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Natural convection heat transfer from horizontal rod bundles in NxmNym arrays (Nxm, 

Nym=5~9) in liquid sodium was numerically analyzed for three types of the bundle geometry 

(in-line rows, staggered rows I and II). The unsteady laminar two dimensional basic equations 

for natural convection heat transfer caused by a step heat flux were numerically solved until 

the solution reaches a steady-state. The PHOENICS code was used for the calculation 

considering the temperature dependence of thermo-physical properties concerned. The surface 

heat fluxes for each cylinder were equally given for a modified Rayleigh number, Rf, ranging 

from 0.0637 to 63.1 (q=110
4
~710

6
 W/m

2
). Sx/D and Sy/D for the rod bundle, which are 

ratio of the distance between center axes on the abscissa and the ordinate to the rod diameter, 

were ranged from 1.6 to 2.5 on each bundle geometry. The spatial distribution of Nusselt 

numbers, Nu, on horizontal rods of a bundle was clarified. The average value of Nusselt 

number, Nuav, for three types of the bundle geometry with various values of Sx/D and Sy/D 

were calculated to examine the effect of the array size, S/D and Rf on heat transfer. The bundle 

geometry for the higher Nuav value under the condition of Sx/DSy/D=4 was examined by 

changing the ratio of Sx/Sy. A correlation for Nuav for three types of bundle geometry above 

mentioned including the effects of Sx/D and Sy/D was developed. The correlation can describe 

the theoretical values of Nuav for three types of the bundle geometry in NxmNym arrays (Nxm, 
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Nym=5~9) for Sx/D and Sy/D ranging from 1.6 to 2.5 within 10 % difference.  
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1. Introduction 

    Knowledge of natural convection heat transfer from a horizontal rod bundle in liquid 

sodium is important as a database for the design of a heat exchanger in a fast breeder reactor 

for decay heat removal at a loss of flow accident. However, there have been little fundamental 

experimental work in liquid sodium and little is known on the effects of bundle geometry and 

value of S/D (ratio of the distance between center axes, S, to the rod diameter, D) on heat 

transfer.  

    There have been a few works on interactions between two or more horizontal cylinders 

in natural convection. Marsters [1] carried out a study of three, five and nine horizontal 

cylinders in a vertical array in air. They have found that for closely spaced arrays, individual 

tube Nusselt numbers are smaller than for a single cylinder, and for wide spacing individual 

tube Nusselt numbers are higher than for a single cylinder. Lieberman and Gebhard [2] have 

conducted experiments in air on the interactions of heated wires arranged in a plane array. The 

array could be oriented so that its plane made angles of 0, 30, 60 and 90 with the vertical. 

Their data were for the wire spacing ranging from 37.5 diameters to 225 diameters.  

    Correlations for natural convection heat transfer from 4 to 16 horizontal cylinders to 

cubical enclosures were represented by Warrington and Weaver [3], but the effect of cylinder 

geometry on heat transfer and the heat transfer coefficients on each cylinder were not 

discussed. Natural convection heat transfer experiments on horizontal rod bundle for design 

of casks for transportation, storage, and permanent disposal of spent nuclear assemblies have 

been conducted with air and helium in enclosing cask by Fedorovitch [4], Irino et al. [5], and 

Vdovets et al. [6]. 

    Keyhani and Luo [7] carried out numerical simulations with air and helium in 33 to 99 

arrays, predicted the average Nusselt number of each rod for a modified Rayleigh number, 

Rad
*
, of 1 to 3.1610

2
 and obtained pure conduction results for rod bundles ranging 33 to 

1313 arrays.  
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    Keyhani and Dalton [8] experimentally investigated natural convection heat transfer in 

enclosed NN arrays (N=3, 5 and 7) of electrically heated rods and correlated a generalized 

enclosure Nusselt number as a function of enclosure modified Rayleigh number and the array 

size (N). 

    In Part 1 of this paper, the natural convection heat transfer coefficients on two parallel 

horizontal cylinders have already been obtained experimentally and theoretically for various 

setting angles, , between the vertical direction and the plane including both of these center 

axes, over the range of zero to 90 in liquid sodium and the correlations for two cylinders 

were presented as a function of Rf [=Gr
*
Pr

2
/(4+9Pr

1/2
+10Pr)], S/D and  based on theoretical 

solutions. The theoretical values of average Nusselt number, Nu, on each of these two 

cylinders are in agreement with the corresponding experimental data with the deviations less 

than 15 %. A combined correlation for multi-cylinders in a vertical array was presented based 

on the correlations for two cylinders. The average Nusselt numbers on each of the cylinders 

predicted by the correlation were in agreement with the corresponding theoretical solutions 

for Rf ranging from 4.7 to 63 within 10 % difference. 

