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Discrete Signal Reconstruction by
Sum of Absolute Values

Masaaki Nagahara, Senior Member, IEEE,

Abstract—In this letter, we consider a problem of recon-
structing an unknown discrete signal taking values in a finite
alphabet from incomplete linear measurements. The difficulty
of this problem is that the computational complexity of the
reconstruction is exponential as it is. To overcome this difficulty,
we extend the idea of compressed sensing, and propose to
solve the problem by minimizing the sum of weighted absolute
values. We assume that the probability distribution defined on
an alphabet is known, and formulate the reconstruction problem
as linear programming. Examples are shown to illustrate that
the proposed method is effective.

Index Terms—Discrete signal reconstruction, sum of absolute
values, digital signals, compressed sensing, sparse optimization.

I. INTRODUCTION

Signal reconstruction is a fundamental problem in signal
processing. Recently, a paradigm called compressed sens-
ing [1], [2], [3] has been proposed for signal reconstruction
from incomplete measurements. The idea of compressed sens-
ing is to utilize the property of sparsity in the original signal; if
the original signal is sufficiently sparse, practical algorithms
such as the basis pursuit [4], the orthogonal matching pur-
suit [5], etc, may give exact recovery under an assumption on
the measurement matrix (see e.g. [3]).

On the other hand, it is also important to reconstruct
discrete signals whose elements are generated from a finite
alphabet with a known probability distribution. This type of
reconstruction, called discrete signal reconstruction, arises in
black-and-white or grayscale sparse image reconstruction [6],
[7], blind estimation in digital communications [8], machine-
type multi-user communications [9], discrete control signal
design [10], to name a few.

The difficulty of discrete signal reconstruction is that the re-
construction has a combinatorial nature and the computational
time becomes exponential. For example, 200-dimensional
signal reconstruction with two symbols (i.e. binary signal
reconstruction) needs at worst about 1.5 × 1036 years with
a computer of 34 peta FLOPS (see Section II below), which
cannot be executed, obviously.

To overcome this difficulty, we borrow the idea of com-
pressed sensing based on `1 optimization as used in the basis
pursuit [4]. Our idea is that if the original discrete signal, say
x, includes L symbols r1, r2, . . . , rL, then each vector x− ri
is sparse. For example, a binary vector x on alphabet {1,−1}
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includes a number of 1 and −1, and hence both x−1 and x+1
are sparse. To recover such a discrete signal, we propose to
minimize the sum of weighted absolute values of the elements
in x − ri. The weights are determined by the probability
distribution on the alphabet. The problem is reduced to a
standard linear programming problem, and effectively solved
by numerical softwares such as cvx in MATLAB [11], [12].

For discrete signal reconstruction, there have been re-
searches based on compressed sensing, called integer com-
pressed sensing: [13] has proposed a Bayesian-based method,
which works only for binary sparse signals (i.e., 0-1 valued
signals that contain many 0’s). [9] considers arbitrary finite
alphabet that contains 0. More recently, motivated by decision
feedback equalization, [14] proposes to use `1 optimization
for discrete signal estimation under the assumption of sparsity.
[15], [16], [7] also propose methods based on the finiteness of
the measurement matrix (i.e., the elements of the measurement
matrix are also in a finite alphabet). As mentioned in [15],
this type of integer compressed sensing is connected with
error correcting coding. Compared with these researches,
the proposed method in this paper considers arbitrary finite
alphabet that does not necessarily contain 0.

The remainder of this letter is organized as follows: Section
II formulates the problem of discrete signal reconstruction and
discusses the difficulty of the problem. Section III proposes to
use the sum of weighted absolute values for discrete signal
reconstruction, and show a sufficient and necessary condition
for exact recovery by extending the notion of the null space
property [17]. Examples of one-dimensional signals and two-
dimensional images are included in Section IV. Section V
draws conclusions.

Notation

For a vector x = [x1, x2, . . . , xN ]> ∈ RN , we define the
`1 and `2 norms respectively as

‖x‖1 ,
N∑
n=1

|xn|, ‖x‖2 ,
√
x>x,

where > denotes the transpose. For a vector x and a scalar r,
we define

x− r , [x1 − r, x2 − r, . . . , xN − r]>.

For a matrix Φ ∈ CM×N , ker Φ is the kernel (or the null
space) of Φ, that is,

ker Φ , {x ∈ CN : Φx = 0}.
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In is the n-dimensional identity matrix, and 1k is a k-
dimensional vector whose elements are all 1, that is,

1k , [1, 1, . . . , 1]> ∈ Rk.

