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Calculation of the 1RSB transition temperature of

spin glass models on regular random graphs under

the replica symmetric ansatz

Masahiko Ueda and Shin-ichi Sasa

Department of Physics, Kyoto University, Kyoto 606-8502, Japan

E-mail: ueda@ton.scphys.kyoto-u.ac.jp, sasa@scphys.kyoto-u.ac.jp

Abstract. We study p-spin glass models on regular random graphs. By analyzing

the Franz-Parisi potential with a two-body cavity field approximation under the replica

symmetric ansatz, we obtain a good approximation of the 1RSB transition temperature

for p = 3. Our calculation method is much easier than the 1RSB cavity method because

the result is obtained by solving self-consistent equations with Newton’s method.

PACS numbers: 75.10.Nr, 05.70.Fh, 64.60.Cn
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1. Introduction

Spin glass models on random graphs have been extensively studied in statistical

mechanics of random systems [1, 2, 3, 4, 5, 6, 7]. There are two reasons for this. The

first reason comes from a motivation for describing thermodynamic phases of models

with finite connectivity which might have a different nature from the infinite-range

model. Models on random graphs may form the simplest class for this motivation,

while the final goal is to understand the nature of finite-dimensional models [8]. On the

other hand, apart from spin glass materials in nature, it has been found that spin glass

models on random graphs frequently appear in combinatorial optimization problems

[9, 10, 11, 12]. Many constraint satisfaction problems can be mapped to problems

concerning the ground states of spin glass models [13], and the solutions space for

random instances is characterized by their complexity that is calculated by a theoretical

technique developed in studies on spin glasses. This provides the second reason for

intensive studies on spin glass models on random graphs.

The first step of studying models is to determine transition points. As an example,

let us consider p-body interaction spin glass models on random graphs [14]. For the

model with p = 2, a full replica symmetry breaking (FRSB) occurs at a transition

temperature whose value is determined by the condition that the replica symmetric

(RS) solution becomes unstable. When p ≥ 3, a one-step RSB (1RSB) occurs, but

the transition is not detected by simply searching the instability point of the RS

solution because of the discontinuous nature of the transition. In order to determine

the transition temperature, we need another method different from analyzing the free

energy under the RS ansatz.

Up to the present, the 1RSB transition temperature of models on random graphs

has often been studied by using the replica method with the 1RSB ansatz [15], a

variational approximation of the replica method [16], the 1RSB cavity method extending

the Bethe-Peierls approximation to the 1RSB phase [4], and the replica method with

finite replica number and the RS ansatz [17, 18]. In particular, in the 1RSB cavity

method, which might be the most standard method for the calculation of the 1RSB

transition temperature, one needs to solve self-consistent equations for functionals of

the probability distributions of cavity fields in general. These self-consistent equations

can be solved numerically by using the algorithm called population dynamics. It should

be noted that the 1RSB transition is characterized by the divergence of point-to-set

correlation length within the 1RSB cavity method [19]. In the replica method for

models on random graphs, the free energy is calculated by using the function order

parameter. The method using finite replica number [18] assumes a property of the

cumulant generating function of the free energy, which turns out to be equivalent to the

replica method with the factorized ansatz [5].

As a different approach to determine the 1RSB transition temperature, the method

using the Franz-Parisi potential [20] has been proposed. The Franz-Parisi potential is an

effective potential of overlap between two replicas and we can detect the transition by



Calculation of 1RSB transition temperature under the replica symmetric ansatz 3

investigating a qualitative change of the potential. An explicit form of the Franz-Parisi

potential has been derived theoretically for the infinite-range spin glass models. The

advantage of the method using the Franz-Parisi potential is that we can calculate the

transition temperature under only the RS ansatz. In fact, in the infinite-range model,

the transition temperature calculated by using this potential with the RS ansatz agrees

with the result by the standard 1RSB ansatz. If this method can apply to models on

random graphs, we can determine the transition temperature with easier calculation

than the 1RSB methods. For models on random graphs, since the computational cost

for the methods with the RS ansatz is significantly lower than that for the methods

with the 1RSB ansatz, it is a major advantage if applicable. However, the Franz-Parisi

potential has not been employed for calculating the transition temperature of models

on random graphs, because the 1RSB phase is characterized by a nontrivial distribution

of cavity fields. It should be noted that a computational method of the Franz-Parisi

potential of diluted disordered models on random graphs was proposed by generalizing

the cavity method [21].

In this paper, we calculate the transition temperature of models on regular random

graphs by analyzing the Franz-Parisi potential under the RS ansatz. By comparing our

results with those obtained by the 1RSB methods, we conclude that our method is useful

for obtaining a good approximation of the transition temperature with considerably

lower computational cost.

This paper is organized as follows. In section 2, we present the models we study,

define the Franz-Parisi potential and its Legendre transform, and explicitly express a

condition that determines the transition point. We also express this Legendre transform

by using the RS cavity method. In section 3, we make an assumption in order to solve

the problem in terms of a few self-consistent equations, and as a result, we obtain

the transition temperature. In section 4, we remark difference between our method

and the standard 1RSB methods. Finally, in section 5, we discuss the validity of the

assumption we made. In Appendicies, we review the analysis on the infinite-range model

for reference of our method and collect details of our calculation.

2. Preliminaries

We consider the ±J-type p-spin glass models [10, 22, 23] on a C-regular random graph

G [14] of size N , where C represents connectivity. The spin variable σi ∈ {−1, 1} is

defined on each site i ∈ G and we write σ ≡ {σi}Ni=1 collectively. The Hamiltonian is

given by

H0(σ) = −
∑

i1<···<ip

gi1,···,ipJi1,···,ipσi1 · · ·σip . (1)
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gi1,···,ip is a random variable taking a value 0 or 1 which is determined according to a

probability distribution

P
({

gi1,···,ip
})

=
N∏
i=1

δ

 ∑
i1<···<ip−1

gi1,···,ip−1,i − C

 . (2)

Ji1,···,ip is a random interaction variable obeying a probability distribution

P (J) =
1

2
[δJ,1 + δJ,−1] . (3)

We consider the case where gi1,···,ip and Ji1,···,ip are symmetric under index permutations.

It has been known that the low temperature phase of this model is reasonably described

with the 1RSB solution [5, 24, 25, 18]. It is also known that a problem computing

the ground state energy of this Hamiltonian can be mapped to a NP-hard problem,

MAX-p-XORSAT [13].

