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Abstract  

Background: Liver transplant outcomes using grafts donated after cardiac death (DCD) 

remain poor.  

Methods: We investigated the effects of ex vivo reconditioning of DCD grafts with 

venous systemic oxygen persufflation using nitric oxide gas (VSOP-NO) in rat liver 

transplants. Orthotopic liver transplants were performed in Lewis rats, using DCD grafts 

prepared using static cold storage alone (group-Control) or reconditioning using 

VSOP-NO during cold storage (group-VSOP-NO). Experiment I: In a 30-min warm 

ischemia model, graft damage and hepatic expression of inflammatory cytokines, 

endothelial nitric oxide synthase (eNOS), inducible nitric oxide synthase (iNOS), and 

endothelin-1 (ET-1) were examined, and histological analysis was performed 2, 6, 24, 

and 72 h after transplantation. Experiment II: In a 60-min warm ischemia model, grafts 

were evaluated 2 h after transplantation (6 rats/group), and survival was assessed (7 

rats/group). 

Results: Experiment I: Group-VSOP-NO had lower alanine aminotransferase (ALT) (P 

< 0.001), hyaluronic acid (P < 0.05), and malondialdehyde (MDA) (P < 0.001), hepatic 

interleukin-6 expression (IL-6) (P < 0.05), and hepatic tumor necrosis factor-alpha 

(TNF-α) expression (P < 0.001). Hepatic eNOS expression (P < 0.001) was upregulated 

whereas hepatic iNOS (P< 0.01) and ET-1 (P < 0.001) expressions were downregulated. 

Hepatocyte and sinusoidal endothelial cells (SECs) damages were lower in 

group-VSOP-NO. Experiment II: VSOP-NO decreased ET-1 and 

8-hydroxy-2′deoxyguanosine (8-OHdG) expression and improved survival after 

transplantation by 71.4% (P < 0.01). Conclusion: These results suggest that VSOP-NO 

effectively reconditions warm ischemia-damaged grafts, presumably by decreasing ET-1 



 
 

upregulation and oxidative damage.  

 

  



 
 

Introduction 

The chronic and growing shortage of donor organs has led to the acceptance of extended 

criteria donor grafts, such as donations after cardiac death (DCD). Ex vivo graft 

reconditioning studies of marginal organs using hypothermic (1) and normothermic (2) 

liver perfusion systems with oxygenation have had promising results. A pilot study 

demonstrated the safety and feasibility of liver preservation using hypothermic machine 

perfusion (3); however, normothermic machine perfusion requires additional testing 

prior to clinical application. Another hypothermic method with a potential to 

recondition extended criteria donor grafts is venous systemic oxygen persufflation 

(VSOP), in which grafts are retrogradely perfused with gaseous oxygen through the 

venous system. VSOP during cold storage has a protective effect against apoptotic 

changes and improves graft quality, particularly in extended criteria grafts (4-8). 

Another advantage of VSOP is its ease of use because complex devices are not required, 

in contrast to machine perfusion systems (4). In VSOP, the use of oxygen alone has 

yielded inferior results for preserving ischemia-damaged grafts because of the 

generation of oxygen free radicals (5). Previous studies demonstrated promising results 

for resuscitating damaged grafts when VSOP was used in combination with antioxidants 

(9).  

Nitric oxide (NO) is a highly diffusible free radical with a short half-life of 5–10 s in 

biological systems. In the liver, numerous clinical benefits of NO have been described, 

e.g., positive effects on circulation, energy storage, and mitochondrial damage 

protection as well as negative effects on oxidative stress and leukocyte activation (10). 

Decreased hepatic NO production immediately after portal reperfusion in liver 

transplantation was suggested to contribute to ischemia–reperfusion (I/R)-dependent 



 
 

hepatic injury (11). Some studies showed that administration of NO donors, such as 

S-nitrosothiols, diazeniumdiolates, sodium nitroprusside, FK409, liver-selective NO 

donors as well as inhalational NO protect against hepatic I/R injury (10). However, in 

vivo NO administration after liver transplantation may cause vascular hyporeactivity 

and decompensation (12). To avoid these, NO administration is limited to liver grafts 

during storage. 

