
Title Archaeal β diversity patterns under the seafloor along
geochemical gradients

Author(s) Koyano, Hitoshi; Tsubouchi, Taishi; Kishino, Hirohisa;
Akutsu, Tatsuya

Citation Journal of Geophysical Research: Biogeosciences (2014),
119(9): 1770-1788

Issue Date 2014-09-02

URL http://hdl.handle.net/2433/198732

Right ©2014. American Geophysical Union.

Type Journal Article

Textversion publisher

Kyoto University

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Kyoto University Research Information Repository

https://core.ac.uk/display/39322052?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Journal of Geophysical Research: Biogeosciences

RESEARCH ARTICLE
10.1002/2014JG002676

Key Points:
• Method for estimating beta diversity

with sequence data was developed
• Beta diversities between eight

archaeal communities were estimated
• Model of archaeal beta diversity

patterns was constructed

Correspondence to:
H. Koyano,
koyano@kuicr.kyoto-u.ac.jp

Citation:
Koyano, H., T. Tsubouchi, H. Kishino,
and T. Akutsu (2014), Archaeal 𝛽
diversity patterns under the seafloor
along geochemical gradients,
J. Geophys. Res. Biogeosci.,
119, 1770–1788,
doi:10.1002/2014JG002676.

Received 24 MAR 2014

Accepted 30 JUL 2014

Accepted article online 12 AUG 2014

Published online 2 SEP 2014

Archaeal 𝛽 diversity patterns under the seafloor
along geochemical gradients
Hitoshi Koyano1, Taishi Tsubouchi2, Hirohisa Kishino3, and Tatsuya Akutsu1

1Institute for Chemical Research, Kyoto University, Uji, Japan, 2Japan Agency for Marine–Earth Science and Technology,
Yokosuka, Japan, 3Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo, Japan

Abstract Recently, deep drilling into the seafloor has revealed that there are vast sedimentary
ecosystems of diverse microorganisms, particularly archaea, in subsurface areas. We investigated the 𝛽

diversity patterns of archaeal communities in sediment layers under the seafloor and their determinants.
This study was accomplished by analyzing large environmental samples of 16S ribosomal RNA gene
sequences and various geochemical data collected from a sediment core of 365.3 m, obtained by drilling
into the seafloor off the east coast of the Shimokita Peninsula. To extract the maximum amount of
information from these environmental samples, we first developed a method for measuring 𝛽 diversity
using sequence data by applying probability theory on a set of strings developed by two of the authors in
a previous publication. We introduced an index of 𝛽 diversity between sequence populations from which
the sequence data were sampled. We then constructed an estimator of the 𝛽 diversity index based on the
sequence data and demonstrated that it converges to the 𝛽 diversity index between sequence populations
with probability of 1 as the number of sampled sequences increases. Next, we applied this new method
to quantify 𝛽 diversities between archaeal sequence populations under the seafloor and constructed a
quantitative model of the estimated 𝛽 diversity patterns. Nearly 90% of the variation in the archaeal 𝛽
diversity was explained by a model that included as variables the differences in the abundances of chlorine,
iodine, and carbon between the sediment layers.

1. Introduction

In recent years, advancements in geobiology have revealed that diverse microorganisms, particularly
archaea, live in subsurface areas [Parkes et al., 1994; Whitman et al., 1998; D’Hondt et al., 2004; Lipp et al.,
2008]. In this study, we investigated 𝛽 diversity patterns and their determinants in archaeal communities in
layers below the seafloor.

The extent to which two biological communities differ is called 𝛽 diversity [Whittaker, 1960, 1972]. In
ecology, many studies have been conducted on methods for measuring 𝛽 diversity, which has tradition-
ally been measured using presence-absence data of species. Numerous methods for measuring 𝛽 diversity
with presence-absence data of species have been developed to date [Jaccard, 1900; Dice, 1945; Sørensen,
1948; Ochiai, 1957; Whittaker, 1960; Anderberg, 1973; Cody, 1975; Routledge, 1977; Wilson and Shmida,
1984; Harrison et al., 1992; Cody, 1993; Colwell and Coddington, 1994; Weiher and Boylen, 1994; Lande, 1996;
Williams, 1996; Mourelle and Ezcurra, 1997; Harte and Kinzig, 1997; Ruggiero et al., 1998; Williams et al., 1999;
Gaston et al., 2001; Lennon et al., 2001]. See, for example, Southwood and Henderson [2000], Koleff et al.
[2003], and Magurran [2004] for a review. Typically, samples do not represent complete lists of the species
in the two biological communities (i.e., the populations from which the samples were collected). There-
fore, the measurement of 𝛽 diversity is actually an estimation of the 𝛽 diversity between populations based
on the samples collected. However, the methods listed above for measuring 𝛽 diversity do not distinguish
between a population and a sample. They only introduce an index of 𝛽 diversity between two samples with-
out defining a 𝛽 diversity index between two populations. Consequently, these methods do not evaluate the
accuracy with which the 𝛽 diversity index calculated based on samples estimates the 𝛽 diversity between
populations that is the quantity of interest, where the term accuracy was used in the statistical sense to
represent the extent to which an estimator based on random samples from populations could accurately
estimate the 𝛽 diversity between these populations. Studies on methods that make a distinction between
a population and a sample for measuring 𝛽 diversity using presence-absence data of species include Smith
et al. [1996], Plotkin and Muller-Landau [2002], and Chao et al. [2005]. Among these studies, only Plotkin and

KOYANO ET AL. ©2014. American Geophysical Union. All Rights Reserved. 1770

http://publications.agu.org/journals/
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)2169-8961
http://dx.doi.org/10.1002/2014JG002676


Journal of Geophysical Research: Biogeosciences 10.1002/2014JG002676

Muller-Landau [2002] theoretically examined the accuracy of their estimator. These authors showed that
their estimator was unbiased in a parametric framework.

Methods for measuring 𝛽 diversity have been developed that account for species frequencies as well as the
presence or absence of individual species. This approach avoids considering two communities as identical
when their species compositions are the same but the frequencies of each species differ between them.
Indices of 𝛽 diversity that consider species frequencies include the Bray-Curtis index [Czekanowski, 1909;
Renkonen, 1938; Motyka, 1947; Odum, 1950; Bray and Curtis, 1957], the Morishita-Horn index [Morisita, 1959;
Horn, 1966], and the Gower index [Gower, 1971; Anderson et al., 2006] (these indices were constructed for
application to species data, but they can also be applied to sequence data). These indices do not distinguish
between a population and a sample. In contrast, the Yue-Clayton index [Yue and Clayton, 2005] is a measure
of 𝛽 diversity that accounts for the frequencies of species and distinguishes between a population and a
sample, although it has not been theoretically examined how accurately this index calculated based on
samples estimates the 𝛽 diversity index between populations.

None of the indices listed above consider the divergence between species. As described in Lozupone and
Knight [2008], methods for measuring 𝛽 diversity have progressed from those that do not consider the diver-
gence between species or sequences to those that do. These methods have been developed because when
a species is present in community A but not community B, it is relevant to consider whether all species in
community B are distantly related to the focal species in community A or whether a closely related species
is present (see Lozupone and Knight [2008] for the advantages of considering divergence). The taxonomic
(dis)similarity proposed by Izsak and Price [2001] is the first measure of 𝛽 diversity that accounts for the diver-
gences between species. Species are not clearly defined for microorganisms, unlike for animals and plants;
therefore, sequence data (for example, environmental samples of 16S ribosomal RNA gene sequences) are
used to measure microbial diversity. It is more important to distinguish between the above two cases in
measuring the 𝛽 diversity with sequence data than with species data because the exact same sequences are
rarely collected in two different environments. Indices of 𝛽 diversity that use sequence data and consider
the divergence between sequences include the unique fraction metric (UniFrac) [Lozupone and Knight, 2005]
(see also Lozupone and Knight [2008]). The Izsak and Price (dis)similarity and UniFrac are qualitative mea-
sures of 𝛽 diversity that do not account for the frequencies of species or sequences. Furthermore, neither of
these measures distinguishes between a population and a sample.