    The objectives of present study are: (1) to obtain the numerical solutions of the average 

Nusselt number from theoretical laminar natural convection equations for a wide range of the 

array size (NxmNym), S/D and Rf on three bundle geometries (in-line rows, staggered rows I 

and II), (2) to clarify the effect of the array size, S/D, Rf and the bundle geometry on heat 

transfer, (3) to obtain the bundle geometry accompanied with a higher heat transfer coefficient, 

and (4) to present a correlation to describe the effect of the array size, S/D, Rf and the bundle 

geometry on natural convection heat transfer. 

 

2. Theoretical Solution of Laminar Natural Convection Equations 

2.1 Fundamental Equations  

    Considering the one-half symmetry of the problem, the unsteady laminar two 
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dimensional basic equations in boundary fitted coordinates as shown in Figures 1 (a) and (b) 

for a 55 array are described as follows. 

(Continuity Equation) 
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(Energy Equation) 
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u, v are the x, y components of a velocity vector, respectively.  

< Figure 1 (a) and (b) > 

 

2.2 Boundary Conditions  

    The fundamental equations are numerically analyzed together with the following 

boundary conditions. 

On the surfaces of cylinders: constant heat flux, and non-slip condition. 

At the right outer boundary: 

0,0 





x

u
TT  for in-flow, 
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0,0 









x

u

x

T
 for out-flow. 

 

At the lower and upper boundary: 

0,0 





y

v
TT  for in-flow, 

0,0 









y

v

y

T
 for out-flow. 

where T0 is a bulk liquid temperature. 

 

2.3 Method of Solution 

    The control volume discretization equations were derived from these fundamental 

equations by using the hybrid scheme [9]. The thermo-physical properties for each control 

volume are given as those at each volume temperature. The procedure for the calculation of 

the flow field is the SIMPLE algorithm which stands for Semi-Implicit Method for 

Pressure-Linked Equations. 

    The surface heat fluxes, q, for each cylinder were equally given in the range of 110
4
 

W/m
2
 to 710

6
 W/m

2
 as an initial condition, and numerical calculation was continued until 

the steady-state was obtained. The surface temperature on the cylinder was calculated from 

the analyzed temperature of the first control volume on the cylinder surface, TEM, which is 

supposed to be located on the center of the control volume, by solving the thermal conduction 

equation in liquid sodium as follows [10-14].  

TEM+
2

r)(

λ

q
=T out

l

s


       (6) 

where, (Δr)out is the outer control volume width for the r-component. The liquid temperatures 

on the test tube surface in the conductive sub-layer [15, 16] will become linearly lower with 
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an increase in the radius by the heat conduction from the surface temperature on the test tube, 

Tf=Ts-Δrq/λl. And let those, Tf, equal the analyzed liquid temperature of the outer control 

volume on the test tube surface, TEM, as given in Eq. (6). Half the outer control volume width 

for the r-component, (Δr)out/2, would become the thickness of the conductive sub-layer for the 

local heat transfer in a horizontal cylinder under two-phase model classified into laminar 

sub-layer and transition region of the buoyancy-driven flow. Average heat transfer coefficient 

on the cylinder surface was obtained by averaging the calculated local surface temperatures at 

every 10 in . All the calculations were made by using the PHOENICS code [17]. 

 

3. Results and Discussion  

    In this section, correlations of natural convection heat transfer for a single horizontal 

cylinder and two horizontal cylinders, and a combined correlation for multi-cylinders in a 

vertical array previously obtained are firstly explained. The correlation from horizontal rod 

bundles of in-line rows and staggered rows I and II in NxmNym arrays is presented by use of 

these correlations.  

 

3.1 The Correlations Previously Obtained  

3.1.1 For a Single Horizontal Cylinder  

The following correlation for Nu was given as a function of Rf by least square fitting 

within  4 % . 

z10Nu         (7) 

where 

4
f

4-3
f

3-

2
f

-2
f

)R (log100.238613-)R (log100.232432-

)R (log100.664323R log 0.1450370.193385  z




   

    In this work, Nusselt numbers on horizontal rods of a bundle and their average value 

obtained theoretically for a wide range of surface heat flux are compared with those given by 
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Equation (7) at the same condition. 