We consider an effective potential of overlap between two replicas, the Franz-Parisi

potential [20]. The Franz-Parisi potential was originally introduced for the infinite-

range model in order to detect the appearance of metastable states as a local minimum

of the potential. In this calculation, the 1RSB transition point is determined as the

temperature at which a nontrivial local minimum value of the potential is equal to the

trivial local minimum value. In other words, at the transition temperature, the overlap

between two replicas takes a nontrivial value in the thermodynamic limit. We expect

that this picture can be extended to spin glass models on random graphs. We also

introduce the Legendre transform of the Franz-Parisi potential [26]. To be specific, we

first define the Hamiltonian with an external field directing s

Hhext(σ; s) = −
∑

i1<···<ip

gi1,···,ipJi1,···,ipσi1 · · ·σip − hext

N∑
i=1

siσi. (4)

The free energy of this system with inverse temperature β and fixed s is given by

−β−1 log
(∑

σ e−βHhext
(σ;s)). We then assume that s obeys the canonical distribution

with the Hamiltonian H0 and inverse temperature β′. By taking the average of the free

energy with respect to s, gi1,···,ip and Ji1,···,ip , we obtain the Legendre transform of the

Franz-Parisi potential

−βG(β, β′, hext) ≡ EgEJ

[
1

Z ′
0

∑
s

e−β′H0(s) log

(∑
σ

e−βHhext
(σ;s)

)]
, (5)

where Z ′
0 ≡

∑
s e

−β′H0(s), and Eg and EJ represent the expected value with respect

to g and J , respectively. −βG corresponds to the cumulant generating function of

the overlap N−1
∑N

i=1 siσi. In the infinite-range model, we could calculate the 1RSB

transition temperature only with the RS ansatz. (The details are given in Appendix

A.) Based on this achievement, we attempt to calculate −βG(β, β′, hext) by using the

replica method for the models on random graphs.

In order to obtain the transition temperature, we have only to calculate the

cumulant generating function −βG for the case β′ = β and hext = +0. Due to a property
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of the Legendre transformation, considering the case hext = +0 corresponds to probing

only the minima of the Franz-Parisi potential. Under the RS ansatz, self-consistent

equations in the replica method have a nontrivial solution as well as the trivial (high

temperature) solution. We denote the cumulant generating functions calculated from

the nontrivial solution and the trivial solution by −βGSG and −βGpara, respectively. We

assume that the nontrivial RS solution is stable above the 1RSB transition temperature

TK. It should be noted that this trivial and nontrivial solution correspond to the global

minima and local minima of the Franz-Parisi potential, respectively. The transition

temperature TK is determined by the condition

− 1

N
βGSG(β, β,+0) = − 1

N
βGpara(β). (6)

Below we assume p = 3. It is straightforward to extend our method to p ≥ 4 case.

We calculate the cumulant generating function (5) under the RS ansatz. By using

the replica method [20], we introduce two replica numbers n and R. We first define a

free energy of the R-replicated system as

−βgR ≡ 1

N
E

log
∑

s

∑
{σ(r)}

e−β′H0(s)−β
∑R−1

r=1 H0(σ(r))+βhext
∑R−1

r=1 σ(r)·s


 . (7)

The cumulant generating function −βG is then expressed as

− 1

N
βG(β, β′, hext)

=
1

N
lim
n→0

lim
R→1

1

n
E

 ∂

∂R

∑
s

e−β′H0(s)

(∑
σ

e−βH0(σ)+βhextσ·s

)R−1


n
=

1

N
lim
n→0

lim
R→1

E
[{∑

s e
−β′H0(s)

(∑
σ e−βH0(σ)+βhextσ·s)R−1

}n]
− E

[{∑
s e

−β′H0(s)
}n]

n(R− 1)

= lim
R→1

−βgR − (−βg1)

R− 1
. (8)

Hereafter, we set σ(0) ≡ s. We can use the cavity method for calculating −βgR.

We denote R spins collectively by τ ≡
(
σ(0), σ(1), · · · , σ(R−1)

)
for a site in G. By

applying the RS cavity method [14], −βgR is expressed in terms of k-body cavity fields

h ≡
[{

h(r1,···,rk)
}
r1<···<rk

]
1≤k≤R

. We also define hext as the quantity which takes the value

hext for the (0, r) components with 1 ≤ r ≤ R−1 and 0 otherwise, for convenience. The

free energy is expressed as

−βgR =

∫ C∏
b=1

dP̂
(
ĥb

)
logw

(
hext +

C∑
b=1

ĥb

)

− C

∫
dP̂
(
ĥ
)∫

dP (h) logw
(
h+ ĥ

)
+

C

3

∫ 3∏
j=1

dP (hj)EJ [log I ({hj})] , (9)
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where we set β
(0)
0 ≡ β′ and β

(r)
0 ≡ β (1 ≤ r ≤ R − 1), and w (h) and I ({hj}) in (9) are

given by

w (h) ≡
∑
τ

e
∑R

k=1

∑
r1<···<rk

βh(r1,···,rk)σ(r1)···σ(rk)

, (10)

I ({hj}) ≡
∑

τ(1),τ(2),τ(3)

e
∑3

j=1

∑R
k=1

∑
r1<···<rk

βh
(r1,···,rk)

j σ
(r1)

(j)
···σ(rk)

(j)

× eJ
∑R−1

r=0 β
(r)
0 σ

(r)
(1)

σ
(r)
(2)

σ
(r)
(3) . (11)

The probability distributions P and P̂ satisfy the following self-consistent equations

called density evolution equations:

P̂
(
ĥ
)

=

∫ 2∏
j=1

dP (hj)EJ

[
R∏

k=1

∏
r1<···<rk

δ

(
ĥ(r1,···,rk) − 1

2Rβ
log

[
A

(r1,···,rk)
1

A
(r1,···,rk)
−1

])]
, (12)

P (h) =

∫ C−1∏
b=1

dP̂
(
ĥb

){∏
k ̸=2

∏
r1<···<rk

δ

(
h(r1,···,rk) −

C−1∑
b=1

ĥ
(r1,···,rk)
b

)}

×

{
r1,r2 ̸=0∏
r1<r2

δ

(
h(r1,r2) −

C−1∑
b=1

ĥ
(r1,r2)
b

)}

×

{
R−1∏
r=1

δ

(
h(0,r) − hext −

C−1∑
b=1

ĥ
(0,r)
b

)}
, (13)

where A
(r1,···,rk)
u in (12) is given by

A(r1,···,rk)
u ≡

∏
τ :σ(r1)···σ(rk)=u

∑
τ(1),τ(2)

e
∑2

j=1

∑R
k′=1

∑
r′1<···<r′

k′
βh

(r′1,···,r
′
k′ )

j σ
(r′1)
(j)

···σ
(r′

k′ )
(j)

× eJ
∑R−1

r=0 β
(r)
0 σ

(r)
(1)

σ
(r)
(2)

σ(r)

. (14)

See reference [14] for details of the derivation. We remark that these results can be

derived from only the replica method by using order parameters in reference [27].

