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Abstract 

To express a foreign gene effectively, a good expression system is required. In this 

study, we investigated various promoters as useful tools for gene manipulation in 

oleaginous fungus Mortierella alpina 1S-4. We selected and cloned the promoter 

regions of 28 genes in M. alpina 1S-4 on the basis of expression sequence tag (EST) 

abundance data. The activity of each promoter was evaluated by using the 

β-glucuronidase (GUS) reporter gene. Eight of these promoters were shown to enhance 

GUS expression more efficiently than a histone promoter, which is conventionally used 

for the gene manipulation in M. alpina. Especially, the predicted protein 3 (PP3) and the 

predicted protein 6 (PP6) promoters demonstrated approximately 5-fold higher activity 

than the histone promoter. The activity of some promoters changed along with the 

cultivation phase of M. alpina 1S-4. Seven promoters with constitutive or 

time-dependent, high-level expression activity were selected, and deletion analysis was 

carried out to determine the promoter regions required to retain activity. This is the first 

report of comprehensive promoter analysis based on a genomic approach for M. alpina. 

The promoters described here will be useful tools for gene manipulation in this strain. 

 

Key Words: Mortierella alpina, promoter, Expression sequence tag, gene manipulation 
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Introduction 

The properties of promoters strongly influence the expression level and duration of 

target genes (Jefferson, et al. 1987, Mumberg, et al. 1994, Wurm 2004). The application 

of highly expressing and/or regulated promoters is one of most important factors in a 

valuable expression system. Many investigations for useful promoters have been carried 

out and contributed to the improvement of heterologous protein production in various 

microorganisms. In Escherichia coli, for example, the bacteriophage T7 promoter 

system has been used to accumulate recombinant proteins at high concentrations 

(40–50%) of total cell protein (Baneyx 1999). In the methylotrophic yeast Pichia 

pastoris, strong methanol-inducible promoters have been used to produce various 

medically important proteins have been produced (Cereghino and Cregg 2000, Hansson, 

et al. 1993, Sumi, et al. 1999). Also in fungi, mainly in Aspergillus species, the 

investigation and modification of high-expression promoters has led to successful 

high-level production of heterologous proteins such as glucoamylase, protease, and 

lipase (Archer, et al. 1994, Ichishima, et al. 1999, MacKenzie, et al. 1993, Punt, et al. 

2002). 

Recently, functional lipids such as polyunsaturated fatty acids (PUFAs) have been 

recognized for their beneficial effects on human health (Gill and Valivety 1997). In 
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addition, lipid fermentation by microorganisms with high fatty acid selectivity is 

expected to serve as an alternative method supplying PUFA more stably than 

conventional production from plant-seed oils and fish oils (Ratledge 1993). Therefore, 

the development of gene manipulation tools for lipid-producing microorganisms is 

important. In fact, various lipids have been produced by means of molecular breeding of 

microorganisms in some studies (Beopoulos, et al. 2011, Courchesne, et al. 2009, 

Raghukumar 2008, Sakuradani, et al. 2013). Mortierella alpina 1S-4, an oleaginous 

fungus, is a lipid-producing microbe (Shimizu, et al. 1997). To date, the production of 

various kinds of PUFAs, such as arachidonic acid, dihomo-γ-linolenic acid, Mead acid 

and eicosapentaenoic acid has been achieved by molecular breeding of M. alpina 

(Jareonkitmongkol, et al. 1992, Jareonkitmongkol, et al. 1993, Kawashima, et al. 1997, 

Sakuradani, et al. 2013). Basic molecular breeding tools such as gene delivery systems, 

host-vector systems and transformation systems using auxotrophy or antibiotic 

resistance have been established in M. alpina 1S-4 (Ando, et al. 2009a, Takeno, et al. 

2004a, Takeno, et al. 2005). However, the gene modifiability of M. alpina is still limited 

due to lack of identification of variations in promoters (Mackenzie, et al. 2000). For 

further development of gene expression systems, such as multiple gene expression, 

temporally regulated expression and inducible expression, it is necessary to prepare 
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various kinds of promoters. Enrichment of promoter types would contribute to 

improving PUFA productivity and modifying PUFA composition, and may help 

elucidate the mechanisms regulating gene expression in M. alpina. 

In general, promoter discovery in fungal biotechnology has been mainly based on the 

information of highly- or constitutively-expressed proteins (Hata, et al. 1991, Tada, et al. 

1991). Recently, expression sequence tag (EST) analysis has been used as a powerful 

tool for investigating expressed genes. EST abundance data can present directly gene 

transcriptional levels, and make possible widespread approaches to find desired 

promoters in combination with the genomic information (Kusakabe, et al. 1994, 

Ranamalie Amarasinghe, et al. 2006).  