For two matrices A ∈ RM×N and B ∈ RK×L, A⊗B denotes
the Kronecker product, that is,

A⊗B ,

A11B A12B . . . A1NB
...

...
. . .

...
AM1B AM2B . . . AMNB

 ∈ RMK×NL,

where Aij is the ij-th element of A. For two real-valued
vectors x and y of the same size, x ≤ y denotes the element-
wise inequality, that is, x ≤ y means xi ≤ yi for all i.

II. PROBLEM FORMULATION

Assume that the original signal x is an N -dimensional
vector whose elements are discrete. That is,

x , [x1, x2, . . . , xN ]> ∈ XN ,
X , {r1, r2, . . . , rL},

where ri ∈ R and we assume

r1 < r2 < · · · < rL. (1)

If a symbol, say r, is a complex number, then taking rj ,
Re(r) and rk , Im(r) gives a real-valued alphabet, and hence
the assumption (1) is not restrictive. We here assume that the
values of ri are known and the probability distribution of them
is given by

P(ri) = pi, i = 1, 2, . . . , L, (2)

where we assume

pi > 0, p1 + p2 + · · ·+ pL = 1. (3)

Then we consider a linear measurement process modelled
by

y = Φx ∈ CM , (4)

where Φ ∈ CM×N . Note that we consider a complex-
valued matrix Φ since Φ can be constructed from e.g. a
complex-valued DFT (Discrete Fourier Transform) matrix; see
the image processing example in Section IV. We assume
incomplete measurements, that is, M < N . The objective
here is to reconstruct x ∈ XN from the measurement vector
y ∈ CM in (4).

First of all, we discuss the uniqueness of the solution
of the discrete signal reconstruction. We have the following
proposition:

Proposition 1: Given Φ ∈ CM×N , the following properties
are equivalent:
(A) If Φx1 = Φx2 and both x1 and x2 are in XN , then

x1 = x2.
(B) Define the difference set of X as

X̃ , {ri − rj : i, j = 1, 2, . . . , L}.

Then
ker Φ ∩ X̃N = {0}. (5)

(C) The matrix Φ is injective as a map from X̃N to CM .

Proof: (A)⇒(B): Assume (A) holds. Take any v ∈
ker Φ ∩ X̃N . Since v ∈ X̃N , there exist x1,x2 ∈ XN such
that v = x1−x2. Then we have Φv = Φx1−Φx2 = 0 since
v ∈ ker Φ. Then from (A), we have x1 = x2. It follows that
v = 0.

(B)⇒(C): Assume (B) holds. Take any v ∈ X̃N and assume
Φv = 0. Then from (B), we have v = 0. This proves Φ is an
injective map from X̃N to CM .

(C)⇒(A): Assume that (C) holds. Take any x1,x2 ∈ XN
such that Φx1 = Φx2. Since x1−x2 ∈ X̃N and Φ is injective
on X̃N , we have x1 − x2 = 0, or x1 = x2.

Throughout the letter, we assume the uniqueness of the
solution, that is, the pair (X ,Φ) is chosen to satisfy (5). If the
uniqueness assumption holds, we can find the exact solution
in a finite number of steps via an exhaustive computation
as follows. The set XN is a finite set, and we can write
XN = {x1,x2, . . . ,xµ}. For each xi, we compute yi = Φxi
and check if yi = y. Thanks to the uniqueness assumption,
we can find the exact solution in a finite time. The problem is
that the size of XN is µ = LN , and hence the computational
complexity is exponential. For example, if L = 2 (two
symbols) and N = 200, then

µ = 2200 ≈ 1.7× 1060,

which takes at worst about 1.5×1036 years (much longer than
the lifetime of the universe) by the current fastest computer
with 34 peta FLOPS. To overcome this, we adopt a relaxation
technique based on the sum of absolute values in the next
section.

III. SOLUTION VIA SUM OF ABSOLUTE VALUES

We here propose a relaxation method for discrete signal
reconstruction. By borrowing the idea of compressed sensing,
we can assume that each vector x − ri, i = 1, 2, . . . , L, is
sparse (if the probability pi given in (2) is not so small), and
the sparsity is proportional to the probability pi. Hence, we
consider the following minimization problem:

minimize
z

F (z) ,
L∑
i=1

pi‖z − ri‖1 subject to y = Φz, (6)

where we use the `1 norm for the measure of sparsity as
in compressed sensing. By the definition of the `1 norm, we
rewrite the cost function F (z) as

F (z) =

L∑
i=1

pi

N∑
n=1

|zn − ri| =
N∑
n=1

L(zn), (7)

where L(t) is the sum of weighted absolute values

L(t) ,
L∑
i=1

pi|t− ri|.