For a specific natural number R, we can numerically calculate −βgR by solving

the density evolution equations with a polulation dynamics algorithm [14]. However it

is difficult to obtain −βG on the basis of the numerical method, because we need to

perform the analytic continuation of −βgR to real number R. We attempt to derive

−βgR without numerical evaluation.

3. Results

We assume a solution of the form

P (h) =

{∏
k ̸=2

∏
r1<···<rk

δ
(
h(r1,···,rk)

)}{r1,r2 ̸=0∏
r1<r2

δ
(
h(r1,r2) − h∗

)}

×

{
R−1∏
r=1

δ
(
h(0,r) − hs∗

)}
, (15)
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P̂
(
ĥ
)

=

{∏
k ̸=2

∏
r1<···<rk

δ
(
ĥ(r1,···,rk)

)}{r1,r2 ̸=0∏
r1<r2

δ
(
ĥ(r1,r2) − ĥ∗

)}

×

{
R−1∏
r=1

δ
(
ĥ(0,r) − ĥs∗

)}
, (16)

which is exact for the infinite-range model (see Appendix A). We will discuss the

existence of this solution later. Under this assumption, (14) is calculated as

A(r1,···,rk)
u =

∏
τ :σ(r1)···σ(rk)=u

∑
τ(1),τ(2)

e
∑2

j=1

[∑r′1,r
′
2 ̸=0

r′1<r′2
βh∗σ

(r′1)
(j)

σ
(r′2)
(j)

+
∑R−1

r=1 βhs∗σ
(0)
(j)

σ
(r)
(j)

]

× eJ
∑R−1

r=0 β
(r)
0 σ

(r)
(1)

σ
(r)
(2)

σ(r)

=
∏

τ :σ(r1)···σ(rk)=u

2Re−βh∗(R−1)

{
R−1∏
r=0

cosh
(
β
(r)
0 J

)}

×
∫ 2∏

j=1

Dzj

{
2∏

j=1

coshR−1
(
zj
√

βh∗ + βhs∗

)}

×
∑
ν=±1

{
1 + νσ(0) tanh (β′J)

} R−1∏
r=1

{
1 + νσ(r)sgn(J) tanhΘ2

}
, (17)

where we have defined Dz ≡ dz√
2π
e−

1
2
z2 and

Θl(z1, · · · , zl;h∗, hs∗) ≡ tanh−1

[
tanh (β |J |)

l∏
j=1

tanh
(
zj
√

βh∗ + βhs∗

)]
. (18)

(See Appendix B.) By noting that (17) is independent of the sign of J , we find that the

density evolution equations (12) and (13) provide the following self-consistent equations

for the two-body cavity fields:

h∗ = (C − 1)ĥ∗, (19)

hs∗ = hext + (C − 1)ĥs∗, (20)

ĥ∗ =
1

2Rβ

∑
τ

σ(r1)σ(r2) log

∫ 2∏
j=1

Dzj

{
2∏

j=1

coshR−1
(
zj
√

βh∗ + βhs∗

)}

×
∑
ν=±1

{
1 + νσ(0) tanh (β′ |J |)

} R−1∏
r=1

{
1 + νσ(r) tanhΘ2

}
, (21)

ĥs∗ =
1

2Rβ

∑
τ

σ(0)σ(r′) log

∫ 2∏
j=1

Dzj

{
2∏

j=1

coshR−1
(
zj
√

βh∗ + βhs∗

)}

×
∑
ν=±1

{
1 + νσ(0) tanh (β′ |J |)

} R−1∏
r=1

{
1 + νσ(r) tanhΘ2

}
, (22)
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where r1, r2 ̸= 0 and r′ ̸= 0 in (21) and (22), respectively. The quantity w (h) in (10) is

also calculated as

w (h) =
∑
τ

e
∑R−1

r=1 βhs∗σ(0)σ(r)+
∑r1,r2 ̸=0

r1<r2
βh∗σ(r1)σ(r2)

= 2Re−
1
2
βh∗(R−1)

∫
Dz coshR−1

(
z
√
βh∗ + βhs∗

)
. (23)

(Details are presented in Appendix B.) Furthermore, in the manner similar to A
(r1,···,rk)
u ,

I ({hj}) in (11) is calculated as

I ({hj}) =
∑

τ(1),τ(2),τ(3)

e
∑3

j=1

[∑r1,r2 ̸=0
r1<r2

βh∗σ
(r1)

(j)
σ
(r2)

(j)
+
∑R−1

r=1 βhs∗σ
(0)
(j)

σ
(r)
(j)

]
eJ

∑R−1
r=0 β

(r)
0 σ

(r)
(1)

σ
(r)
(2)

σ
(r)
(3)

= 23Re−
3
2
βh∗(R−1) cosh (β′J) coshR−1 (βJ)

× 1

2

∫ 3∏
j=1

Dzj

{
3∏

j=1

coshR−1
(
zj
√

βh∗ + βhs∗

)}
×
∑
ν=±1

{1 + ν tanh (β′J)} {1 + νsgn(J) tanhΘ3}R−1 , (24)

which is independent of the sign of J too. By using these quantities, the free energy gR
is expressed as

−βgR = R log 2 +
C

3
log [cosh (β′ |J |)] + (R− 1)

C

3
log [cosh (β |J |)]

+ log

∫
Dz coshR−1

(
z

√
βCĥ∗ + βhext + βCĥs∗

)
− C log

∫
Dz coshR−1

(
z

√
β
(
h∗ + ĥ∗

)
+ β

(
hs∗ + ĥs∗

))

+
C

3
log

1

2

∫ 3∏
j=1

Dzj

{
3∏

j=1

coshR−1
(
zj
√
βh∗ + βhs∗

)}
×
∑
ν=±1

{1 + ν tanh (β′ |J |)} {1 + ν tanhΘ3}R−1 . (25)

