

Title	Phylogeny, hybridization, and life history evolution of Rhinogobius gobies in Japan, inferred from multiple nuclear gene sequences.
Author(s)	Yamasaki, Yo Y; Nishida, Mutsumi; Suzuki, Toshiyuki; Mukai, Takahiko; Watanabe, Katsutoshi
Citation	Molecular phylogenetics and evolution (2015), 90: 20-33
Issue Date	2015-04-27
URL	http://hdl.handle.net/2433/198127
Right	© 2015 Elsevier Inc. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/. NOTICE: this is the author's version of a work that was accepted for publication in 'Molecular Phylogenetics and Evolution'. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in 'Phylogeny, hybridization, and life history evolution of Rhinogobius gobies in Japan, inferred from multiple nuclear gene sequences', VOL90, 2015, doi:10.1016/j.ympev.2015.04.012.; 許諾条件により本文ファ イルは2016-04-27に公開.
Туре	Journal Article
Textversion	author

1	Title: Phylogeny, hybridization, and life history evolution of <i>Rhinogobius</i> gobies in Japan, inferred
2	from multiple nuclear gene sequences
3	Authors: Yo Y. YAMASAKI ^a , Mutsumi NISHIDA ^{b,e} , Toshiyuki SUZUKI ^c , Takahiko MUKAI ^d ,
4	Katsutoshi WATANABE ^a
5	
6	Author's affiliation:
7	^a Graduate School of Science, Kyoto University, Kitashirakawa-oiwake-cho, Sakyo, Kyoto
8	606-8502, Japan
9	e-mail: yo.yamasaki@terra.zool.kyoto-u.ac.jp, watanak@terra.zool.kyoto-u.ac.jp
10	^b Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba 277-8564,
11	Japan
12	^c Kawanishi-midoridai Senior High School, 1-8 Kouyoudai, Kawanishi, Hyogo 666-0115, Japan
13	^d Faculty of Regional Studies, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
14	^e Current address: University of the Ryukyus, 1 Senbaru, Nishihara-cho, Okinawa 903-0213,
15	Japan
16	
17	Corresponding author:
18	Katsutoshi Watanabe
19	Graduate School of Science, Kyoto University, Kitashirakawa-oiwake-cho, Sakyo, Kyoto
20	606-8502, Japan.
21	Tel.: +81-75-753-4079
22	e-mail: watanak@terra.zool.kyoto-u.ac.jp
23	
24	

25 Abstract

26Rhinogobius fishes (Gobiidae) are distributed widely in East and Southeast Asia, and represent 27the most species-rich group of freshwater gobies with diversified life histories (i.e., 28amphidromous, fluvial, and lentic). To reveal their phylogenetic relationships and life history 29evolution patterns, we sequenced six nuclear and three mitochondrial DNA (mtDNA) loci from 18 30 species, mainly from the mainland of Japan and the Ryukyu Archipelago. Our phylogenetic tree 31based on nuclear genes resolved three major clades, including several distinct subclades. The 32mtDNA and nuclear DNA phylogenies showed large discordance, which strongly suggested 33 mitochondrial introgression through large-scale interspecific hybridization in these regions. On the 34basis of the molecular dating using geological data as calibration points, the hybridization 35 occurred in the early to middle Pleistocene. Reconstruction of the ancestral states of life history 36 traits based on nuclear DNA phylogeny suggests that the evolutionary change from 37amphidromous to freshwater life, accompanied by egg size change, occurred independently in at 38 least three lineages. One of these lineages showed two life history alterations, i.e., from 39 amphidromous (small egg) to fluvial (large egg) to lentic (small egg). Although more inclusive 40 analysis using species outside Japan should be further conducted, the present results suggest the 41 importance of the life history evolution associated with high adaptability to freshwater 42environments in the remarkable species diversification in this group. Such life history divergences 43may have contributed to the development of reproductive isolation. 4445Keywords 46 *Rhinogobius*, Life history, Introgressive hybridization, Speciation, Nuclear gene, Adaptation to a

47 novel environment

- 48
- 49

50 1. Introduction

51Colonization of a novel environment is one of the important factors promoting species 52diversification (Schluter, 2000; Yoder et al., 2010; Betancur-R. et al., 2012). It is predicted that 53new selective pressure occurring in novel habitats generates divergent natural selection between 54the ancestral population and the newly colonized population and promotes adaptation and 55subsequent ecological speciation (Schluter, 2009; Nosil, 2012). This process is thought to be one 56of the fundamental mechanisms of adaptive radiation (Schluter, 2000; Losos, 2009). 57Migration is a key process for species diversification through colonization of a novel 58environment (Winker, 2000; McDowall, 2001). Migration promotes gene flow among populations, 59whereas it also leads to colonization of favorable habitats and consequent ecological divergence 60 (Winker, 2000). Diadromous fishes provide representative cases for such a diversification 61 mechanism along with life history evolution. Diadromous fishes that spawn in rivers are often 62 isolated in freshwaters (i.e., landlocked), which leads to ecological diversification followed by 63 speciation, as suggested in anadromous sticklebacks (McKinnon et al., 2004), amphidromous 64 gobies (Katoh and Nishida, 1994), sculpins (Goto and Andoh, 1990), and galaxias (Waters et al., 65 2010). These evolutionary processes that accompany the diversification of freshwater-diadromous 66 species, as well as those seen in lakes (e.g., Seehausen, 2006; Bernatchez et al., 2010), are the 67 most remarkable examples of adaptive radiation in fishes (Lee and Bell, 1999; Vega and Wiens, 68 2012; Betancur-R. et al., 2012, 2015). 69 The family Gobiidae (Order Gobiifromes; Betancur-R et al., 2013, 2014) is one of the most 70divergent groups among teleost fishes in terms of the number of species and ecology, and it has 71interested researchers in the fields of ecology and evolutionary biology (Yamada et al., 2009; 72Rüber and Agorreta, 2011). The genus Rhinogobius is widely distributed in freshwaters from East 73to Southeast Asia. It consists of more than 85 species, and it is the largest genus of freshwater 74gobies (Suzuki et al., 2004; Oijen at al., 2011). The species of this genus are classified into three

75types based on migration-related life history. The amphidromous type is the most general form, in 76which larval fish flow down to the sea immediately after hatching in the river. This is followed by 77early feeding and growth at the sea, and then a return the river at the juvenile stage for subsequent 78growth and reproduction (Mizuno, 2001; Keith and Lord, 2011). Lentic types complete their life 79 cycle in standing freshwaters such as lakes and marshes (Takahashi and Okazaki, 2002; 80 Tsunagawa et al., 2010a, 2010b), whereas fluvial types complete their life cycle in running 81 freshwaters (Mizuno, 1960; Nishijima, 1968; Iwata, 2001a, 2001b). Corresponding to these life 82 history types, there is a large interspecific variation in egg size in *Rhinogobius* species (Mizuno, 83 1960; Nishida, 2001; Tamada, 2001; Closs et al., 2013). Amphidromous and lentic species 84 produce small eggs (0.6–0.9 mm in the major axis; Katoh and Nishida, 1994; Tsujimoto, 2008; 85 Takahashi and Okazaki, 2002), whereas fluvial species spawn larger eggs (1.1–2.1 mm; Mizuno, 86 1960; Katoh and Nishida, 1994). The fluvial species also exhibit egg size variation, i.e., species on 87 the mainland of Japan produce larger eggs (1.4–2.1 mm; Mizuno, 1960) than several species in the 88 Ryukyu Archipelago (1.1–1.5 mm; often called "middle-sized eggs"; Katoh and Nishida, 1994). 89 The egg size variation in *Rhinogobius* species has been explained as an adaptation to feeding 90 and swimming ability during the larval period (Nishida, 1994, 2001; McDowall, 2007), and to 91 increasing larval survival in rivers, which is a relatively harsh and unproductive environment 92(Closs et al., 2013). The large number of small eggs produced by amphidromous and lentic species 93 are adaptive to standing waters with abundant small-sized plankton, such as bays, lakes, and marshes, where strong swimming ability is not necessary. On the other hand, fluvial species may 9495 need to produce larger eggs and larvae that can persist in running waters, and that utilize large 96 prey items in rivers. Interspecific variation in egg size within fluvial species has been explained by 97 the presence or absence of coexisting predators; larger larvae would be preferred under stronger 98 predation pressure (Nishida, 2001).

99 These large variations in life history and egg size in *Rhinogobius* provide a profitable case for

100 pursuing adaptive radiation via colonization of novel habitats associated with the ecology of 101 migration (Nishida, 1994, 2001). For the purpose of reconstructing such evolutionary patterns, 102 including those of life histories and the related traits such as egg size, a reliable interspecific 103 phylogeny is essential (Harvey and Pagel, 1991; Schluter, 2000; Losos, 2009). To date, genetic 104 relationships among some Japanese *Rhinogobius* species have been examined based on allozyme 105 polymorphisms (Masuda et al., 1989; Katoh and Nishida, 1994; Sakai et al., 2000), in which some 106 landlocked species producing large eggs were inferred to have evolved in parallel to different 107 amphidromous species that produce small eggs (Kato and Nishida, 1994; Nishida, 1994, 2001). 108 However, the previous studies targeted only a small set of species and failed to obtain a robust 109 phylogeny; hence, the frequency and generality of the life history changes and evolutionary 110patterns of related traits have not been well understood. Furthermore, some molecular 111 phylogenetic studies using mitochondrial DNA (mtDNA) sequence data have been conducted for 112the Rhinogobius species (Aonuma et al., 1998; Mukai et al., 2005). However, mtDNA showed 113 remarkable trans-species polymorphisms, in which the sympatric species tended to form 114 monophyletic clades beyond species boundaries; this strongly suggests interspecific introgressive 115hybridization (Mukai et al., 2005). In cases involving introgression of organellar genomes via 116 hybridization, phylogenetic information from multiple nuclear genes is necessary to estimate 117 species phylogenetic relationships (Maddison, 1997; Bossu and Near, 2009; Waters et al., 2010; 118 Near et al., 2011). 119 Given the considerable confusion regarding Rhinogobius taxonomy and the lack of ecological 120 information for large numbers of Rhinogobius species (Suzuki and Chen, 2011), exhaustive 121analysis, particularly with the inclusion of species outside Japan, is difficult to conduct at present.