In this study, we selected and cloned promoter regions of various genes of M. alpina 

1S-4 on the basis of EST abundance data, and characterized these promoter regions by 

fusing β-glucuronidase (GUS) reporter assays. 
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Materials and Methods 

 

Strains, media, and growth conditions 

A uracil auxotroph (ura5‒ strain), previously isolated from M. alpina 1S-4 deposited at 

the Graduate School of Agriculture of Kyoto University (Takeno, et al. 2004b), was 

used as a recipient host strain for transformation. Czapek-Dox agar medium, 

supplemented with 0.05 mg/ml uracil, was used for sporulation of the ura5‒strain, as 

described previously (Takeno, et al. 2004b). SC agar medium (Takeno, et al. 2004b) was 

used as a uracil-free synthetic medium for cultivation of the transformants derived from 

M. alpina 1S-4 ura5‒ strain at 28°C. GY medium (2% [wt/vol] glucose and 1% yeast 

extract) was used for reporter assays and extracting genomic DNA. GS medium (5% 

[wt/wt] soy flour, 0.3% K2HPO4, 0.05% MgCl2·6H2O and 0.05% CaCl2·2H2O) was 

used for large-scale cultivation. Liquid cultivations were performed at 28°C with 

shaking (300 rpm), except for large-scale cultivation when a jar-fermentor was used. 

Escherichia coli strain DH5α was used for DNA manipulation and grown on LB agar 

plates containing 50 µg/ml kanamycin.  

Agrobacterium tumefaciens C58C1 was used for the transformation of M. alpina 1S-4 

ura5‒ strain. LB-Mg agar medium, minimal medium (MM) and induction medium (IM) 
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were used for the transformation, cultivation and infection of A. tumefaciens, 

respectively. The compositions of LB-Mg agar medium, MM, and IM have been 

described previously (Takeno, et al. 2004b). 

 

Genomic DNA preparation 

M. alpina 1S-4 was cultivated in 10 ml of GY medium at 28°C for 4 d with shaking 

(300 rpm). Fungal mycelia were harvested by suction filtration and washed twice with 

sterile water. Preparation of genomic DNA was performed using a method described 

previously (Sakuradani, et al. 1999). 

 

Construction of cDNA libraries of M. alpina 1S-4 and EST analysis 

For large-scale cultivation, an inoculum was prepared in a 50-L jar fermentor 

containing 30 L of GY medium supplemented with 0.1% soybean oil, followed by 

cultivation for 2 d at 28°C. The main cultivation was carried out in a 10-kL fermentor 

(Kansai Chemical Engineering Co., Hyogo, Japan) with 4 kL of GS medium at 26°C 

with stirring. At 18, 42, 66, 90 and 114 h after starting cultivation, 5.33% or 4% glucose 

was added. For extracting the total RNA of M. alpina, fungal mycelia were sampled 

after 17, 25, 42, 114, 209 and 281 h of cultivation. Total RNA was extracted from each 
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sample by using RNeasy Mini Kit (QIAGEN).  

First strand cDNA was synthesized by using SOLiD
TM

 Total RNA-Seq for Whole 

Transcriptome Libraries (Applied Biosystems, Inc., California, USA). For EST and 

transcriptome analysis, we used a research contract service (Genaris, Inc., Kanagawa, 

Japan). 

 

Cloning of M. alpina promoters 

Information regarding selected promoters analyzed in this study is shown in Table 1. 

Selected promoter regions were cloned from the genome of M. alpina 1S-4 by PCR 

performed using specific primers (Table S1) designed on the basis of the information 

available in the genomic database for this strain. Putative PolII transcriptions sites in 

these promoter sequences were predicted by using Promoter 2.0 Prediction Server 

(http://www.cbs.dtu.dk/services/Promoter/). For deletion constructs, the anti-sense 

primers used for PCR are shown in Table S1 and forward primers are shown in Table S2. 

XbaI and SpeI restriction enzyme sites were created at the 5′ end of each forward primer 

and at the 3′ end of each reverse primer, respectively. When an XbaI site was present in 

the promoter region, an SpeI site was created instead of the XbaI site at the 5′ end of the 

forward primer. When an SpeI site was present in the promoter region, an XbaI site was 



9 
 

created instead of the SpeI site at the 3′ end of the reverse primer. 

 

Construction of GUS reporter gene-carrying vectors for promoter analysis 

The reporter gene vectors were constructed on the backbone of pBIG3ura5s (Ando, et 

al. 2009b). The histone promoter (the histone H4.1 promoter short fragment (Ando, et al. 

