
Title Property A and the operator norm localization property for
discrete metric spaces

Author(s) Sako, Hiroki

Citation Journal für die reine und angewandte Mathematik (2012),
2014(690): 207-216

Issue Date 2012-07-17

URL http://hdl.handle.net/2433/198726

Right © De Gruyter

Type Journal Article

Textversion publisher

Kyoto University

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Kyoto University Research Information Repository

https://core.ac.uk/display/39322046?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


J. reine angew. Math. 690 (2014), 207–216 Journal für die reine und angewandte Mathematik
DOI 10.1515/crelle-2012-0065 © De Gruyter 2014

Property A and the operator norm localization
property for discrete metric spaces

By Hiroki Sako at Kyoto

Abstract. We study property A defined by G. Yu and the operator norm localization
property defined by X. Chen, R. Tessera, X. Wang, and G. Yu. These are coarse geometric prop-
erties for metric spaces, which have applications to operator K-theory. It is proved that the two
properties are equivalent for discrete metric spaces with bounded geometry.

1. Introduction

Coarse geometry is the study of large scale uniform structure on a space, which is related
to operator K-theory. In this paper we investigate the following coarse geometric properties on
metric spaces: property A and the operator norm localization property. It is proved that these
two properties are equivalent for metric spaces with bounded geometry.

Property A was introduced by G. Yu in [18, Definition 2.1]. A discrete metric space is said
to have property A if the space satisfies a condition regarding amenability. Yu [18] proved that
the property guarantees the coarse Baum–Connes conjecture for metric space. The most inter-
esting case is when the metric space is given by a discrete group. The Novikov higher signature
conjecture holds for every discrete group � with the property [10, Theorem 1.1]. Property A
for a discrete group can be characterized by exactness of the reduced group C�-algebra. This
follows from theorems by Anantharaman-Delaroche and Renault [1], Higson and Roe [11],
and Ozawa [13].

X. Chen, R. Tessera, X. Wang, and G. Yu introduced the operator norm localization prop-
erty in [4, Definition 2.2 and Definition 2.3]. They applied this notion to prove that the coarse
geometric Novikov conjecture holds for certain sequences of expanders [4, Theorem 7.1].

It has already been known that property A and the operator norm localization property
(ONL) have the following common features.

� Finiteness of asymptotic dimension implies these properties. We refer to [11] (property
A) and [4] (ONL).

� If two groups have property A (resp. ONL), then an amalgamated free product has prop-
erty A (resp. ONL). We refer to [14] (property A) and [4] (ONL).
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208 Sako, Property A and ONL

� If a group � is a hyperbolic relative to subgroups with property A (resp. ONL), then �
has property A (resp. ONL). We refer to [14] (property A) and [5] (ONL).

� Every countable subgroup of the general linear group over a field has these properties.
We refer to [8] (property A) and [9] (ONL).

� A sequence of expander graphs is an counterexample for these properties. We refer to [4]
(ONL).

A C�-algebra C �u .X/, called uniform Roe algebra, is associated to a metric spaceX with
bounded geometry. Skandalis, Tu, and Yu [16, Theorem 5.3] proved that X has property A
if and only if the uniform Roe algebra is nuclear (see also Roe [15, Proposition 11.41] and
Brown–Ozawa [3, Theorem 5.5.7]). Nuclearity can be characterized by a finite-dimensional
approximation property (Choi–Effros [6], Kirchberg [12]). To obtain the equivalence between
property A and the operator norm localization property, we manipulate approximations by
completely positive maps on the uniform Roe algebra.

In the last section, we make comments on a work by Brodzki, Niblo, Špakula, Willett,
and Wright. By the main theorem in this paper and their result, it turns out that two properties
(MSP and ULA�) are equivalent to property A.

2. Preliminaries

2.1. Metric space with bounded geometry and uniform Roe algebra. We fix some
notations on a metric space .X; d/ and recall the definition of the uniform Roe algebra C �u .X/.
For S > 0 and x 2 X , we denote by N.x; S/ the closed ball ¹y 2 X j d.x; y/ � Sº.