Srinivasan et al. first demonstrated that VSOP using NO gas (VSOP-NO) could 

decrease portal venous pressure more effectively than VSOP alone in an in vitro study 

using DCD grafts (13). Yagi et al. confirmed the superiority of VSOP-NO over VSOP 

alone in in vivo liver transplantation of 30% small-for-size grafts because of improved 

microcirculation (14). In contrast to partial graft transplantation, DCD grafts are 

exposed to severe warm ischemia. Although the precise pathophysiology of warm 

ischemia-damaged grafts is unknown, the activation of Kupffer cells and CD4+ T cells, 

the production of oxidative stress, neutrophil-mediated inflammation, and hepatocellular 

injury are reportedly involved (15). NO is involved in many pathways that affect each 

other and also have synergistic effects. We hypothesized that the antioxidant effects of 

NO (16) could protect sinusoidal endothelial cells (SECs), which are involved in early 

sinusoidal repopulation, consequently improving microcirculation. Thus, we evaluated 

the effect of VSOP-NO on I/R injury, the recovery phase, and safety in an in vivo rat 

transplantation model. 

 

Results 

Experiment I. 30-min warm ischemia (Table 1) 

Chronological analysis of serum alanine aminotransferase (ALT), hyaluronic acid, 



 
 

and malondialdehyde (MDA) 

ALT, a parameter for hepatocellular damage, was significantly lower in 

group-VSOP-NO over 72 h [two-way analysis of variance (ANOVA): P < 0.001]. 

Hyaluronic acid, a marker of endothelial damage (17), was significantly lower in 

group-VSOP-NO (P = 0.039), and serum MDA, a marker of oxidative stress, was also 

lower in group-VSOP-NO (P < 0.001).  

Messenger RNA (mRNA) expression in liver grafts 

Group-VSOP-NO showed downregulated interleukin-6 (IL-6) expression (P = 0.017). 

In addition, in the liver, relative mRNA expressions of tumor necrosis factor-alpha 

(TNF-α) (P < 0.001), endothelin-1 (ET-1) (P < 0.001), and inducible nitric oxide 

synthase (iNOS) were lower in group-VSOP-NO (P = 0.0057). Relative mRNA 

expression of endothelial nitric oxide synthase (eNOS) was significantly higher in 

group-VSOP-NO (P < 0.001). 

Histological analysis 

Hematoxylin–eosin staining of livers 6 h after transplantation (Fig. 1A, B) revealed 

vacuolization and congestion in group-Control (Fig. 1A), but almost normal liver 

architecture in group-VSOP-NO (Fig. 1B). Transmission electron microscopy 6 h after 

transplantation revealed well-preserved SECs covering the space of Disse, which was 

filled with microvilli (Fig. 1D, 1F) in group-VSOP-NO and partially disrupted 

sinusoidal walls (Fig. 1C, 1E) in group-Control. 

Immunofluorescence of rat endothelial cell antigen-1 (RECA-1) 

Fewer viable RECA-1-positive SECs were observed 6 h after transplantation in both the 

groups (Fig. 2B, 2F). Furthermore, 24 h after transplantation, a few SECs tended to be 

stained with RECA-1 in group-VSOP-NO alone (Fig. 2C, 2G). Fluorescent SECs were 



 
 

also detected 72 h after transplantation in group-Control (Fig. 2D). 

Experiment II-A. 60-min warm ischemia: survival study 

In group-Control, the 10-day survival rate was 0%, and all deaths occurred within 30 h 

of transplantation (Fig. 3). In group-VSOP-NO, the 10-day survival rate was improved 

to 71.4% (P < 0.009). Autopsies in group-Control revealed multiple focal necroses (3.4 

± 0.4) in the livers and hemorrhagic ascites. In group-VSOP-NO, there was almost no 

necrosis (1.0 ± 0.0). 