2009b)), succinate dehydrogenase subunit B (SdhB) terminator (Ando, et al. 2009a) and 

the ura5 marker gene (Takeno, et al. 2004a) were amplified from the genomic DNA of 

M. alpina 1S-4. The ura5 expression cassette controlled by a histone promoter and 

SdhB terminator was generated by fusion PCR with additional EcoRI and XbaI 

restriction enzyme sites at the 5′ and 3′ ends, respectively, of this cassette. The ura5 

expression cassette, digested with EcoRI and XbaI, was ligated to pBIG3ura5s (Ando, et 

al. 2009b) digested with the same restriction enzymes and designated as pBIG35Zh. 

The β-Glucuronidase (GUS) gene was synthesized with optimized codon usage to 

reflect the codon bias of M. alpina 1S-4 obtained from the Kazusa database 

(http://www.kazusa.or.jp/codon/), with additional SpeI and BamHI restriction enzyme 

sites at the 5′ and 3′ flanking ORFs, respectively. The GUS expression cassette, 

controlled by a histone promoter and SdhB terminator, was generated by fusion PCR 

with additional XbaI and NheI restriction sites at the 5′ and 3′ ends of the cassette, 
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respectively. This GUS expression cassette was digested with XbaI and NheI and ligated 

to pBIG35Zh digested with same restriction enzymes and designated pBIG35ZhGUSm 

(Fig. 1). In this vector, the histone promoter region, located upstream of the GUS gene, 

can be removed by digestion with XbaI and SpeI, and replaced by another promoter 

fragment digested with XbaI and/or SpeI for promoter assays. 

 

Transformation of M. alpina 1S-4 ura5‒ strain 

A spore suspension of M. alpina 1S-4 ura5‒ strain was freshly prepared by harvesting 

from cultures grown on Czapek-Dox agar medium supplemented with 0.05 mg/ml uracil 

and then filtering the suspension through Miracloth (Calbiochem) (Takeno, et al. 

2004b). 

Transformation of M. alpina 1S-4 ura5‒ strain was performed using the Agrobacterium 

tumefaciens-mediated transformation (ATMT) method described previously (Ando, et al. 

2009b) with slight modification. Briefly, Agrobacterium tumefaciens C58C1 was 

transformed with each vector via electroporation as described previously (Shen and 

Forde 1989) and its transformants were isolated on LB-Mg agar plates supplemented 

with kanamycin (20 µg/ml), ampicillin (50 µg/ml) and rifampicin (50 µg/ml). 

Agrobacterium tumefaciens transformants were cultivated in 100 ml of MM 
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supplemented with kanamycin (20 µg/ml) and ampicillin (50 µg/ml) at 28°C for 48 h 

with shaking (120 rpm). Bacterial cells were harvested by centrifugation at 8,000 × g, 

washed once with fresh IM, and then diluted to an optical density of 660 nm (OD660) of 

0.1–0.2 in 10 ml of fresh IM. After pre-incubation for 12–16 h at 28°C with shaking 

(300 rpm) to an OD660 of 1.5–2.0, 100 µl of the bacterial cell suspension was mixed 

with an equal volume of a spore suspension (10
8
 spores/ml) of M. alpina 1S-4 ura5

-
 

strain, and then spread on membranes (Whatman #50 Hardened Circles, 70 mm, 

Whatman International Ltd. UK) kept on cocultivation media (IM with 1.5% agar) and 

incubated at 23°C for 5 d. After cocultivation, the membranes were transferred to 

uracil-free SC agar plates that contained 0.03% Nile blue A (Sigma-Aldrich Japan) to 

distinguish between fungal colonies and the white color of the membrane. After 2 d of 

incubation at 28°C, hyphae from visible fungal colonies were transferred to fresh 

uracil-free SC agar plates, this was repeated 3 times to obtain candidates. Integration of 

the vector into the chromosome of the host strain was verified by PCR, as described 

previously (Takeno, et al. 2004b). 

 

Preparation of cell-free extracts for GUS assays 

Cell-free extracts of M. alpina were prepared by a slight modification of a method 
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described previously (Takeno, et al. 2004a). All transformants and the wild-type strain 

of M. alpina 1S-4 were cultivated in 10 ml of GY medium for 2–14 d at 28°C with 

shaking (300 rpm), harvested by suction filtration, and washed twice with sterile water. 

Fungal mycelia were suspended in 2 volumes of 100 mM Tris-HCl containing 5 mM 

2-mercaptoethanol (pH 7.5) and then disrupted by using a bead shocker (Wakenyaku Co. 