Definition 2.1. We say that .X; d/ has bounded geometry if supx2X jN.x; S/j <1 for
all S > 0.

We note that a metric space with bounded geometry is a discrete space. For a bounded lin-
ear operator a on the Hilbert space `2.X/, write ay;z for the matrix coefficient haız; ıyi 2 C.
The operator a has the expression a D Œay;z�y;z2X . We define the propagation of a by

sup¹d.y; z/ j y; z 2 X; ay;z ¤ 0º:

Let ER be the set of all the operators on `2.X/ whose propagations are at most R. The unionS
ER is a �-subalgebra of B.`2.X//. See the book [15] for details.

Definition 2.2. The C�-algebra defined by the closure

C �u .X/ D
[
R>0

ER
norm

is called the uniform Roe algebra of X .

2.2. Property A. The definition of property A was given by G. Yu.

Definition 2.3 ([18, Definition 2.1]). A discrete metric space .X; d/ is said to have
property A if for every R > 0 and � > 0, there exist S > 0 and finite subsets Ax � X �N
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Sako, Property A and ONL 209

labeled by x 2 X such that

� if d.y; z/ � R, then jAy
a
Azj < �jAy \Azj, where Ay

a
Az stands for the symmetric

difference of Ay and Az ,

� Ax � N.x; S/ �N.

Instead of the definition, we use the conditions (ii) and (iii) in the next proposition.

Proposition 2.4 ([17, Proposition 3.2]). For a metric space X with bounded geometry,
the following conditions are equivalent:

(i) The space X has property A.

(ii) For every � > 0 and R > 0, there exist S > 0 and unit vectors ¹�xºx2X � `2.X/ such
that

� if d.y; z/ � R; then k�y � �zk < �,
� supp.�x/ � N.x; S/ for every x 2 X .

(iii) For every � > 0 andR > 0, there exist S > 0 and a positive definite kernel kWX�X ! C
such that

� k.x; x/ D 1 for every x 2 X ,
� if d.y; z/ � R; then j1 � k.y; z/j < �,
� if d.y; z/ > S; then k.y; z/ D 0.

A function kWX �X ! C is said to be positive definite if for every x.1/; : : : ; x.n/ 2 X
and �1; : : : ; �n 2 C, the inequality

Pn
i;jD1 �i�jk.x.i/; x.j // � 0 holds true.

2.3. The operator norm localization property. X. Chen, R. Tessera, X. Wang, and
G. Yu defined the operator norm localization property in [4]. We call the property “ONL” in
this paper. The original definition is given for a general metric space X . Let � be a positive
locally finite Borel measure on X and let H be a separable infinite-dimensional Hilbert space.
For an operator b on the Hilbert space L2..X; �/;H / D L2.X; �/˝H , the propagation of b
is also defined. See [4, Section 2] for details.

Definition 2.5 ([4, Definition 2.2]). Let � be a positive locally finite Borel measure on a
metric spaceX . Let f be a function f WN ! N. We say that .X; �/ has ONL relative to f with
constant 0 < c � 1 if for every R 2 N and every a 2 B.L2..X; �/;H // whose propagation is
at most R, there exists a non-zero vector � 2 L2..X; �/;H / satisfying diam.supp.�// � f .R/
and ckakk�k � ka�k.

Definition 2.6 ([4, Definition 2.3]). A metric spaceX is said to have ONL if there exists
a constant 0 < c � 1 and a function f WN ! N such that for every positive locally finite Borel
measure � on X , .X; �/ has ONL relative to f with constant c.

For the rest of this paper, we will concentrate on a metric space X with bounded ge-
ometry. By Proposition 3.1, we have only to consider the case that � is the counting mea-
sure on X . An operator a on the Hilbert space `2.X;H / D `2.X/˝H has the expression
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210 Sako, Property A and ONL

a D Œay;z�y;z2X , where ay;z is an operator on H . The propagation of b is equal to the supre-
mum sup¹d.y; z/ j y; z 2 X; ay;z ¤ 0º. We denote by ER.H / the set of the operators on
`2.X;H / whose propagations are at most R.