122 Therefore, this study focused mainly on the Japanese *Rhinogobius* species, most of which are

123 endemic to Japan and whose taxonomic and ecological information are relatively well understood.

124 First, we estimated the phylogenetic relationships among all known Japanese species by using

 $\mathbf{5}$

125	multiple nuclear gene sequences. We also estimated their mtDNA-based phylogeny. The
126	objectives of this study were as follows: (1) to reveal the patterns of phylogenetic diversification
127	of Japanese Rhinogobius gobies; (2) to reveal the spatiotemporal patterns of interspecific
128	hybridization causing mitochondrial introgression; (3) to test whether the freshwater species,
129	including fluvial and lentic types, evolved independently from amphidromous species; and (4) to
130	reveal the relationships between life history and egg size evolution.
131	
132	2. Materials and Methods
133	2.1. Sampling
134	A total of 18 species of Rhinogobius are known from Japanese waters, 15 of which are endemic
135	to Japan (Suzuki and Chen, 2011; Akihito et al. 2013, but see below; Fig. S1; Table S1). Although
136	their species status has been evidenced by morphological, ecological, and genetic studies,
137	scientific names of more than half of the species have yet to be determined or provided mainly
138	because of their morphological similarity, insufficient taxonomic description, and poor condition
139	of type specimens (Mizuno, 2001; Suzuki et al., 2011). Specific codes consisting of two alphabet
140	characters have been commonly used for such species (e.g., BW, BB, DL; Mizuno, 2001; Akihito
141	et al., 2002, 2013) and are also used in this paper. We basically followed the classification of
142	Akihito et al. (2013), which includes 17 Japanese species. However, since one (or more) species
143	classified into Rhinogobius sp. OR (sensu Akihito et al., 2002) was not included in Akihito et al.
144	(2013), we tentatively use the name Rhinogobius sp. OR for the unclassified species.
145	A total of 96 specimens of 18 Japanese species were collected from the mainland of Japan, the
146	Ryukyu Archipelago, and the Bonin Islands from 2001 to 2013 (Tables 1 and S2; Fig. 1).
147	Specimens of wide-ranging species were sampled from two to eight geographically distant
148	locations, if possible. These specimens, along with three specimens of the three continental
149	species (R. giurinus, R. leavelli, and R. virgigena), were used in the analyses.

150We took photographs of live specimens whenever possible and identified the species according to references (Akihito et al., 2002, 2013; Suzuki et al., 2004; Chen and Kottelat, 2005). Specimens 151152were anesthetized using 2-phenoxyethanol, and their right pectoral fin or muscle tissue was 153preserved in 100% ethanol for DNA extraction. The specimens were fixed in 10% formalin, 154transferred to 70% ethanol, and deposited in the National Museum of Nature and Science, Tokyo, 155as voucher specimens (NSMT-P 65160, 65165, 120783-120861). 1561572.2. DNA extraction, PCR, and sequencing 158Total genomic DNA was extracted using a Genomic DNA Purification Kit (Promega, Madison, 159Wisconsin, USA). PCR amplification targeted three regions of mtDNA [cytochrome c oxidase

160 subunits 1 (CO1), NADH dehydrogenase subunits 5 (ND5), and cytochrome b (cytb); total of

161 2781 bp] and six regions of nuclear DNA [myosin heavy polypeptide 6 (myh6), a novel protein

162 similar to vertebrate ryanodine receptor 3 (RYR3), hypothetical protein LOC564097 (Ptr), super

163 conserved receptor expressed in brain 2 (sreb2), recombinase-activating proteins 2 (RAG2), early

164 growth response gene family 3 (EGR3); total of 4755 bp]. The primer sets and annealing

165 temperature settings followed those in previous studies (see Table S3). New primer sets for Ptr and

166 RAG2 were designed for a part of specimens based on the sequences determined for *Rhinogobius*

167 specimens using Primer3 (Rozen and Skaletsky, 2000).

PCR amplification was performed in a 15-μl volume containing 8 μl ultrapure water, 1.5 μl 2.5

169 mM dNTP mix, 1.5 µl Ex-Taq buffer, 1.5 µl of each 5 µM primer, 0.3 µl Ex-Taq DNA polymerase

170 (Takara, Shiga, Japan), and 1 μ l (ca. 10–100 ng) of DNA template. We also used KOD FX or

171 KOD Plus Neo (Toyobo, Osaka, Japan) for specimens in which the amplification was difficult.

172 The PCR using KOD FX was performed in a 15-µl volume containing 2.4 µl ultrapure water, 3 µl

173 2.0 mM dNTP mix, 7.5 μl buffer, 0.9 μl of each 5 μM primer, 0.3 μl KOD FX DNA polymerase,

174 and 1 µl of DNA template. The PCR using KOD Plus Neo was performed in a 15-µl volume

175	containing 8.0 µl ultrapure water, 1.5 µl 2.0 mM dNTP mix, 1.5 µl buffer, 0.9 µl 25 mM MgCl ₂ ,
176	0.9 μ l of each 5 μ M primer, 0.3 μ l KOD Plus Neo DNA polymerase, and 1 μ l of DNA template.
177	The settings for PCR using Ex-Taq consisted of the first step (denature, 94 °C, 2 min), 35 cycles
178	of the second step (denature, 94 °C, 30 s; annealing, 48–62 °C, 30 s; extension, 72 °C, 1 min), and
179	the last step (extension, 68 °C, 7 min); and those for PCR using KOD FX or KOD Plus Neo
180	consisted of the first step (denature, 94 °C, 2 min), 35 cycles of the second step (denature, 98 °C,
181	10 s; annealing, 55–62 °C, 30 s; extension, 68 °C, 30–40 s), and the last step (extension, 68 °C, 7
182	min). Nested PCR was performed using two primer pairs described by Li et al. (2007) in some
183	samples; PCR products were diluted 20-100 times with water, and PCR was performed again
184	using these diluted PCR products as templates.
185	The PCR products were purified using ExoSAP-IT (USB Corporation, Cleveland, OH, USA)
186	or Illustra ExoStar (GE Healthcare, Little Chalfont, Buckinghamshire, UK) at 37 °C. They were
187	sequenced using an automated DNA sequencer (ABI 3130xl, Applied Biosystems, Foster City, CA,
188	USA) with the above amplification primers and using the BigDye Terminator Cycle Sequencing
189	FS Ready Reaction Kit ver. 3.1 (Applied Biosystems).
190	Nucleotide sequences were edited in MEGA5 (Tamura et al., 2011) or MacClade 4.08a
191	(Maddison and Maddison, 2000). The DNA sequences were aligned using ClustalW (Larkin et al.,
192	2007) or manually. Heterozygous sites within individual specimens were rare (0–1.1% for genes);
193	these were coded as IUPAC degenerate nucleotide symbols and directly used in the analyses. The
194	obtained sequences were deposited in DDBJ/GenBank/EMBL (accession nos. AB988263-
195	AB988988).
196	
197	2.3. Inference of molecular phylogeny

198 Gene trees were constructed using maximum likelihood (ML) and Bayesian methods. We chose

Rhinogobius giurinus as the outgroup because it is the most distant species within the genus

200(Masuda et al., 1989; Mukai et al., 2005). Maximum likelihood analyses were carried out using 201RAxML-7.2.6 (Stamatakis, 2006). We analyzed three types of data sets, i.e., concatenated data of 202 the three mtDNA regions, six sets of each nuclear gene, and concatenated data of the six nuclear 203genes. Model selections based on Akaike information criterion (AIC) and optimal partition setting 204 analysis were performed using PartitionFinder v1.0.0 (Lanfear et al., 2012) (Table S4). We treated 205each gene as a single locus and partitioned it by codon position. The partition scheme was 206 searched using the "greedy" algorithm. The evolutionary model was selected from GTR, GTR+I, 207 GTR+G, or GTR+I+G models based on the AIC. The credibility of clades was evaluated by 1000 208 bootstrap replicates. Bayesian analyses were implemented using MrBayes 3.2.1 (Ronquist and 209 Huelsenbeck, 2003) for two data sets (concatenated three mtDNA regions and concatenated six 210nuclear genes). Model selection based on the Bayesian information criterion (BIC) and optimal 211partition setting analysis were performed using PartitionFinder with the "greedy" algorithm. We 212treated each gene as a single locus and partitioned it by codon position. In MrBayes, the analysis 213was run for 20 and 50 million generations (for mtDNA and nuclear DNA, respectively), with two 214independent runs of four Markov chain Monte Carlo (MCMC) chains and sampling every 100 215generations. The trace files were checked in Tracer 1.5 (Rambaut et al., 2013) to ensure that the 216chains had reached convergence and the first 25% of trees were discarded as burn-in. Trees were 217visualized using FigTree v1.3.1 (Rambaut, 2009).