Weighted UniFrac [Lozupone et al., 2007], which is an extension of UniFrac, and double principal coordi-
nates analysis (DPCoA) [Pavoine et al., 2004], which employs Rao’s dissimilarity [Rao, 1982], are 𝛽 diversity
measures that use sequence data and account for both the frequency of each sequence and the diver-
gence between the sequences. However, these methods were not designed in the framework of estimating
𝛽 diversity between two populations based on the samples drawn from the populations. Recently, a large
amount of sequence data have become available, but an environmental sample of biological sequences is a
small part of the population of all of the sequences in one environment, especially for microbial communi-
ties. Thus, desirable methods are those designed in the statistical framework in which a distinction between
a population and a sample is made, an index of the 𝛽 diversity between populations is first defined, and an
estimator based on samples for the index is subsequently constructed. Furthermore, the estimator must be
demonstrated to accurately estimate the 𝛽 diversity index between populations.

In conclusion, for the analysis of 𝛽 diversity between microbial communities, the following criteria for a
method for measuring 𝛽 diversity are required: (i) It uses sequence data, not species data. (ii) It considers
both the frequency of each sequence and the divergence between the sequences. (iii) It is constructed in
the statistical framework of estimating the 𝛽 diversity between populations based on samples. And (iv)
it is theoretically demonstrated that the estimator based on samples accurately estimates the 𝛽 diversity
index between populations. Therefore, in this study, we systematically addressed the problem of estimat-
ing 𝛽 diversity with sequence data by applying probability theory on a set of strings that two of the authors
developed in a previous publication [Koyano and Kishino, 2010]. We first defined an index of 𝛽 diversity
between populations of sequences as a distance that reflects the frequencies of sequences and the diver-
gences between sequences. Then, we constructed an estimator of this 𝛽 diversity index and demonstrated
that the estimator has the property of strong consistency. A detailed description of our method is provided
in section 3.
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Many analyses of the 𝛽 diversity patterns of various biological communities with respect to different envi-
ronmental variables and gradients have been conducted to date. Environmental variables and gradients
include (i) latitude [Rodriguez and Arita, 2004; Qian and Ricklefs, 2007], (ii) altitude [Brehm et al., 2003], (iii)
sea depth [Izsak and Price, 2001], (iv) temperature [Miller et al., 2009], (v) salinity [Walsh et al., 2005; Santoro
et al., 2006], (vi) areas [Harrison et al., 1992; Condit et al., 2002], and (vii) internal organs and skin of subjects
[Eckburg et al., 2005; Gao et al., 2007]. In this study, we sought environmental variables that are systematic
factors for variation in the 𝛽 diversity of archaeal communities in layers below the seafloor. We first investi-
gated differences between layers in the abundances of different elements and compounds as candidates
for such environmental variables, evaluating whether there were quantitative relationships involving
the 𝛽 diversities between archaeal communities and the differences between their environments. As
explained in the fourth paragraph of section 5, we did not use composite variables, such as (i), (ii), (iii),
(vi), and (vii) among the seven listed above, as environmental variables to model archaeal 𝛽 diversity pat-
terns. We next modeled archaeal 𝛽 diversity patterns by developing a numerical equation including these
environmental variables.

We assume that 𝜈 ≥ 2. Ci represents a set of all biological sequences (for example, 16S ribosomal RNA gene
sequences) that corresponds to a biological community that was set as the object of analysis in the ith envi-
ronment for each i = 1, · · · , 𝜈. Let d𝛽

(
Ci, Ci′

)
denote a 𝛽 diversity index between Ci and Ci′ , which is precisely

defined in section 3. Let v1, · · · , v𝜅 be real-valued environmental variables, which are systematic factors for
the variation in d𝛽

(
Ci,Ci′

)
. We denote a measurement of vj in the ith environment by vji for each j = 1, · · · , 𝜅

and i = 1, · · · , 𝜈. Examples of vj include temperature, hydrogen-ion concentration, and other factors. 𝛽
diversity is a type of distance between two communities, and the distance between two real numbers is the
absolute value of the difference between them. Therefore, in this setting, the problem described above is to
make a list of environmental variables and to find a function 𝜑 ∶ [0,∞)𝜅 → [0,∞) such that

d𝛽

(
Ci,Ci′

)
= 𝜑

(|v1i − v1i′ |, · · · , |v𝜅i − v𝜅i′ |) + 𝜁ii′ , i = 1, · · · , 𝜈 − 1, i′ = i + 1, · · · , 𝜈 (1)

for an error term 𝜁ii′ . However, C1, · · · ,C𝜈 are generally not available, as described above. Let Si be a sample
of sequences collected from Ci . We denote an estimator of d𝛽

(
Ci, Ci′

)
based on Si and Si′ by d̂𝛽

(
Si, Si′

)
. Then,

equation (1) is modified to

d̂𝛽

(
Si, Si′

)
= 𝜑

(|v1i − v1i′ |, · · · , |v𝜅i − v𝜅i′ |) + 𝜀ii′ , i = 1, · · · , 𝜈 − 1, i′ = i + 1, · · · , 𝜈, (2)

where 𝜀ii′ is the sum of the error term 𝜁ii′ in equation (1) and the estimation error of d𝛽

(
Ci,Ci′

)
by d̂𝛽

(
Si, Si′

)
.

It would be a reasonable approach to seek an appropriate function 𝜑 in the set of linear functions first. In
this case, our problem is to make a list of environmental variables v1, · · · , v𝜅 and to determine constants
b0, · · · , b𝜅 > 0 such that

d̂𝛽

(
Si, Si′

)
= b0 + b1|v1i − v1i′ | + · · · + b𝜅 |v𝜅i − v𝜅i′ | + 𝜀ii′ , i = 1, · · · , 𝜈 − 1, i′ = i + 1, · · · , 𝜈

(note the sign condition for b0, · · · , b𝜅 ). We address this problem in section 4. To the authors’ knowledge, no
quantitative model of 𝛽 diversity patterns has been reported that is expressed as a numerical equation with
respect to the environmental variables.

Finally, we describe future challenges in modeling the 𝛽 diversity patterns along geochemical gradients
using the quantitative approach taken in this study and a new problem raised by the results of this study in
section 5.

2. Materials

In this study, we analyzed data that were collected from a sediment core of 365.3 m that was obtained by
drilling into the seafloor off the east coast of the Shimokita Peninsula during the second shakedown cruise
of D/V Chikyu (August to October 2006) in the Integrated Ocean Drilling Program that started in October
2003. In this section, we briefly describe the materials analyzed in the following sections.

2.1. Study Site and a Core Sample
The drilling site (41◦10’38.28”N–142◦12’04.89”E) was located in the Sanriku-oki sedimentary basin, a north-
eastern forearc basin of the Japanese main island [see Tomaru et al., 2009, Figures 1A and 1B]. This site
was 1180 m in water depth and was drilled to a depth of 365 m below the seafloor (mbsf ). There were gas
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hydrates in the area around the study site. An abundance of natural gas was found in the Paleocene to
Eocene sequences in the Ministry of International Trade and Industry (MITI) Sanriku-oki well near the site. In
the Sanriku-oki, the Pacific Plate is subducting beneath the North American Plate along the Japan Trench.
The rate of subduction was estimated at up to 9 cm/yr [von Huene and Culotta, 1989]. The Pacific Plate in this
region is the oldest of currently subducting plates, with an age of 140 Ma [Nakanishi et al., 1989, 1992]. The
Shimokita area is of great geological interest. See Taira et al. [2005] and Tomaru et al. [2009] for a survey of
this area.

A core from the drilled hole had a highly continuous sequence. Sediments collected from the core were
mainly composed of silty clay, and ash layers were frequently intercalated between silt and sand lay-
ers. Between 30 and 40% of the silty clay elements comprised biogenic particles, and large amounts
of quartz and clay minerals were found. Developed lamination was rare, and many microfossils were
observed. These fossils were dominated by diatoms and included siliceous sponge spicules, planktonic
foraminiferans, benthic foraminiferans, dinoflagellates, and radiolarians. From the integrated analysis
based on micropaleontology, tephrochronology, and magnetostratigraphy, the bottom age of the hole at
365 mbsf was estimated at 780 ka. The rate of sedimentation at the hole was estimated as nearly constant at
approximately 62 cm/kyr.