3. Characterizations of ONL

We rephrase the definition of ONL for metric spaces with bounded geometry. We need a
few more notations to state the next proposition. Denote by BS the C�-algebraY

x2X

B.`2.N.x; S///;

which is isomorphic to a product of matrix algebras. An element b 2 BS is a family of matrices
.Œb

.x/
y;z �y;z2N.x;S//x2X labeled by X . For S > 0, define a linear map  S WC �u .X/! BS by

 S .a/ D .Œay;z�y;z2N.x;S//x2X .

Proposition 3.1. Let X be a metric space with bounded geometry. The following prop-
erties on X are equivalent:

(i) The space X has ONL.

(ii) There exists 0 < c � 1 such that for every R > 0, there exists S > 0 satisfying condi-
tion (˛):

(˛) for every operator a 2 ER.H /, there exists a non-zero vector � 2 `2.X;H / such
that diam.supp.�// � S and ckakk�k � ka�k.

(iii) For every 0 < c < 1 and R > 0, there exists S > 0 satisfying (˛).

(iv) For every 0 < c < 1 and R > 0, there exists S > 0 satisfying condition (ˇ):

(ˇ) for every operator a 2 ER, there exists a non-zero vector � 2 `2.X/ such that
diam.supp.�// � S and ckakk�k � ka�k.

(v) For every � > 0 and R > 0, there exists S > R satisfying

. S jER
/�1W S .ER/! ER



 < 1C �:
In the next section, we will make use of property (v).

Proof of (i)) (ii). If X has ONL, then X satisfies ONL for the counting measure. This
is nothing but property (ii).

Proof of (ii)) (i). Suppose thatX has the property (ii) for a constant c. For an arbitrary
R 2 N, there exists S D f .R/ which satisfies (˛). We may choose S from N. Observe that
for every positive measure �, the Hilbert space L2..X; �/;H / can be identified with a closed
subspace of `2.X;H / D `2.X/˝H . The inclusion map is

V WL2..X; �/;H / 3 � 7! †x2X�.¹xº/
1=2ıx ˝ �.x/ 2 `2.X/˝H :

Let a be an arbitrary operator onL2..X; �/;H /whose propagation is at mostR. Then the prop-
agation of VaV � is at most R. By condition (˛), there exists a non-zero vector � 2 `2.X;H /
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Sako, Property A and ONL 211

such that
diam.supp.�// � S; ckVaV �kk�k � kVaV ��k:

These inequalities imply diam.supp.V ��// � S and ckakkV ��k � kaV ��k. We conclude
that X has ONL.

The part “there exists 0 < c � 1” in (ii) can be replaced by “for every 0 < c < 1” in
(iii). Inspired by an idea of [4, Proposition 2.4], we give a complete proof.

Proof of (ii)) (iii). Assume that X has the property (ii) with respect to a constant
0 < c < 1. For everyR and n 2 N, there exists S satisfying condition (˛) for propagation 2nR.
Let a 2 ER.H / be an arbitrary operator of norm 1. Since the propagation of .aa�/n is at most
2nR, there exists a non-zero vector � 2 `2.X;H / such that

diam.supp.�// � S and ck.aa�/nkk�k � k.aa�/n�k:

Since the norm of .aa�/n is 1, we have

c �

n�1Y
jD0

k.aa�/jC1�k=k.aa�/j �k:

It follows that there exists j D 0; 1; : : : ; n� 1 such that c1=n � k.aa�/jC1�k=k.aa�/j �k. We
have the inequality

c1=nkakka�.aa�/j �k � c1=nk.aa�/j �k � ka.a�.aa�/j �/k:

The diameter of supp.a�.aa�/j �/ is at most .2n�1/RCS . It follows that condition (˛) holds
for c1=n, R > 0, and .2n� 1/RCS . We can make the constant 0 < c1=n < 1 arbitrarily close
to 1, by enlarging n. Hence property (iii) holds.

The implication from (iii) to (ii) is trivial. We further rephrase the property. The equiva-
lence between (iii) and (iv) means that the amplification by H is not necessary.