Ltd., Kyoto, Japan) at 5,000 rpm for 30 s twice with glass beads (φ 1.0 mm, Waken B 

Tech Co. Ltd., Kyoto, Japan). The extract was centrifuged at 15,000 × g for 10 min to 

remove cell debris and intact cells. The supernatant was used for the GUS assay as 

cell-free extract. All steps were performed at 4 °C. 

 

GUS assay and protein measurement 

β-Glucuronidase (GUS) assays were performed as described previously (Jefferson, et 

al. 1986). Enzyme activity was calculated in terms of nanomoles of p-nitrophenol 

production per milligram of protein per minute at 37°C. Protein concentration was 

measured according to the Bradford method, using bovine serum albumin as a standard 

(Bradford 1976). 

 

Nucleotide sequence accession number 
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The sequences of selected promoters were deposited in DDBJ, under the following 

accession numbers; PP1 (AB871464), PP2 (AB859208), PP3 (AB859209), SSA2 

(AB859212), PP7 (AB859213), SSA22 (AB871467), PP4 (AB871465), PP8 

(AB871479), SAH1 (AB871466), PET9 (AB871478), HSP104 (AB871471), HSC82 

(AB859211), UBC5 (AB871477), CDA1 (AB871469), RPP0 (AB871473), PP5 

(AB871472), PP6 (AB859210), RPS16B (AB871474), EFB1 (AB871460), TDH1 

(AB871475), CIT1 (AB859214.), TIF2 (AB871476), CAT2 (AB871468), ELO1 

(AB871470), IPP1 (AB871461), OLE1 (AB871462) and PGK1 promoter (AB871463).  
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Results 

 

Selection, cloning and evaluation of various promoters of M. alpina 1S-4 

We cultivated M. alpina 1S-4 on GS medium and prepared cDNA libraries by using 

RNA extracted from the mycelia on different cultivation stages (see Materials and 

Methods). EST analysis were performed for each cDNA sample, and the abundances of 

each EST clone during all cultivation stages were summed (data not shown). These 

totals were sorted in descending order. On the basis of these EST abundance data and 

previous reports regarding conventional promoters of other organisms (Makrides 1996, 

Ostergaard, et al. 2000, Twyman, et al. 2003, Wurm 2004), putative promoter regions of 

28 genes of M. alpina 1S-4 were selected as candidates of highly-expressing and/or 

temporally-regulated promoters (Table 1). Considering of the positions of putative 

transcriptional factor-binding sites in each selected promoter region, we cloned 

approximately 1000–2500 bp of the 5′ flanking region of individual ORFs were cloned 

as putative promoter regions from the genomic DNA of M. alpina 1S-4. To evaluate the 

activity of these putative promoters in M. alpina, pBIG35ZhGUSm plasmids carrying 

each putative promoter region, instead of the histone promoter, located upstream of the 

β-glucuronidase (GUS) gene were constructed (Fig. 1) and transformed into M. alpina 
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1S-4 using the ATMT method. For each construct, 30 transformants were randomly 

selected and cultivated for 5 d in GY liquid medium, and then their GUS activities were 

measured. Due to the variety in GUS activity in individual M. alpina transformant lines 

with each promoter construct (a representative pattern is shown in Fig. 2), we used the 

average value of GUS activities in the 10 moderately expressing lines for comparison 

with different promoter activities (Fig. 3). As shown in Fig. 3, PP1, PP3, SSA2, PP7, 

HSC82, PP6, TDH1 and CIT1 promoters led to increased GUS activity compared with a 

conventional histone promoter. In particular, PP3 and PP6 promoters showed 

approximately 5-fold higher activity than the histone promoter.  

We also carried out the same experiments with GS medium, which was used for 

large-scale cultivation (see Materials and Methods). There were no apparent differences 

in the GUS activity levels between GY and GS media (data not shown). Therefore, GY 

medium was used to cultivate transformants in all subsequent GUS assays. 

 

Time course measurements of promoter activity during cultivation of M. alpina 1S-4 

Transformants with each promoter construct were cultivated in GY medium for 2–14 d 

and then GUS activity was evaluated in order to investigate the effect of cultivation time 

on GUS activity with different promoters (Fig. 4). Based on the pattern of 
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time-dependent changes in GUS activity, promoters could be categorized into the 

following 4 groups; GUS activity levels controlled by the HSC82, PP7, SSA2, HSP104, 

UBC5 or PET9 promoter were almost constant throughout the cultivation period (Fig. 