Experiment II-B. 60-min warm ischemia: evaluation of early phase injury  

Relative hepatic ET-1 mRNA expression levels 2 h after portal reperfusion were higher 

in group-Control than in group-VSOP-NO (P < 0.005; Fig. 4A). Figure 4B and C show 

the staining of SECs with 8-hydroxy-2′deoxyguanosine (8-OHdG) as a marker for 

oxidative DNA damage 2 h after portal reperfusion. In group-Control (Fig. 4B), broad 

sinusoidal cells and partial hepatocytes were stained, whereas in group-VSOP-NO, few 

sinusoidal cells were stained (Fig. 4C). 

 

Discussion 

We report, for the first time, the beneficial effects of VSOP-NO in in vivo rat DCD liver 

transplantation. The changes in severe I/R injury associated with warm 

ischemia-damaged DCD grafts reportedly occur in two distinct phases i.e., the early 

phase <2 h after portal reperfusion and the later injury phase 6–48 h after portal 

reperfusion (16). To evaluate how hepatocytes and SECs are affected in DCD 

transplantation, we assessed inflammatory cytokines, oxidative stress, and indicators of 

hepatocyte and SEC function as well as parameters influenced by NO administration, 

including ET-1, iNOS, and eNOS. We chose 2 h as the early phase, 6–24 h as the late 



 
 

phase, and 72 h as the early recovery period associated with I/R injury.  

In Experiment I, VSOP-NO decreased ET-1 and iNOS expression levels 2 h after portal 

reperfusion and attenuated increases in ALT, inflammatory cytokines, eNOS 

upregulation, and MDA elevation 6–24 h after portal reperfusion. The early phase of 

warm ischemia-induced reperfusion injury in DCD grafts is reportedly associated with 

activation of Kupffer cells and production of oxidative stress. Moreover, Klune et al. 

reported that the first step of the I/R injury cascade is the liberation of ET-1, which 

activates stellate cells and leads to constriction of hepatic sinusoids and accumulation of 

oxidative stress, activating Kupffer cells and initiating upregulation of inflammatory 

cytokines (18). In Experiment II-A, death occurred 2 h after portal reperfusion, and 

autopsies of both groups suggested that the cause was graft failure without vascular or 

biliary complications or bleeding due to gaseous perfusion, which has been associated 

with VSOP. We concluded that differences at 2 h after portal reperfusion influenced the 

survival rate in Experiment II-A.  

According to the results of real-time polymerase chain reaction (RT-PCR) in 

Experiment I, the key parameters affecting survival are ET-1 and iNOS. However, 

exogenous NO may have suppressed iNOS in the current study; therefore, we focused 

on ET-1. In Experiment I, we used MDA, an end-product of lipid peroxidation, to assess 

whether oxidative stress plays a role in the effect of VSOP-NO on I/R injury. The 

spectrophotometric thiobarbituric acid-reactive substances assay used in the current 

study is extremely easy to use, but is nonspecific; other substrates (e.g., aldehydes) can 

react with thiobarbituric acid (19). By contrast, 8-OHdG is a sensitive indicator of 

oxidative DNA damage. To determine if oxidative stress is an early factor in survival, 

8-OHdG was used in Experiment II. We speculate that the critical benefit of VSOP-NO 



 
 

administration is the decrease in oxidative damage and ET-1 upregulation, resulting in 

inactivation of inflammatory responses and protection of SECs and hepatocytes. 

In our study, VSOP-NO decreased the incidence of initial death due to long warm 

ischemia. Several studies have demonstrated the relationship between the duration of 

warm ischemia and post-transplant survival in pig (20) and rat (21) models. We chose 

60 min as the critical time for prolonged warm ischemia because a 1-week survival rate 

of <10% is appropriate for primary nonfunction, in which we observed decreased 

oxidative damage and ET-1 upregulation, which we consider key effects of VSOP-NO. 