3.1.2 For Two Horizontal Cylinders  

    The calculated values of Nu/NuSC for the upper and lower cylinders were approximately 

expressed by the following correlations.  

For the upper cylinder: 

)]/(exp[60.01/ DSARNuNu m
fSC       (8) 

where  33 1067.112.0,108.629.0   mA  

For the lower cylinder: 

)]/(exp[1/ DSKRCNuNu n
fSC       (9) 

where  
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The values of Nu/NuSC derived from these correlations were in agreement with the numerical 

solutions for the upper and lower cylinders within -5 and +9 % error.  

3.1.3 For Multi-cylinders in a Vertical Array 

    A combined correlation for multi-cylinders in a vertical array with a constant S/D was 

given based on the correlations for two cylinders in Part 1 of this work. Each horizontal 

cylinder consisting the vertical array were numbered sequentially from i=1 (lowermost 

cylinder) to i=Nm (uppermost one). The combined correlation was as follows: 

 

}]/)(exp{1[

}]/)(exp{60.01[/

1

1

1

DSiNKRC

DSiaARNuNu

m

mN

ai

n
f

a

i

m
faiSC

 

 










   (10) 

where the Nu/NuSC value for a cylinder with i=a was given by multiplying the mutual effects 

between the cylinder and other lower and upper cylinders.  
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3.2 Calculated Results for Horizontal Rod Bundles of In-line Rows for Sx=Sy 

    Natural convection heat transfer from horizontal rod bundles in NxmNym arrays was 

numerically analyzed for the bundle geometry of in-line rows (IR) as shown in Figure 2 (a). 

Sx/D and Sy/D for the rod bundle which are ratios of the distance between center axes on the 

abscissa and the ordinate to the rod diameter were ranged from 1.6 to 2.5 in 55, 77 and 99 

arrays. The surface heat fluxes for each cylinder were equally given at 110
4
, 210

4
, 710

4
, 

210
5
, 710

5
, 110

6
, 210

6
 and 710

6
 W/m

2
. The parameters used for the calculation are 

tabulated in Table 1. 

< Figure 2 (a), (b) and (c) > 

                              < Table 1 > 

    The numerical results of Nu on a rod bundle of a 55 array with Sx/D=Sy/D=2 for 

Rf=1.30 and 6.79 (q=210
5
, 110

6
 W/m

2
) were shown in Figures 3 and 4 as typical examples. 

They are shown as the ratio of Nu to those for a single cylinder given by Equation (7) for the 

same condition, Nu/NuSC, versus Nx graph with Ny as a parameter, where Nx is the column 

number and Ny is the row number (Nx=1, 5 are the edge columns; Nx=3 is the center column; 

Ny=1 is the lowest row; Ny=5 is the uppermost row). The values of Nu/NuSC are symmetrical 

on the graph. The value of Nu/NuSC on each column for Ny=1 (the lowest row) is higher than 

those for other rows. The value at Nx=3 for Ny=1 is the maximum. The values of Nu/NuSC for 

each column become smaller with the increase in the row number. The Nu/NuSC value at Nx=3 

for Ny=5 is the minimum. The values of Nu/NuSC at Nx=1, 5 (edge column) are higher than 

those for other columns on the same row number except those for Ny=1.  

< Figure 3 and 4 > 

    The contour of liquid temperature and the distribution of velocity vectors on a rod bundle 

of a 55 array for Rf=6.79 were plotted in Figures 5 and 6, respectively. It is recognized that 

a flow of liquid sodium turns to the center column and ascends along it. The liquid 

temperature on the edge column and the lowest row is lower and that on the center column 
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becomes higher with the increase in the row number as mentioned above.  