4A). With the CIT1, PP8, SAH1, EFB1, OLE1, HSC82, CDA1, RPP0, RPS16B or CAT2 

promoter, GUS activity levels were higher in the early stage of cultivation and then 

decreased (Fig. 4B). GUS activity controlled by the PP6, ELO1 or TDH1 promoter 

peaked at the middle stage of cultivation (Fig. 4C). With the PP3, PP2, PP4, PP5, 

SSA22, IPP1 or PGK1 promoter, GUS activity levels were low in the early stage, and 

then increased with cultivation time (Fig. 4D).  

PP2, PP3, PP6, PP7, SSA2, HSC82 and CIT1 promoters with constitutive or 

time-dependent high-level activity were selected and used for subsequent studies. 

 

Deletion analysis 

In order to investigate the length of the promoter regions required to maintain high 

expression activity, a series of 5′ deletion constructs of the 7 selected promoters were 

generated (Fig. 5, left column) and introduced into M. alpina 1S-4. For each deletion 

construct, 30 randomly selected transformants were cultivated in GY medium for the 

appropriate number of days based on the above results, and then GUS activity was 
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evaluated. For comparison, the GUS activity levels of 10 moderately expressing lines 

were averaged and represented as a value relative to each full-length promoter, which 

was set as 100% (Fig. 5, right column). In the PP2, PP3 and PP6 promoters, relatively 

long lengths of the promoter regions (over 1,000 bp) were required for high GUS 

expression, and the GUS activity levels dramatically diminished with deletion of the 5′ 

regions. In contrast, the other promoters maintained high activity even in relatively short 

regions (approximately 400–800 bp). 
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Discussion 

In general, promoters that are useful for gene manipulation systems exhibit either  

constitutively high, time-dependent and/or conditionally inducible expression. Thus, we 

investigated and screened beneficial promoters for M. alpina gene manipulation using 

an EST-based approach in this view point. EST abundance data can provide gene 

expression levels without post-translational influence. Therefore, by using an EST-based 

approach, the desired promoters can be identified more directly and efficiently than by 

using conventional approaches based on information on protein expression. 

In many cases, EST analysis is employed to obtain transcriptional information at a 

certain point in the cultivation period. Because the transcriptional level of each gene 

generally changes depending on the cultivation stage, we carried out EST analysis with 

M. alpina at different cultivation stages. On the basis of the EST data and previous 

reports on conventional promoters of other organisms, 28 promoters of M. alpina 1S-4 

were selected as candidates for highly expressing and/or regulated promoters (see Table 

1).  

The GUS reporter gene was used to monitor the promoter activity in this study because 

the GUS gene has been commonly used as a reporter gene for promoter assays for 

various organisms (Jefferson, et al. 1987, Tada, et al. 1991). In addition, we considered 
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that this study also means investigation of heterologous gene expression in M. alpina, 

because the GUS gene is a heterologous gene for this strain. 

The GUS activity in M. alpina transformant lines with each promoter construct was 

distributed across a wide range (Fig. 2). This dispersion might be attributable to the 

differing locations of the GUS gene in chromosomal DNA, i.e., the position effect. It 

has previously been reported that M. alpina transformants generated by the ATMT 

method have a single copy of T-DNA at a random location in chromosomal DNA (Ando, 

et al. 2009b). 

Our comprehensive analysis showed that the PP3 and PP6 promoters were 

demonstrate remarkably higher GUS activity than the conventional histone promoter in 

M. alpina. The functions of the proteins coded by the PP3 and PP6 genes are unknown. 

Investigation of the function of these proteins functions might lead to new findings, 

which may in turn lead to new insights on M. alpina physiology. Interestingly, the GUS 

expression levels were not necessarily proportional to the EST abundance values 

(compare Fig. 3 with Table 1). There were some cases where the GUS expression levels 

were much lower than expected from the EST abundance data, e.g. the SSA22 and PP8 

promoters. In such cases, other factors besides promoters, such as the terminator and 

post-transcriptional processing might lead to high-transcriptional levels of the original 
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gene, unlike the findings seen for heterologous GUS gene expression. 

Time-course measurements of GUS activity levels with various promoters showed  

several temporally-different patterns of expression (Fig. 4). Also in this examination, the 

GUS expression patterns were not necessarily consistent to the time course of EST 

abundance values (data not shown). It might be caused by difference of cultivation 

conditions. Especially, we performed glucose feeding on industrial cultivation for EST 

analysis (see Materials and Methods). Glucose starvation might be one of most 

important factors for cultivation phase-specific expression. 

To our knowledge, this is the first report of time-dependent expression promoters in M. 

alpina. These promoters allow for phase-specific expression in M. alpina, unlike the 

conventional histone promoter expressing constitutively during cultivation time (data 

not shown). These time-dependent promoters could contribute to more efficient 

production of PUFAs in M. alpina by means of temporal coordination of enzyme 

expression with PUFA biosynthesis.  

