ5 , Zo) — (72,27 LY.
Lemma 10.3. We have
3272y 2oy (—B2750,27) 627 5T 2ay ((€272),) =0,

nez
and

Y o(Z 27125y (=827 0,2M) 627 5T 2ay ((€2727),) = 0.
nez

Proof. Since 3 = *(—by, —ba, —bs, b1), we have ¢(271Z, Zs) (—27";0,2") = 0 unless
n>0, mg—m>0, mg—n=-1, mg3—n=>0, and m;—n>0.
In this case, we have n = mg + 1 < min(my,ms, m4). So we find that
I = ordy (&) = orda(byby — b3 — Db3) = 2ma < 2n.

Therefore we have ay ((52_2")2) = 0. The second assertion is proved similarly. O

Let mg = rnin(ml7 ms + 1,m3 + 1,my). Then by this lemma, we have

Wea(1) = Y 0(27' 2,27 2o} (—527750,27) €275 ay ((€277),)
nez

|§|n+1/2 Z(2n)2m+1af ((52—2'@)2) )
n=0

This completes the proof of Lemma 6.7 (2) for p = 2.
Next, we start to prove Lemma 9.6 (2) (for any p). Then we have

Bese€) = [

P

= [ b @l i, I Cal5 e (€07, )

P

[|£C’x2|m+1 ((fCIZ)p)} ‘ |:E|;2d><:r

= el el fag (€50)) o (@) e

D

D(t(x), 5,9")Wep(al¢'C)t(w) W (@(ECY(@)) | lol, 2d*a

Since ord,(§) = 0 or 1, this is equal to

oo

Sl 2 T fag ((€97),) ag (€@7,)]

n=0

This is the desired formula for Jy(c,s,£,£’). The formula for I(c, s, &) can be proved similarly.
These complete the proof of Lemma 9.6 (2) (for any p).
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10.4. The ramified 2-adic case. Let v = 2 | D. We will prove Lemma 6.7 (3) and Lemma
9.6 (3) for this case. We put d = ordy(D) € {2,3} and D’ = D/2%. Write D' = Sug with
0 € {£1} and ug € 1+ 4Z,. Note that if d = 2, then § = 1. In this case, we have (2, —1)g, =1,
Yg, (V) = ¢ 1. If d =2, then vg, (D, ¥) = g, (D', ¢) = 1. If d = 3, then

1 if D' =1 mod 8,

1 if D' =41 mod 8, —v—1  if D' =3mod3§,
X2(2>_{ 1 D =43meds, (@P¥I=0 if D' =5mod8,
V-1 if D' =7 mod 8.

Hence we have yye = yyre = X2(2d).

Let ¢ = " (Z2,271Zs), 0} = ©"(Z2,Z), ¢ = ¢"(27 2, (2D)"Z3) € S(V"(Q2)). We
put ¢ = ¢’ ® ¢” and p; = ¢’ ® ¢! € S(V(Q2)) for i = 0,1. Clearly, ¢q is ¢1(GSU(2,2)(Zs))-
invariant. We find that

w(w, 1)y = '7‘7,1,v01(V"(Zg))<p'1’ and so  w(w,1)pg = ’7‘;1V01(V(Zg))g01.
For

= (Ccl (bl> =w™!-n(=c/a)-w-t(a) -n(b/a) € Ko(4D;Zy),

we have
w(k,1)pg = xvr(a)py andso w(k,1)po = xv(a)po.
A complete system of representatives of Ko(D;Zs)/Ko(4D;Zs) is given by

()=

Lemma 10.4. We have

Z w(—w - n(—c)-w,1)py =2¢" and so Z w(—w - n(—c) - w,1)py = 2.
€Dy /ADZy c€DZy/ADZ,

cc DZ2/4DZ2} .