When a maximum likelihood tree or Bayesian tree topology did not support the monophyly of some morphological species, we conducted a statistical test of monophyly of the species as

220 described below. First, we estimated the maximum likelihood tree under monophyletic constraints

221 of the species by RAxML. Second, we conducted the approximate unbiased (AU) tests

222 (Shimodaira, 2002) in CONSEL (Shimodaira and Hasegawa, 2001) for the two trees that were

- 223 constructed under constraints or no constraints (i.e., maximum likelihood tree) and confirmed
- whether the monophyly of the species was statistically rejected or not.

226 2.4. Estimation of divergence time

227We estimated the divergence time from concatenated data of mtDNA regions and nuclear genes, 228 independently. Because to date, no fossil records are available that could be used to construct the 229tree for *Rhinogobius* and its relatives, we used the following two geographic events and previously 230estimated molecular evolutionary rates for divergence time calibration. First, the Bonin Islands are 231oceanic islands that have never been connected to continents. They were formed 1.8 million years 232ago (Mya) or later, and it is assumed that their endemic fauna was formed 0.9-1.8 Mya (Kaizuka, 2331977; Imaizumi and Tamura, 1984; Chiba, 2002). The time of the most recent common ancestors 234(tMRCA) of R. ogasawaraensis (endemic species to the Bonin Islands) and its sister species, or its 235clade was constrained following a normal prior distribution within the limit of 0–2.0 million years 236(Myr) (mean = 1.8, standard deviation (SD) = 0.4; calibration 1, CA1). Since it is possible that 237interspecific hybridization occurred after this divergence (see Discussion), we did not use this 238constraint in the mtDNA-based phylogenetic tree. Secondly, we used the opening time of the 239Tokara Gap, which divided the Japanese Archipelago and the Ryukyu Archipelago (1.55 ± 0.154) 240Mya; Osozawa et al., 2012). Migration of amphidromous Rhinogobius species between the 241mainland and Ryukyu Archipelago just after the opening of the gap was probably not restricted 242because their larvae can disperse through the coastal areas. With further extension of the gap, their 243possible migration across the gap gradually decreased; finally, the isolation of populations at either 244side of the gap was complete. Therefore, we used the opening time of the Tokara Gap as the upper 245limit of the divergence time between mutually monophyletic groups distributed in the mainland 246and in the Ryukyu Archipelago. The tMRCA of the mutually monophyletic groups was 247constrained following a normal prior distribution within the limit of 0-1.7 Myr (mean = 1.55, SD 248= 0.4; calibration 2, CA2). Since the mtDNA phylogeny revealed the existence of mainland and 249Ryukyu groups beyond species boundaries (see Results), we applied CA2 to their tMRCA. On the

250other hand, in the nuclear DNA analysis, we used this constraint only for clear intraspecific 251divergence because a previous study suggested that another older geographic event could have 252caused a similar vicariance pattern between mainland and Ryukyu species in some gobiid groups 253(Mukai, 2010). Finally, we used the molecular evolutionary rate of 3.0%/Myr (pairwise) (95% 254highest posterior density (HPD), 0.7–4.8%/Myr) for cytb, which was estimated for the genus 255Gymnogobius (Tabata and Watanabe 2013), phylogenetically relatively close to Rhinogobius (Agorreta et al., 2013). We assumed that the evolutionary rate of cytb followed a lognormal prior 256distribution ranging from 0.0 to 10^{100} per Mya (initial value = 0.015, mean = 0.015, SD = 0.7, 257258offset = 0.0, mean in real space = yes).

259We used BEAST v1.7.5 (Drummond et al., 2012) to estimate the divergence time of trees 260 inferred using mtDNA and nuclear genes, respectively. Originally, we attempted to construct a 261species tree by using *BEAST (Heled and Drummond, 2010) for nuclear genes using several prior 262settings. However, the parameters did not converge and we abandoned this analysis. Later, we 263attempted to conduct the phylogenetic analysis with different evolutionary models for respective 264 nuclear genes, but the parameters did not converge well either. Although the reason for this was 265not clear, it might be possible that low sequence variation and introgression in a part of the loci 266 might influence the analyses. Finally, we concatenated sequences from the six nuclear genes and 267 estimated a dated nuclear gene tree. In order to date the tree, we adopted the random local clock 268model, which assumes one or more independent rates on different branches (Drummond and 269Suchard, 2010). We did not specify partition by codon position, because the parameters did not 270converge in mtDNA or nuclear DNA data when partitioned. We used jModelTest v2.1.3 (Darriba 271et al., 2012) to select the evolutionary model without partitioning and selected the best model 272based on BIC. We selected the speciation tree prior (Yule process; Yule, 1925; Gernhard, 2008) 273and estimated a starting tree using the UPGMA method. We conducted MCMC analysis four times 274independently. For each MCMC, we performed a run of 50 and 100 million generations (for

mtDNA and nuclear genes, respectively), sampling every 1000th generation. The first 10% of the
trees were discarded as burn-in for each run. We assessed whether parameter values for individual
runs had reached equilibrium and convergence by visually assessing their trace plots in Tracer 1.5.
Individual chains were combined using the LogCombiner v1.7.5. Finally, we analyzed combined
runs using Tree Annotator v1.7.5.

280

281 2.5 Reconstruction of ancestral states

282We conducted ancestral state reconstruction for life history and egg size traits under the multiple 283state speciation and extinction (MuSSE) model (FitzJohn, 2012). If speciation, extinction, and 284character transition rates are different associated with traits, assuming equal rates for these 285parameters under ML framework will be a major violation of the ancestral state reconstruction 286(Maddison, 2006; Goldberg and Igić, 2008; Pyron and Burbrink, 2014). The MuSSE model is one 287 of the models accounting for such state-dependent diversification and a generalized version of 288binary state speciation and extinction (BiSSE) model (Maddison et al., 2007) to allow the use of 289multistate characters. The MuSSE analysis was applied to the smallest monophyletic group 290 including all Japanese species, for which taxon sampling was dense. We chose one sample for 291every species randomly and excluded the other samples from the nuclear DNA tree inferred by 292BEAST using the 'ape' package (Paradis et al., 2004) in R (R Development Core Team, 2014). 293Exceptionally, two samples were used for *R. flumineus* and *Rhinogobius* sp. OR because they were 294suggested to be non-monophyletic. We then conducted a model comparison between the full 295MuSSE model and 11 parameter-constrained sub-models. We selected the best model using AIC 296 scores. Finally, we conducted an ancestral state reconstruction under the selected model in the ML 297 framework. The model selection and ancestral state reconstruction under the MuSSE model were 298conducted using the R package 'diversitree' v 0.9-7 (FitzJohn, 2012). The data for life history and 299 egg size of each species were obtained from previous studies (see Tables 1, S1).

301 3. Results

- 302 3.1. Phylogeny and divergence time estimates based on mtDNA sequences
- 303 The maximum likelihood and Bayesian analyses based on three mtDNA regions revealed six
- 304 clades in the Japanese Rhinogobius species (Fig. 2): M-1 (R. ogasawaraensis, bootstrap
- 305 probability inferred by RAxML [BP] 100%, posterior probability inferred by MrBayes [PPM]
- 306 100%, posterior probability inferred by BEAST [PPB] 1.0); M-2 (*Rhinogobius* sp. BW, BP 100%,
- 307 PPM 1.0, PPB 1.0); M-3 (*Rhinogobius* sp. TO, BP 100%, PPM 1.0, PPB 1.0); M-4 (*R. flumineus*,
- 308 BP 100%, PPM 1.0, PPB 1.0); M-5 (*R. nagoyae* collected from the mainland of Japan; BP 100%,
- 309 PPM 1.0, PPB 1.0); M-6 (other samples collected from the mainland of Japan; BP 100%, PPM 1.0,
- 310 PPB 1.0); and M-7 (other samples collected from the Ryukyu Archipelago; BP 81%, PPM 0.99,
- 311 PPB 0.99). *Rhinogobius nagoyae* and *R. brunneus*, which are distributed both on the mainland of
- 312 Japan and the Ryukyu Archipelago, were each polyphyletic, with M-5 and M-7 haplotypes
- according to the locality (AU test, *R. nagoyae*, p < 0.001; *R. brunneus*, p < 0.001). In the clade
- 314 M-6, *Rhinogobius* sp. OR and *R. fluviatilis* were not monophyletic (AU test, *Rhinogobius* sp. OR,
- 315 p < 0.001; *R. fluviatilis*, p < 0.001). In the clade M-7, *R. brunneus* and *Rhinogobius* sp. BB were
- also not monophyletic (AU test, *R. brunneus*, p < 0.001; *R.* sp. BB, p < 0.001).
- 317 The calibration point CA2 was applied for the divergence between the M-5+M-6 (most samples
- 318 collected from the mainland of Japan) and M-7 (collected from the Ryukyu Archipelago)
- haplotypes. The tMRCA of these was estimated at 1.17 Myr (95% HPD, 0.62–1.70 Myr in Table
- 320 2). The tMRCA of all the Japanese *Rhinogobius* species was estimated at 1.59 Myr (0.73–2.39
- 321 Myr), and the tMRCAs of M-5+M-6 and M-7 were 1.02 Myr (0.49–1.52 Myr) and 0.97 Myr
- 322 (0.47–1.44 Myr), respectively.
- 323
- 324 3.2. Gene trees and divergence time estimation based on nuclear gene sequences