For the 5′ deletion analysis of promoter regions, 7 promoters were selected because of 

their characteristic expression patterns, such as high-level expression and/or 

time-dependent expression. A relatively long length (over 1,000 bp) was required to 

maintain high activity in the PP2, PP3 and PP6 promoters. This finding is agreement 
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with the prediction of putative transcription factor binding sites of these promoters (Fig. 

5). In contrast, the SSA2, PP7, HSC82 and CIT1 promoters retained sufficient activity 

even in the truncated form (400–800 bp). These short promoters with high activity will 

be advantageous in applications involving M. alpina gene manipulation because they 

will be useful for convenient vector construction.  

In some promoters, SSA2p and HSC82p, the length of promoter region with high 

activity were not correlated with the position of putative transcription factor binding 

sites (Fig. 5). Practically the reliable prediction for such sites is difficult in zygomycetes 

including M. alpina because the investigation of their transcriptional regulatory 

mechanism is still underdeveloped. More detailed deletion analysis and consensus 

sequence analysis of highly-expressing and/or regulated promoters will help identify 

functionally essential elements for transcriptional regulation. This in turn could help 

elucidate the transcriptional regulatory mechanisms of M. alpina. The information of 

transcriptional regulatory elements of promoters for high-level expression and 

time-dependent expression is also useful for applications. For example, in Aspergillus 

oryzae, the introduction of multiple copies of the consensus sequence found in the 

high-expression promoters has been reported to improve promoter activity (Minetoki, et 

al. 1998). We could not find such consensus sequences inherent in each expression 
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property of promoters identified in this study (data not shown), therefore more detailed 

investigations are required. 

In conclusion, we found several potent promoters with constitutive or time-dependent 

high-expression activity by means of an EST-based approach in M. alpina 1S-4. 

Furthermore, the lengths of these promoter regions required to retain high expression 

levels were estimated by deletion analysis. The promoters data generated in this study 

will be beneficial for improvement in PUFA productivity and modification of PUFA 

composition, and may help elucidate the regulatory mechanisms of gene expression in 

M. alpina. 
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Table 1. Information regarding genes for selected promoters 

 

 Gene Annotation Relative EST transcript abundance
a
 

 PP1 Predicted protein 35.7  

 PP2 Predicted protein 29.0  

 PP3 Predicted protein 11.7  

 SSA2 ATP binding protein (member of HSP70 family) 8.9  

 PP7 Predicted protein 7.9  

 SSA22 ATP binding protein (member of HSP70 family) 7.6  

 PP4 Predicted protein 7.3  

 PP8 Predicted protein 6.6  

 SAH1 S-Adenosyl-L-homocysteine hydrolase  6.6  

 PET9 ADP/ATP carrier of the mitochondrial inner membrane 6.0  

 HSP104 Hsp that cooperates with Hsp40 and Hsp70 5.9  

 HSC82 Cytoplasmic chaperone of the Hsp90 family 5.6  

 UBC5 Ubiquitin-conjugating enzyme 4.7  

 CDA1 Chitin deacetylase 4.5  

 RPP0 Ribosomal protein P0 4.0  

 PP5 Predicted protein 4.0  

 PP6 Predicted protein 3.8  

 RPS16B Protein component of 40S ribosormal subunit 3.2  

 EFB1 Translation elongation factor 1 beta 2.6  

 TDH1 Glyceraldehyde-3-phosphate dehydrogenase 2.4  

 CIT1 Citrate synthase 2.0  

 TIF2 Translation initiation factor eIF4A 1.9  

 CAT2 Carnitine acyl-CoA transferase 0.9  

 ELO1 Fatty acid elongase I 0.7  

 IPP1 Cytoplasmic inorganic pyrophosphatase  0.7  

 OLE1 Delta-9 fatty acid desaturase 0.6  

 PGK1 3-Phosphoglycerate kinase  0.4 

a
EST abundance data show the total for EST transcriptional abundance at different cultivation stages, by 

using relative values for histone H4.1. For cultivation conditions, see materials and methods. 
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Fig. 1. Vector construct used in M. alpina 1S-4 promoter assays. GUSm, codon-

optimized β-glucuronidase gene for M. alpina; his p, M. alpina histone H4.1 promoter

short fragment; SdhB t, M. alpina SdhB transcription terminator; ura5, orotate

phosphoribosyl transferase gene of M. alpina 1S-4; NPTIII, neomycin phosphotransferase