< Figure 5 and 6 > 

    The values of Nu/NuSC are also shown versus Ny with Nx as a parameter in Figures 7 and 

8. The values of Nu/NuSC for Nx=1,5 (edge column) are far higher than those for other column 

except the lowest row (Ny=1). The edge column are not affected by the thermal boundary 

layer from the lower cylinder, because of being a in-flow plane. The values of Nu/NuSC for 

Nx=2,4 are almost in agreement with those for Nx=3 (center column), the values for Nx=3 are 

about 8 % higher and about 13 % lower than those for Nx=2,4 at the lowest row and the 

uppermost row, respectively. The values of Nu/NuSC for each rod derived from the combined 

correlation in a vertical array, Equation (10), are shown as a solid curve in each figure for 

comparison. The value at Ny=1 for Nx=3 is higher than the curve of the combined correlation, 

because of the contribution of the fluid flow caused by the buoyancy force, and the value at 

Ny=5 for Nx=3 is lower than the curve, because of the development of the thermal boundary 

layer by the mutual effects between the center rod and other surrounding rods. It is shown 

from these figures that the values of Nu/NuSC on the same column and row numbers become 

smaller with the decrease in Rf.  

< Figure 7 and 8 > 

    As shown in Figures 7 and 8, the value of Nu on the center column shows the same 

trend of dependence as predicted by the combined correlation in a vertical array, but that on 

the edge column is far higher than the corresponding value. The average value of the Nusselt 

numbers for the rods in the bundle was obtained to develop the correlation for the rod bundle 

and to discuss the effect of the array size and the bundle geometry on the heat transfer. The 

average Nusselt number, Nuav, for a rod bundle in NxmNym array was obtained as follows, 

 


ymN

j
ymxmij

xmN

i
av NNNuNu

11

)/(      (11) 

where Nuij is the Nusselt number for i-th column and j-th row.  
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    The ratios of Nuav to those for a single cylinder given by Equation (7) at the same 

condition, Nuav/NuSC, for the rod bundle in a 55 array with Sx/D=Sy/D=2 are plotted on the 

Nuav/NuSC versus Rf graph in Figure 9 for Rf ranging from 0.064 to 63.1 (q=110
4
~710

6
 

W/m
2
). The Nuav/NuSC values are 34 % of a single cylinder at Rf=0.0637 (q=110

4
 W/m

2
), 

80 % at Rf=14.2 (q=210
6
 W/m

2
) and 87 % at Rf=63.1 (q=710

6
 W/m

2
): they increase with 

the increase in Rf and approach asymptotically the value of a single cylinder. It is suggested 

that the Nuav values for the rod bundle are smaller than those for a single cylinder in the lower 

heat flux region because convection heat transfer is small and the thermal boundary layer 

becomes thicker for interactions between one rod and the others due to the effect of thermal 

conduction. 

< Figure 9 > 

    It is assumed that the Nuav may be proportional to the average value of the Nusselt 

numbers on the center column, (NuCC)av. The values of Nuav/NuSC in a 55 array are shown 

versus (NuCC)av/NuSC in Figure 10, where ym

ymN

j
jcolumncenteravCC NNuNu /)(

1
,


 . The 

theoretical values of Nuav/NuSC on the center column for rod bundles in 77 and 99 arrays 

with Sx/D=Sy/D=2 are also shown in this figure. They are approximately expressed by a single 

curve given by the following equation. 

  SCavCCSCav NuNuNuNu /18.1/       (12) 

< Figure 10 > 

    It is further assumed that (NuCC)av may be expressed as a function of the average value of 

the Nusselt numbers on a single vertical array, (NuSB)av. The (NuCC)av/NuSC values on the 

center column for the rod bundles in 55, 77 and 99 arrays are shown versus the 

corresponding values of (NuSB)av/NuSC in Figure 11, where 

   


mN

i
miSCSCavSB NNuNuNuNu

1

///  derived from Equation (10), ymm NN   and 
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ySS  . As shown in the figure, they are approximately expressed by the following equation. 

      4/1/738.0/5.1/ ymxmSCavSBSCavCC NNNuNuNuNu     (13) 

Combining Equations (12) and (13) leads to,  

    4/1/871.0/77.1/ ymxmSCavSBSCav NNNuNuNuNu     (14) 

The values of Nuav/NuSC derived from Equation (14) for rod bundles in 55, 77 and 99 

arrays with Sx/D=Sy/D=2 are compared with the corresponding numerical solutions in Figures 

9, 12 and 13, respectively. The theoretical solutions of Nuav/NuSC for Rf ranging from 0.0637 

to 63.1 are expressed by Equation (14) within a few % difference. 