In particular, Ko(D;Z2) acts on ¢" (resp. @) by the scalar multiplication of the character

(Z Z) = wfl . n(fc/a) W t(a) . n(b/a) — XV//(a) (I‘G‘Sp. Xv(a))

Moreover, we find that ¢ is ¢1(GSU(2,2)(Z2))p2((0 ®z Za)™)-invariant.
Proof. We have

w(n(—c) - w, 1)¢" (u) = puvol(V (Z2))¢! (w)tp(—cQ" [u)).
Note that

> (=) =

{4 if Q"[u] € D™ Zs,
c€DZ>/4DZo

0 if Q"[u] ¢ D™ 'Z,.
We find that
{u e V"(Qy)|¢}(u) #0, Q"[u] € D™ Zs} =27 Zoes + D' Zoey.
Hence, we have
> wn(—e) - w, 1)l = 4y hvol(V(Zs))@" (27 Lo, D™ Zs).
¢€DZ3/4DZs
Since
w(w, )" (27 2o, D™ Zy) = v, v0l(27 Zoes + D' Zoeq) "
= 2 vol(V (Z2)) ",
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we have

S wwe (o) w, )l (u) = 2% ol(V(Z2)) " (—u) = 2" (u).
cEDZy /4D,

Let k=w"' n(—c/a)-w-t(a) n(b/a) € Ko(D;Zs) and ¢1,ca € DZs. Then

-1
1 0 1 0\  f(a+be * .
(1) +a W)= (720 D) ez

and Xv (a —+ bCQ) = Xv" (a) Therefore we have

1

w(k, 1)¢" = xvr(a)e”.

The last assertion follows from Lemma 8.2.

By this lemma, we find that the functions
SL2(Q2) 3 g — w(g, 1)@(—p;0,1)We2(a(€)g),
SLa(Q2) 3 g > ®(g, 5, 9" )We 2(a(€'C)g)We 2(a(6C)g)

are right Ko(D;Zsy)-invariant. Hence we have

WB’Q(l) = (SLQ(ZQ) : Ko(D;ZQ))_l Z QB’Q(k),
k€SL2(Z2)/Ko(D;Zs)
Ix(c,5,€) = (SLa(Zs) : Ko(D;Zs)) ™ > Apa(k),

keSL2(Z2)/Ko(D;Z2)

where

(k) = [ G D50 )W ea(al @bl 0"

Apa(k) = /@ B(t(x)k, 5, ") We 2 (a(EC)H () k)W 2(a(€CTH@IR) ] 2.

A complete system of representatives of SLa(Z3)/Ko(D;Z2) is given by
A(D;Zs) = {—w - n(—c) - w, n(a) - w|c € Zy/DZs,a € 2Z2/DZs} .
Lemma 10.5. Let x € Q. We put n = orda(z) and | = ordz(€).
(1) For k= —w-n(—c) - w with c € Z5, we have
w(t(@)k, 1)¢" (u) = 272y xvn (et alo” (27 2o, D™ Lo ) (uz)o(e ™ Q" uz])
so that
w(t(@)k, Dp(u) = 272y yy (ze ) |2 3(27 2o, D™ Zo) (uz)p(e™ Qlual),
and W 2(a(§)t(z)k) is equal to
2~ 2l (Ea?e ) x, (07 )X, (—2%€)ap (D) THen? |5 20y (DEa2)y).
(2) For k =n(a)-w with a € 2Zy, we have
w(t(x)k, 1)¢" (u) = 272yl xy (@) 220" (27 Lo, D™ o) (uar)ip (aQ [ua])
so that
w(t(@)k, p(u) = 272y vy ()39 (27 2o, D™ o) (ua)ip(aQlux]),
and W 2(a(§)t(z)k) is equal to