III gene; TrfA, TrfA locus, which produces 2 proteins that promote replication of the

plasmid; ColEI ori, ColEI origin of replication; oriV, pRK2 origin of replication; RB,

right border; LB, left border.
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Fig. 2. Distribution of GUS activity levels driven by the HSC82 promoter in M.

alpina transformants cultivated for 5 d in GY liquid medium. Each plot denotes

individual transformants, and all plots are sorted in ascending order of GUS activity. GUS

activity is expressed in nanomoles of p-nitrophenol produced per minute per milligram of

protein.
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Fig. 3. GUS activity driven by various promoters in M. alpina transformants

cultivated for 5 d in GY liquid medium. GUS activity is expressed in nanomoles of p-

nitrophenol produced per minute per milligram of protein. The Bars represent the mean

values with standard deviations of GUS activity in 10 individual transformant lines for

each promoter construct.
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Fig. 4. Representative patterns of time-depend changes in GUS activity with

different promoters. Results with (A) HSC82, (B) CIT1, (C) PP6 and (D) PP3

promoters are shown as representative. All transformants for each promoter construct

were cultivated in GY medium for 2–14 d. GUS activity is expressed in nanomoles of p-

nitrophenol produced per minute per milligram of protein. Plots represent the mean

values with standard deviations of GUS activity in 3 individual transformant lines for

each construct.
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Fig. 5. 5′-deletion analysis of 7 different promoters. In the left column, constructs with

different 5′ upstream deletions of individual promoters are shown. For each construct, the

length of the fragment upstream from the transcription start site is shown on the left end.

Putative PolII transcription factor binding sites are indicated by closed triangles. In the

right column, GUS activity levels with the deleted constructs in M. alpina transformants

are shown. All transformants were cultivated in GY liquid medium. Cultivation times

were 5 d for the SSA2, HSC82, PP7 and PP6 promoters, 3 d for the CIT1 promoter, and

14 d for the PP2 and PP3 promoters. The average GUS activity of each full-length

construct is set at 100% and has been used to define the relative GUS activity of

individual deletion constructs. Bars represent the mean values with standard deviations of

GUS activity in 10 individual transformant lines for each construct.
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Table S1. PCR primers for selected promoters   

 

Promoter Primer F sequence (5′- 3′) Primer R sequence (5′- 3′) 