In particular, we obtain

−βg1 = log 2 +
C

3
EJ [log cosh (β

′J)] . (26)

Now we take the sum over τ in (21) and (22). For later convenience, we define

B(d1, d2) ≡ log

∫ 2∏
j=1

Dzj

{
2∏

j=1

coshd1+d2
(
zj
√

βh∗ + βhs∗

)}
×
∑
ν=±1

{1 + ν tanh (β′ |J |)} {1 + ν tanhΘ2}d1 {1− ν tanhΘ2}d2 . (27)

We also define the binomial coefficient C(n, k) ≡ Γ(n+1)Γ(k+1)−1Γ(n− k+1)−1. We

then obtain

ĥs∗ =
1

2R−1β
(Φ1,1 − Φ1,2) , (28)
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ĥ∗ =
1

2R−1β
(Φ2,1 + Φ2,2 − Φ2,3 − Φ2,4) , (29)

where

Φ1,1 ≡
R−2∑
d=0

C(R− 2, d)B(R− 1− d, d), (30)

Φ1,2 ≡
R−2∑
d=0

C(R− 2, d)B(d,R− 1− d), (31)

Φ2,1 ≡
R−3∑
d=0

C(R− 3, d)B(R− 1− d, d), (32)

Φ2,2 ≡
R−3∑
d=0

C(R− 3, d)B(d,R− 1− d), (33)

Φ2,3 ≡
R−3∑
d=0

C(R− 3, d)B(R− 2− d, d+ 1), (34)

Φ2,4 ≡
R−3∑
d=0

C(R− 3, d)B(d+ 1, R− 2− d). (35)

We consider the limit R → 1 by analytic continuation of a function ϕf (n) ≡∑n
k=0C(n, k)f(k) with arbitrary f(k):

lim
n−→−1

ϕf (n) =
∂

∂x

∞∑
m=0

(−1)mxf(m)

∣∣∣∣∣
x=1

, (36)

lim
n−→−2

ϕf (n) =
∂

∂x

∞∑
m=0

(−1)m(m+ 1)xf(m)

∣∣∣∣∣
x=1

. (37)

(The proof is given in Appendix C.) Using these identities, we obtain the following

self-consistent equations in the limit R → 1:

h∗(0) = (C − 1)ĥ∗(0), (38)

hs∗(0) = hext + (C − 1)ĥs∗(0), (39)

ĥs∗(0) =
1

β

(
Φ

(0)
1,1 − Φ

(0)
1,2

)
, (40)

ĥ∗(0) =
1

β

(
Φ

(0)
2,1 + Φ

(0)
2,2 − Φ

(0)
2,3 − Φ

(0)
2,4

)
. (41)

(The explicit expressions of Φ
(0)
a,b are given in Appendix C.) By using Θl(0)(z1, · · · , zl) ≡

Θl(z1, · · · , zl;h∗(0), hs∗(0)), the final form of −βG is obtained as

− 1

N
βG(β, β′, hext) = log 2 +

C

3
log [cosh (β |J |)]

+

∫
Dz log cosh

(
z

√
βCĥ∗(0) + βhext + βCĥs∗(0)

)
− C

∫
Dz log cosh

(
z

√
β
(
h∗(0) + ĥ∗(0)

)
+ β

(
hs∗(0) + ĥs∗(0)

))
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+ C

∫
Dz log cosh

(
z
√
βh∗(0) + βhs∗(0)

)
+

C

3

1

2

∫ 3∏
j=1

Dzj
∑
ν=±1

{1 + ν tanh (β′ |J |)}

× log
{
1 + ν tanhΘ3(0)

}
. (42)

Now, we evaluate the right-hand side of (42) numerically by solving (38)-(41) with

Newton’s method. The transition temperature is determined by comparing the value of

the cumulant generating function calculated from a nontrivial solution, GSG, and that

calculated from the trivial solution, Gpara. The obtained results for the case C = 4,

β′ = β and hext = 0 are displayed in FIG. 1. GSG corresponds to the blue curve in FIG.

-1.34

-1.32

-1.3

-1.28

-1.26

-1.24

-1.22

-1.2

-1.18

-1.16

 0.3  0.4  0.5  0.6  0.7  0.8  0.9  1  1.1  1.2

g

T

Figure 1. The value of G for C = 4, β′ = β and hext = 0. The red curve represents

the cumulant generating function calculated from the trivial solution. The blue curve

represents that calculated from the nontrivial solution. The green curve represents the

cumulant generating function calculated from the annealed average.

1. We remark that we approximate the evaluation of infinite serieses (36) and (37) at

x = 1 as that at x = 1 − ϵ, where ϵ is changed from 0.10 to 0.04, because the infinite

serieses at x = 1 are not convergent. We checked numerically that the values of G for

these ϵ were almost equal to each other. Gpara is calculated from (hs∗(0), h∗(0)) = (0, 0),

which corresponds to the red curve in FIG. 1.

The static 1RSB transition point TK is determined by the condition (6), which

means that the blue curve crosses the red curve in FIG. 1. The dynamical 1RSB

transition point Td is determined as the temperature where the nontrivial solution

appears, that is, the right edge of the blue curve in FIG. 1. In our case, we obtain
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Td = 0.80 and TK = 0.65. For the p = 3 spin glass model on regular random graphs with

C = 4, it has been reported (Td, TK) = (0.745, 0.660) [24] and (Td, TK) = (0.757, 0.655)

[25] for the 1RSB cavity method, (Td, TK) = (0.752, 0.654) [24] for the replica method

with the variational approximation and TK = 0.65 [18] for the replica method with

finite replica number. We claim from these results that our method provides a good

approximation to TK.

It should be noted that our results are not obtained by the cumulant generating

function calculated from the annealed average E
[
log
(
Z ′−1

0

∑
s e

−β′H0(s)∑
σ e−βHhext

(σ;s))]
under the RS ansatz. This quantity is displayed as the green curve in FIG. 1. It was

shown in [28] that the Franz-Parisi potential calculated from the quenched average and

that calculated from the annealed average are different in general.

We also give the transition temperature TK for other connectivity C in TABLE 1.

These results are consistent with the previous 1RSB calculations [25, 18]. From this

Table 1. Connectivity dependence of transition temperature

Connectivity C Transition temperature TK [25]

4 0.651 0.655(5)

5 0.848 0.849(5)

6 1.00

8 1.25 1.25(1)

table we find that our method provides more accurate values as C is increased. We

recall that the calculation containing only the two-body cavity fields is exact in the

infinite-range model (see Appendix A). We conjecture that the result obtained by our

method approaches the exact value when C → ∞.