2792 Ly (atx?)x, (2~ )x(~2%€)ar (Do) " €a? |5 %y (DE2?),).
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(3) For k= —w-n(—2%"1) - w = ky, we have
. O (27125, 27225 ) (ux),  if d =2,
i)k 1" (1) = Xyl % { T T, ifds
so that
—1rX §—2rX g
AUk, )ol) = xv @)} ¢ { S
and
We a(a(©)(a)k) = {XZ(x_1)|£x2lgH/2af(2)_l H o=l
0 otherwise.
(4) Assume that d =3 and k = —w - n(£2) - w. Then w(t(x)k,1)¢"(u) is equal to
27 v (2) |2
x (27125, 27 20) OV (9" (27125, 27025) — (271 25,27 1)) | (ua)
so that w(t(z)k, 1)e(u) is equal to
27 v (@)
x [@(271 25,27 Zs) £ 6V -1 ((27' 25,2725 ) — (27125, 271 Zs)) ] (uz),
and W 2(a(§)t(x)k) is equal to
{Xz(wlﬂ1/2x2(¢77)64§t"|£w2|”+1/2 F@7 i ltm= 2,
0 otherwise.
Proof. (1) Let k = —w -n(—c)-w =t(c™!) -n(c) -w-n(c™!). Then we have
w(t(x)k, 1)¢" (u) = w(t(zc™") - n(c) - w, 1)¢" (u)
— yhvol(Zaes + 27 e t(ze ) - nle), )¢ (2712, D\ Z)(u)
=22y (wem ) |ee o (27 Lo, DV 2o (uwe™ )(eQ [uxe ™))
= 272w (e [2lag” (27 2o, 272 2o ) () ip (¢ Q" [uz]).
On the other hand, since a(§) - t(zc™!) - n(c) = n(éx?c Va(€)t(ze 1), we have
Wea(a(€)t(2)k) = ¥(€a®c )y, (@7 ) We2(a(€a’c)w)
= (€, (1 )X, (~Data®)e ™t ap (Do) M ga® 3 20y (DER?)).
(2) Let k =n(a) - w with a € 2Zy. Then we have
w(t(@)k, 1)¢" (u) = 1yr2~ Py (@) 2|20 (27 Lo, D™ o) (uar)p (aQ" [ual).
On the other hand, since a(¢)t(x)n(a) = n(ax?)a(€)t(z), we have
We 2(a(§)t(x)k)
= w(aga®)x, (o )x(~Data?)e 12 a (Do) a3 20y (DER)).

(3) We assume that d = 3. The proof for d = 2 is similar. Let k = —w - n(—4) - w = ky. The
formula for W 2(a(§)t(x)k:1) follows from Lemma 4.2 immediately. On the other hand, we have

w(n(—=4) - w,1)¢" (u) = vyinvol(Zaoes + 27 Zoes) " (27 2, 273 Za) (u)h(—4Q" [u]).
Now we find that
1 if ug € 27 Zo, uy € 272,
—1  ifug €271 %9, uy € 27375

Y(—4Q" [uzes + uses]) = {
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Hence we find that w(n(—4) - w, 1)¢" (u) is equal to
273 2 [0 (27 20272 L) — (271 20, 2732F)] (u).

Note that

w(w, 1)@" (27 22,272 L) (u) = 2230 [0 (L2, 27 Lo) + ¢ (Zo, 272Z5)] (u),

w(w, 1)¢" (27 22, 2725 ) (u) = 22900 [¢ (22,27 o) — ¢ (22,27 25) ] (w).
So we have
w(w - n(—4) - w, 1)¢" = 779" (L, 27 L5 ).
Since v&, = X,(—1), we have
w(t(z)k1, 1)¢" (u) = xvr (2)|2]2g” (22,2725 ) (u).
(4) Assume that d = 3. Let k = —w - n(42) - w = a(F1) - kg - a(F1). We write £ = 2!y and

x = 2"y with n,u € Z5. Then W 2(a(§)t(z)k) is equal to

X, (@22 (Fnu?)eE ™ F ea? 5T Pap(2) 7 it 14 2= -2,
0 otherwise.