< Figure 11, 12 and 13 > 

 

3.3 Effect of the Bundle Geometry on Heat Transfer 

    Natural convection heat transfer for rod bundles in 55 and 5(6)5 arrays was 

numerically analyzed on two types of staggered rows I and II (SRI and SRII) for Sx/D=Sy/D=2 

at Rf=4.67, 6.78 and 14.2 (q=710
5
, 110

6
, 210

6
 W/m

2
). Schematics for the bundle geometry 

of staggered rows I and II are shown in Figures 2 (b) and (c). In case of staggered rows, unit 

volume is a triangle and Sx and Sy are defined as shown in these figures. The rod bundle of 

staggered rows II in a 5(6)5 array shown in Figure 2 (c) has 6 rods at an even number of 

rows in the array because the entire rod bundle is symmetric with respect to the y axis, and 

has 27 rods (55+2) in all. Sx and Sy are the distance between center axes on the abscissa and 

the ordinate as shown in the figures. The values of Nuav/NuSC for two types of staggered rows 

I and II with Sx/D=Sy/D=2 are shown versus the rod bundle geometries with Rf as a parameter 

in Figure 14 with those for in-line rows (IR). The Nuav/NuSC values for each bundle geometry 

are higher for higher Rf. The values of Nuav/NuSC for two types of staggered rows I and II are 

in good agreement with those of in-line rows.  

    And, the values of Nuav/NuSC for staggered rows I and II at Sx/D=1.6, Sy/D=2.5 and 

Sx/D=2.5, Sy/D=1.6 almost agree with the corresponding values for in-line rows, as shown in 
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Figures 15 and 16. It is expected from this comparison that natural convection heat transfer 

for the rod bundles with the same values of Sx/D and Sy/D does not depend on the bundle 

geometry.  

< Figure 14, 15 and 16 > 

 

3.4 Effect of Sx/D and Sy/D on Heat Transfer 

    Natural convection heat transfer for the bundle geometry of in-line rows in a 55 array 

was numerically analyzed to examine the effect of Sx/D and Sy/D on heat transfer, at the 

constant heat flux conditions of Rf=6.78 and 14.2 (q=110
6
, 210

6
 W/m

2
) for Sx/D and Sy/D 

ranging from 1.6 to 2.5.  

 

3.4.1 Effect of Sx/D 

    The theoretical values of Nuav/NuSC are plotted on Nuav/NuSC versus Sx/D graph in Figure 

17. The Nuav/NuSC value for Rf=6.78 and Sy/D=1.6 is 68 % of that for a single cylinder at 

Sx/D=1.8, becomes higher with the increase in Sx/D and is 80 % at Sx/D=2.5. The Nuav 

becomes 21 % larger with the increase in Sx/D from 1.8 to 2.5. The values of Nuav/NuSC for 

Rf=14.2 and Sy/D=1.6 show nearly the same trend of dependence on Sx/D, although they are 

almost 9 % higher than the corresponding values for Rf=6.78 and Sy/D=1.6. The values of 

Nuav/NuSC for Rf=6.78 and 14.2, and Sy/D=2 almost agree with the corresponding values for 

Sy/D=1.6, although they are slightly higher than the latter.  

< Figure 17 > 

3.4.2 Effect of Sy/D 

    The Nuav/NuSC values are shown versus Sy/D in Figure 18. The Nuav/NuSC value for 

Rf=6.78 is 63 % of that for a single cylinder at Sy/D=1.8, becomes higher for the higher value 

of Sy/D and is 66 % at Sy/D=2.5. The average Nusselt number becomes 5 % larger with the 

increase in Sy/D from 1.8 to 2.5. The values of Nuav/NuSC for Rf=14.2 show nearly the same 
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trend of dependence on Sy/D and are almost 9 % higher than the corresponding values for 

Rf=6.78 as mentioned above.  

    The values of Nuav become higher with the increase in the values of Sx/D and Sy/D. It 

should be noted that natural convection heat transfer from a horizontal rod bundle is far more 

influenced by the distance between the center axes on the column, Sx, than be done by that on 

the row, Sy. It is considered from this fact that the optimum combination of Sx/D and Sy/D may 

exist under the condition of a constant value of Sx/DSy/D. 