2.2. Geochemical and Archaeal Sequence Data
After recovery of the core, 10–15 cm sections of sediment were sampled from core sections and immedi-
ately skinned to avoid a potential source of contamination. Physical and chemical data were then measured
onboard. For example, pore water samples were collected from the sections with a Manheim-type squeez-
ing system [Manheim et al., 1994], and the dissolved SO4 and Cl concentrations were measured from aliquots
of the water samples using ion chromatography. The measurement of the total dissolved Br and I concen-
trations was conducted using inductively coupled plasma mass spectrometry. The processes of recovering
cores and measuring various data were described previously in detail [Aoike, 2007]. See Tomaru et al. [2009]
for the geochemical data used in this study.

Furthermore, microbial DNA was extracted from the core from the eight layers at depths of 0.7, 4.9, 11.0,
18.5, 48.0, 107.0, 217.0, and 348.5 mbsf. A detailed description was given in Nunoura et al. [2005] on sam-
pling, DNA isolation, and fosmid library construction. The procedures for screening for microbial genome
fragments encoding small subunit ribosomal RNA genes, sequencing and enrichment of the fragments, and
annotation have been described previously [Nunoura et al., 2011]. Archaeal sequences in the constructed
library of bacterial and archaeal 16S ribosomal RNA gene sequences were analyzed in the present study.
The numbers of gene sequences analyzed from the first to eighth layers were 1411, 1075, 1121, 1360, 1291,
1062, 1178, and 1267.

3. Method for Estimating 𝜷 Diversity

In this section, we treat the problem of measuring 𝛽 diversity with sequence data based on probability the-
ory on a set of strings in a rigorous manner. As described in section 1, the measurement of 𝛽 diversity is
actually an estimation of 𝛽 diversity between populations based on samples. Sequence populations that
can be addressed using the framework described below include the sets of all 16S ribosomal RNA gene
sequences in two environments because the Levenshtein distance [Levenshtein, 1966] was used as the dis-
tance between two sequences (the Levenshtein distance between two sequences s and t is the minimal
number of deletions, insertions, or substitutions required to transform s into t). We first define a 𝛽 diversity
index between sequence populations in two environments in section 3.1. We must estimate the introduced
𝛽 diversity index between sequence populations based on samples because it is physically impossible to
collect all sequences (for example, all microbial 16S ribosomal RNA gene sequences) in two environments.
Therefore, we construct an estimator of the 𝛽 diversity index based on sequence data and demonstrate that
the estimator converges to the index between sequence populations with probability of 1 as the number of
collected sequences increases in section 3.2.

3.1. Formulation of the 𝜷 Diversity Index Between Sequence Populations
In this subsection, we consider the problem of defining the 𝛽 diversity index between populations of
sequences. As described in section 1, in this study, we define the 𝛽 diversity index as a distance that reflects
the frequencies of sequences and the divergences between sequences. In the following paragraph, we intro-
duce the 𝛽 diversity index between sequence populations as a distance between population distributions of
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sequences in two steps by extending the distance between probability mass or density functions, which has
been used in the mathematical fields of functional analysis and probability theory. Z+,N, and R represent
the sets of positive integers, natural numbers (including 0), and real numbers, respectively.

Let  be the set of probability density functions defined on R, that is,

 =
{

f ∶ R → [0,∞) ∶ ∫
R

f (x)dx = 1
}

.

Generally, the distance space ( , dp) is constructed with the distance dp defined by

dp(f , g) =
{
∫
R

|f (x) − g(x)|pdx

}1∕p

(3)

for p ∈ Z+ (in many cases, p = 2) [see, for example, Shiryaev, 1996]. We first introduce a distance between
sequence populations that reflects the frequencies of sequences by constructing an analogy to the dis-
tance (3) on a set of distributions of random strings. We use the framework of probability theory on a set
of strings that was proposed in Koyano and Kishino [2010]. Several definitions necessary in the following
text are cited in section A1. A random string 𝜎 is introduced as a type of a discrete stochastic process that
takes values in a set A∗ of sequences of letters in an alphabet (that is, a finite set of letters) A. We denote
a set of random strings by (Ω,A∗). The length of 𝜎, denoted by |𝜎|, and the probability function of the
finite-dimensional distribution of 𝜎 at sites i1, · · · , ik ∈ Z+, represented by q𝜎;i1 ,···,ik

, are defined, and the
independence of a sequence of random strings {𝜎n ∶ n ∈ Z+} is formulated.

For the probability function q𝜎;1,···,|𝜎| of the finite-dimensional distribution at sites 1, · · · , |𝜎| of 𝜎
∈ (Ω,A∗), we define the function q𝜎 ∶ A∗ → [0, 1] as

q𝜎(s) =
⎧⎪⎨⎪⎩

q𝜎;1,···,|𝜎|(x1, · · · , x|𝜎|) (for x1, · · · , x|𝜎| ∈ Ā such that
s = (x1, · · · , x|𝜎|, e, · · ·) if |𝜎| ≥ |s|)

0 (if |𝜎| < |s|).
q𝜎 is a probability function on A∗. We set

 = {q𝜎 ∶ 𝜎 ∈ (Ω,A∗)}.

We introduce an analogy of the distance (3) on .

Definition 1: We define the function d𝛽 ∶  × → [0,∞) as

d𝛽(p,q) =
∑
s∈A∗

|p(s) − q(s)|. (4)

It is easily verified that d𝛽 is a distance on .

We can add the operations of the pth power and pth root to the right-hand side of equation (4) of d𝛽 . How-
ever, d𝛽 defined in this manner does not have especially good properties when p = 2, unlike in the space of
integrable functions. Therefore, we defined d𝛽 as an analogy of the distance (3) with p = 1.

We have introduced the distance between sequence populations that reflects the frequencies of sequences
in Definition 1. We next extend distance (4) such that it reflects the divergences between the sequences.
We set

Dq𝜎
= {s ∈ A∗ ∶ q𝜎(s) > 0}

for q𝜎 ∈ . Dq𝜎
is the support of q𝜎 . We extend distance (4) as follows:

Definition 2: We set the function 𝛿p,q ∶ A∗ → [1,∞) to be

𝛿p,q(s) =

⎧⎪⎪⎨⎪⎪⎩

1 (if s ∈ Dp ∩ Dq)
min{dL(s, t) ∶ t ∈ Dq} + 1 (if s ∈ Dp and s ∉ Dq)
min{dL(s, t) ∶ t ∈ Dp} + 1 (if s ∉ Dp and s ∈ Dq)
an arbitrary real number ≥ 1 (if s ∉ Dp ∪ Dq)

(5)
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for p,q ∈ , and then, we redefine the function d𝛽 ∶  × → [0,∞) as

d𝛽(p,q) =
∑
s∈A∗

𝛿p,q(s)|p(s) − q(s)|. (6)

It is easily verified that d𝛽 is a distance on . We define the 𝛽 diversity between populations of sequences as
this distance d𝛽 .

If an index of 𝛽 diversity between sequence populations that is normalized on the interval [0, 1] is
needed, then

d′
𝛽
(p,q) = 1

4

∑
s∈A∗

𝛿′p,q(s)|p(s) − q(s)|
is useful, where 𝛿′p,q(s) is a weight obtained by replacing the Levenshtein distance dL(s, t) in equation (5) with
the Levenshtein distance per site d′

L(s, t) = dL(s, t)∕max{|s|, |t|}.

3.2. Proposed Estimator of the 𝜷 Diversity Index and Its Strong Consistency
In this subsection, we construct an estimator of the 𝛽 diversity index (6) between populations of sequences
introduced in the previous subsection, and we demonstrate that this estimator (described in equation (7)
below) has the property of strong consistency (i.e., the estimator (7) based on samples converges to the 𝛽

diversity index (6) between populations with probability of 1 as the sample sizes increase). Let {𝜎1, · · · , 𝜎m}
and {𝜏1, · · · , 𝜏n} be sequences of independent random strings that have the identical distributions p,q ∈ ,
respectively. We denote realizations of 𝜎i for each i = 1, · · · ,m and 𝜏j for each j = 1, · · · , n by si and tj ,
respectively, and set S(m) = {s1, · · · , sm} and T (n) = {t1, · · · , tn}. We formulate the problem of measuring the
𝛽 diversity between sequence populations using sequence data as the problem of estimating d𝛽(p,q) based
on S(m) and T (n). We estimate 𝛿p,q(s) by

𝛿S(m) ,T (n) (s) =

⎧⎪⎪⎨⎪⎪⎩

1 (if s ∈ S(m) ∩ T (n))
min{dL(s, t) ∶ t ∈ T (n)} + 1 (if s ∈ S(m) and s ∉ T (n))
min{dL(s, t) ∶ t ∈ S(m)} + 1 (if s ∉ S(m) and s ∈ T (n))
an arbitrary real number ≥ 1 (if s ∉ S(m) ∪ T (n))

and then d𝛽(p,q) by

d̂𝛽 (p,q) =
∑

s∈S(m)∪T (n)

𝛿S(m) ,T (n) (s)|p̂S(m) (s) − q̂T (n) (s)|, (7)

where p̂S(m) (s) and q̂T (n) (s) represent the relative frequencies of s ∈ A∗ in S(m) and T (n), respectively. The
following result can be obtained regarding the accuracy of estimator (7):

Proposition 1: In the above setting, d̂𝛽(p,q) is a strongly consistent estimator of d𝛽(p,q) for any p,q ∈ .