Since u? = 1 mod 8 for u € Z3, we get the desired formula for We s (a(€)t(z)k). On the other
hand, we have

w(n(£2) - w, 1)¢" (u) = vyinvol(Zoes + 27 Zoes) " (27 2y, 273 Z0) (u)h(£2Q" [u]).
Since +2Q" [uzes + uses] = (£2(u3 + 8dugu3)), we have

0 mod Zs if us € ZQ,U4 € 27222,

. +4-471 mod Zy  if uz € Zo,uy € 27375,

:|:2Q [Ugeg =+ U464] = 1 . X _9
+2 mod Zs if ug € 27725 ,us € 27" Lo,

+2714+65.47Y modZ, if ug € 27125 uy € 2737,

Since 9(1/4) = —v/—1, we find that w(n(£2) - w, 1)¢"”(u) is equal to
3/2,}/‘;/1/ //(2272—222) o s0//(2—12;727222)
+0V=1¢" (27125 2701 F 6V 19" (22,275 ) | ().
Note that
w(w, 1) (Zy,2 L) = 2712y

X sa"(Z o) + " (271227 L) + ¢ (22,2775 ) + " (27125, 2725 | (w),
w(w, 1)¢" (2 1Z§, “2Zy) =272y

X so”(Z L) - @"(2_125 27V ) + @ (20,2722 ) — " (27125, 27225 | (),
w(w, 1)¢" (2 125, L) =27y
X s@"(Zz L) - w”(TlZzXﬂ_lZz) —¢"(22,27725) + ¢"(27 25, 27725 ) | (w),

w(w, )¢ (Zy,27°25 ) = 272y
X ¢ (22,27 2) + ¢ (27125, 27 2s) - ¢ (22,2725 - ¢ (2725, 27°2) | ().
So we find that w(w - n(£2) - w, 1) (u) is equal to
27y h (@ (27 25,277 L) £ 6V-1 (9 (27125 272 2F) — (27125, 27 2))] (u).
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Since 72, = xv~(—1), we find that w(t(z)k,1)¢” (u) is equal to
27 v (@)
x [@"(27' 25,272 Zs) £ 6V -1 (" (27125, 2722 ) — " (2725 , 27 Zy))] (uz).
This completes the proof. O
Lemma 10.6. We put | = ordy(§), m; = orda(b;) fori=1,...,4,
mo = min(ords(by), ords(by) + 1, 0rds(bs) + d, ordz(bs)),
m( = min(ordz(by), orda(bs), orda(b3) + 1, ordz(bs)),

and
1 if my,mg >mo+1=mg3+2,
02 = {0 otherwise,
5y — { 1 if my,mg, mg > msz + 2 and ordy(byby — b3) > ordy(Db3),
0 otherwise,

5 1 if my,m3+2,myg > mo +1,
0= {0 otherwise.

(1) For k = 13, we have

’
Mo

Qpa(Lz) = ¢[5T2 3 (27> ay ((€2727)),
n=0
Apa2(la) = ¢l /2T2 Y 62?52 P25 0y ((€227),) ag ((6277)).
n=0
2) For k= —w-n(—c)-w with c € Z5 or k =n(a) - w with a € 27, we have
2

mo

Qpa(k) =27, (D2) Hels T2, (—€) Y (2> ay (DE272)y),
n=0

Apa(k) = 2% (D)7 Yely /> T2 x, (—€C)

s

x S (€22 P G (DE2P),) ay ((€22)2).
n=0

(3) For k= —w-n(—=2%"1) - w = ky, we have
QB,Q(k’) _ 6d|£|g+1/2(20rd2(b3)+2>2n+1af(2)—1’
Apa(k)=0.
(4) Assume that d =3. Let ky = —w - n(£2) - w. Then we have
Qpa(ky) + Qpa(k) = Golg[s /2 (20r 02004285 g 5 (2)=2,
Apa(ks) =0.