4. Relation with previous results

In this section, we consider the difference between our method using the Franz-

Parisi potential and the previous 1RSB methods [24, 25, 18]. In our method, the

transition temperature TK is determined by the condition (6). By using −βLn,R ≡
limN→∞

1
N
logE

[
ZnR

0

]
, the left-hand side of (6) is rewritten as

− 1

N
βGSG(β, β,+0) =

1

N
lim
n→0

lim
R→1

E
[
ZnR

0

]
− E [Zn

0 ]

n(R− 1)

=
1

N
lim
n→0

lim
R→1

e−NβLn,R − e−NβLn,1

n(R− 1)
. (43)

We evaluate Ln,R under the RS ansatz. Here we define −βLR ≡ limN→∞
1
N
logE

[
ZR

0

]
,

which corresponds to the cumulant generating function of the free energy logZ0. In the

infinite-range model, by choosing an appropriate form of the overlap matrix as (A.9),

we obtain Ln,R of the form

−βL
(RS)
n,R = −nβL

(RS)
R . (44)
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In this case, we can rewrite the right-hand side of (43) as

− 1

N
βGSG(β, β,+0) = lim

R→1

−βL
(RS)
R −

(
−βL

(RS)
1

)
R− 1

=
∂
(
−βL

(RS)
R

)
∂R

∣∣∣∣∣∣
R=1

. (45)

Furthermore, for the infinite-range model, the relation

−βL
(RS)
1 = − 1

N
βGpara(β) (46)

holds. By using this relation, we can rewrite the phase transition condition (6) as

0 =
∂
(
−βL

(RS)
R

)
∂R

∣∣∣∣∣∣
R=1

−
(
−βL

(RS)
1

)
=

∂

∂R

[
− 1

R
βL

(RS)
R

]∣∣∣∣
R=1

. (47)

This condition is equivalent to the phase transition condition in the method using finite

replica number [17]. Thus, the method using the Franz-Parisi potential and the method

using finite replica number give the same transition temperature for the infinite-range

model.

However, for models on random graphs, the relations (44) and (46) do not hold

in general, as we can see from reference [18]. Thus, the phase transition condition

calculated with the Franz-Parisi potential

0 = lim
R→1

E
[
logZR

0

]∣∣
RS

− E [logZ0]|RS

R− 1
− E [logZ0]|RS (48)

is generally not equivalent to the phase transition condition calculated by using finite

replica number

0 = lim
R→1

log E
[
ZR

0

]∣∣
RS

− log E [Z0]|RS

R− 1
− log E [Z0]|RS . (49)

For models on regular random graphs, since the method using finite replica number is

equivalent to the 1RSB replica method with the factorized ansatz [5] and the 1RSB

cavity method with the homogeneous assumption [25] respectively, we conclude that

our calculation method using the Franz-Parisi potential is not equivalent to these 1RSB

calculations.

5. Concluding remarks

Before concluding the paper, we present three remarks. First, we remark that calculation

containing only the two-body cavity field is not exact. For our calculation to be exact,

the k-body cavity fields with k ̸= 2 should be zero in the density evolution equation
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(12) with the assumed form (15). However, it turns out that the k-body cavity fields

take finite vaules, because, as one example, the quantity appearing in (12)

1

2Rβ
log

[
A

(r1,···,rk)
1

A
(r1,···,rk)
−1

]
=

1

2Rβ

∑
τ

σ(r1) · · ·σ(rk)

× log

∫ 2∏
j=1

Dzj

{
2∏

j=1

coshR−1
(
zj
√

βh∗ + βhs∗

)}

×
∑
ν=±1

{
1 + νσ(0) tanh (β′ |J |)

} R−1∏
r=1

{
1 + νσ(r) tanhΘ2

}
(50)

is finite for even number k ̸= 2. In other words, our results provide approximations.

Nevertheless, it should be noted that we obtain the transition temperature TK close to

those obtained by the 1RSB methods. This fact suggests that the two-body cavity fields

play an important role in describing RSB even in the models on random graphs.

Second, we conjecture that it would be difficult to extend our method to models

on inhomogeneous graphs such as Erdös-Rényi graphs, because the assumption of

homogeneous solution (15) and (16) may not be effective in this case. We need to

develop another method so as to analyze models on inhomogeneous graphs.

We finally remark whether our method using the Franz-Parisi potential with the

two-body cavity field approximation can be applied to other models on regular random

graphs. We conjecture that our method is useful for models whose fully-connected limit

can be described only by the two-body cavity fields. Therefore, for example, we expect

that the Potts glass models [30], whose fully-connected limit is described by using only

one and two-body overlaps, can be analyzed by our method. Nevertheless, we do not

know the extent of how our method is useful for other cases such as lattice glass models

[29] that cannot be defined on fully-connected graphs. We will study these problems

elsewhere in future.

In summary, we calculated the approximation value of the 1RSB transition

temperature of the p-spin glass models on regular random graphs by analyzing the

Franz-Parisi potential with the two-body cavity field approximation under the replica

symmetric ansatz. Our results are consistent with those calculated by the 1RSB methods

and the computational cost for calculating transition temperatures is substantially

reduced in our method, because we can determine TK only by solving the four-variable

self-consistent equations (38)-(41), in contrast to the 1RSB cavity method, where self-

consistent equations for probability distribution of cavity field should be solved.
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Appendix A.

In this section, we review the calculation method of the 1RSB transition temperature by

using the Franz-Parisi potential for the infinite-range spin glass model. The Hamiltonian

we study is given by

H0(σ) = −
∑

i1<···<ip

Ji1,···,ipσi1 · · ·σip , (A.1)

where Ji1,···,ip is a random interaction variable obeying a Gaussian distribution

P (Ji1,···,ip) =

√
Np−1

πp!
e−

Np−1J2
ip,···,ip
p! . (A.2)

Below we assume p = 3. The Legendre transform of the Franz-Parisi potential is defined

by

−βg(β, β′;hext) ≡ lim
N→∞

1

N
E

[
1

Z ′
0

∑
s

e−β′H0(s) log

(∑
σ

e−βH0(σ)+βhext
∑N

i=1 σisi

)]
, (A.3)

where E represents an average over the quenched random coupling Ji1,···,ip . The

transition point is determined by the condition (6), that is,

−βgSG(β, β; +0) = − βgpara(β). (A.4)