The proof of this proposition is provided in section A2.

4. Results

In this section, we first examine the usefulness of our proposed method in practical data analysis by apply-
ing it to estimate the 𝛽 diversities between the archaeal communities in the eight layers below the seafloor
off the east coast of the Shimokita Peninsula. We subsequently construct a quantitative model of the
archaeal 𝛽 diversity patterns, in which several geochemical variables, such as the abundances of carbon and
chlorine in the layers, are used as the environmental variables.

4.1. Estimation of the Archaeal 𝜷 Diversities
In this subsection, we estimate the 𝛽 diversities between the eight archaeal communities by applying the
method proposed in the previous section and existing methods to the environmental samples of 16S ribo-
somal RNA gene sequences collected from these communities and then compare the results. Material flux is
expected to exist in the sedimentary layers where the samples were collected [see, for example, Elderfield et
al., 1999; D’Hondt et al., 2004]. Therefore, the archaeal communities in the close layers are inferred to be sim-
ilar, and the 𝛽 diversity between these communities would be small. (i) Therefore, if an estimating method
produces estimates that are remarkably inconsistent with the order of layers of 𝛽 diversities between the
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communities, the method likely has some problems. The eighth layer is considerably deeper than the other
seven, as described in section 2.2. (ii) Thus, for the same reason, a method that estimates that the 𝛽 diversi-
ties between the communities in the eighth and other seven layers are less than those in the first to seventh
layers would be considered inaccurate. Furthermore, the first layer is a subsurface layer, and consequently,
a biological disturbance would more frequently occur by currents and other factors in the first layer than
in the other seven. (iii) Therefore, a method that estimates that the 𝛽 diversities between the communi-
ties in the first and other seven layers are less than those in the second to eighth layers is thought to be
problematic. In the following paragraph, we examine estimation results using these three criteria.

We estimated the 𝛽 diversities between the archaeal communities in the eight layers using the Sørensen
index [Dice, 1945; Sørensen, 1948], the Bray-Curtis index [Bray and Curtis, 1957], and the Morishita-Horn
index [Morisita, 1959; Horn, 1966], along with our proposed estimator, and then, we applied multidimen-
sional scaling (MDS) [Torgerson, 1952] to the estimated 𝛽 diversities to position the eight communities on
the plane (Figures 1a–1d). Translation and scale transformation were applied to the two-dimensional coor-
dinates that were obtained by MDS to facilitate the comparisons. The Sørensen index does not account for
both the frequencies of the sequences and the divergences between sequences, whereas the Bray-Curtis
and Morishita-Horn indices consider the frequencies of the sequences but do not consider the divergences
between sequences. First, Figure 1a presents the results from the Sørensen index. In this figure, the commu-
nities in the first and eighth layers were located near to those in the second and sixth layers, respectively,
and the communities in the first and eighth layers were not separated from those in the other six layers.
In addition, the distances from the community in the eighth layer to those in the first, second, and fourth
layers were almost equal to the distances from the communities in the fifth and sixth layers to those in the
first, second, and fourth layers, respectively. Next, the results from the Bray-Curtis index, which are shown in
Figure 1b, were similar to those obtained from the Sørensen index. The communities in the first and eighth
layers were not separated from those in the other layers, and the locations of the communities were incon-
sistent with the order of layers. In Figure 1c, which presents the results from the Morishita-Horn index, the
community in the first layer was not separated from those in the other seven layers, and the inconsistency
between the locations of the communities and the order of layers was remarkable. Moreover, the distances
from the community in the eighth layer to those in the first, second, and fourth layers were less than the
distances from the communities in the third and sixth layers to those in the first, second, and fourth layers,
respectively. Finally, the results from our method are provided in Figure 1d. In this figure, the communities
in the first and eighth layers were located far from those in the other layers, and the locations of the eight
communities were more consistent with the order of layers than in the results from the other methods. The
communities in the second, third, and fourth layers were located in the same neighborhood in the result
from our method, unlike from the other methods. These three layers can be interpreted as the limit of the
movement of microorganisms by flux.

As described in section 1, not considering the frequencies of the sequences implies the identification of two
communities as long as a list of the types of sequences in one community is equal to that of the other, even
if the frequency distributions of sequences are different between the two communities. Not considering the
divergences between sequences implies that when sequence S belongs to community A but not to com-
munity B, we identify the case in which community B includes sequences that are very similar to sequence
S and the case in which any sequence in community B is different from sequence S. In the previous section,
we introduced the new index of 𝛽 diversity between sequence populations to handle these problems, and
we theoretically demonstrated that our proposed estimator based on sequence data could accurately esti-
mate the 𝛽 diversity index. From the above results, our method appeared to be useful in the estimation of
the 𝛽 diversity between microbial communities with sequence data.

4.2. Modeling the Archaeal 𝜷 Diversity Patterns Along Geochemical Gradients
In this subsection, we construct a quantitative model of the archaeal 𝛽 diversity patterns under the seafloor
along geochemical gradients by using the archaeal 𝛽 diversities estimated in the previous subsection and
data on the abundances of several elements and compounds in the eight layers below the seafloor. We first
listed candidates for independent variables of the model on the basis of Pearson’s correlation coefficients.
The 𝛽 diversity between two communities is a type of distance between them. Therefore, correlation coeffi-
cients must be calculated between the 𝛽 diversities and the absolute values of the differences between the
layers in the abundances of elements or compounds because the abundance of an element or compound
is expressed as a real number, and the distance between two real numbers is the absolute value of the dif-
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Figure 1. Results of applying MDS to the 𝛽 diversities between the archaeal communities in the eight layers below
the seafloor. Each number in the figure represents the layer number (see section 2). (a) The Sørensen index, (b) the
Bray-Curtis index, (c) the Morishita-Horn index, and (d) the 𝛽 diversity index proposed in this study. Here 𝛼1 and 𝛼2 are
the greatest and second-greatest eigenvalues of the matrix Y = (yij), respectively, and x1 and x2 are the eigenvectors

for 𝛼1 and 𝛼2, respectively, where yij = −
(
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diversity between archaeal communities in the ith and jth layers for each i, j = 1, · · · , 8.

ference between them. Table 1 presents the Pearson’s correlation coefficients between the estimates of 𝛽
diversity from our proposed method between the archaeal communities and the absolute values of the dif-
ferences in the concentrations of SO2−

4 (mM), Cl− (mM), Br+ (μm), I (μM), methane (μM), bulk-CN sulfur (wt %),
bulk-CN carbon (wt %), and bulk-CN nitrogen (wt %) between the eight layers. Henceforth, bulk-CN sulfur,
bulk-CN carbon, and bulk-CN nitrogen are abbreviated as S, C, and N, respectively. From this table, we can
see that the 𝛽 diversity pattern of the archaeal communities has intermediate correlations with I, C, and N
and a strong correlation with Cl−.