In the liver, iNOS is not expressed under normal circumstances; however, under certain 

conditions, iNOS has either a protective or toxic effect (22). In hepatic I/R injury, iNOS 

exacerbates liver injury (23). In addition, iNOS expression is known to be 

downregulated by steroids, tumor growth factor-β, the heat shock response, p53, and 

NO itself (24). In this study, exogenous NO decreased iNOS upregulation and 

suppressed the exacerbation of hepatic I/R injury. However, eNOS is constitutively 

expressed in SECs and is related to sinusoidal circulation (25). A previous report 

demonstrated that repopulation of SECs requires 12–48 h in denuded sinusoids (26). 

Our results demonstrated eNOS upregulation 24 h after transplantation. Shear stress has 

been reported as an inducer of eNOS production (27). In the current model, warm 

ischemia strongly injured SECs. In Experiment II-A, all parameters but one in 

group-Control approached those in group-VSOP-NO by day 3 and no rats died. Our 

results demonstrate that 30-min warm ischemia is not crucial, and thus hepatocyte 

damage could recover by 3 days. Hyaluronic acid, a parameter of sinusoidal endothelial 

injury, showed a different trend from the other parameters, increasing 6–24 h after 

portal reperfusion but not recovering to the level in group-VSOP-NO within 72 h. On 



 
 

the other hand, RECA-1 immunohistochemical analysis demonstrated that damaged 

SECs recovered within 24 h of transplantation in group-VSOP-NO and within 72 h in 

group-Control. We hypothesize that VSOP-NO stimulated the early repopulation of the 

endothelial structure, resulting in eNOS upregulation 24 h after portal reperfusion, but 

the recovery of hyaluronic acid indicates that the SECs require >72 h for adequate 

functional recovery. 

After NO administration, excess NO promotes its reaction with superoxide (28), 

resulting in the formation of peroxynitrite (29), a molecule extremely toxic to cells (30). 

We previously demonstrated NO concentration of 40 ppm was optimal to produce a 

significant effect (14). This study demonstrated the safety of NO administration during 

cold storage. 

Remarkably, in Experiment II-A, VSOP-NO resulted in successful reconditioning of 

severely damaged DCD grafts. A few studies have reported reclamation of DCD grafts 

exposed to 60-min warm ischemia. Peaks et al. and Tolboom et al. successfully rescued 

almost all transplants that underwent 60-min warm ischemia by normothermic 

extracorporeal perfusion (2, 31). In terms of survival, after 60-min warm ischemia, 

VSOP-NO appeared to be inferior to machine perfusion. The insult in DCD grafts is 

multifactorial and depends on the duration of warm ischemia as well as recipient status, 

anhepatic time, I/R injury involving preservation solutions, duration of cold ischemia, 

and surgical techniques. Stegemann et al. previously reported the superiority of VSOP 

over machine perfusion in a model of long-term preservation of DCD grafts (32). 

Further studies are needed to compare normothermic machine perfusion and VSOP-NO. 

Machine perfusion requires a pump, plasma, erythrocytes, and a dialyzer, whereas the 

VSOP system requires only gas cylinders and ice. Despite efforts to simplify and 



 
 

decrease expenses associated with machine perfusion, the current VSOP system remains 

more convenient and economical.  

In the current study, we applied 3-h cold ischemia, which is shorter than that for DCD 

transplantation in the typical clinical setting. DCD grafts exposed to prolonged warm 

ischemia poorly tolerated longer durations of cold ischemia (33). 

Other methods to recover liver grafts, such as hypothermic or normothermic machine 

perfusion and VSOP, have been shown to be effective for longer periods of storage, but 

not yet in combination with longer warm ischemia and following longer cold ischemia. 

In future studies, we plan to evaluate a prolonged cold ischemia group to demonstrate 

the efficacy of VSOP-NO for DCD grafts. Tolboom et al. reported that normothermic 

oxygenated perfusion results in less I/R injury (2). Thus, we speculate that 

subnormothermic retrograde perfusion preservation with gaseous NO could provide 

improved graft survival. 

Other clinically relevant long-term effects of warm ischemia, such as ischemic 

cholangiopathy, were not investigated in this study. Cholangiography and quantitative 

comparisons require long-term observations (34); thus, further studies involving 

long-term observations of DCD in a large animal model are needed. 