Proof. (1) is easy. (2) follows from Lemma 10.5. So we show (3) and (4).
We show (3) only when d = 2. Let k = —w - n(—2) - w = k1. Then Qp (k) is equal to

|, Do @eo 25,2722 (-0, )] Weala(@)e)kn )l 0

2

Let z € Q5 and we put n = orda(z). Since B = *(—by, —ba, —bs, b1), we have p(271 2, 27225 Y (= Bz; 0,27 1) #
0 if and only if

n<0, mg+n>0 mo+tn=-1, ms+n=-2, m;+n>0.
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In this case, we find that n = —orda(bz) — 1 = —orda(bs) — 2 and
mi,my > Mo+ 1 =mg+ 2.
Moreover, since ords(by) = ords(2b3) and D’ = D/4 = 1 mod 4, we have
ordy (b3 4 Db3) = ordy (b3 4 D’(2b3)?) = 20rda(bs) + 1 < ordy(b1by).
Hence, we have [ = orda(b1by — b3 — Db3) = 20rda(b2) + 1 = —2n — 1. So in this case, we have
Wea(a(@)Ua)k) = x, (@ hler’ ;" Pap(2) 7"
Therefore, we have
Qpa(ke) = alely /227 ™ ay(2) 7"

On the other hand, since ®(t(x)k1,s) =0 for all x € Q5 and s € C, we have Ag 2(k1) = 0. The
proof of (3) for d = 3 is similar.
(4) We assume that d = 3. Let kx = —w -n(£2) - w. Then we find that Qp 2(k+) is equal to

| 2 i@l o125, 2772 £ 0V (w225, 27725)

3
— p(27125,2720) ) [ (=53 0,07 ) Wi (al()t(w)hs) 25 2d* .
Write ¢ = 2l with n € ZS. We assume that [ + 2 € 2Z and put n = (—I — 2)/2. Then we have
Qpalks) = 272, (Fn)ecd e 5 2ap ()72 027125, 272)
+ 0V (927125, 2722 ) — (271 2F 27 ) } (—f270,27™).

We put p = e(x, (=n)¢ +x,(n)¢s ") and p" = ev/—=16(x, (=1)¢ — x, (Mg 7). Then by a simple
calculation, we have

V2 if =1 mod 4Z,,
—V2  if n =3 mod 4Z,.

Since p(271Z5,27%Zs) = (27 ZS 2721 )+ (27125, 271 Zs), we find that Qp 2(k4)+Qp 2 (k)
is equal to

—1 -2 " n. -n 3 =
|§22"|K+1/2a 22 x ©(27 23,272y Y (—B27;0,277) if =1 mod 4Zo,
2 Y 027125 27 2, Y (—27:0,27™)  if ) = 3 mod 4Z.
However, if p(271Z5, 272725 Y (—32";0,27") # 0, then we have
n<0, mg+n>0 mo+tn=-1, ms+n=-2, mp+n>0.

p=+2 and p'—{

In this case, we have
I = ordy(byby — b3 — Db3) = ordy(b3) = —2n — 2.
So we have
n= €270 = 4(2"1)(2"by) — (27°92(42)py)2 — 8D’ (27 1p3)?
= —(27ord2(b2)p)2 _ 9527 2p3)? mod 47,
=—-1+2=1mod 4Z,.

Note that u? = 1 mod 4Z for all u € Z5 and £2 = 2 mod 4Z,. Similarly, if p(271Z;,271Z,) (—527;0,27 ") #
0, then we have [ = —2n — 2 and n = —1 mod 47Zs. Therefore we have

Qpa(ky) + Qpa(ko) = €225 20 (2) 2p(27'25,2722,) (-527;0,277)
_ 50‘£|I2€+1/2(20rd2(b2)+1)2n+1af(2)—2.
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On the other hand, since ®(t(z)ks,s) = 0 for all z € Q5 and s € C, we have Ap (k) = 0.
This completes the proof. O

Now, we start to prove Lemma 6.7 (3) for the case when p = 2 | D. First, we assume that
d = ordz(D) = 2. By Lemma 6.1 and Lemma 10.4, the function Wg 5 is right GU(2, 2)(Z2)-
invariant. We put g2 = (SLa(Z2) : Ko(D;Z2)). Then