First, we calculate the transition point by using overlaps. −βg is rewritten by using

the replica method [20] as

−βg(β, β′;hext) = lim
N→∞

1

N
lim
n→0

lim
R→1

E [Zn,R]− E [Zn,1]

n(R− 1)
, (A.5)

where we have defined the partition function of a replicated system as

E [Zn,R] ≡ E

 ∑
{s(a)}

∑
{σ(a,r)}

e−β′ ∑n
a=1 H0(s(a))−β

∑R−1
r=1

∑n
a=1 H0(σ(a,r))

×eβhext
∑R−1

r=1

∑n
a=1σ(a,r)·s(a)

]
. (A.6)

By performing the configurational average E and introducing overlaps q(a1,r1)(a2,r2) ≡
1
N
σ(a1,r1) · σ(a2,r2), E [Zn,R] is expressed as

E [Zn,R] =

∫ ∏
dq(a1,r1)(a2,r2)

∫ ∏
dλ(a1,r1)(a2,r2)

×
∑
{s(a)}

∑
{σ(a,r)}

eNβhext
∑R−1

r=1

∑n
a=1 q(a,0)(a,r)

× e
N
4

∑R−1
r1=0

∑n
a1=1

∑R−1
r2=0

∑n
a2=1 β

(r1)β(r2)qp
(a1,r1)(a2,r2)

× e−iN
∑

a1,a2

∑
r1,r2

λ(a1,r1)(a2,r2)(q(a1,r1)(a2,r2)−
1
N
σ(a1,r1)·σ(a2,r2))

∼ e−Nβgn,R , (A.7)
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where we set σ(a,0) ≡ s(a) and

β(r) ≡

{
β′ (r = 0)

β (r ≥ 1).
(A.8)

−βgn,R is calculated by the saddle point method. We consider the case that β′ = β

and hext = 0, because only this case is needed for calculating the transition temperature

(A.4). Since the spin variables σ(a,0) are no longer special in this situation, we can

assume the RS ansatz in which all replica indexes r are treated equally and only overlaps

between the same a’s are nonzero as

q(a1,r1)(a2,r2) = δa1,a2 [δr1,r2 + q (1− δr1,r2)] . (A.9)

The matrix λ(a1,r1)(a2,r2) is assumed to take the same form. Under this ansatz, the saddle

point equations for (A.7) are written as

iλ =
1

2
pβ2qp−1, (A.10)

q =

∫
dz√
2π
e−

1
2
z2 tanh2

(
z
√
iλ
)
coshR

(
z
√
iλ
)

∫
dz√
2π
e−

1
2
z2 coshR

(
z
√
iλ
) . (A.11)

By using the RS ansatz (A.9) for (A.7), the quantity gn,R is calculated as

−βgn,R =
1

4
nRβ2 +

1

4
nR(R− 1)β2qp − 1

2
nR(R− 1)iλq − 1

2
nRiλ+ nR log 2

+ n log

∫
dz√
2π

e−
1
2
z2 coshR

(
z
√
iλ
)
. (A.12)

By using −βgn,1 =
1
4
nβ2 + n log 2, −βg is finally calculated from (A.5):

−βg(β, β; +0) =
1

4
β2 + log 2 +

1

4
β2qp − 1

2
iλq − 1

2
iλ

+

∫
dz√
2π
e−

1
2
z2 cosh

(
z
√
iλ
)
log cosh

(
z
√
iλ
)

∫
dz√
2π
e−

1
2
z2 cosh

(
z
√
iλ
) . (A.13)

Because the cumulant generating function calculated from the trivial solution is obtained

as −βgpara(β) =
1
4
β2 + log 2, the phase transition condition (A.4) is expressed as

0 =
1

4
β2qp − 1

2
iλq − 1

2
iλ+

∫
dz√
2π
e−

1
2
z2 cosh

(
z
√
iλ
)
log cosh

(
z
√
iλ
)

∫
dz√
2π
e−

1
2
z2 cosh

(
z
√
iλ
) , (A.14)

which is equivalent to the phase transition condition under the 1RSB ansatz [14]. It

should be noted that the trivial solution with q = 0 and a nontrivial solution with non-

zero q to Eq. (A.11) with R = 1 correspond to the global minima and local minima of

the Franz-Parisi potential, respectively.

Secondly, we also calculate −βg by using the method with Monasson’s order

parameters [27]. In this method, we evaluate the partition function (A.6) using
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Monasson’s order parameters, which are generalized magnetizations to 2nR−1 directions.

−βg is expressed as

−βg(β, β′;hext) = lim
n→0

lim
R→1

−βgn,R − (−βgn,1)

n(R− 1)
, (A.15)

where by using the notation τ⃗ ≡
(
σ⃗(0), σ⃗(1), · · · , σ⃗(R−1)

)
with σ⃗(r) ≡

(
σ(1,r), · · · , σ(n,r)

)
and s⃗ ≡

(
s(1), · · · , s(n)

)
, gn,R has been defined as

−βgn,R = −
∑
τ⃗

m (τ⃗) logm (τ⃗) + βhext

∑
τ⃗

m (τ⃗)
n∑

a=1

R−1∑
r=1

σ(a,0)σ(a,r)

+
N2

3!

∑
τ⃗(1)

∑
τ⃗(2)

∑
τ⃗(3)

m
(
τ⃗(1)
)
m
(
τ⃗(2)
)
m
(
τ⃗(3)
)

× logE
[
eJ

∑n
a=1

∑R−1
r=0 β(r)σ

(a,r)
(1)

σ
(a,r)
(2)

σ
(a,r)
(3)

]
. (A.16)

In particular, gn,1 is expressed as

−βgn,1 = −
∑
s⃗

m(ref) (s⃗) logm(ref) (s⃗)

+
N2

3!