In conclusion, retrograde administration of gaseous oxygen and NO during cold storage 

is an easy and safe method to recondition marginal DCD liver grafts. Our results will 

benefit future applications of this method; however, we recommend that our technique 

should applied cautiously to the clinical setting. Specifically, further experiments with 

large animals and longer observation periods are necessary prior to applying this novel 

organ preservation technique to clinically marginal grafts. 

 



 
 

Material and Methods 

Animals 

All experiments were performed in accordance with the Animal Research Committee of 

Kyoto University, and all animals received humane care according to criteria outlined in 

the “Guide for the Care and Use of Laboratory Animals” prepared by the National 

Academy of Sciences and published by the National Institutes of Health (NIH 

Publication No 86-23, revised in 1985). Male LEW/CrlCrlj rats weighting 180–220 g 

(Charles River Laboratories Japan, Inc., Yokohama, Japan) were used as liver 

donors/recipients. The animals were housed under specific pathogen-free conditions in a 

temperature- and humidity-controlled environment with a 12-h light/dark cycle with 

access to tap water and standard chow pellets ad libitum.  

Donor procedure and graft storage 

Experiment I. 30-min warm ischemia 

Rat livers were retrieved after 30-min warm ischemia induced by phrenotomy 5 min 

after injection of 300 units of heparin sodium, as described previously (21). In 

group-Control, grafts were preserved in University of Wisconsin solution (ViaSpan, 

Astellas Pharma Inc., Tokyo, Japan) at 4°C. In group-VSOP-NO, grafts were treated by 

VSOP using gaseous NO at 40 ppm, as previously reported (14). Briefly, catheter was 

inserted into the thoracic caval vein and both the portal and infrahepatic caval veins 

were clamped with atraumatic clips. Small pinpricks were made which allowed the 

gaseous oxygen and NO from the catheter to escape during cold storage. After 3 h of 

cold storage, orthotopic liver transplantation was performed using the DCD grafts and a 

modified Kamada’s method (35). Anhepatic time was 14.0 ± 0.3 min in 

group-VSOP-NO and 14.3 ± 0.2 min in group-Control (P = 0.38). 



 
 

Subsequently, 2, 6, 24, and 72 h after portal reperfusion (n = 6 at each time point for 

each group), serum and liver graft tissue samples were collected prior to euthanasia by 

exsanguination. 

Experiment II-A. 60-min warm ischemia: survival study 

The lethality of a longer-duration (60-min) warm ischemia model and the effect of 

VSOP-NO against lethal stress were verified in a series of experiments. Rats were 

divided into group-Control and group-VSOP-NO (n = 7 each). The 60-min warm 

ischemia-damaged grafts were transplanted into recipients similar to Experiment I. 

Survival rate was investigated for 10 days after transplantation. To determine 

histological alterations, necrotic lesions were graded on a 4-point scale as follows: 1 = 

no changes or negligible lesions, affecting 0%–10% of field, 2 = mild, affecting 10%–

40%, 3 = moderate, affecting 40%–70%, and 4 = severe, affecting >70%).  

Experiment II-B. 60-min warm ischemia: evaluation of early injury 

The relationship between the results of Experiments I and II-A was confirmed in 

another series of experiments. Group-Control and group-VSOP-NO (n = 6 each) rats 

underwent the same surgery as animals in Experiment II-A. Liver graft tissues were 

sampled 2 h after portal reperfusion. 

Measurement of liver enzymes 

Serum ALT and hyaluronic acid levels were measured by a standard spectrophotometric 

method using an automated clinical analyzer (JCA-BM9030, JEOL Ltd., Tokyo, Japan). 

Malondialdehyde 

To estimate the levels of lipid peroxidation products, serum MDA levels were measured 

using the thiobarbituric acid assay according to the manufacturer’s protocol (NWLSSTM 

Malondialdehyde Assay, Northwest Life Science Specialties, LLC, WA, USA).  