Proof of (iii)) (iv). Assume that 0 < c < 1, R > 0, and S > 0 satisfy condition (˛).
Fix a unit vector � 2 H . Denote by e the rank one projection onto C� � H . Let a be an
arbitrary operator on `2.X/ whose propagation is at most R. Since the propagation of a ˝ e
is at most R, there exists a non-zero vector � 2 `2.X/˝H such that diam.supp.�// � S and
cka˝ ekk�k � k.a˝ e/�k. The vector .1˝ e/� is of the form � ˝ � 2 `2.X/˝H . We have

diam.supp.�// � diam.supp.�// � S

and
ckakk�k � cka˝ ekk�k � k.a˝ e/�k D ka�k:

It follows that 0 < c < 1, R > 0, and S > 0 satisfy condition (ˇ). We conclude that X satisfies
the property (iv).

Proof of (iv)) (iii). Assume that condition (ˇ) holds for 0 < 1 � �=2 < 1, R, and S .
Let a be an operator on `2.X/˝H whose propagation is at most R.
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212 Sako, Property A and ONL

We claim that there exist isometries V;W W `2.X/! `2.X/˝H satisfying

V ıx; W ıx 2 Cıx ˝H and .1 � �=2/kak � kW �aV k � kak:

Take unit vectors �1; �2 2 `2.X/˝H such that .1 � �=2/kak � ha�1; �2i. The vectors �1, �2
can be written in the following forms:

�1 D
X
x2X

f .x/ıx ˝ �1.x/; �2 D
X
x2X

g.x/ıx ˝ �2.x/;

where �1.x/, �2.x/ are unit vectors and f .x/; g.x/ 2 C. We define two isometries

V;W W `2.X/! `2.X/˝H

by V ıx D ıx ˝ �1.x/ and W ıx D ıx ˝ �2.x/. Since the vectors �1, �2 are respectively in the
images of V , W , the operator norm of W �aV satisfies .1 � �=2/kak � kW �aV k. Here we
get the claim.

By condition (ˇ), there exists a unit vector � 2 `2.X/ satisfying

diam.supp.�// � S; .1 � �=2/kW �aV k � kW �aV �k:

Since the support of V � is equal to that of � , we have diam.supp.V �// � S . We also obtain the
inequality

.1 � �/kakkV �k D .1 � �/kak � .1 � �=2/2kak

� .1 � �=2/kW �aV k � kW �aV �k

� kaV �k:

We get condition (ˇ) for 0 < 1 � � < 1, R > 0, and S > 0. It follows that X has the prop-
erty (iii).

Proof of (iv)) (v). Assume thatX has the property (iv). For arbitrary � > 0 andR > 0,
there exists S which satisfies condition (ˇ) for c D .1C �/�1 and R > 0.

It follows that for every non-zero operator a 2 ER, there exists a unit vector � 2 `2.X/
satisfying diam.supp.�// � S and kak � .1C�/ka�k. Since the propagation of a is at mostR,
the diameter of supp.a�/ is included in the R-neighborhood of supp.�/. Hence there exists a
unit vector � such that ka�k D ha�; �i and that supports of �, � are included in a common
closed ball N.x; S CR/. By the inequality

kak � .1C �/ha�; �i � .1C �/kŒay;z�y;z2N.x;SCR/k � .1C �/k SCR.a/k;

we get k. SCRjER
/�1k � 1C �.

Proof of (v)) (iv). Suppose that the property (v) holds true. For every 0 < c < 1 and
R > 0, take S satisfying the inequality k. S jER

/�1W S .ER/! ERk < c
�1. Then for every

operator a 2 ER, there exists a closed ball N.x; S/ with radius S satisfying

ckak � kŒay;z�y;z2N.x;S/k:

Take a unit vector � 2 `2.N.x; S// such that kŒay;z�y;z2N.x;S/k D kŒay;z�y;z2N.x;S/�k. The
vector � satisfies diam.supp.�// � 2S and ckak � ka�k. It follows that condition (ˇ) holds
true for 0 < c < 1, R, and 2S . We conclude that X has the property (v).
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Sako, Property A and ONL 213

For the proof of Theorem 4.1, we recall the notions of completely positive map and
completely bounded map.