325 The variable sites and parsimony informative sites of the nuclear genes for *Rhinogobius* fishes,

326 excluding *R. giurinus*, were 2.5% (EGR3)–9.9% (RAG2), and 1.3% (sreb2)–5.7% (RAG2),

- 327 respectively. Although the resolution and statistical support of the phylogenetic trees based on
- 328 each nuclear DNA data set were low (Figure S2), they were much improved in the ML and
- 329 Bayesian trees based on the concatenated dataset (Fig. 3). The descriptions and analyses hereafter
- are based on ML and Bayesian trees inferred from the six nuclear genes.
- 331 In contrast to the result of mtDNA analyses, most of the respective species were resolved as
- 332 monophyletic in the nuclear gene trees. The Japanese species were monophyletic in the current
- 333 dataset, and they were divided into three clades with strong or moderate statistical supports (Fig.
- 334 3): clade N-1 (*R. flumineus* and *R.* sp. TO; BP 95%, PPM 1.0, PPB 1.0); N-2 (*R. nagoyae* and *R.*
- 335 sp. CO; BP 68%, PPM 0.99, PPB 0.95); and N-3 (the remaining 13 species; BP 78%, PPM 1.0,
- 336 PPB 1.0). The N-3 clade was further divided into three subclades: N-3-1 (R. brunneus and
- 337 Rhinogobius sp. YB; BP 65%, PPM 0.96, PPB 0.99); N-3-2 (R. fluviatilis, R. ogasawaraensis, and
- 338 Rhinogobius sp. DL; BP 83%, PPM 1.0, PPB 1.0); and N-3-3 (Rhinogobius sp. MO, Rhinogobius
- 339 sp. BB, Rhinogobius sp. OR, Rhinogobius sp. BW, Rhinogobius sp. BF, Rhinogobius sp. OM,
- 340 *Rhinogobius* sp. KZ, and *R. kurodai*; BP 100%, PPM 1.0, PPB 1.0). None of the analyses resolved
- 341 the relationships among N-1, N-2, and N-3 clades.
- 342 In the N-1 clade, *Rhinogobius* sp. TO formed a monophyletic group with a part of *R. flumineus*
- samples (BP 57%, PPM 0.93, PPB 0.90). Although statistical support was weak, *R. brunneus* and
- 344 *Rhinogobius* sp. YB were each polyphyletic in N-3-1 (AU test, *Rhinogobius* sp. YB, p = 0.42; *R*.
- 345 *brunneus*, p = 0.335). In N-3-2 clade, *R. fluviatilis* and *R. ogasawaraensis* constituted a sister
- group with Rhinogobius sp. DL (BP 83%, PPM 1.0, PPB 1.0). In N-3-3, Rhinogobius sp. MO and
- 347 *Rhinogobius* sp. BB formed a weakly supported monophyletic group in the ML tree (BP 52%,
- 348 PPB 0.54; not supported by MrBayes analysis). The resolution of the relationships among other
- 349 specimens, including Rhinogobius sp. OR, Rhinogobius sp. BW, Rhinogobius sp. BF, Rhinogobius

350	sp. OM, Rhinogobius sp. KZ, and R. kurodai was low. Rhinogobius sp. BW, a species endemic to
351	Lake Biwa, the largest lake in Japan, formed a monophyletic group with Rhinogobius sp. BF,
352	distributed in western area of the mainland of Japan, and Rhinogobius sp. OM, distributed in the
353	coastal area and rivers flowing into Lake Biwa, but the statistical support was weak (BP 70%,
354	PPM 0.53, PPB 0.64).
355	We applied the calibration point CA1 (< 2 Myr) for the tMRCA of <i>R. fluviatilis</i> (distributed
356	widely in the mainland of Japan) and R. ogasawaraensis (endemic to the Bonin Islands) and CA2
357	(< 1.7 Myr) for the tMRCA of <i>R. nagoyae</i> on the mainland of Japan and the Ryukyu Archipelago
358	(Fig. 4). As a result of these calibration points, the divergence time of <i>R</i> . ogasawaraensis and <i>R</i> .
359	fluviatilis was estimated at 1.55 Myr (95% HPD, 1.05–2.00 Myr), and that of R. nagoyae on the
360	mainland of Japan and the Ryukyu Archipelago was estimated at 1.14 Myr (0.68–1.69 Myr).
361	The tMRCAs among the species that are geographically isolated from each other whose
362	distributions were geographically separated were estimated as follows (Table 2): tMRCA of N-3-2
363	(R. fluviatilis [the mainland], R. ogasawaraensis [Bonin Islands], and Rhinogobius sp. DL
364	[Ryukyu Archipelago]) was 1.78 Myr (1.03–2.53 Myr); tMRCA of a part of N-3-3 (Rhinogobius
365	sp. OR + Rhinogobius sp. KZ + Rhinogobius kurodai [the mainland] and Rhinogobius sp. MO +
366	Rhinogobius sp. BB [Ryukyu Archipelago]) was 1.20 Myr (0.59–1.89 Myr); and tMRCA of
367	Rhinogobius sp. BW (Lake Biwa) + Rhinogobius sp. BF (western area of the mainland of Japan) +
368	Rhinogobius sp. OM was 1.10 Myr (0.49–1.77 Myr). The tMRCA of the Japanese Rhinogobius
369	species, except for <i>R. giurinus</i> , was estimated at about 4.48 Myr (2.38–6.66 Myr).
370	
371	3.3 Ancestral state reconstruction
372	The best-fit model among the MuSSE sub-models was the simplest model for both life history

and egg size, i.e., speciation, extinction, and transition rates were independent to state (Table S6).

374 In the *Rhinogobius* species of Japan, the life history and egg size transformations were estimated

375to have occurred at least five and four times, respectively, although the proportional likelihood 376 values were not very high for parts of the ancestral states (59.6–99.9%; Fig. 4a). The estimated 377 egg size transformations always occurred together with life history transformation. The 378 evolutionary change from amphidromous to fluvial life, accompanied by an increase in egg size, 379 was estimated to have occurred in at least three independent lineages (R. flumineus, Rhinogobius 380 sp. BB, and *Rhinogobius* sp. YB). The evolutionary change from amphidromous to lentic life was 381 estimated to have occurred in one lineage (Rhinogobius sp. BW and Rhinogobius sp. BF). There 382 was no clear change in egg size in this lineage (Tables 1, S1). In the R. flumineus and Rhinogobius 383 sp. TO lineage, it was inferred that the lentic life most likely evolved from the fluvial life of *R*. 384 *flumineus*, accompanied by a decrease in egg size. 385 386 4. Discussion

387 4.1 Phylogenetic relationships of Japanese *Rhinogobius* fishes and their biogeography 388 Our analysis using multiple nuclear gene data from all known Japanese *Rhinogobius* species 389 revealed the existence of three major clades and resolved the overall relationships among the 390 species. Previously, morphological studies have not been conducted to infer the phylogenetic 391 relationships of *Rhinogobius* fishes because of their generally high level of morphological 392 similarity. Although phylogenetic hypotheses for selected species from the mainland of Japan have 393 been inferred from the allozyme data, consistent and reliable results have not been obtained 394 (Masuda et al., 1989; Sakai at al., 2000). The present study is the first to examine the phylogenetic 395 relationships of *Rhinogobius* using dense taxonomic sampling, although it was mostly restricted to 396 Japanese species.

397 The inferred phylogenetic relationships suggest several biogeographic scenarios that explain

398 the divergence among the species. Among the freshwater species of *Rhinogobius*, the close

399 relationship between *R. flumineus* (fluvial) and *Rhinogobius* sp. TO (lentic) was revealed in this

400	study. Although statistical support was not strong, the latter being derived from a clade within the
401	former in the early to middle Pleistocene (1.43 Mya; 95% HPD, 0.48–2.44 Mya). Rhinogobius
402	flumineus is distributed widely in western Japan, including the Ise Bay area, in which Rhinogobius
403	sp. TO has a restricted distribution (Suzuki and Sakamoto, 2005; Fig. 4b). The latter species
404	occurs in marsh habitats of hilly areas with rich spring waters (Suzuki and Mukai, 2010). This area
405	has been rich in lentic environments since the Pliocene; e.g., a large wetland area known as the
406	Paleo-Lake Tokai existed from the Pliocene to the middle Pleistocene (Yoshida, 1990; Makinouchi,
407	2001). The distribution, habitat, and speciation of Rhinogobius sp. TO may be associated with
408	such past lentic environments.
409	Other freshwater species, Rhinogobius sp. BF, Rhinogobius sp. BW, and Rhinogobius sp. OM,

411 and ponds around the Seto Inland Sea, the pelagic zone of Lake Biwa, and coastal areas and rivers

formed a monophyletic clade, but with weak statistical support. They are distributed in marshes

412 flowing into Lake Biwa (Fig. 4c). Their common ancestor was estimated to have diverged from a

413 part of *Rhinogobius* sp. OR, which is amphidromous and distributed widely on the mainland of

414 Japan. The common ancestor probably adapted to freshwater environments around the Seto Inland

415 Sea area, in which there existed a large-scale freshwater system (known as the Second Seto Inland

416 Lake/River system), including the Paleo-Lake Biwa at the eastern edge (Yokoyama and Nakagawa,

417 1991). The estimated tMRCA of *Rhinogobius* sp. BW and part of *Rhinogobius* sp. BF (0.90 Myr;

418 0.35–1.51 Myr; Table 2) is roughly congruent with the time when the large, deep offshore

419 environment of Lake Biwa started to develop (0.4 Mya; Yokoyama, 1984; Meyers et al., 1993;

420 Kawabe, 1994). This suggests that *Rhinogobius* sp. BW has derived from the ancestral lentic form

421 with and adapted to the pelagic environment of Lake Biwa.