< Figure 18 > 

 

3.5 Effect of Sx/Sy with the Same Rod Density on Heat Transfer  

    The higher Nuav under the condition of Sx/DSy/D=4 was examined by changing the ratio 

of Sx/D to Sy/D. The values of the average Nusselt number, Nu, for the bundle geometry of 

in-line rows in 55 and 77 arrays are numerically analyzed for two ratios of Sx to Sy at Rf 

ranging from 0.128 to 14.2 (q=210
4
~210

6
 W/m

2
) ; Sx/Sy=1.6/2.5 and Sx/Sy=2.5/1.6. The 

values of Nuav/NuSC for Sx/D=1.6, Sy/D=2.5 and Sx/D=2.5, Sy/D=1.6 are plotted in Figures 9, 

12 and 13 with those for Sx/D=2, Sy/D=2. The values of Nuav/NuSC for Sx/D=2.5, Sy/D=1.6 are 

almost 10 % higher than those for Sx/D=2, Sy/D=2 for the whole range of Rf numerically 

analyzed here and the values of Nuav/NuSC for Sx/D=1.6, Sy/D=2.5 are almost 10 % lower than 

those for Sx/D=2, Sy/D=2. 

    The theoretical values of Nuav/NuSC for the bundle geometry of in-line rows in a 55 

array are shown versus Sx/Sy in Figure 19 with Rf as a parameter. As shown in the figure, the 

Nuav/NuSC value at Sx/Sy=1.6/2.5 for Rf=4.67 are 63 % of that for a single cylinder, that at 

Sx/Sy=2/2 are 70 % and that at Sx/Sy=2.5/1.6 are 76 %. The Nuav/NuSC value becomes 20 % 

higher with the increase in Sx/Sy from 1.6/2.5 to 2.5/1.6. The values of Nuav/NuSC for Rf=6.78 

and 14.2 show nearly the same trends of dependence on Sx/Sy, although they are far higher 

than the corresponding values for Rf=4.67. The theoretical values of Nuav/NuSC for the bundle 
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geometry of in-line rows in a 77 array are shown in Figure 20 and those for staggered rows I 

and II in 55, 5(6)5 arrays are shown in Figures 21 and 22, respectively. The trends of 

dependence of Nu/NuSC on Sx/Sy are almost in agreement with that in Figure 19. It is 

suggested that the higher heat transfer from a horizontal rod bundle will be realized for the 

bundle geometry whose value of Sx/D is larger than that of Sy/D under the condition of 

Sx/DSy/D=constant.  

< Figure 19, 20, 21 and 22 > 

 

4. Correlation for Horizontal Rod Bundles of In-Line Rows, Staggered Rows I and II 

with Various Sx/Sy 

    It was recognized that the theoretical values of Nuav for rod bundles do not depend on the 

bundle geometry and become higher for higher value of Sx/Sy. A correlation for Nuav from 

horizontal rod bundle of in-line rows, staggered rows I and II with various Sx/Sy was given as 

follows based on Equation (14) and the calculated results for the values of Sx/Sy other than 

unity.  

    4/14/1 )/](/871.0/77.1[/ yxymxmSCavSBSCav SSNNNuNuNuNu   (15) 

In the case of Sx/Sy  1, the (NuSB)av/NuSC value can be calculated from Equation (10) by 

introducing an effective value Seff given by Seff=(SxSy)
1/2

 instead of S, and NuSC value from 

Equation (7). The curves of Nuav/NuSC for each value of Rf derived from this correlation are 

shown as an individual curve for comparison in Figures 9 and 12 to 22. As shown in these 

figures, the correlation can describe the theoretical solutions of Nuav for the bundle geometry 

of in-line rows, staggered rows I and II in 55, 5(6)5, 77 and 99 arrays for Sx/D and Sy/D 

ranging from 1.6 to 2.5 within 10 % difference. 

    It is expected from these comparisons that this correlation can be used for the design and 

the safety evaluation of a heat exchanger for a sodium cooled fast breeder reactor in the 

region of low Grashof numbers, Gr10
8
. However, rod diameter of a heat exchanger for a 



 16 

power plant may be 3 or 4 times larger than that used in this work, D=7.6 mm. In such a case, 

the values of Gr become larger than 10
8
 in higher heat flux range of this analysis. Turbulence 

effects may play an important role on heat transfer for rod arrays at Gr>10
8
 [18]. The study of 

rod arrays for higher Grashof numbers will appear in the near future.  