An example of this function is shown in Fig. 1. As is shown
in this figure, the function L(t) is continuous, convex, and
piecewise linear. In fact, we have the following proposition:



SHELL et al.: BARE DEMO OF IEEETRAN.CLS FOR JOURNALS 3

t

L(t)

r1 r2 r3

Fig. 1. Piecewise linear function L(t) in the cost function (7).

Proposition 2: The function L(t) is continuous and convex
on R and is a piecewise linear function given by

L(t) =


−t+ r, if t ∈ (−∞, r1]

ait+ bi, if t ∈ (ri, ri+1], i = 1, 2, . . . , L− 1

t− r, if t ∈ [rL,∞).

where

r ,
L∑
i=1

piri,

ai ,
i∑

j=1

pj −
L∑

j=i+1

pj , bi , −
i∑

j=1

pjrj +

L∑
j=i+1

pjrj .

Proof: Since each function |t− ri| in L(t) is continuous
and convex on R, the function L(t), which is the convex
combination of |t − ri|, i = 1, 2, . . . , L, is also continuous
and convex on R.

Suppose t ≤ r1. From the inequality (1), we have t−ri ≤ 0
for i = 1, 2, . . . , L, and hence

L(t) = −
L∑
i=1

pi(t− ri) = −t+ r,

where we used (3). Next, suppose ri < t ≤ ri+1 (i =
1, 2, . . . , L − 1). The inequality (1) gives t − rj > 0 for
j = 1, 2, . . . , i and t − rj ≤ 0 for j = i + 1, i + 2, . . . , L.
It follows that

L(t) =

i∑
j=1

pj(t− rj)−
L∑

j=i+1

pj(t− rj) = ait+ bi.

Finally, if t ≥ rL, then t − ri ≥ 0 for i = 1, 2, . . . , L due to
(1), and hence

L(t) =

L∑
i=1

pi(t− ri) = t− r.

Note that the function L(t) is rewritten as

L(t) = max
i=0,1,...,L

{ait+ bi},

where a0 = −1, b0 = r, aL = 1, and bL = −r. It follows
that the optimization (6) is equivalently described as

minimize
θ∈RN

1>Nθ

subject to y = Φz, Az + b ≤ Eθ,
(8)

where θ ∈ RN is an auxiliary variable, and

A , IN ⊗ a ∈ RN(L+1)×N ,a , [a0, a1, . . . , aL]> ∈ RL+1,

b , 1N ⊗ b ∈ RN(L+1), b , [b0, b1, . . . , bL]> ∈ RL+1,

E , IN ⊗ 1L+1 ∈ RN(L+1)×N .

This is a standard linear programming problem and can be
efficiently solved by numerical optimization softwares, such
as cvx in MATLAB [11], [12].

Now, we discuss the validity of the relaxation optimization
given in (6) or (8). To see this, we extend the notion of the null
space property [17] in compressed sensing to our problem:

Definition 1: A matrix Φ ∈ CM×N is said to satisfy the
null space property for an alphabet X if

F (x) < F (x− v), (9)

for any x ∈ XN and any v ∈ ker Φ \ {0}.
Then we have the following theorem:

Theorem 1: Let Φ ∈ CM×N . Every x ∈ XN is uniquely
recovered from the `1 optimization (6) with y = Φx if and
only if Φ satisfies the null space property for X .

Proof: (⇒): Take any v ∈ ker Φ \ {0} and x ∈ XN . Put
z , x−v. Since v ∈ ker Φ, we have Φv = Φ(v−x+x) = 0,
or Φx = Φz. This means that z is in the feasible set of the
optimization problem (6) with y = Φx. Also, we have x 6= z
since v 6= 0. Now, by assumption, x is the unique solution
of (6) with y = Φx, and hence we have F (x) < F (z) =
F (x− v).

(⇐): Take any x ∈ XN and z ∈ CN such that x 6= z and
Φx = Φz. Put v , x−z. Then we have v ∈ ker Φ\{0}. From
the null space property for X , we have F (x) < F (x− v) =
F (z). It follows that x is the unique solution of (6).

IV. EXAMPLES

In this section, we show two examples to illustrate the
effectiveness of the proposed method.