410

422 The inferred phylogenetic relationships and geographic distributions suggest the patterns of

423 allopatric speciation in amphidromous species. *Rhinogobius ogasawaraensis*, endemic to the

424 Bonin Islands, oceanic islands 1000 km south of the mainland of Japan (Suzuki et al., 2011), was

425estimated to be the sister species of *R*. *fluviatilis*, which is widely distributed on the mainland of 426 Japan (Fig. 4d). Prior to the present study, R. ogasawaraensis was considered closely related to R. 427 brunneus in body color characteristics (Suzuki, 1992). However, our results suggest that R. 428ogasawaraensis was established by colonization of the common ancestor with R. fluviatilis from 429 the mainland of Japan after the separation from *Rhinogobius* sp. DL, which is distributed in the 430 Ryukyu Archipelago. Although amphidromous species may extend their geographic range through 431coastal or marine habitats (McDowall, 2001), juveniles of amphidromous Rhinogobius species are 432restricted to the coastal zone (Oshiro and Nishijima, 1978; Kondo et al., 2013) and probably do 433 not migrate across the open ocean. Therefore, the dispersal from the mainland to the Bonin Islands 434 would be an exceptional event. 435 Marine environments at smaller spatial scales also affect gene flow and probably the 436 allopatric speciation of *Rhinogobius* species. The opening of the Tokara Gap, which isolated the 437 terrestrial biota between the Japanese and Ryukyu archipelagos (Ota, 1998), probably also caused 438 divergence in some species groups of the amphidromous *Rhinogobius*. There were three sets of 439 mutually monophyletic lineages distributed in the mainland of Japan (+ the Bonin Islands) and the 440 Ryukyu Archipelago; i.e., R. nagoyae (the mainland) vs. R. nagoyae (Ryukyu) in N-2; R. 441 fluviatilis (the mainland) + R. ogasawaraensis (Bonin) vs. Rhinogobius sp. DL (Ryukyu) in N-3-2; 442Rhinogobius sp. OR + Rhinogobius sp. KZ + R. kurodai (the mainland) vs. Rhinogobius sp. MO + 443 Rhinogobius sp. BB (Ryukyu) in N-3-3. The estimated divergence time of each pair was 1.14 444 (95% HPD, 0.68–1.69; this used as a calibration point), 1.78 (95% HPD, 1.03–2.53), and 1.20 445 (95% HPD, 0.59–1.89) Myr, respectively (Table 2), showing similar values among the pairs. This 446 roughly supports the hypothesis that the opening of the Tokara Gap caused the divergence in these 447 groups. The distribution of *Rhinogobius* sp. DL extends to north of the Tokara Gap. This might 448 have resulted from secondary dispersal and should be examined based on detailed population 449 structures in future studies.

450	The opening of the Tokara Gap similarly explains the divergence between the mainland of
451	Japan and Ryukyu subspecies of the osmeriform Plecoglossus altivelis (ca. 1 Myr divergence;
452	Nishida, 1985, 1986), which is the representative of amphidromous species distributed widely in
453	East Asia, similarly to Rhinogobius. In contrast to the above three Rhinogobius groups and other
454	taxa such as P. altivelis, R. brunneus did not show any significant differentiation between the
455	Japanese and Ryukyu archipelagos. The different dispersal abilities of their larvae may explain the
456	presence or absence and the extent of the genetic differentiation among the species pairs.
457	
458	4.2 The history of hybridization inferred from mtDNA introgression
459	The inconsistency between our mtDNA and nuclear DNA inferred phylogenies suggests a
460	large-scale introgressive hybridization involving multiple Rhinogobius species within Japan. In
461	the mtDNA phylogeny, the mainland and Ryukyu populations of two widely distributed species (R.
462	nagoyae and R. brunneus) formed a group with other species in those regions. Overall, specimens
463	of nine species from the mainland formed a monophyletic group (M- $5 + M-6$), although statistical
464	support was not strong, and those of six species from the Ryukyu Archipelago formed a
465	monophyletic group (M-7). However, such polyphyletic relationships were statistically rejected by
466	the nuclear DNA data; morphologically defined species basically formed a monophyletic group.
467	This pattern of geographical sorting of the mtDNA lineages is explained by interspecific
468	introgressive hybridization rather than incomplete lineage sorting (Toews and Brelsford, 2012)
469	because the latter is expected to cause more random distribution of mtDNA haplotypes.
470	The mtDNA phylogeny, along with the nuclear gene phylogeny and divergence time
471	estimations, provides information on historical patterns of hybridization in Rhinogobius. First,
472	Rhinogobius ogasawaraensis was resolved as distant to other Japanese Rhinogobius species
473	(except for R. giurinus) in the mtDNA phylogeny; nevertheless, R. ogasawaraensis was included
474	in the clade N-3-2 of the nuclear gene phylogeny. This conflict indicates that a large-scale mtDNA 19

475introgression involving almost all species in both Japanese and Ryukyu archipelagos started with a 476 common haplotype (or close haplotypes) after the divergence of R. ogasawaraensis. Second, the 477 mtDNA and nuclear DNA analyses gave similar estimation of the divergence time of R. 478ogasawaraensis (1.59 and 1.55 Myr, respectively) although different calibration sets were used 479 (Table 2). This agreement probably validates the estimation that the large-scale introgression 480 occurred around that time (the early to middle Pleistocene). Third, even within the mainland of 481 Japan or the Ryukyu region, mtDNAs resolved a part of species polyphyletic (e.g., the mainland R. 482 *fluviatilis* and Ryukyu *Rhinogobius* sp. BB). This also supports the limited but ubiquitous 483 hybridization in the *Rhinogobius* fishes, although incomplete lineage sorting in mtDNA is an 484 alternative explanation in this scale. Fourth, it should be noted that freshwater species, such as R. flumineus, Rhinogobius sp. TO, Rhinogobius sp. BW (the mainland), and a part of Rhinogobius sp. 485486 BB (Ryukyu), branched out earlier and have retained their independent lineages in the mtDNA 487 phylogeny. This tendency suggests that the reproductive isolation between amphidromous and 488 freshwater species is stronger than that between amphidromous species and has prohibited the 489 freshwater species from hybridizing with other species. 490 What type of historical process has constructed the above patterns? Interspecific hybridization 491 often occurs in the conditions of enforced syntopic occurrence, which is caused by, for instance, 492 reduction of habitats and secondary contact of populations following disappearance of geographic 493 or ecological barriers (Seehausen, 2004; Toews and Brelsford, 2012). Although the Rhinogobius 494 species show similar reproductive habits that include oviposition under a stone and male parental 495care for the eggs, reproductive isolation among sympatric species is achieved by micro- or 496 mesoscale differences of spawning habitat in the river course (Mizuno, 1982; Tamada, 2000; 497 Hirashima and Tachihara, 2006), assortative mating based on nuptial coloration and courtship 498 behavior (Mizuno, 1987), or both. However, some conditions causing disturbance of such 499 reproductive isolation would have occurred since the early to middle Pleistocene, in which the

500large part of Japanese Rhinogobius would have experienced large-scale hybridization. Freshwater 501habitat reduction by the rise in sea level with global climate fluctuations might be one such 502potential situation causing the overlap of spawning habitats among species. Mukai et al. (2012) 503reported that introgressive hybridization has occurred contemporarily among some freshwater 504 Rhinogobius species following artificial transplantation. This example demonstrates that 505environmental distribution or changes can easily disturb reproductive isolation among 506Rhinogobius fishes. Furthermore, if some types of mtDNA were favored by natural selection, 507 large-scale introgression of the particular mtDNA would rapidly progress through interspecific 508hybridization (Ballard and Whitlock, 2004). The Rhinogobius fishes may provide a model system 509to study the mechanisms of maintenance and decay of reproductive isolation, such as the Lake 510Victoria cichlids that suffered a collapse of assortative mating based on visual sense with the 511increase of turbidity (Seehausen et al., 1997). This group may also be useful as a model system for 512studying mitochondrial introgression and replacement through interspecific hybridization (Mukai 513and Takahashi, 2010).

514

515 4.3 Life history and egg size evolution and speciation

516We successfully reconstructed the patterns of life history and egg size evolution of Rhinogobius 517species in Japan. Because of our taxon sampling bias toward Japanese species, careful 518consideration is needed for reconstruction and explanation of evolutionary patterns of ecological 519traits. However, since all non-amphidromous and some amphidromous species used in this study 520are endemic to Japan and some are inferred to have derived around Japan, estimation of the trait 521transformation based on our phylogeny should provide meaningful insights into ecological and 522species diversification in Rhinogobius fishes. 523 The evolutionary changes of the life history type and egg size are closely associated with each

524 other in *Rhinogobius* species. The reconstructed patterns in the phylogeny included three series of

transformations, i.e., from an amphidromous to a fluvial type, from an amphidromous to a lentic type, and from a fluvial to a lentic type. Although statistical support of the ancestral reconstruction associated with the last transformation was not very strong, the pattern is supported by the geographical distribution of the relevant species (see below).