’
mo

WB,Q(]') = QE1|£|S+1/20]0(D2)_1 G,f(DQ) 2(277’)2”""1&1_ ((52—277,)2)

n=0

+ Y (272X, (=€)ag (DE2720)s) + ag(D2)da(2+2)* Hlay(2) ™
n=0

For 0 < n < mj{, we find that £272" € Z,. Note that
mg = min(my, ma, mg + 1,my) < mo = min(my, ma + 1, mg + 2,my)

and my = myg if and only if m{ = min(my,my4). In this case, we have do = 0. So we consider
the case when mg # m(. We divide the case into the three cases as follows.
If m1,m4 > ms = mg + 1, then we find that § = 1, mg = mo + 1 and

I = ordy(b1by — b3 — Db3) = ordy (b3 + D'(2b3)?) = 2ms + 1.
So we have (D£272™m0), = 2. Moreover in this case we have
a7 (Da)F 272 g (2) 7 = (270)Hay (2)

If my,my > mg > ms + 1, then we have do = 0, I = 2(mg3 + 1) and my = mgz + 2. So we have
(D€E272m0), = 1. In this case, since

—DE272m0 = (Dbz27™)? = 1 mod 47,
and (Z3,1+ 4Z2)g, = 1, we have
—2m —2m
X,(=8) = (=D, =€), = (~D.~DE2) . = (=D, —Dga~0) =1,
If my,mqy > mg + 1 > mo, by the same calculation, we have 6 = 0, mg = my + 1 and
(Dg272m0), = 1. Moreover, since
—DE272m0 = D'(2b527™0)? = 1 mod 47,

we have x,(—¢) = 1. This completes the proof of Lemma 6.7 (3) for the case when p = 2 and
ords(D) = 2. The proof of Lemma 6.7 (3) for the case when p = 2 and ords (D) = 3 is similar.

Next, we start to prove Lemma 9.6 (3) for the case when p =2 | D. We put g = (SL2(Zs) :
Ky(D;Zs)). By Lemma 10.6, we have

Iy(c,5,6) = g3 tag (D) Hely /2712

% 30122 ag ((DE2PM):) + x, (—€C)ay (DEZ),) | ay ((€257)2).
n=0

This is the desired formula for I5(c, s,&). By a calculation similar to that of Ix(c, s, €), we find
that Ja(c, s,&,&’) is equal to

— k+1/2 K _
a5 €152 L5 ap (Do) 7

< S0 12 lag(Daas ((€227)2)| + [a7 (DET | oy (€2

n=0

Since |ag(Dg)ays ((£2%")2)| < |as ((DE'22™);)] for all & € Q*, we get the desired estimation.
This completes the proof of Lemma 9.6 (3) for the case when p = 2.
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10.5. The case when ord,(C) # 0. Finally, we will prove Lemma 6.7 (4) and Lemma 9.6 (4).
Lemma 10.7. Fora € QF and f € L'(SLy(Qy)), we have

/ F@)de = |a], / / F(bk)didb.
SL2(Qp) B(Qp) Jd(a)SL2(Zyp)d(a)~*

Proof. This lemma is proved by a change of variables immediately. O

Now, we start to prove Lemma 6.7 (4). Let ¢ be an integral ideal of K. We assume that ¢
is prime to 2D and p | C' = N(c). Let t € Ak g such that ordy(t,) = ordy(c) for all prime

ideals p of K. Put v = r,. Write ¢, = 2, ® 1 +y, ® v—D € Q, ® K. Note that ¢, is
01(GSU(2,2)(Zy))p2((0 ®z Z,,)* )-invariant by Lemma 8.2. Therefore, by Lemma 6.1, we only
have to calculate Wg ,(7,). Recall that Wpg ,(7,) is equal to

/ @(o - d(Nkjg(tp)), d2(tp))ep(=B; 0, )We p(a(§)er - d( N jq(tp)))da.
N(Qp)\SL2(Qp)