For comparison, we calculated Pearson’s correlation coefficients between each of the other 𝛽 diver-
sity indices (the Anderberg [1973], Bray-Curtis [Czekanowski, 1909; Bray and Curtis, 1957], Jaccard [1900],

Table 1. Pearson’s Correlation Coefficients of the Estimated 𝛽 Diversities Between
the Archaeal Communities in the Eight Layers and the Absolute Values of the
Differences Between the Eight Layers in the Abundances of the Eight Types of
Elements and Compounds

SO2−
4 Cl− Br+ I Methane S C N

0.1527 0.7608 0.3783 0.5378 0.1289 0.0199 0.6546 0.4473
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Morishita-Horn [Morisita, 1959; Horn, 1966], Ochiai [1957], Sørensen [Dice, 1945; Sørensen, 1948], and
Whittaker [1960] indices) and the absolute values of the differences between the layers in the abundances
of the above eight types of elements and compounds. The correlation coefficients between the following
pairs were greater than 0.3: the Anderberg index and Cl− (0.3429); the Bray-Curtis index and Cl−, I, C, and
N (0.4463, 0.3170, 0.3237, and 0.3150); the Jaccard index and Cl− (0.3431); the Morishita-Horn index and
Cl− (0.3023); the Ochiai index and Cl− (0.3435); the Sørensen index and Cl− (0.3434); and the Whittaker index
and Cl− (0.3434). There were no pairs between which the correlation coefficients were greater than 0.5.
Although strong correlations were not found between the 𝛽 diversity indices developed previously and the
abundances of the studied elements, the elements with the highest correlations were those that were highly
correlated with the 𝛽 diversity index proposed in this study.

Therefore, we first examined the linear regression model with these four variables

𝛽ii′ = b0 + b1|Δii′Cl−| + b2|Δii′ I| + b3|Δii′C| + b4|Δii′N| + 𝜀ii′ , (8)

i = 1, · · · , 7, i′ = i + 1, · · · , 8

as a model of the archaeal 𝛽 diversity patterns. 𝛽ii′ represents the 𝛽 diversity between the archaeal com-
munities in the ith and i′th layers, and Δii′X denotes the difference in the abundances of X between the ith
and i′th layers for each X = Cl−, I, C, and N. 𝜀ii′ is an error term, and it is assumed that {𝜀ii′ } has (i) no serial
correlation and (ii) homoscedasticity and is (iii) the normal process, which will be tested below.

We estimated the model in equation (8) and the model without the intercept b0 by the least-squares
method. The result for the latter was relatively good and is given as follows (note that the equation without
the intercept is more reasonable than the equation with the intercept as a 𝛽 diversity pattern model):

𝛽ii′ = 1.3409|Δii′Cl−| + 0.3304|Δii′ I| + 26.0720|Δii′C| + 63.8382|Δii′N|
(0.0704) (0.0222) (0.3089) (0.7278)

F = 43, 0798(1.28 × 10−10), R2 = 0.8778, R̄2 = 0.8574.

For each j = 1, · · · , 4, the value in the parentheses under the estimate of the regression coefficient bj rep-
resents the p value for the t statistic for testing the hypothesis bj = 0. F denotes the F statistic for testing
b1 = b2 = b3 = b4 = 0 against the hypothesis that at least one bj is different from 0, and the value
in the parentheses to the right of F is the p value. R2 and R̄2 represent the ordinary and adjusted coeffi-
cients of determination, respectively. Considering that this model is a model that has difference variables,
not level variables, the values of R2 and R̄2 were much higher than expected. Therefore, the above model
had considerable explanatory power. All of the estimates of regression coefficients were positive, and
thus, they satisfied the sign condition. From the p value for the F statistic, we could reject the hypothesis
b1 = b2 = b3 = b4 = 0. However, the hypotheses b1 = 0, b3 = 0, and b4 = 0 were not rejected because the p
values for the t statistics for testing these hypotheses were large. Therefore, we could not insist that |Δii′Cl−|,|Δii′C|, and |Δii′N| were systematic factors for variations in 𝛽ii′ .

Therefore, we estimated several submodels of equation (8) and obtained the following result:

𝛽ii′ = 1.2040|Δii′Cl−| + 0.3555|Δii′ I| + 33.2933|Δii′C| (9)

(0.0489) (0.0042) (0.0272)
F = 59.4826(1.60 × 10−11), R2 = 0.8771, R̄2 = 0.8624,

DW = 1.9089(0.3739), BG = 0.0046(0.9459), BP = 1.9996(0.3680),
GQ = 0.2884(0.9749), KS = 0.1587(0.4358), RESET = 2.3808(0.1149),

VIF1 = 2.6274, VIF2 = 1.2613, VIF3 = 2.3200.

All of the estimates of the regression coefficients were positive and satisfied the sign condition.

The hypotheses bj = 0 for each j = 1, 2, 3 and b1 = b2 = b3 = 0 were rejected because the p values for
the t and F statistics were sufficiently small. In other words, all of the independent variables of the model in
equation (9) could be statistically regarded as systematic factors for variations in the dependent variable 𝛽ii′ .
Conversely, we tested whether the model was deficient in systematic factors for 𝛽ii′ using Ramsey’s RESET
[Ramsey, 1974]. The test statistic and p value of this test were calculated as 2.3808 and 0.1149, respectively,
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which did not suggest a deficiency in systematic factors for 𝛽ii′ . Therefore, we chose the three variables of|Δii′Cl−|, |Δii′ I|, and |Δii′C| as systematic factors for the variation in 𝛽ii′ .

We next tested whether the error term 𝜀ii′ satisfied the classical conditions under which the accuracy of
least-squares estimates of regression coefficients is guaranteed. (i) DW and BG represent the test statis-
tics of the Durbin-Watson test [Durbin and Watson, 1950, 1951] and Breusch-Godfrey test [Breusch, 1978;
Godfrey, 1978] (tests of serial correlation), (ii) BP and GQ represent the test statistics of the Breusch-Pagan
test [Breusch and Pagan, 1979] and Goldfeld-Quandt test [Goldfeld and Quandt, 1965] (tests of heteroscedas-
ticity), and (iii) KS represents the test statistic of the Kolmogorov-Smirnov test [Kolmogorov, 1933; Smirnov,
1939] (a test of normality). The values provided in the parentheses to the right of these test statistics are
p values. We also tested the higher-order serial correlation (up to the 7th order) of the model’s error term
using the Ljung-Box test [Box and Pierce, 1970; Ljung and Box, 1978]. For each k = 1, · · · , 7, a test statistic LB
(k) of the Ljung-Box test for kth order serial correlation and its p value are as follows: LB (1) = 0.0126 (0.9106),
LB (2) = 1.5472 (0.4613), LB (3) =1.6708 (0.6434), LB (4) = 2.2556 (0.6889), LB (5) = 2.2584 (0.8124), LB
(6) = 2.7268 (0.8423), LB (7) = 5.1480 (0.6419). From these values, we could proceed under the hypothesis
that the error term in the above model satisfied the classical conditions for the least-squares estimators.
Furthermore, there was no possibility of multicollinearity between the independent variables of the model
because the variance inflation factor VIFj for bj was sufficiently small for each j = 1, 2, 3. Therefore, the
least-squares estimates of the regression coefficients were reliable.

Figures 2a and 2b are the plots of 𝛽ii′s and their estimates from the model in equation (9) and of the relative
errors of the model in equation (9), respectively. From these figures, we can see that the estimates from the
model explained variations in 𝛽ii′ very well and that the relative errors of the model had a stable transition
around 0. Furthermore, the ordinary and adjusted coefficients R2 and R̄2 of determination were 0.8771 and
0.8624, respectively, and the above model explained 86–87% of the total variation in the archaeal 𝛽 diver-
sity between the layers below the seafloor. Therefore, the model presented in equation (9) for archaeal 𝛽
diversity patterns had high performance.

5. Discussion

In the previous section, we found that the 𝛽 diversity patterns between the archaeal communities in the
eight layers below the seafloor off the east coast of the Shimokita Peninsula could be explained very well by
the differences in the abundances of Cl−, I, and C between the layers. Why was this result obtained? The 𝛽

diversity between two communities is a type of distance between them. Therefore, there would be groups
of archaea that are positively or negatively correlated with the abundances of these elements in the ana-
lyzed archaeal communities. In this section, we examine the basis for the observed explanatory power of the
model of archaeal 𝛽 diversity patterns by investigating the relationships between the composition of the
archaeal communities and the abundances of the elements in the layers below the seafloor. Subsequently,
we describe future challenges in modeling 𝛽 diversity patterns along geochemical gradients and a further
question raised by the results of this study.