529The first pattern, from amphidromous to fluvial, is inferred to have occurred independently in 530the R. flumineus, Rhinogobius sp. YB, and Rhinogobius sp. BB lineages, when they diverged from 531their ancestors. In all three fluvial species, their egg size became larger than that of the 532amphidromous species. The reconstruction remains ambiguous for R. flumineus due to its basal 533phylogenetic position in Japanese species and the presence of several unexamined fluvial/large 534egg species in the continent (Chen et al., 2008). On the other hand, the other two fluvial species 535(Rhinogobius sp. YB and Rhinogobius sp. BB) occurring in the Ryukyu Archipelago most likely 536 originated directly from R. brunneus and Rhinogobius sp. MO, respectively, based on their 537 phylogenetic relationships, recent divergence times, and restricted geographic distribution of the 538fluvial species. This means that convergent evolution of the increase in egg size occurred at least 539in these two lineages. This conclusion agrees with the inference from previous studies based on 540allozyme polymorphism (Kato and Nishida, 1994; Nishida, 1994). Based on the restricted 541occurrence of *Rhinogobius* sp. YB in the upper reaches of waterfalls, Nishida (1994, 2001) and 542Kano et al. (2012) suggested that this species evolved through parallel evolution from the 543amphidromous ancestor (R. brunneus) as a result of population isolation following the formation 544 of waterfalls. On the other hand, since *Rhinogobius* sp. BB is usually found in rivers without 545waterfalls, Kondo et al. (2013) inferred that this species derived from the ancestral Rhinogobius sp. MO population that invaded the upper reaches of rivers when the sea level decreased and rivers 546547increased in length. To test these hypotheses for evolutionary processes of the fluvial species, 548 further study from multiple aspects, including population genetics with highly sensitive multilocus 549markers, is needed.

550The second pattern of life history transformation, from amphidromous (Rhinogobius sp. OR 551or OM) to lentic (*Rhinogobius* sp. BF + *Rhinogobius* sp. BW), involved a slight decrease in egg 552size (Takahashi and Okazaki, 2002). The difference in their egg size is not as large as that between 553fluvial (large egg) and amphidromous (small egg) species (Table S1; Takahashi and Okazaki, 5542002). Since larvae of both the amphidromous and lentic species grow in a plankton-rich 555environment (i.e., the sea near a river mouth and lakes or ponds), such similar feeding 556environments may not cause remarkable differences in the adaptive sizes of their hatched larvae 557and eggs in relation to feeding efficiency. However, the lentic species are possibly released from 558the lower limit of egg size needed for enduring starvation during their flow down the river just 559after hatching (Moriyama et al., 1998; Iguchi and Mizuno, 1999; Tamada, 2008, 2009). The 560smaller body size at maturation in lentic species (Takahashi and Okazaki, 2002) probably favors 561smaller eggs for increased fecundity. These factors may explain the smaller egg size in lentic 562species.

563 The third pattern of life history transformations, from fluvial (R. flumineus) to lentic 564(*Rhinogobius* sp. TO) type, involved a possible reversal evolution in egg size, i.e., egg size 565changed from a small size (ancestral amphidromous species) to a small size (*Rhinogobius* sp. TO) 566through a large state (*R. flumineus*) in this lineage. Although the ancestral reconstruction for this 567 lineage was not very strongly supported by the MuSSE analysis, this pattern is supported by the 568following considerations: (a) *Rhinogobius* sp. TO derived most likely from a lineage of *R*. 569flumineus, and (b) the very restricted distribution of Rhinogobius sp. TO (around the Ise Bay area) 570is included within the wide range of *R. flumineus*. These suggest that the former species is the one 571that colonized from fluvial to lentic environments, such as the lake or marsh that existed around 572the present Ise Bay area (the Paleo-Lake Tokai), as discussed above. 573The present wetland environment in the Ise Bay area is inhabited by several highly endemic

574 species, including freshwater fishes (*Pseudorasbora pugnax, Cobitis minamorii tokaiensis*, as well

575as Rhinogobius sp. TO; Kawamura, 2006; Nakajima, 2012; Kawase and Hosoya, 2015), aquatic hemipteran insects Nepa hoffmanni, and plants (e.g., magnoliacean Magnolia stellata; Ueda, 576 577 2002); these suggest that such environment has been maintained for a long period. The small egg 578size and body size in *Rhinogobius* sp. TO are likely the characters representing this adaptation. 579 The dwarf morphology of *Rhinogobius* sp. TO is very similar to that of other lentic species 580(Rhinogobius sp. BF and Rhinogobius sp. BW), and these three forms were treated as a single 581species until recently (Akihito et al., 2002; Suzuki and Mukai, 2010). However, the present study 582clarified that *Rhinogobius* sp. TO belongs to a different lineage from *Rhinogobius* sp. BF and 583*Rhinogobius* sp. BW, indicating that their lentic life history and dwarf morphology were the result 584of convergent evolution. The evolutionary change suggested in the freshwater R. flumineus and 585Rhinogobius sp. TO lineage emphasizes the adaptive flexibility of Rhinogobius fishes.

586 The reconstructed life history changes did not include the changes from freshwater (fluvial or 587lentic) to amphidromous types. The amphidromous life history requires adaptations to migrating 588behavior and salinity tolerance, which are not required for freshwater fish (McDowall, 2004). In 589fact, some freshwater *Rhinogobius* species have weakened or completely lost their salinity 590 tolerance (Rhinogobius sp. YB and Rhinogobius sp. BB; Hirashima and Tachihara, 2000). Loss of 591 standing genetic variation through purifying selection or bottleneck during colonization of freshwater environment may have prevented the freshwater species from re-acquiring the 592593amphidromous life. Competition or hybridization with prior amphidromous residents may also 594prevent this reversal in evolution.

In summary, the considerable species diversity of *Rhinogobius* has been promoted and maintained by parallel life history divergence through colonization of and adaptation to various freshwater habitats, including flowing waters, marshes, and lakes. The life history divergence involving the changes in migration patterns and egg size probably functions as a direct mechanism of reproductive isolation among the divergent populations. To elucidate the whole picture of life

- history evolution in *Rhinogobius*, further phylogenetic analysis using comprehensive taxonsampling from East/Southeast Asia is necessary.
- 602
- 603 Acknowledgments
- 604 We thank M. Hosokawa, N. Oseko, M. Aizawa, T. Abe, M. Kumazawa, Y. Miyazaki, Y. Kanzaki,
- T. Tsunagawa, S. Nakamura, R. Tabata, H. Nakagawa, T. Mishina, T. Nakano, Y. Kano, C.-G.
- 606 Zhang, R. Nishiguchi, and Hakuryo Junior and Senior High School Biology Club for collecting
- 607 samples, A. Iwata, M. Kondo and K. Maeda for giving valuable comments and precious literature,
- 608 E. Kawaguchi for helping sequencing analysis, T. Fujisawa for giving helpful comments for
- 609 phylogenetic analysis, and the two anonymous reviewers, the handling editor and members of
- 610 Laboratory of Animal Ecology of Kyoto University for giving helpful comments. This study was
- 611 partially supported by JSPS KAKENHI (nos. 21370035, 23370041, 26291079 and 26250044) and
- 612 "Formation of a Strategic Base for Biodiversity and Evolutionary Research: from Genome to
- Ecosystem" of the GCOE.
- 614
- 615 References
- 616 Agorreta, A., San Mauro, D., Schliewen, U., Van Tassell, J.L., Kovačić, M., Zardoya, R., Rüber,
- 617 L.,2013. Molecular phylogenetics of Gobioidei and phylogenetic placemant of European gobies.
 618 Mol. Phylogenet. Evol. 69, 619–633.
- Akihito, Sakamoto, K., Ikeda, Y., Sugiyama, K., 2002. Gobioidei, in: Nakabo, T. (Ed.), Fishes of
 Japan with pictorial keys to the species, English edition. Tokai University Press, Tokyo, pp.
- 621 1139–1310.
- 622 Akihito, Sakamoto, K., Ikeda, Y., Aizawa, M., 2013. Gobioidei, in: Nakabo, T. (Ed.), Fishes of
- 623 Japan with pictorial keys to the species, Third edition. Tokai University Press, Tokyo, pp.
- 624 1347–1608. (In Japanese)