∑
s⃗(1)

∑
s⃗(2)

∑
s⃗(3)

m(ref)
(
s⃗(1)
)
m(ref)

(
s⃗(2)
)
m(ref)

(
s⃗(3)
)

× logE
[
eJ

∑n
a=1 β

′s
(a)
(1)

s
(a)
(2)

s
(a)
(3)

]
. (A.17)

Monasson’s order parameters m (τ⃗) and m(ref) (s⃗) satisfy the self-consistent equations

0 = λ−m (τ⃗) + βhext

∑
τ⃗

n∑
a=1

R−1∑
r=1

σ(a,0)σ(a,r)

+
N2

2

∑
τ⃗(1)

∑
τ⃗(2)

m
(
τ⃗(1)
)
m
(
τ⃗(2)
)
logE

[
eJ

∑n
a=1

∑R−1
r=0 β(r)σ

(a,r)
(1)

σ
(a,r)
(2)

σ(a,r)
]
, (A.18)

0 = λ(ref) −m(ref) (s⃗)

+
N2

2

∑
s⃗(1)

∑
s⃗(2)

m(ref)
(
s⃗(1)
)
m(ref)

(
s⃗(2)
)
logE

[
eJ

∑n
a=1 β

′s
(a)
(1)

s
(a)
(2)

s(a)
]
, (A.19)

where λ and λ(ref) are determined by the normalization condition
∑

τ⃗ m (τ⃗) = 1 and∑
s⃗m

(ref) (s⃗) = 1. We consider the case β′ = β and hext = 0, because only this case is

needed for the calculation of the transition temperature. Since the spin variables σ(a,0)

are no longer special in this situation in the R-replicated system, we assume the RS

ansatz as

m (τ⃗) =

∫
dhP (h)

eβ
∑R

k=1

∑
r1<···<rk

h(r1,···,rk)
∑n

a=1 σ
(a,r1)···σ(a,rk)

w (h)n
, (A.20)

where we have defined

w (h) ≡
∑
τ

eβ
∑R

k=1

∑
r1<···<rk

h(r1,···,rk)σ(r1)···σ(rk)

. (A.21)
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Furthermore, by assuming the two-body cavity field solution

P (h) =

{∏
k ̸=2

∏
r1<···<rk

δ
(
h(r1,···,rk)

)}{ ∏
r1<r2

δ

(
h(r1,r2) − 3

2
βD2

e

)}
, (A.22)

the self-consistent equation is rewritten as

De ≡

∫
dz√
2π
e−

z2

2 sinh
(
z
√

3
2
β2D2

e +
3
2
β2D2

e

)
coshR−2

(
z
√

3
2
β2D2

e +
3
2
β2D2

e

)
∫

dz√
2π
e−

z2

2 coshR−1
(
z
√

3
2
β2D2

e +
3
2
β2D2

e

) . (A.23)

Through the transformation of the integration variable from z to z′ = z +
√

3
2
β2D2

e ,

this self-consistent equation turns out to be equivalent to that of overlaps, (A.10) with

(A.11). We also obtain

−βgn,R = − 3

4
β2n(R− 1)D2

e + n(R− 1) log 2 +
1

4
β2n+

1

4
β2n(R− 1)

− β2n(R− 1)D3
e −

1

2
β2n(R− 1)(R− 2)D3

e + n log 2

+ n log

∫
dz√
2π

e−
z2

2 coshR−1

(
z

√
3

2
β2D2

e +
3

2
β2D2

e

)
, (A.24)

which is equal to −βgn,R in the calculation using overlaps, (A.12). Thus, we conclude

that these two methods calculating the Franz-Parisi potential give the same condition

as the phase transition condition calculated with the 1RSB ansatz.

Appendix B.

In this section we calculate several quantities with the two-body cavity field solution (15)

and (16). First, we calculate (14) by using Dz ≡ dz√
2π
e−

1
2
z2 and Θl(z1, · · · , zl;h∗, hs∗) ≡

tanh−1
[
tanh (β |J |)

∏l
j=1 tanh

(
zj
√
βh∗ + βhs∗

)]
. The result is

A(r1,···,rk)
u =

∏
τ :σ(r1)···σ(rk)=u

∑
τ(1),τ(2)

e
∑2

j=1

[∑r′1,r
′
2 ̸=0

r′1<r′2
βh∗σ

(r′1)
(j)

σ
(r′2)
(j)

+
∑R−1

r=1 βhs∗σ
(0)
(j)

σ
(r)
(j)

]

× eJ
∑R−1

r=0 β
(r)
0 σ

(r)
(1)

σ
(r)
(2)

σ(r)

=
∏

τ :σ(r1)···σ(rk)=u

e−βh∗(R−1)
∑

τ(1),τ(2)

e
∑2

j=1

∑R−1
r=1 βhs∗σ

(0)
(j)

σ
(r)
(j)

×
R−1∏
r=0

{
cosh

(
β
(r)
0 J

)
+ σ

(r)
(1)σ

(r)
(2)σ

(r) sinh
(
β
(r)
0 J

)}
×
∫ 2∏

j=1

Dzje
∑2

j=1 zj
√
βh∗

∑R−1
r=1 σ

(r)
(j)

=
∏

τ :σ(r1)···σ(rk)=u

e−βh∗(R−1)
∑

τ(1),τ(2)

∫ 2∏
j=1

Dzj
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×
{
cosh

(
β
(0)
0 J

)
+ σ

(0)
(1)σ

(0)
(2)σ

(0) sinh
(
β
(0)
0 J

)}
×

R−1∏
r=1

[{
cosh

(
β
(r)
0 J

)
+ σ

(r)
(1)σ

(r)
(2)σ

(r) sinh
(
β
(r)
0 J

)}
× e

∑2
j=1 βhs∗σ

(0)
(j)

σ
(r)
(j)e

∑2
j=1 zj

√
βh∗σ

(r)
(j)

]
=

∏
τ :σ(r1)···σ(rk)=u

e−βh∗(R−1)

×
∫ 2∏

j=1

Dzj
∑

σ
(0)
(1)

,σ
(0)
(2)

{
cosh (β′J) + σ

(0)
(1)σ

(0)
(2)σ

(0) sinh (β′J)
}

×
R−1∏
r=1

[
cosh(βJ)

2∏
j=1

2 cosh
(
zj
√

βh∗ + βhs∗σ
(0)
(j)

)
+σ(r) sinh(βJ)

2∏
j=1

2 sinh
(
zj
√

βh∗ + βhs∗σ
(0)
(j)

)]

=
∏

τ :σ(r1)···σ(rk)=u

2Re−βh∗(R−1)

{
R−1∏
r=0

cosh
(
β
(r)
0 J

)}

×
∫ 2∏

j=1

Dzj

{
2∏

j=1

coshR−1
(
zj
√

βh∗ + βhs∗

)}

×

[{
1 + σ(0) tanh (β′J)

} R−1∏
r=1

{
1 + σ(r)sgn(J) tanhΘ2

}
+
{
1− σ(0) tanh (β′J)

} R−1∏
r=1

{
1− σ(r)sgn(J) tanhΘ2

}]