 
 

Real-Time Polymerase Chain Reaction 

For gene expression analysis, RT-PCR was performed using TaqMan® technology, as 

previously reported (36). The probe and primers for TNF-α (assay ID Rn01525859_g1), 

IL-6 (assay ID Rn01410330_m1), iNOS (assay ID Rn00561646_m1), eNOS (assay ID 

Rn02132634_s1), ET-1 (assay ID Rn00561129_m1), and beta-actin (β-actin) (assay ID 

Rn00667869_m1) were obtained for TaqMan® gene expression assays from Applied 

Biosystems, Life Technologies Japan Ltd., Japan. 

Immunohistochemistry 

To assess the damage and recovery of SECs, immunofluorescence was assessed using 

rat endothelial cell antigen 1 (RECA-1: MCA-970R, Serotec, Oxford, UK). Alexa 

Fluor 594 goat anti-mouse IgG (A-110005, Invitrogen, Life Technologies Japan Ltd., 

Japan) was used as the secondary antibody. To evaluate oxidative DNA damage, 

8-OHdG (N45.1, Japan Institute for the Control of Aging, Nikken Seil Co., Ltd, 

Shizuoka, Japan) and hematoxylin were used according to the manufacturer’s protocol. 

Histological assessment of tissue injury 

Liver samples were fixed with 4% paraformaldehyde, embedded in paraffin wax, and 

sectioned (4-µm thickness). Slides were stained with hematoxylin–eosin.  

Electron microscopy 

Fixation of liver samples was performed as previously reported (37). Sections were 

observed by transmission electron microscope (H-7650: Hitachi, Ltd., Tokyo, Japan).  

Statistical analyses 

Results are expressed as mean ± standard error for each group. Statistical analysis of the 

groups at each time point was performed with two-way ANOVA and Bonferroni’s 

post-hoc test. For the survival study, a Mantel–Cox log-rank analysis was performed. 



 
 

The Mann–Whitney U-test was used to analyze hepatic ET-1 expression in Experiment 

II-B. P of <0.05 was considered statistically significant. Calculations were performed 

with Prism Software Version 5.0c (GraphPad Software, Inc. CA, USA). 
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Table 1. Time-course for serum analysis and gene expression analysis 

 

Mean ± standard error of the mean of serum value after transplantation. ALT, alanine 

aminotransferase; MDA, malondialdehyde; IL-6, interleukin-6; TNFα, tumor necrosis 

factor alpha; ET-1, endothelin-1; iNOS, inducible nitric oxide synthase; eNOS, 

endothelial nitric oxide synthase; Control, graft stored in simple cold storage; 

VSOP-NO, graft stored in venous systemic oxygen persufflation with nitric oxide gas. 

p<0.001 in AST, p = 0.039 in hyaluronic acid, p<0.001 in MDA, p = 0.017 in IL-6, 

p<0.001 in TNFα,  p<0.001 in ET-1, p = 0.0057 in iNOS, and p<0.001 in eNOS. 

Bonferroni’s post-test: * p < 0.05, ** p < 0.01, and *** p < 0.001 vs VSOP-NO. 

  2 hour 6 hour 1 day 3 day 

ALT 

(IU/ml) 

Control 2770.0 ± 151.3 4084.2 ± 1196.5 1895.8 ± 303.0 234.0 ± 92.8 

VSOP-NO 2035.0 ± 261.2 1088.5 ± 261.2*** 457.3 ± 43.0 205.5 ± 92.7 

Hyaluronic Acid 

(ng/ml) 

Control 294.5 ± 90.8 281.6 ± 58.8 1179.9 ± 202.1 428.2 ± 133.6 

VSOP-NO 197.2 ± 12.5 117.2 ± 19.5 695.1 ± 174.7 118.6 ± 18.3 

MDA 

(µM) 

Control 4.8 ± 0.8 7.7 ± 0.5 4.2 ± 0.9 2.1 ± 0.3 

VSOP-NO 4.0 ± 0.7 2.8 ± 0.5*** 1.9 ± 0.3* 2.6 ± 0.3 

IL-6  

(%β-actin) 