- 625 Aonuma, Y., Iwata, A., Asahida, T., Ida, H., Kobayashi, T., 1998. Genetic variation of *Rhinogobius*
- fishes (Pisces: Gobiidae) around the East China Sea with notes on its zoogeography. DNA
 polymorphism 6, 116–122. (in Japanese)
- Ballard, J.W.O., Whitlock, M.C., 2004. The incomplete natural history of mitochondria. Mol. Ecol.
 13, 729–744.
- 630 Bernatchez, L., Renaut, S., Whiteley, A.R., Derome, N., Jeukens, J., Landry, L., Lu, G., Nolte,
- 631 A.W., Østbye, K., Roger, S.M., St-Cyr, J., 2010. On the origin of species: insights from the
- 632 ecological genomics of lake whitefish. Phil. Trans. R. Soc. B 365, 1783–1800.
- 633 Betancur-R., R., Ortí, G., Stein, A.M., Marceniuk, A.P., Pyron, A., 2012. Apparent signal of
- 634 competition limiting diversification after ecological transitions from marine to freshwater635 habitats. Ecol. Lett. 15, 822–830.
- 636 Betancur-R., R., Broughton, R.E., Wiley, E.O., Carpenter, K., Lopez, J.A., Li, C., Holcroft, N.I.,
- Arcila, D., Sanciangco, M., Cureton, J., Zhang, F., Buser, T., Campbell, T., Rowley, T.,
- Ballesteros, J.A., Lu. G., Grande, T., Arratia, G., Ortí, G., 2013. The tree of life and a new
- 639 classification of bony fishes. Plos Curr. Tree of Life 2013.
- 640 <u>http://dx.doi.org/10.1371/currents.tol.53ba26640df0ccaee75bb165c8c26288</u> (Apr. 18).
- 641 Betancur-R., R., Wiley, E., Bailly, N., Miya, M., Lecointre, G., Ortí, G., 2014. Phylogenetic
- 642 classification of bony fishes—version 3. <u>http://www.deepfin.org/Classification_v3.htm</u>
- 643 Betancur-R., R., Ortí, G., Pyron, R.A., 2015. Fossil-based comparative analyses reveal ancient
- 644 marine ancestry erased by extinction in ray-finned fishes. Ecol. Lett. 18, 441–450.
- Bossu, C.M., Near, T.J., 2009. Gene trees reveal repeated instances of mitochondrial DNA
- 646 introgression in orangethroat darters (Percidae: Etheostoma). Syst. Biol. 58, 114–129.
- 647 Chen, I-S., Kottelat, M., 2005. Four new freshwater gobies of the geus *Rhinogobius* (Teleostei:
- 648 Gobiidae) from northern Vietnam. J. Nat. Hist. 39, 1407–1429.
- 649 Chen, I-S., Cheng, Y.H., Shao, K.T., 2008. A new species of *Rhinogobius* (Teleostei: Gobiidae)

- 650 from the Julongjiang Basin in Fujian Province, China. Ichthyol. Res. 55, 335–343.
- Chiba, S., 2002. Ecological diversity and speciation in land snails of the genus *Mandaria* from the
 Bonin Islands. Popul. Ecol. 44, 179–187.
- 653 Closs, G.P., Hicks, A.S., Jellyman, P.G., 2013. Life histories of closely related amphidromous and
- non-migratory fish species: a trade-off between egg size and fecundity. Freshw. Biol. 58,
- 655 1162–1177.
- Darriba, D., Taboada, G.L, Doallo, R., Posada, D., 2012. jModelTest 2: more models, new
 heuristics and parallel computing. Nature Methods 9, 772.
- Drummond, A.J., Suchard, M.A., 2010. Baysian random local clocks, or one rate to rule them all.
 BMC Biol. 8, 114.
- Drummond, A.J., Suchard, M.A., Xie, D., Rambaut, A., 2012. Bayesian phylogenetics with
 BEAUti and the BEAST 1.7. Mol. Biol. Evol. 29, 1969–1973.
- 662 FitzJohn, R.G., 2012. Diversitree: comparative phylogenetic analyses of diversification in R.
- 663 Methods Ecol. Evol. 3, 1084–1092.
- 664 Gernhard, T., 2008. The conditioned reconstructed process. J. Theor. Biol. 253, 769–778.
- Goldberg, E.E., Igić, B., 2008. On phylogenetic tests of irreversible evolution. 62, 2727–2741.
- 666 Goto, A., Andoh, T., 1990. Genetic divergence between the sibling species of river-sculpin, *Cottus*
- *amblystomopsis* and *C. nozawae*, with special reference to speciation. Environ. Biol. Fish. 28,
 257–266.
- Harvey, P.H., Pagel, M.D., 1991. The comparative method in evolutionary biology. Oxford
 University Press, Oxford.
- Heled, J., Drummond, A.J., 2010. Bayesian inference of species trees from multilocus data. Mol.
 Biol. Evol. 27, 570–580.
- 673 Hirashima, K., Tachihara, K., 2000. Embryonic development and morphological changes in lavae
- and juveniles of two land–locked gobies, *Rhinogobius* spp. (Gobiidae), on Okinawa Island. Jpn.

- J. Ichthyol. 47, 29–41. (in Japanese with English abstract)
- 676 Hirashima, K., Tachihara, K., 2006. Longitudinal distribution and dietary habitats of the genus
- 677 *Rhinogobius* in the Genka River of northern Okinawa Island, Japan. Jpn. J. Ichthyol. 53, 71–76.
- 678 (in Japanese with English abstract)
- Iguchi, K., Mizuno, N., 1999. Early starvation limits survival in amphidromous fishes. J. Fish Biol.
 54, 705–712.
- Imaizumi, T., Tamura, T., 1984. Geomorphology of the Chichijima and Hahajima Islands. Bull.
 Ogasawara Res. 8, 3–11. (in Japanese)
- 683 Iwata, A., 2001a. Rhinogobius sp. BB, in: Kawanabe, H., Mizuno, N., Hosoya, K. (Eds.),
- Freshwater Fishes of Japan, 3rd ed. Yama-Kei Publishers, Tokyo, p. 599. (in Japanese)
- 685 Iwata, A., 2001b. Rhinogobius sp. YB, in: Kawanabe, H., Mizuno, N., Hosoya, K. (Eds.),
- 686 Freshwater Fishes of Japan 3rd ed. Yama-Kei Publishers, Tokyo, p. 598. (in Japanese)
- Kaizuka, S., 1977. Geology and geomorphology of the Bonin Island. Bull. Ogasawara Res. 1, 29–
 34. (in Japanese)
- Kano, Y., Nishida, S., Nakajima, J., 2012. Waterfalls drive parallel evolution in a freshwater goby.
 Ecol. Evol. 2, 1805–1817.
- Katoh, M., Nishida, M., 1994. Biochemical and egg size evolution of freshwater fishes in the
- *Rhinogobius brunneus* complex (Pisces, Gobiidae) in Okinawa, Japan. Biol. J. Linnean Soc. 51,
 325–335.
- Kawabe, T., 1994. Biwako no Oitachi (Formation of Lake Biwa), in: Research Group for Natural
- 695 History of Lake Biwa (Ed.), Biwako no Shizenshi (The Natural History of Lake Biwa). Yasaka
- 696 Shobo, Tokyo, pp. 21–132. (in Japanese)
- 697 Kawamura, K., 2006. Pseudorasbora pumila subsp. sensu Nakamura 1969, in: Natural
- 698 environment division, department of environment and forestry, Mie Prefecture (Ed.), Red data

- book of Mie Prefecture 2005, Animals. Mie Prefecture Environmental Conservation Agency,
- Tsu, p. 142. (in Japanese)
- Kawase, S., Hosoya, K., 2015. *Pseudorasbora pugnax*, a new species of minnow from Japan, and
 redescription of *P. pumila* (Teleostei: Cyprinidae). Ichthyol. Explor. Freshw. 25, 289–298.
- 703 Keith, P., Lord, C., 2011. Tropical freshwater Gobies: Amphidromy as a life cycle, in: Patzner,
- R.A., Van Tassell, J.L., Kovačič, M., Kapoor, B.G. (Eds.), The biology of gobies. Science
 Publishers, Enfield, New Hampshire, pp. 119–128.
- Kondo, M., Maeda, K., Hirashima, K., Tachihara, K., 2013. Comparative larval development of
- three amphidromous *Rhinogobius* species making reference to their habitat preferences and
 migration biology. Mar. Fresh. Res. 64, 249–266.
- T09 Lanfear, R., Calcott, B., Ho, S.Y.W., Guindon, S., 2012. PartitionFinder: combined selection of
- partitioning schemes and substitution models for phylogenetic analyses. Mol. Biol. Evol. 29,
 1695–1701.
- T12 Larkin, M.A., Blackshields, G., Brown, N.P., Chenna, R., McGettigan, P.A., McWilliam, H.,
- Valentin, F., Wallace, I.M., Wilm, A., Lopez, R., Thompson, J.D., Gibson, T.J., Higgins, D.G.,
- 714 2007. Clustal W and Clustal X version 2.0. Bioinformatics 23, 2947–2948.
- Lee, C.E., Bell, M.A., 1999. Causes and consequences of recent freshwater invasions by saltwater
 animals. Trends Ecol. Evol. 14, 284–288.
- Li, C., Ortí, G., Zhang, G., Lu, G., 2007. A practical approach to phylogenomics: the phylogeny of
- ray-finned fish (Actinopterygii) as a case study. BMC Evol. Biol. 7, 44.
- 719 Losos, J.B., 2009. Lizards in an Evolutionary Tree: ecology and adaptive radiation of anoles.
- University of California Press, Berkeley and Los Angeles, California.Maddison, D.R.,
- 721 Maddison, W.P., 2000. MacClade 4: Analysis of phylogeny and character evolution. Version
- 4.0. Sinauer, Associates, Sunderland, Massachusetts.