We examined the origins of all archaeal ribosomal RNA gene sequences analyzed in the previous section
using the SILVA database (http://www.arb-silva.de/). They were classified into 31 groups, as shown in Table 2.
The information on the family and genus as well as the species could not be obtained for most sequences.
Hereafter, we abbreviated these 31 archaeal groups by using the number in the leftmost column of Table 2.
For example, Euryarchaeota (phylum) Methanobacteria (class) Methanobacteriales (order) Methanother-
maceae (family) Methanothermus (genus) is Group 17. Table 3 provides the relative frequencies of the 31
archaeal groups in the eight layers. The relative frequencies that are greater than or equal to 5% are in bold.
From this table, we see that Groups 5, 8, 22, and 29 of the 31 groups composed the majority of the sample. In
the following paragraphs, we focus on these four groups because the relative frequencies of the sequences
in the other groups were too small.

We calculated Pearson’s correlation coefficients between the frequencies of the sequences of these four
groups and the abundances of eight types of elements and compounds in the eight layers, as listed in the
first paragraph of section 4.2. The absolute values of the correlation coefficients for the following four pairs
were greater than 0.5: Group 5 and Cl− (0.5942), Group 8 and Cl− (−0.9629), Group 29 and Br+ (−0.6326),
and Group 29 and I (−0.6678). Figure 3a (left) provides the scatterplot of the pairs of the relative frequencies
of the sequences in Group 5 in the eight layers and the abundances of Cl− in the eight layers. The left panels
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Figure 2. Plots (a) of the archaeal 𝛽 diversities and their estimates from the model in equation (9) and (b) of the relative
errors of the model in equation (9). Community pair 1 is the pair of archaeal communities in the first and second layers,
pair 2 is the pair in the first and third layers, · · ·, and pair 28 is the pair in the seventh and eighth layers.

of Figures 3b, 3c, and 3d show the same scatterplots for the pairs of Group 8 and Cl−, Group 29 and Br+, and
Group 29 and I, respectively. In these panels, the correlations between the frequencies of sequences and
the abundances of elements are shown. Figure 3a (right) was prepared by plotting the pairs of the differ-
ences in the relative frequencies of the sequences in Group 5 between the layers and the differences in the
abundances of Cl− between the layers. The right panels of Figures 3b, 3c, and 3d were prepared for the pairs
of Group 8 and Cl−, Group 29 and Br+, and Group 29 and I, respectively, in the same manner. In these right
panels, the points in the first and third quadrants (shown in green) indicate a positive correlation, whereas
the points in the second and fourth quadrants (shown in red) instead indicate a negative correlation. More
than 75% of all 28 points were located in the first and third quadrants in Figure 3a (right) and in the second
and fourth quadrants in the right panels of Figures 3b, 3c, and 3d. Therefore, these panels also support the
presence of correlations between the frequencies of sequences and the abundances of elements. These cor-
relations would underlie the high explanatory power of the model of archaeal 𝛽 diversity patterns obtained
in the previous section. Thus, the results in the previous section do not appear to be an artifact.

As described in section 1, the environmental variables such as (i) latitude, (ii) altitude, (iii) sea depth, (iv)
temperature, (v) salinity, (vi) areas, and (vii) internal organs and skin of subjects have been used in the mod-
eling of 𝛽 diversity patterns in previous studies. For example, it is believed that a change in altitude leads
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Figure 3. Scatterplots (a–d) of the pairs of the abundances of Cl−, Br+, and I in the eight layers and the relative frequen-
cies of the sequences in Groups 5, 8, and 29 in the eight layers (left) and of the pairs of the differences in the abundances
of Cl−, Br+ , and I between the eight layers and the differences in the relative frequencies of the sequences in Groups 5,
8, and 29 between the eight layers (right).
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Table 2. Classification of Archaeal Groups From Which the 16S Ribosomal RNA Gene Sequences in the Environmental Samples Originated

Group Phylum Class Order Family Genus

1 Ancient Archaeal Group unclassified unclassified unclassified unclassified
2 Crenarchaeota AK56 unclassified unclassified unclassified
3 Crenarchaeota AK59 unclassified unclassified unclassified
4 Crenarchaeota Group C3 unclassified unclassified unclassified
5 Crenarchaeota Marine Benthic Group B unclassified unclassified unclassified
6 Crenarchaeota Marine Group I Candidatus Nitrosopumilus unclassified unclassified
7 Crenarchaeota Marine Group I uncultured unclassified unclassified
8 Crenarchaeota Miscellaneous Crenarchaeotic Group unclassified unclassified unclassified
9 Crenarchaeota Soil Crenarchaeotic Group unclassified unclassified unclassified
10 Crenarchaeota Terrestrial Hot Spring Group unclassified unclassified unclassified
11 Crenarchaeota Thermoprotei Desulfurococcales Pyrodictiaceae Pyrodictium
12 Crenarchaeota Z273FA48 unclassified unclassified unclassified
13 Euryarchaeota Halobacteria Halobacteriales Deep Sea Euryarcheotic Group unclassified
14 Euryarchaeota Halobacteria Halobacteriales Halobacteriaceae Natronomonas
15 Euryarchaeota Halobacteria Halobacteriales Marine Hydrothermal Vent Group unclassified
16 Euryarchaeota Halobacteria Halobacteriales SM1K20 unclassified
17 Euryarchaeota Methanobacteria Methanobacteriales Methanothermaceae Methanothermus
18 Euryarchaeota Methanomicrobia ANME-1 ANME-1a unclassified
19 Euryarchaeota Methanomicrobia Methanocellales BS-K-E9 unclassified
20 Euryarchaeota Methanomicrobia Methanosarcinales Methanosarcinaceae Methanococcoides
21 Euryarchaeota Methanomicrobia Methanosarcinales Methermicoccaceae Methermicoccus
22 Euryarchaeota Thermoplasmata South African Goldmine Group unclassified unclassified
23 Euryarchaeota Thermoplasmata Thermoplasmatales 20c-4 unclassified
24 Euryarchaeota Thermoplasmata Thermoplasmatales AMOS1A-4113-D04 unclassified
25 Euryarchaeota Thermoplasmata Thermoplasmatales ANT06-05 unclassified
26 Euryarchaeota Thermoplasmata Thermoplasmatales Amsterdam-1A-44 unclassified
27 Euryarchaeota Thermoplasmata Thermoplasmatales CCA47 unclassified
28 Euryarchaeota Thermoplasmata Thermoplasmatales MKCST-A3 unclassified
29 Euryarchaeota Thermoplasmata Thermoplasmatales Marine Benthic Group D and DHVEG-1 unclassified
30 Euryarchaeota Thermoplasmata Thermoplasmatales Marine Group III unclassified
31 Euryarchaeota Thermoplasmata Thermoplasmatales VC2.1 Arc6 unclassified

to changes in the temperature, pressure, and partial pressure of oxygen, and consequently, the community
structure varies. Therefore, (i), (ii), (iii), (vi), and (vii) among these seven can be considered a composite of
several variables. The point here is that using such composite variables as environmental variables in model-
ing 𝛽 diversity patterns does not necessarily reveal key factors for determining 𝛽 diversity patterns because
they are composed of an unknown number of unspecified variables. Furthermore, the relations between 𝛽

diversity and environmental variables are typically presented not by a numerical equation but in a graph-
ical manner [see, for example, Qian and Ricklefs, 2007; Miller et al., 2009]. However, using this graphical
approach, it is difficult to increase the explanatory and predictive power of a model over the course of
successive studies.

In this study, we adopted the abundances of elements, not composite variables, as environmental vari-
ables, and we presented the model of 𝛽 diversity patterns in the form of a numerical equation with respect
to these variables. Consequently, it became possible to take the research direction of refining the model
through the examination of a function form and the selection of variables. With respect to the function form,
according to the results in the previous section, the linear function works sufficiently well, but the reason for
this positive result is not clear. Why the linear function can serve as an approximate model and whether a
more appropriate function form can be found will be the topic of future research.