 

5. Summary and Conclusions 

    Natural convection heat transfer from horizontal rod bundles for three types of the 

bundle geometry of in-line rows, staggered rows I and II in 55, 5(6)5, 77, 99 arrays with 

Sx/D and Sy/D ranging from 1.6 to 2.5 was numerically analyzed in liquid sodium.  

    The spatial distribution of average Nusselt numbers, Nu, which is symmetrical with 

respect to the y axis are clarified. The values of Nu for each column become smaller with the 

increase in the row number. The value of Nu at the center rod for the lowest row is the 

maximum and the Nu value at the center rod for the uppermost row is the minimum. The 

values of Nu for the edge column are higher than those for other column on the same row 

number except those for the lowest row. 

    The average Nusselt number for a rod bundle, Nuav, becomes lower with the decrease in 

the value of Rf and higher with the increase in the value of Sx/D and Sy/D. 

    The values of Nuav on various bundle geometries with the same values of Sx/D and Sy/D 

are almost in agreement independent of the bundle geometry. 

    The higher Nuav value under the condition of Sx/DSy/D=4 was examined by changing 

Sx/D from 1.6 to 2.5. They are higher for the larger value of Sx/D. It is suggested that the 

higher heat transfer from a horizontal rod bundle will be realized for the bundle geometries 

with higher values of Sx/Sy under the condition of Sx/DSy/D=constant.  

    A generalized correlation for Nuav including the effects of Sx/D and Sy/D for various 

types of bundle geometry was developed. The correlation can describe the theoretical values 

of Nuav for three types of the bundle geometry of in-line rows, staggered rows I and II in 55, 
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5(6)5, 77, 99 arrays with Sx/D and Sy/D ranging from 1.6 to 2.5 within 10 % difference. 

 

Nomenclature 

A = non-dimensional quantity in Equation (8)   

C  = non-dimensional quantity in Equation (9)   

cp      = isobaric specific heat, J/kg K   

D      = rod diameter, m    

Gr
*
    =   q D

4
/2

, Grashof number for constant heat flux   

g       = acceleration of gravity, m/s
2
  

K      = non-dimensional quantity in Eqution (9)  

m     = exponent in Equation (8)  

N    = cylinder number   

Nm  = total number of cylinder   

Nx      = column number   

Nxm   = total number of rod in a column   

Ny      = row number   

Nym    = total number of rod in a row   

Nu     = Nusselt number  

Nuav    = average Nusselt number for a rod bundle  

NuCC   = average Nusselt number for rods of a center column  

NuSB   = average Nusselt number for rods of single vertical array  

NuSC   = Nusselt number for single cylinder  

n       = exponent in Equation (9)   

P      = pressure, N/m
2
   

Pr      = Prandtl number  

q       = heat flux, W/m
2
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Ra     = Gr Pr , Rayleigh number   

Ra
*
     = Gr

*
Pr , Rayleigh number for constant heat flux   

Rad
*
    = Grd

*
Pr , modified Rayleigh number   

Rf      = Gr
*
Pr

2
/(4+9Pr

1/2
+10Pr), modified Rayleigh number  

r    radius of a cylinder, m   

(Δr)out  outer control volume width for r-component, m   

S       = distance between the center axis of two parallel horizontal cylinders, m  

Seff    = (SxSy)
1/2

, effective distance, m   

Sx      = distance between the center axes on abscissa, m   

Sy      = distance between the center axes on ordinate, m   

T      = temperature, K   

T0     = bulk liquid temperature, K   

TEM   analyzed liquid temperature of the outer control volume, K 

Tf    liquid temperature, K 

TS    heater surface temperature, K 

t       = time, s   

u, v     = velocity components in x and y directions, m/s   

x, y     = Cartesian coordinates, m   

 

Greek Symbols 

      = setting angle of the two horizontal cylinders, deg  

      = peripheral angle from the bottom of the cylinder, deg   

     = thermal conductivity, W/(m K)   

       = kinematic viscosity, m
2
/s   

      = density, kg/m
3
   

       = viscous stress tensor, kg/s
2
 m   
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Table 1.  Parameters for Calculation 