=
∏

τ :σ(r1)···σ(rk)=u

2Re−βh∗(R−1)

{
R−1∏
r=0

cosh
(
β
(r)
0 J

)}

×
∫ 2∏

j=1

Dzj

{
2∏

j=1

coshR−1
(
zj
√

βh∗ + βhs∗

)}

×
∑
ν=±1

{
1 + νσ(0) tanh (β′J)

} R−1∏
r=1

{
1 + νσ(r)sgn(J) tanhΘ2

}
. (B.1)

We also calculate w (h) in (10) as

w (h) =
∑
τ

e
∑R−1

r=1 βhs∗σ(0)σ(r)+
∑r1,r2 ̸=0

r1<r2
βh∗σ(r1)σ(r2)

=
∑
τ

e
∑R−1

r=1 βhs∗σ(0)σ(r)− 1
2
βh∗(R−1)

∫
Dzez

√
βh∗

∑R−1
r=1 σ(r)

=
∑
σ(0)

e−
1
2
βh∗(R−1)

∫
Dz2R−1 coshR−1

(
z
√

βh∗ + βhs∗σ
(0)
)
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= 2R−1e−
1
2
βh∗(R−1)

∫
Dz
{
coshR−1

(
z
√
βh∗ + βhs∗

)
+ coshR−1

(
z
√
βh∗ − βhs∗

)}
= 2Re−

1
2
βh∗(R−1)

∫
Dz coshR−1

(
z
√
βh∗ + βhs∗

)
. (B.2)

Appendix C.

In this section, we derive the identities (36) and (37). First, by defining

ϕ(n) ≡
n∑

k=0

C(n, k)f(k), (C.1)

we obtain

ϕ(n+ 1) = f(n+ 1) + f(0) +
n∑

k=1

C(n+ 1, k)f(k)

= f(n+ 1) + f(0) +
n∑

k=1

(C(n, k) + C(n, k − 1)) f(k)

= f(n+ 1) +
n∑

k=0

C(n, k)f(k) +
n−1∑
k=0

C(n, k)f(k + 1)

= ϕ(n) +
n∑

k=0

C(n, k)f(k + 1). (C.2)

Similarly, by introducing

ϕ̃(m)(n) ≡
n∑

k=0

C(n, k)f(k +m), (C.3)

we also obtain

ϕ̃(0)(n) = ϕ(n) (C.4)

ϕ̃(0)(n+ 1) = ϕ̃(0)(n) + ϕ̃(1)(n) (C.5)

ϕ̃(m)(n+ 1) = ϕ̃(m)(n) + ϕ̃(m+1)(n). (C.6)

By considering the sum
∑∞

m=0(−1)mϕ̃(m)(n+ 1), we obtain

∞∑
m=0

(−1)mϕ̃(m)(n+ 1)

=
∞∑

m=0

(−1)mϕ̃(m)(n) +
∞∑

m=0

(−1)mϕ̃(m+1)(n)

= ϕ̃(0)(n) +
∞∑

m=1

(−1)mϕ̃(m)(n) +
∞∑

m=0

(−1)mϕ̃(m+1)(n)

= ϕ(n) + (−1)
∞∑

m=0

(−1)mϕ̃(m+1)(n) +
∞∑

m=0

(−1)mϕ̃(m+1)(n)

= ϕ(n). (C.7)
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Consequently, we obtain the relation

ϕ(n) =
∞∑

m=0

(−1)mϕ̃(m)(n+ 1). (C.8)

Particularly, in the limit n → −1, we obtain the identity (36):

lim
n→−1

ϕ(n) =
∞∑

m=0

(−1)mϕ̃(m)(0)

=
∞∑

m=0

(−1)mf(m)

=
∂

∂x

∞∑
m=0

(−1)mxf(m)

∣∣∣∣∣
x=1

. (C.9)

Similarly, by considering the sum
∑∞

m=0(−1)m(m+1)ϕ̃(m)(n+2) and using the identity

ϕ̃(m)(n+ 2) = ϕ̃(m)(n) + 2ϕ̃(m+1)(n) + ϕ̃(m+2)(n), we also obtain the identity (37):

lim
n−→−2

n∑
k=0

C(n, k)f(k) =
∂

∂x

∞∑
m=0

(−1)m(m+ 1)xf(m)

∣∣∣∣∣
x=1

. (C.10)

We remark that when f(k) depends on n, we just have to consider ϕn1(n2) ≡∑n2

k=0C(n2, k)f(k;n1). By applying the same argument to n2 and taking n1 = n2, we

finally obtain the identity

lim
n2→−1

ϕn2(n2) =
∂

∂x

∞∑
m=0

(−1)mxf(m;−1)

∣∣∣∣∣
x=1

. (C.11)

It should also be noted that our identities (36) and (37) can also be derived in terms of

the gamma function [31].

We can apply these formulas to our Φa,b. By defining Θl(0)(z1, · · · , zl) ≡
Θl(z1, · · · , zl;h∗(0), hs∗(0)) and

B(0)(m) ≡ log

∫ 2∏
j=1

Dzj
∑
ν=±1

{1 + ν tanh (β′ |J |)}
{
1− ν tanhΘ2(0)

1 + ν tanhΘ2(0)

}m

, (C.12)

we obtain in the limit R → 1

Φ
(0)
1,1 ≡

∂

∂x

∞∑
m=0

(−1)mxB(0)(m)

∣∣∣∣∣
x=1

, (C.13)

Φ
(0)
1,2 ≡

∂

∂x

∞∑
m=0

(−1)mxB(0)(−m)

∣∣∣∣∣
x=1

, (C.14)

Φ
(0)
2,1 ≡

∂

∂x

∞∑
m=0

(−1)m(m+ 1)xB(0)(m)

∣∣∣∣∣
x=1

, (C.15)

Φ
(0)
2,2 ≡

∂

∂x

∞∑
m=0

(−1)m(m+ 1)xB(0)(−m)

∣∣∣∣∣
x=1

, (C.16)
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Φ
(0)
2,3 ≡

∂

∂x

∞∑
m=0

(−1)m(m+ 1)xB(0)(m+1)

∣∣∣∣∣
x=1

, (C.17)

Φ
(0)
2,4 ≡

∂

∂x

∞∑
m=0

(−1)m(m+ 1)xB(0)(−m−1)

∣∣∣∣∣
x=1

. (C.18)
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[21] Zdeborová L and Krzakala F, 2010 Phys. Rev. B 81 224205
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