PP1 p AATCTCTAGA
a
GCGCAGTCGGAATGCC AGTAACTAGTCGTGTTTTCTTTTGAAATGGG 

PP2 p AAGCTCTAGAGACTGTAAAGACGGAGGGG AGTAACTAGTTGTGGATAGTGGGTAGTGG 

PP3 p AACGTCTAGACGTGTTATCTTGCGCTGC TCATACTAGTGATGATTTAGAGGTGTTGG 

SSA2 p TTAGTCTAGAAAAGTGCTGCTTCGGAACC AGATACTAGTGATGTAGATGTGAGTGTGAG 

PP7 p AATATCTAGATGACCGTGCGCTTTTTGAGAC AGCAACTAGTCGTATATTTGTTGAAAGGTG 

SSA22 p AATATCTAGAGGGTGCAGGTCCGGTCC AGCCACTAGTTCTACTCACCTTTTCCCTCAG 

PP4 p TGAGTCTAGAAGAGTGATTTTGTGGCTGTAC CAATACTAGTGGCTGATGTATGTGTTGATG 

PP8 p ATGCTCTAGATATGGCGACCCATTCACG AAGAACTAGTGGTTGAACAGAGTATGTTTGC 

SAH1 p AATCTCTAGACTGGCGAATACATGCGCAC ATAGTCTAGAGGTGGATATGAAGGGTGG 

PET9 p ACCTTCTAGAAGACGAGAAGAGTTCATGATG AATAACTAGTGATGAGTGTATGTGGAGAGTG 

HSP104 p AATATCTAGAGTTGAAGGTGCAGACACCGG AATAACTAGTGGTGGGGCGTTATGTGG 

HSC82 p ATCATCTAGAGAGCTCAAGATGAAGGTGCTC AATAACTAGTGGTGTGTGTGGTTTGCGGG 

UBC5 p AACTACTAGTGTATACAGGTCTTAGAGACC ATTCACTAGTCGTGGGTGGAGAGAGTG 

CDA1 p AACTCTAGATGAAAATAGAAATGGGTGGATGG ATTGACTAGTCGTAGGTTTCTTTGTGTGTG 

RPP0 p AATGTCTAGACACAGTGACAAGGGTGTTAAC ATGCACTAGTGTTGATTATTGTTCGAGGG 

PP5 p AACGTCTAGATGTTTTTTGTGCAAATTACCTCG AAGCACTAGTTTTGGATTGGGATTGCTTGAG 

PP6 p AAAGTCTAGACTGGCAATAGTTAGTGCACG ATCAACTAGTGATGGAGGTTTGTTTGAGAAG 

RPS16B p AATGTCTAGACCTGCAGAAAGATGATCCAAAAG AAGCACTAGTGATGAATAATGCCTATGATCAG 

EFB1 p TTAGACTAGTCGTAGTTGACTCTTTTATG CAGTACTAGTGGTGGGTGCTTTGTCGATTTG 

TDH1 p AACCTCTAGAAGGAAATAAATTCTCCTCGGTG AATAACTAGTGTTGAGTGGGTGTGTGTGG 

CIT1 p ATTTTCTAGACACCTCAAAAACGTGCCTTG AATAACTAGTGGCGGATATGTGTATGGAG 

TIF2 p AAGTTCTAGAGTCGACCTATCATCATTTTTGGC AGCGACTAGTGTTTTTTTTTGCTTTTTTTTTTATG 

CAT2 p AATCACTAGTAAACGGTGGAGCATTCTCAC TATCACTAGTGAAGGCGATGGGCAGGG 

ELO1 p AATGTCTAGACTTGCCCAGCATTACTCC TCATACTAGTCTTTGAGGGGAGGAATTGC 

IPP1 p ACAATCTAGAGGCTGCGTTGCCGGGAG ATAGACTAGTGGTGGTGGTGAAGAGTAG 

OLE1 p AGCATCTAGAGGGTTCTCACATTGAATTTG AATAACTAGTCGCTGTGCGTCCTGCGTTG 

PGK1 p TGAATCTAGACACCGTCGCTATGTGAAG TTGCTCTAGAGCAGAAACACACTGGCAG 

a 
The underlined sequences show synthesized XbaI (TCTAGA) and SpeI (ACTAGT) sites. 
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Table S2. PCR primers used for deletion clones    

 

 Promoter Length of deletion clone (bp) Primer F sequence (5′- 3′) 

 PP2 p 1199 ATTTCTAGA
a
TGCATTTACAGGTGAATATTAC 

  820 TTATCTAGACATAAAAGTGTCTGGAGCG 

  399 TTATCTAGAACTAAGTGGTGTCTACTTTGG 

  202 AATTCTAGAGGATACTCCATCCCCACCC 

 

 PP3 p 1651 AATATCTAGAGATCCTGGTCGAAAAAGACAG 

 1201 AATGTCTAGATGAGTTTCTGTTTTTTCCTTTTTGC 

  801 AATATCTAGATGAACAATTCATGCAGCTTCACG 

  401 AATATCTAGACGTCTAAGCGTTTACGTGCC 

  201 AATATCTAGACTCGTTTTGATGGAGTTCTC 

 

 SSA2 p 843 AGTATCTAGATGACGGCGTGTATATGTCAG 

  599 AGGTTCTAGACCATTGTATCGATTTCTGAT 

  399 AGTATCTAGAGCTATGCGAACGGTTCATTTTG 

  199 AGGTTCTAGATTTTTTCTCTCTGGTGTGAACG 

    

 PP7 p 1079 AGCATCTAGAAAAACTATTCAATAATGGGCG 

  785 ATTTCTAGAATGGCGAGACGCAGGGGGTAG 

  500 AATATCTAGAGAGTGGGCACTGAACTAAAAAG 

  250 AATATCTAGAGACACTGCATGACGCGAAATC 

    

 HSC82 p 800 AATTCTAGATTTTACTACCGCATTCCCTTTTC 

  599 ACGTCTAGACCTTTTCAGTAAACAATTTC 

  400 ATTTCTAGACACAAAGAAGAAGGGTGTGTC 

  200 ACGTCTAGAACTGTTTTCTTGAAACTTC 

    

 PP6 p 1000 AATTCTAGACAGTTACCGTGCGCCCACTG 

  750 AATTCTAGACTTTCACAAATAGGCATCCTATC 

  500 AATTCTAGAGGCTTTTTCGTTTATTGGATTG 

  93 ACGTCTAGATATCCAATTCTCACCACTTC 

    

 CIT1 p 1263 AAGTCTAGATGTCAATCATCTTTGCTGCTG 

  963 TGCGTCTAGAATTATAATTATAATGAGGAAGTG 

  663 TTATCTAGAGGCGAGTGGCGGACTGC 

  363 TTGTCTAGACAATTGGCAAGGCTGGGTTG 

a
 The underlined sequences show synthesized XbaI (TCTAGA) site. 

 