Horizontal Rod Bundles 

System Pressure   101.3 kPa 

Diameter of Rod (D)  7.6 mm 

Outer Control Volume Width for r-component ((Δr)out)  0.4 mm 

Array Size (Nxｍ  Nyｍ)  5  5,  5(6)  5, 7  7, 9  9 

Bundle Geometry  In-line Rows, Staggered Rows I, Staggered Rows II 

Sx/D, Sy/D (S=Rod Pitch) 1.6, 1.8, 2, 2.2, 2.4, 2.5 

Liquid Temperature  673 K 

Heat Flux (q)   1  10
4
,  2  10

4
,  7  10

4
,  

2  10
5
,  7  10

5
,  1  10

6
,  

2  10
6
,  7  10

6
 W/m

2
 

Gr
*
    1.20  10

4
, 2.41  10

4
, 8.54  10

4
,  

2.49  10
5
, 9.33  10

5
, 1.38  10

6
,  

3.06  10
6
, 1.43  10

7
  

Ra
*
(=Gr

*
Pr)   5.98  10

 
, 1.20  10

2
, 4.24  10

2
,  

1.23  10
3
, 4.50  10

3
, 6.59  10

3
,  

1.42  10
4
, 6.17  10

4
 

Rf(=Gr
*
Pr

2
/(4+9Pr

1/2
+10Pr)) 0.0637, 0.128, 0.449,  

1.29,  4.67,  6.78,  

14.2,  63.1  
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Figure 1 (a).  Boundary fitted coordinates for a 55 array.        Figure 1 (b).  Details of boundary fitted coordinates for a 55 array. 
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Figure 2.  Bundle geometry: (a) In-line rows (IR); (b) Staggered rows I (SRI); (c) Staggered rows II (SRII). 
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Figure 3.  Nu/NuSC versus Nx for a 55 array with Ny as a parameter at Rf=1.30. 
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Figure 4.  Nu/NuSC versus Nx for a 55 array with Ny as a parameter at Rf=6.79. 
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Figure 5.  Contour of liquid temperature for a 55 array at Rf=6.79. 
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Figure 6.  Distribution of velocity vectors for a 55 array at Rf=6.79. 
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Figure 7.  Nu/NuSC versus Ny for a 55 array with Nx as a parameter at Rf=1.30. 
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Figure 8.  Nu/NuSC versus Ny for a 55 array with Nx as a parameter at Rf=6.79. 
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Figure 9.  Nuav/NuSC versus Rf for a 55 array with Sx/D and Sy/D as a parameter. Comparison with the predicted curves, Equations (14) and (15). 
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Figure10.  Nuav/NuSC versus (NuCC)av/NuSC for 55, 77 and 99 arrays. Comparison with the 

predicted curve, Equation (12). 
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Figure 11.  (NuCC)av/NuSC versus (NuSB)av/NuSC for 55, 77 and 99 arrays. Comparison with 

the predicted curve, Equation (13). 

 



 38 

 

Figure 12.  Nuav/NuSC versus Rf for a 77 array with Sx/D and Sy/D as a parameter. Comparison with the predicted curves, Equations (14) and (15). 
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Figure 13.  Nuav/NuSC versus Rf for a 99 array with Sx/D and Sy/D as a parameter. Comparison with the predicted curves, Equations (14) and (15). 
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Figure 14.  Nuav/NuSC versus bundle geometry for Sx/D=Sy/D=2 with Rf as a parameter. 
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Figure 15.  Nuav/NuSC versus bundle geometry for Sx/D=1.6, Sy/D=2.5 with Rf as a parameter. 
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Figure 16.  Nuav/NuSC versus bundle geometry for Sx/D=2.5, Sy/D=1.6 with Rf as a parameter. 
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Figure 17.  Nuav/NuSC versus Sx/D with Rf as a parameter. Comparison with the predicted 

curve, Equation (15). 
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Figure 18.  Nuav/NuSC versus Sy/D with Rf as a parameter. Comparison with the predicted 

curve, Equation (15). 
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Figure 19.  Nuav/NuSC versus Sx/Sy for in-line rows in a 55 array with Rf as a parameter. 

Comparison with the predicted curve, Equation (15). 
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Figure 20.  Nuav/NuSC versus Sx/Sy for in-line rows in a 77 array with Rf as a parameter. 

Comparison with the predicted curve, Equation (15). 
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Figure 21.  Nuav/NuSC versus Sx/Sy for staggered rows I in a 55 array with Rf as a parameter. 

Comparison with the predicted curve, Equation (15). 
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Figure 22.  Nuav/NuSC versus Sx/Sy for staggered rows II in a 5(6)5 array with Rf as a 

parameter. Comparison with the predicted curve, Equation (15). 

 