Since the integrand is right d(Ng q(tp))SLa(Z,)d(Nk g(tp)) ™ '-invariant, by Lemma 10.7, we
have

W) = INicsa(to)l /Q G(t(@)d(Nicqty), da(ty) ) Ep(—5:0,1)

X W p(a(€)t(2)d(Nk o (ty)))|z], d* .
Note that [Nk q(tp)|, = [C|,. We have
@(t(x)d(Ng jq(tp)), ¢2(t))¢p(—5;0,1)
2%
= [ @ llNatl, ey | o2t | 5| | piera
» 0
Since
$2(tp) ™t = Nijolty) ™ o' (tp) ;
NK/@(tp)
we find that &(t(x) - d(Ngq(tp)), #2(t))Pp(—B;0,1) is equal to
xv @)z 5| Cl, 26 (= Nicyalty) ~' ' (t) B3 0, Nig s (tp)a ™).
On the other hand, we have
We p(a(§)t(z)d(Nk /Q(tp)))
= X, (@ Nijo(tp)|62* N ja (t) 51 2ar ((€2° Nieyo(tp)™1)y)
= X, (@ e’ Nigjq(t,) >ClpH 2ay ((€0° Niejo(ty) *C)y) -

Hence we have

Wi (1) = |C|5THg|rH1/2 /QX Gp(—¢ (tp)Ba; 0,27 )| 2[5 %0y ((€2°C),) d*x

= |CIEHERT2 Y " (= (t) B 0,p™) (") M ay ((ECp~2"),)
n=0

as desired. The last assertion of Lemma 6.7 (4) is easy.
Next, we start to prove Lemma 9.6 (4). Let ¢ € JP. We assume that C = N(c) is a square
free integer and p | C. Let t € A 5 such that ordy(t,) = ordy(c) for all prime ideals p
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of K. Hence, we have [Nk q(ty)l, = |C|, = p~! and C - Ngq(t,)~" € Z). Note that for
e K = d(NK/Q( ))SLQ( ) (NK/Q( ))717 we have

D(t(x)k', 5, L(5 (tp)) o)

= xvr (@) |z (k- d(Nkjo(tp)), 65 (tp)),1(0)|a(k)]5

= xvr (@) |25 (05 (1) @ 0) (k)5 = xv (@) ]2l [Nicjq ()|, 2 la (K]
By Lemma 10.7, J,(c, s,&,&’) is equal to

/@p (IMirattally [ e @lels Nicraltly a1

% [Wep(a(€ O)(@)d(Nic (1)) We @€V AN aE))) | lal

Now |a(k')| is right (K’ N SLy(Z,))-invariant. Since ord,(Ng/q(tp)) = 1, a complete system of
representatives of K'/K' N SLy(Z,) is given by

L6 ) (5 0 lpemmmy
woimen@) wa (0 70 =7 ) (5 5)
oo )= ma o0, )| ==

1 P’ 4p
EN*dk = +
| la)pdi = o) = B

Since

we have

Hence, we have

for s € C. Therefore we find that Jp(c,s,§, ') is equal to

p71/2/
QX

P

X’Xp 'Ni/a(ty))I€' Ca® Nicsotp) " 5 2ay (flcszK/Q(tp)fl)‘

x ‘\50x2NK/Q(t )15 a (€Ca?Nicyalty) ) |l 2d%x

xvr (z)|x

|cr+1p +p
1+p

1727+ P criit1/2)pnt1
ey

X /@X |9C|;;+4K+2 ’af (§/Om2NK/Q(tp)71) Qg (gchNK/Q(tp)_l)‘ d*x

P

—1/2P7 +P i R Ry ") o (Ep2n)
= p PR I S0 fa (€97) ag (677

This is the desired formula for J,(c, s,&,&’). The formula for I,(c, s,€) is proved similarly. This
completes the proof of Lemma 9.6 (4).
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