Another challenge is to provide a biogeochemical foundation for the selection of variables in the model.
With regard to archaeal metabolism, methanogenesis and anaerobic methane oxidation in the Eur-
yarchaeota and ammonia oxidation in the Crenarchaeota have been reported. See Großkopf et al. [1998],
Chouari et al. [2005], and Sakai et al. [2007] for methanogenesis; Brazelton et al. [2006] and Schleper [2007]
for anaerobic methane oxidation; and Nunoura et al. [2005], Nicol and Schleper [2006], Schleper [2007], Teske
and Sørensen [2007], de la Torre et al. [2008], and Hatzenpichler et al. [2008] for ammonia oxidation. How-
ever, it has been revealed that uncultivated archaeal groups are dominant and that methanogens and
anaerobic methane-oxidizing archaea are minorities under the seafloor [Teske and Sørensen, 2007]. Only a
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Table 3. Relative Frequencies of the Sequences in the 31 Archaeal Groups in the Eight Layers

Layer Group 1 Group 2 Group 3 Group 4 Group 5 Group 6 Group 7 Group 8

1 0.0297 0.0000 0.0000 0.0503 0.2508 0.0042 0.0014 0.1899
2 0.0093 0.0000 0.0000 0.0000 0.6493 0.0018 0.0027 0.0502
3 0.0677 0.0000 0.0000 0.0098 0.3041 0.0000 0.0017 0.0499
4 0.0117 0.0000 0.0000 0.0132 0.7860 0.0000 0.0000 0.0183
5 0.0108 0.0000 0.0000 0.0573 0.0596 0.0000 0.0000 0.1092
6 0.0640 0.0000 0.0000 0.0357 0.5470 0.0009 0.0000 0.0546
7 0.0059 0.0000 0.0000 0.0220 0.2444 0.0050 0.0000 0.0984
8 0.0086 0.0007 0.0094 0.0134 0.0805 0.0000 0.0000 0.7371

Layer Group 9 Group 10 Group 11 Group 12 Group 13 Group 14 Group 15 Group 16

1 0.0028 0.0014 0.0021 0.0000 0.0021 0.0000 0.0354 0.0014
2 0.0009 0.0000 0.0000 0.0000 0.0000 0.0000 0.0167 0.0000
3 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0115 0.0000
4 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0066 0.0000
5 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0263 0.0000
6 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0489 0.0000
7 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
8 0.0000 0.0031 0.0000 0.0015 0.0023 0.0023 0.0055 0.0000

Layer Group 17 Group 18 Group 19 Group 20 Group 21 Group 22 Group 23 Group 24

1 0.0014 0.0000 0.0007 0.0007 0.0000 0.0021 0.0007 0.0000
2 0.0000 0.0000 0.0009 0.0000 0.0000 0.0093 0.0000 0.0009
3 0.0026 0.0008 0.0000 0.0000 0.0000 0.0276 0.0000 0.0000
4 0.0007 0.0022 0.0000 0.0000 0.0000 0.0007 0.0000 0.0014
5 0.0000 0.0023 0.0000 0.0000 0.0000 0.3702 0.0000 0.0000
6 0.0000 0.0009 0.0000 0.0000 0.0000 0.0018 0.0000 0.0000
7 0.0000 0.0050 0.0000 0.0000 0.0203 0.4337 0.0000 0.0000
8 0.0173 0.0047 0.0000 0.0000 0.0039 0.0363 0.0000 0.0000

Layer Group 25 Group 26 Group 27 Group 28 Group 29 Group 30 Group 31

1 0.0007 0.0014 0.0042 0.0035 0.4089 0.0014 0.0021
2 0.0000 0.0000 0.0000 0.0000 0.2576 0.0000 0.0000
3 0.0000 0.0053 0.0008 0.0008 0.5165 0.0000 0.0000
4 0.0014 0.0000 0.0007 0.0014 0.1551 0.0000 0.0000
5 0.0000 0.0000 0.0000 0.0000 0.3640 0.0000 0.0000
6 0.0000 0.0000 0.0009 0.0000 0.2448 0.0000 0.0000
7 0.0000 0.0000 0.0033 0.0008 0.1604 0.0000 0.0000
8 0.0000 0.0000 0.0000 0.0000 0.0726 0.0000 0.0000

minor portion of the genetic information of uncultivated diverse archaeal groups has been obtained, with
the exception of ribosomal small-subunit RNAs, and details of their metabolism have not been revealed.
Therefore, it is difficult to provide variable selection in the model of the archaeal 𝛽 diversity patterns with a
biogeochemical foundation based on the present knowledge of archaeal metabolism.

However, results that support the selection of variables in our model were reported in a previous study.
Lozupone and Knight [2007] clustered the environmental samples of 21,752 bacterial 16S ribosomal
RNA sequences compiled from 111 studies of various environments by the phylogenetic lineages that
they contain by applying principal coordinate analysis [Gower, 1966] and hierarchical clustering [Sokal and
Michener, 1958] to a matrix of UniFrac [Lozupone and Knight, 2005] distances. They reported that a key factor
for determining the presence or absence of bacterial lineages among environments was salinity rather
than temperature, pH, or other factors represented in their samples, although determinations of salinity in
their study are not direct measurements of salt concentration but instead are qualitative and based on the
habitat descriptions. This finding supports the inclusion of Cl− in the environmental variables of the model
of 𝛽 diversity patterns because Cl− is a proxy of salinity. The correlation between Br+ and Group 29 indi-
cated by Figure 3c and the correlation coefficient in the third paragraph of section 5 also is of interest. Br
and the variables Cl and I in the archaeal 𝛽 diversity pattern model are all halogens. In previous studies on
archaeal metabolism, little attention has been paid to these halogens, which exist in bulk in seawater and
the crust, compared to the attention that carbon, nitrogen, and sulfur have received. A negative correlation
between the frequency of an archaeal group and the abundance of an element or compound might arise if
the group avoids environments where the element or compound is abundant. A positive correlation might
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be observed if the group produces energy from the element or compound (or if the group produces the
element or compound as a metabolic product, although this possibility is less likely). Novel findings are
awaited with respect to the metabolism of the above archaeal groups.

In this study, we defined the 𝛽 diversity index between two biological communities according to the extent
to which the total sequences of individuals in the two communities varied. We constructed the estimator of
the 𝛽 diversity index based on sequence data and, using the theory of random strings developed by Koyano
and Kishino [2010], demonstrated that the proposed estimator converges to the 𝛽 diversity index between
populations with probability of 1 as the number of collected sequences increases. Furthermore, we applied
the developed method to environmental samples of 16S ribosomal RNA gene sequences collected from
archaeal communities in the layers below the seafloor off the east coast of the Shimokita Peninsula, and
we described the estimated archaeal 𝛽 diversity patterns using a quantitative equation incorporating vari-
ables of the differences between layers in the abundances of several elements. It is reasonable to predict
that archaeal communities in layers vary more the farther apart the layers are because layers are deposited
in chronological order. However, as shown in section 4.2, a more important determinant of the 𝛽 diversity
patterns of the archaeal communities in the layers below the seafloor off the east coast of the Shimokita
Peninsula is the differences in the abundances of Cl−, I, and C between the layers rather than the order of
the layers. This finding suggests that the elements in the surrounding environment strongly influence the
evolution of archaeal communities.

In general, previous studies of 𝛽 diversity have measured 𝛽 diversity between communities in different areas
at a fixed point in time and have attempted to identify the determinants of the measured 𝛽 diversity. The
present study also models archaeal 𝛽 diversity patterns within this time-fixed, varied-area framework. In
contrast to this framework, by fixing area rather than time, we can consider the problem of developing an
equation that describes how a microbial community interacts with the environment in an area and how
both the community and environment change over time. In the long history of life on earth, while microor-
ganisms have evolved to adapt to environments, they have also altered environments by forming metabolic
systems. Therefore, such an equation would be fundamental in biogeoscience if it can be obtained. How-
ever, it is impossible to collect environmental samples of 16S ribosomal RNA gene sequences from microbial
communities and to measure the abundances of various elements and compounds in an environment over
the long term. Instead, can we approach this problem in an alternative way using environmental samples of
16S ribosomal RNA gene sequences collected from microbial communities and data that represent material
abundance in different layers, as analyzed in this study? It is the next methodological challenge to extend
the method and approach used in this study toward constructing a model that describes the variation of
an environment and the evolution of a microbial community with time through their interaction using the
information on the age of layers and incorporating corrections to consider material flux and the movement
of microorganisms by flux between layers.