The first example is one-dimensional signal reconstruction
with multiple symbols. Let the original signal x be a 200-
dimensional vector (i.e. N = 200) and the elements are drawn
from the following alphabets with probability distributions:

X2 , {0, 1} : P(0) = p, P(1) = 1− p,

X3 , {−1, 0, 1} : P(0) = p, P(1) = P(−1) =
1− p

2
,

X5 , {−2,−1, 0, 1, 2} : P(0) = p,

P(−2) = P(−1) = P(1) = P(2) =
1− p

4
,

(10)

where p ∈ [0, 1]. We assume the measurement vector y is a
100-dimensional vector (i.e. M = 100), and the measurement
matrix Φ is generated such that each element is independently
drawn from the Gaussian distribution with a mean of 0 and
a standard deviation of 1 by using a MATLAB command,
randn(100,200). The original vector x is also generated
such that each element is independently drawn from the
distribution (10) with varying parameter p ∈ [0, 1]. Fig. 2
shows the graphs of the averaged NSR (noise-to-signal ratio)
‖x − x̂‖2/‖x‖2 for X2,X3,X5 in (10), where x̂ is the
reconstructed signal, with 200 trials of random Φ and x for
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Fig. 2. Averaged NSR ‖x − x̂‖2/‖x‖2 vs probability p for X2 (top), X3

(middle), X5 (bottom), by the proposed (solid) and the basis pursuit (dash)

each p ∈ [0, 1]. If p is large (i.e., p ≈ 1), then the original
vector x is sparse, and we also reconstruct the original signal
by the basis pursuit

min
z∈RN

‖z‖1 subject to y = Φz,

and then round off the values by the basis pursuit to the nearest
integer. The error graphs by the basis pursuit are also shown in
Fig. 2. For the binary alphabet X2 = {0, 1}, one may exchange
the roles of 0 and 1 before performing the basis pursuit, and
the error curve below p = 0.5 is pessimistic. However, such a
simple strategy cannot be applied to X3 and X5 for the basis
pursuit, while the proposed method works well for small p.
This is because the basis pursuit does not fully utilize the
information of the alphabet (i.e., the basis pursuit only uses
the information of the value 0 through the sparsity). We also
note that the basis pursuit can be used only when the alphabet
includes 0, while the proposed method works as well when 0 is
not an element of the alphabet. Fig. 2 also implies a conjecture
that the performance of the proposed method converges that
of the basis pursuit as the size of the alphabet goes to infinity.

Next, we see an example from image processing. Let us
consider a binary (or black-and-white) image shown in Fig. 3
(left), which is a 37× 37-pixel binary-valued image. We add
random Gaussian noise with a mean of 0 and a standard
deviation of 0.1 to each pixel to obtain a disturbed image as
shown in Fig. 3 (right). We represent this disturbed image as
a real-valued matrix X ∈ R37×37. Then we apply the discrete
Fourier transform (DFT) to X to obtain

X̂ = WXW (11)

where W is the DFT matrix defined by

W ,


1 1 1 . . . 1
1 ω ω2 . . . ωK−1

...
...

...
. . .

...
1 ωK−1 ω2(K−1) . . . ω(K−1)(K−1)

 ,

Fig. 3. Original image (left) and disturbed image by random noise (right)

Fig. 4. Reconstructed images by the basis pursuit (left) and by the proposed
method (right)

where K = 37 and ω , exp(−j2π/K). The relation can be
equivalently represented by

vec(X̂) = (W ⊗W )vec(X) ∈ C1369.

We then randomly down-sample the vector vec(X̂) to obtain a
half-sized vector y ∈ C685. The measurement matrix Φ is then
a 685 × 1369 matrix generated by randomly down-sampling
row vectors from W ⊗ W . Fig. 4 shows the reconstructed
images by the basis pursuit with rounding off (left) and by
the proposed method (right). For the proposed method, we
assumed P(0) = P(1) = 1/2. The results clearly show the
effectiveness of our method also for image reconstruction.

V. CONCLUSION

In this letter, we have proposed a reconstruction method for
discrete signals based on the sum of absolute values (or the
weighted `1 norm). The reconstruction algorithm is described
as linear programming, which can be solved effectively by
numerical optimization softwares. Examples have been shown
that the proposed method is much more effective than the
basis pursuit which only uses the information of sparsity.
Future work includes an accessible condition that ensures the
null space property, as the restricted isometry property in
compressed sensing.
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