� A self-adjoint closed subspace F of a unital C�-algebra B such that 1B 2 F is called an
operator system.

� A linear map � from F to a C�-algebra C is said to be completely positive if the map
�.n/ D � ˝ idWF ˝Mn.C/! C ˝Mn.C/ is positive for every n.

The subspaces ER � C �u .X/ and  S .ER/ � BS are examples of operator systems. The map
 S WER ! BS is an example of a completely positive map.

� A linear map � WF ! C is said to be completely bounded if the increasing sequence
¹k� .n/WF ˝Mn.C/! C ˝Mn.C/kº is bounded. The number k�kcb D supn2Nk�

.n/k

is called the completely bounded norm of � .

The norms k�k and k�kcb are not identical in general, but we have the following proposition.

Proposition 3.2. For every S;R such that 0 < R < S , the completely bounded norm
k. S jER

/�1W S .ER/! ERkcb is equal to k. S jER
/�1k.

Proof. It suffices to show that

k.. S jER
/�1/.n/k � k. S jER

/�1k for every n 2 N:

Take an arbitrary positive number K satisfying K < k.. S jER
/�1/.n/k. There exists an oper-

ator a 2 ER ˝Mn.C/ satisfying

K < kak and k 
.n/
S .a/k D 1:

We claim that there exist isometries V;W W `2.X/! `2.X/˝Cn satisfying

V ıx; W ıx 2 Cıx ˝Cn and K < kW �aV k � kak:

Indeed, the proof of (iv)) (iii) in Proposition 3.1 also works, H being replaced by Cn. Ob-
serve that the propagation of W �aV is at most R and that k S .W �aV /k � k 

.n/
S .a/k D 1.

It follows that K < kW �aV k=k S .W
�aV /k � k. S jER

/�1k. We conclude that

k.. S jER
/�1/.n/k � k. S jER

/�1k:

4. Main theorem

Theorem 4.1. Let X be a metric space with bounded geometry. The space X has prop-
erty A if and only if X has ONL.

Before proving Theorem 4.1, we recall a lemma from the book [15]. This lemma allows
us to bound operator norms by matrix coefficients.

Lemma 4.2 ([15, Lemma 4.27]). Let X be a metric space with bounded geometry. For
each R > 0, there exists a constant � D �.X;R/ such that kak � � supy;z2X jay;zj holds for
any a 2 ER.
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214 Sako, Property A and ONL

We need a completely positive perturbation of the completely bounded map

. S jER
/�1W S .ER/! ER ,! B.`2.X//:

The following is Corollary B.8 in [3]:
Let F � B be an operator system of a C�-algebra B and let � WF ! B.H / be a unital

self-adjoint map. Then, there exists a unital completely positive map �WB ! B.H / satisfying
k� � �jF kcb � 2.k�kcb � 1/.

The statement is slightly modified, but this is what the proof actually shows.

Proof of Theorem 4.1. We first assume that X has property A. Take arbitrary R > 0
and � > 0. Let � D �.X;R/ is the constant given in Lemma 4.2. By condition (ii) of Propo-
sition 2.4, there exist unit vectors ¹�xºx2X � `2.X/ and a positive number S satisfying the
following:

supp.�x/ � N.x; S/; j1 � h�y ; �zij < �=� .d.y; z/ � R/:

Define a linear map �WBS ! C �u .X/ by

�
��
Œb.x/y;z �y;z2N.x;S/

�
x2X

�
D

�X
x2X

�y.x/�z.x/b
.x/
y;z

�
y;z2X

:

We note that � is unital and completely positive.
For a 2 C �u .X/, we have

� ı  S .a/ D �
��
Œay;z�y;z2N.x;S/

�
x2X

�
D

�X
x2X

�y.x/�z.x/ay;z

�
y;z2X

D
�
h�y ; �ziay;z

�
y;z2X

:

For a 2 ER, we get

ka � � ı  S .a/k � �
�
supy;z2X j.1 � h�y ; �zi/ay;zj

�
� � supy;z2X jay;zj

� � kak:

This implies the following inequalities:

kak � k� ı  S .a/k C ka � � ı  S .a/k � k S .a/k C �kak

and
.1 � �/kak � k S .a/k:

It follows that the property (v) in Proposition 3.1 holds true. Hence X has ONL.
Now assume that X has ONL. By Proposition 3.1 (v) and Proposition 3.2, for any R > 0

and � > 0, there exists S > 0 such that k. S jER
/�1W S .ER/! ERkcb < 1C �=2. It is easy

to check that . S jER
/�1 is unital and self-adjoint. By [3, Corollary B.9], there exists a unital

completely positive map �WBS ! B.`2.X// which satisfies k. S jER
/�1��j S .ER/kcb < �.
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Sako, Property A and ONL 215

Define a function k on the set X � X by k.y; z/ D h� ı  S .ey;z/ız; ıyi, where ey;z is
the rank one partial isometry which maps ız to ıy . Since � ı  S is completely positive, for
every x.1/; x.2/; : : : ; x.n/ 2 X and �1; �2; : : : ; �n 2 C, we have

0 �

*
.� ı  S /

.n/

0BB@
2664
ex.1/;x.1/ � � � ex.1/;x.n/

:::
: : :

:::

ex.n/;x.1/ � � � ex.n/;x.n/

3775
1CCA
2664
�1ıx.1/
:::

�nıx.n/

3775 ;
2664
�1ıx.1/
:::

�nıx.n/

3775
+

D

nX
i;jD1

�i�jk.x.i/; x.j //:

Thus k is a positive definite kernel onX . It is supported on the set ¹.y; z/ 2 X2 j d.y; z/ � Sº,
because  S .ey;z/ D 0 if d.y; z/ > S . In the case of d.y; z/ � R, we haveˇ̌

1 � k.y; z/
ˇ̌
D
ˇ̌
h.ey;z � � ı  S .ey;z//ız; ıyi

ˇ̌
�


.. S jER

/�1 � �/. S .ey;z//


 < �:

It follows that X satisfies condition (iii) in Proposition 2.4. Hence X has property A.

The unital completely positive map � in the first half of the proof was constructed in
[15, Proposition 11.41].

5. Conditions equivalent to property A

In this revised version, we make comments on other coarse geometric properties. By
Theorem 4.1 and a recent result [2] by Brodzki, Niblo, Špakula, Willett, and Wright, we obtain
the following theorem.

Theorem 5.1. For a metric space with bounded geometry, the following properties are
equivalent:

(i) property A,

(ii) uniform local amenability (ULA�) defined in [2, Definition 2.5],

(iii) the metric sparsification property (MSP) defined in [4, Definition 3.1],

(iv) the operator norm localization property (ONL).

The implication (i)) (ii) is proved in [2, Proposition 3.2] and (ii)) (iii) is proved in
[2, Proposition 3.8]. MSP implies ONL, which is shown in [4, Section 4]. With our result
(iv)) (i), we get the above theorem.

For a connected infinite graph G of bounded vertex degrees, the notion of weighted hy-
perfiniteness was introduced by Elek and Timár [7]. Theorem 5.2 gives an answer to Ques-
tion 1 in [7].

Theorem 5.2. The graph G is weighted hyperfinite if and only if its vertex set V
equipped with the graph metric d has property A.
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216 Sako, Property A and ONL

Proof. Note that weighted hyperfiniteness is invariant under quasi-isometry by [7, Pro-
position 3.1]. Suppose that G is weighted hyperfinite. Then the graph GR with the same vertex
set V and the edge set ¹.x; y/ 2 V � V j d.x; y/ < Rº is also weighted hyperfinite for every
R � 1. It is routine to prove that G has MSP. Conversely, MSP of G implies weighted hyper-
finiteness by definition. It follows that weighted hyperfiniteness and MSP are equivalent.

Acknowledgement. We thank Professor Ozawa for letting us know the paper [7].
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