Appendix A: Summary of Probability Theory for Strings and a Proof of the Strong
Consistency of the 𝜷 Diversity Estimator

A1. Random Strings
In this subsection, we describe definitions for several concepts in probability theory on a set of strings used
in section 3. See the online supplemental material of Koyano and Kishino [2010] for details. In the following
paragraphs, we refer to a set of a finite number of letters

A = {a1, · · · , ac−1}

as the alphabet. For example, A = {a, c, g, t} is an alphabet for gene sequences. Let us denote the empty
letter by e. We set Ā = A ∪ {e} and call Ā the extended alphabet. We set Ak = {(x1, · · · , xk) ∶ x1, · · · , xk ∈ A}
for any k ∈ Z+. Āk is defined in a similar manner. Let (Ω,𝔉, P) be a probability space. We denote the power
set of a set X by 2X . We refer to an Ā-valued random variable on Ω as a random letter and denote the set of
all random letters by (Ω, Ā), that is,

(Ω, Ā) = {𝛼 ∶ Ω → Ā ∶ 𝛼−1(B) ∈ 𝔉, B ∈ 2Ā}.

For the mapping 𝜖 ∶ Ω → Ā that is defined as 𝜖(𝜔) = e for any 𝜔 ∈ Ω, we have 𝜖 ∈ (Ω, Ā). In common
usage in computer science, a string on the alphabet A = {a1, · · · , ac−1} is a finite sequence of elements of A.
However, in this study, we define a string as follows, although both definitions are essentially identical.

KOYANO ET AL. ©2014. American Geophysical Union. All Rights Reserved. 1784



Journal of Geophysical Research: Biogeosciences 10.1002/2014JG002676

Definition 3: A sequence s = {xi ∈ Ā ∶ i ∈ Z+} of elements of Ā is a string on A if it satisfies the
following conditions:

(i) there exists k ∈ Z
+ such that xk = e, and (ii) x𝓁 = e implies x𝓁+1 = e.

In other words, we define a string on A as a finite sequence of elements of A to which the infinite sequence
(e, · · ·) of the empty letter is appended. In the following definition (Definition 4), by naturally extending the
above definition of a string, we define a random string in a manner in which it can realize strings of varying
lengths. We denote the set of all strings on A by A∗. A function | ⋅ | ∶ A∗ → N is defined as

|s| = min{j ∈ Z
+ ∶ xj = e} − 1, s = {xi ∶ i ∈ Z

+}

and called the length on A∗.

Definition 4: A sequence of random letters 𝜎 = {𝛼i ∈ (Ω, Ā) ∶ i ∈ Z+} is a random string if it satisfies the
following conditions:

(i) for any 𝜔 ∈ Ω there exists k ∈ Z
+ such that 𝛼k(𝜔) = e, and

(ii) 𝛼𝓁(𝜔) = e for 𝜔 ∈ Ω implies 𝛼𝓁+1(𝜔) = e.

We denote the set of all random strings by (Ω,A∗). A function | ⋅ | ∶ (Ω,A∗) → N is defined as

|𝜎| = min{j ∈ Z
+ ∶ 𝛼j = 𝜖} − 1, 𝜎 = {𝛼i ∶ i ∈ Z

+}

and called the length on (Ω,A∗). The random string that was defined in Definition 4 can be regarded as a
special case of a discrete stochastic process. Therefore, the finite-dimensional distribution of a random string
and the independence of random strings are defined as follows.

Definition 5: Let 𝜎 = {𝛼i ∶ i ∈ Z+} ∈ (Ω,A∗). A set function Q𝜎;i1 ,···,ik
∶ 2Āk

→ [0, 1] is defined as

Q𝜎;i1 ,···,ik
(B) = P

({
𝜔 ∈ Ω ∶ (𝛼i1

(𝜔), · · · , 𝛼ik
(𝜔)) ∈ B

})
for each k ∈ Z+ and i1, · · · , ik ∈ Z+ that satisfies i1 < · · · < ik . Q𝜎;i1 ,···,ik

is a probability measure on 2Āk
and is

called the finite-dimensional distribution of 𝜎 at sites i1, · · · , ik . A function q𝜎;i1 ,···,ik
∶ Āk → [0, 1] is defined as

q𝜎;i1 ,···,ik
(x1, · · · , xk) = Q𝜎;i1 ,···,ik

(
{(x1, · · · , xk)}

)
and called the probability function of Q𝜎;i1 ,···,ik

.

Definition 6: (1) Finite case. 𝜎1 = {𝛼1j ∶ j ∈ Z+}, · · · , 𝜎n = {𝛼nj ∶ j ∈ Z+} ∈ (Ω,A∗) are independent if
(𝛼1j ∶ j ∈ I1), · · · , (𝛼nj ∶ j ∈ In) are independent for any nonempty finite set I1, · · · , In ⊂ Z+. (2) Countably
infinite case. {𝜎i ∶ i ∈ Z+} ⊂ (Ω,A∗) are independent if 𝜎i1

, · · · , 𝜎ik
are independent for any k ∈ Z+ and

i1, · · · , ik ∈ Z+.

A2. Proof of Proposition 1
In this subsection, the proof of Proposition 1 described in section 3.2 is provided.

We denote the number of elements of a countable set X by ♯X . Setting Wk ={s ∈ A∗ ∶ |s|= k} for any
k ∈ N, we have ♯Wk = (c − 1)k . Therefore, the number of strings whose length is less than or equal to
𝓁 can be represented as

∑𝓁
k=0(c − 1)k . Thus, noting that

∑𝓁
k=0(c − 1)k <∞ holds for 𝓁 <∞ and the defini-

tion of a string (Definition 3), we have ♯A∗ <∞, and thus, there exists r ∈ Z+ such that we can write
A∗ = {u1, · · · , ur}. We first consider the population that has the probability function p. We define an
r-dimensional random vector X i = (Xi1, · · · , Xir) by setting

Xij = 1 and Xij′ = 0 for j′ ∈ {1, · · · , r} − {j}

if uj is observed in the ith observation from this population for each i ∈ {1, · · · ,m}. X i has a multinomial
distribution with the number of trials 1 and the success probabilities p(u1), · · · ,p(ur), and therefore, the
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expectation vector of X i is given by (p(u1), · · · ,p(ur)). Because 𝜎1, · · · , 𝜎m are independent, X1, · · · ,Xm are
also independent. Thus, applying the strong law of large numbers in Rr , we have

1
m

m∑
i=1

X i

a.s.
−→ (p(u1), · · · ,p(ur)) (m −→ ∞),

where
a.s.
−→ represents almost sure convergence. Thus, noting (1∕m)

∑m
i=1 X i = (p̂S(m) (u1),

· · · , p̂S(m) (ur)) gives

p̂S(m) (uj)
a.s.
−→ p(uj) (m −→ ∞) (A1)

for each j ∈ {1, · · · , r}. For the other population that has the probability function q, we obtain

q̂T (n) (uj)
a.s.
−→ q(uj) (n −→ ∞) (A2)

for each j ∈ {1, · · · , r} in the same manner. Noting equations (A1) and (A2) and applying the continuous
mapping theorem [Mann and Wald, 1943] leads to

|p̂S(m) (uj) − q̂T (n) (uj)| a.s.
−→ |p(uj) − q(uj)| (m, n −→ ∞). (A3)

We have ♯Dp < ∞ for the support Dp of p because Dp ⊂ A∗, and therefore, we write Dp = {u′
1, · · · , u′

r′
}.

Combining equation (A1) and p(u′
1), · · · ,p(u′

r′
) > 0, we see that for any j ∈ {1, · · · , r′}, there exists mj ∈ Z+

such that if m ≥ mj ,

Xij ≥ 1 a.s.

holds for at least one i ∈ {1, · · · ,m}, where a.s. represents that a statement in front of it holds with proba-
bility of 1. Thus, setting m∗ = max{m1, · · · ,mr′ }, we have S(m) = Dp a.s. for any m ≥ m∗. We find that if we
choose a sufficiently large n∗ ∈ Z+, T (n) = Dq a.s. holds for any n ≥ n∗ in the same manner. Thus, if m ≥ m∗

and n ≥ n∗ for such m∗ and n∗,

𝛿S(m) ,T (n) (s) = 𝛿p,q(s) a.s. (A4)

holds. Noting equations (6), (7), (A3), and (A4) and applying the continuous mapping theorem, we obtain

d̂𝛽(p,q)
a.s.
−→ d𝛽 (p,q) (m, n −→ ∞).

Thus, the strong consistency of d̂𝛽(p,q) has been demonstrated.
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