Control 2098.7 ± 1996.7 4227.4 ± 960.0 25.6 ± 8.9 43.9 ± 20.0 

VSOP-NO 85.2 ± 31.6 753.9 ± 185.7* 1.8 ± 0.3 29.4 ± 11.8 

TNFα 

(%β-actin) 

Control 40.6 ± 12.2 115.1 ± 21.8 31.0 ± 6.1 18.4 ± 2.3 

VSOP-NO 21.9 ± 7.9 23.1 ± 8.9*** 18.5 ± 5.7 22.4 ± 6.2 

ET-1 

(%β-actin) 

Control 16.0 ± 5.6 21.0 ± 2.9 8.0±1.0 1.7 ± 0.3 

VSOP-NO 3.1 ± 0.6** 6.1 ± 0.9*** 1.4±0.3 1.7 ± 0.3 

iNOS 

(%β-actin) 

Control 7.1 ± 2.4 4.4 ± 1.0 2.7 ± 1.4 3.2 ± 0.8 

VSOP-NO 1.4 ± 0.3** 2.4 ± 0.7 2.3 ± 0.8 1.7 ± 0.5 

eNOS 

(%β-actin) 

Control 0.3 ± 0.1 1.0 ± 0.2 0.6 ± 0.1 1.0 ± 0.1 

VSOP-NO 1.0 ± 0.2 1.5 ± 0.5 4.6 ± 0.4*** 1.4 ± 0.3 



 
 

Figure Legends 

Figure 1 

Histological analysis using hematoxylin–eosin staining (A, B; original magnification 

×100) and ultrastructural analysis using transmission electron microscopy (C–F) of the 

hepatic microstructure 6 h after liver transplantation in Control (A, C, E) and VSOP-NO 

(B, D, F) groups. Black bars in hematoxylin–eosin images indicate 100 μm (A, B), and 

black bars in transmission electron microscopy images indicate 2 μm (C, D) and 500 nm 

(E, F). 

CV, central venous area; PV, portal venous area; HC, hepatocytes; SEC, sinusoidal 

endothelial cells; Control grafts stored in cold storage alone; VSOP-NO grafts stored in 

venous systemic oxygen persufflation using nitric oxide gas. Sinusoidal epithelial cell 

(SEC) destruction (arrow) was observed.  

 

Figure 2 

Immunofluorescence analysis using rat endothelial cell antigen 1 (RECA-1) of hepatic 

expression 2, 6, 24, and 72 h after portal reperfusion in Control (A–D) and VSOP-NO 

(E–H) groups. CV, central venous area; PV, portal venous area; Control grafts stored in 

cold storage alone; VSOP-NO grafts stored in venous systemic oxygen persufflation 

using gaseous NO. 

 

Figure 3 

Kaplan–Meier survival curves of recipient rats after transplantation of 60-min warm 

ischemia-damaged livers stored in cold storage alone (Control) and venous systemic 

oxygen persufflation using nitric oxide gas (VSOP-NO). Survival rates for VSOP-NO 



 
 

and Control were 71.4% and 14.3%, respectively, at 12 h and 71.4% and 0%, 

respectively, at 10 days; P = 0.009 vs. Control using the log-rank test (n = 6 per group). 

 

Figure 4 

Relative messenger RNA expression in the liver for endothelin-1 (ET-1) 2 h after 

transplantation of 60-min warm ischemia-damaged grafts in group-Control and group- 

venous systemic oxygen persufflation using nitric oxide gas (VSOP-NO) (A). The 

Mann–Whitney U-test was used. **P < 0.01 vs. Control (mean ± standard error of mean, 

n = 6 per group). Immunofluorescence using 8-hydroxy-2′-deoxyguanosine (8-OHdG) 

and hematoxylin for hepatic expression 2 h after liver transplantation of 60-min warm 

ischemia-damaged grafts in group-Control (B) and group-VSOP-NO (C). The black 

bars indicate a length of 100 mm. CV, central venous area; PV, portal venous area; 

Control grafts stored in cold storage alone; VSOP-NO grafts stored in venous systemic 

oxygen persufflation with nitric oxide gas. 
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