- 723 Maddison, D.R., Maddison, W.P., 2000. MacClade 4: Analysis of phylogeny and character
- evolution. Version 4.0. Sinauer, Associates, Sunderland, Massachusetts.
- 725 Maddison, W.P., 1997. Gene trees in species trees. Syst. Biol. 46, 523–536.
- Maddison, W.P., 2006. Confounding asymmetries in evolutionary diversification and character
 change. Evolution 60, 1743–1746.
- Maddison, W.P., Midford, P.E., Otto, S., 2007. Estimating a binary character's effect on speciation
 and extinction. Syst. Biol. 56, 701–710.
- 730 Makinouchi, T., 2001. Stratigraphy of the Tokai group and evolutional process of the Lake Tokai
- sediment basin. Sci. Rep. Toyohashi Mus. Nat. Hist. 11, 33–39. (In Japanese with English
- abstract)
- Masuda, Y., Ozawa, T., Enami, S., 1989. Genetic differentiation among eight color types of the
 freshwater goby, *Rhinogobius brunneus*, from western Japan. Jpn. J. Ichthyol. 36, 30–41.
- McDowall, R.M., 2001. Diadromy, diversity and divergence: implications for speciation processes
 in fishes. Fish Fish. 2, 278–285.
- McDowall, R.M., 2004. Ancestry and amphidromy in island freshwater fish fauna. Fish Fish. 5,
 738 75–85.
- McDowall, R.M., 2007. On amphidromy, a distinct form of diadromy in aquatic organisms. Fish
 Fish. 8, 1–13.
- 741 McKinnon, J.S., Mori, S., Blackman, B.K., David, L., Kingsley, D.M., Jamleson, L., Chou, J.,
- Schluter, D., 2004. Evidence for ecology's role in speciation. Nature 429, 294–298.
- 743 Meyers, P.A., Takemura, K., Horie, S., 1993. Reinterpretation of late Quaternary sediment
- chronology of Lake Biwa, Japan, from correlation with marine glacial–interglacial cycles.
- 745 Quat. Res. 39, 154–162.

- 746 Mizuno, N., 1960. Study on a freshwater goby, *Rhinogobius similis* Gill, with a proposition in the
- relationships between land locking and speciation of some freshwater gobies in Japan. Mem.

748 Coll. Sci. Univ. Kyoto B, 27, 97–115.

- 749 Mizuno, N., 1982. Study on the fish, "Yoshinobori" Rhinogobius similis Gill-V 4 kei no
- chiritekibunpu to sougosayou (Geographic distribution and interaction between 4 types).
- Tansuigyo 8, 27–38. (in Japanese)
- 752 Mizuno, N., 1987. Yoshinobori rui (Genus Rhinogobius), in: Mizuno, N., Goto, A. (Eds.), Nihon
- no tansuigyo sono bunpu, heni, syubunka wo megutte (Freshwater fish in Japan–distribution,
- variation, and speciation) Tokai University Press, Tokyo, pp. 179–188. (in Japanese)
- 755 Mizuno, N., 2001. Rhinogobius, in: Kawanabe, H., Mizuno, N., Hosoya, K., (Eds.), Freshwater
- Fishes of Japan 3rd ed. Yama-Kei Publishers, Tokyo, p. 584. (in Japanese)
- Moriyama, A., Yanagisawa, Y., Mizuno, N., Omori, K., 1998. Starvation of drifting goby larvae
 due to retention of free embryos in upstream reaches. Environ. Biol. Fish. 52, 321–329.
- 759 Mukai, T., 2010. Hikakukeitouchirigaku kara mita Ryukyurettou no tansuigyorui sou no seiritsu
- 760 (Formation of freshwater fish fauna in the Ryukyu Archipelago—a comparative phylogenetic
- 761 perspective), in: Watanabe, K., Takahashi, H. (Eds.), Tansuigyorui chiri no shizenshi (Natural
- history of freshwater fish geography). Hokkaido University Press, Sapporo, pp. 169–183. (in
- 763 Japanese)
- 764 Mukai, T., Nakamura, S., Suzuki, T., Nishida, M., 2005. Mitochondrial DNA divergence in
- yoshinobori gobies (*Rhinogobius* species complex) between the Bonin Islands and the Japan–
 Ryukyu Archipelago. Ichthyol. Res. 52, 410–413.
- 767 Mukai, T., Hirashima, K., Furuhashi, M., Furuta, R., Yodo, T., Nakanishi, N., 2012. Distribution of
- yoshinobori gobies (*Rhinogobius kurodai* and related species) in the irrigation ponds in
- southern Suzuka, Mie Prefecture, Japan, and their phylogenetic analysis. Bull. Biogeogr. Soc.

- Jpn. 67, 15–24. (In Japanese with English abstract)
- 771 Mukai, T., Takahashi, H., 2010. Shukankouzatsu wo tomonau keitouchiri—Shu no jittai to
- bunpuiki keisei (Phylogeography with interspecific hybridization—entity of species and
- formation of distribution), in: Watanabe, K., Takahashi, H. (Eds.), Tansuigyorui chiri no
- shizenshi (Natural history of freshwater fish geography). Hokkaido University Press, Sapporo,
- pp. 137–152. (in Japanese)
- Nakajima, J., 2012. Taxonomic study of the *Cobitis striata* complex (Cypriniformes, Cobitidae) in
 Japan. Zootaxa 3586, 103–130.
- Near, T.J., Bossu, C.M., Bradburd, G.S., Carlson, R.L., Harrington, R.C., Hollingsworth JR., P.R.,
- Keck, B.P., Etnier, D.A., 2011. Phylogeny and temporal diversification of Darters (Percidae:
- Etheostomatinae). Syst. Biol. 60, 565–595.
- Nishida, M., 1985. Substantial genetic differentiation in Ayu, *Plecoglossus altivelis*, of the Japan
 and Ryukyu Islands. Bull. Jpn. Soc. Sci. Fish. 51, 1269–1274.
- 783 Nishida, M., 1986. Geographic variation in the molecular, morphological and reproductive
- character of the ayu *Plecoglossus altivelis* (Plecoglossidae) in the Japan–Ryukyu Archipelago.
- 785Jpn. J. Ichthyol. 33, 232–248.
- Nishida, M., 1994. Yoshinobori rui ni okeru seikatsushi heni to syubunka (Life history variation
- and speciation in the genus *Rhinogobius*), in: Goto, A., Tsukamoto, K., Maekawa, K. (Eds.),
- Kawa to umi wo kaiyu suru tansuigyo–seikatushi to shinka (Freshwater fish migrating between
- river and the ocean–life history and evolution). Tokai University Press, Tokyo, pp. 154–169.
- (in Japanese) (in Japanese)
- Nishida, M., 2001. Evolutionary process toward large egg: *Rhinogobius*, in: Goto, A., Iguchi, K.
- (Eds.), Evolutionary biology of egg size in aquatic animals. Kaiyusha, Tokyo, pp. 149–170. (in
- Japanese) Japanese)
- Nishijima, S., 1968. Two forms of the gobioid fish *Rhinogobius brunneus* from Okinawa–Jima,

- 795 Ryukyu Islands. Zool. Mag. 77, 397–398. (in Japanese)
- 796 Nosil, P., 2012. Ecological speciation. Oxford University Press, Oxford.
- Oijen, M.J.P., Suzuki, T., Chen, I.S., 2011. On the earliest published species of *Rhinogobius*. with
 a redescription of *Gobius brunneus* Temminck and Schlegel, 1845. J. Natn. Taiwan Mus. 64,
- 799 1–17.
- Oshiro, N., Nishijima, S., 1978. An observation on the juveniles of "Yoshinobori" (Gobiidae) in
 the sea-waters. Biol. Mag. Okinawa 16, 17–22. (in Japanese.)
- 802 Osozawa, S., Shinjo, R., Armid, A., Watanabe, Y., Horiguchi, T., Wakabayashi, J., 2012.
- Palaeogeographic reconstruction of the 1.55 Ma synchronous isolation of the Ryukyu Islands,
- Japan, and Taiwan and inflow of the Kurishio warm current. Int. Geol. Rev. 54, 1369–1388.
- 805 Ota, H., 1998. Geographic patterns of endemism and speciation in amphibians and reptiles of the
- 806 Ryukyu Archipelago, Japan, with special reference to their Paleogeographical implications.
- 807 Res. Poplu. Ecol. 40, 189–204.
- 808 Paradis, E., Claude, J., Strimmer, K., 2004. APE: analysis of phylogenetics and evolution in R
- 809 language. Bioinformatics 20, 289–290.
- 810 Pyron, R.A., Burbrink, F.T., 2014. Early origin of viviparity and multiple reversions to oviparity in
- squamate reptiles. Ecol. Lett. 17, 13–21.
- 812 R Development Core Team, 2014. R: A language and environment for statistical computing. R
- 813 Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org
- 814 Rambaut, A., 2009. Fig Tree v1.3.1 < http://tree.bio.ed.ac.uk/software/figtree/>
- 815 Rambaut, A., Suchard, M.A., Xie, D., Drummond, A.J., 2013. Tracer v1.5.0
- 816 http://beast.bio.ed.ac.uk/Tracer
- 817 Ronquist, F., Huelsenbeck, J.P., 2003. MrBayes 3: Bayesian phylogenetic inference under mixed
- 818 models. Bioinformatics 19, 1572–1574.

- 819 Rozen, S., Skaletsky, H.J., 2000. Primer3 on the WWW for general users and for 15 biologist
- 820 programmers, in: Krawetz, S., Misener, S., (Eds.), Bioinformatics Methods and Protocols:
- 821 Methods in Molecular Biology. Humana Press, Totowa, NJ, pp. 365–386.
- 822 Rüber, L., Agorreta, A., 2011. Molecular systematics of gobioid fishes, in: Patzner, R.A., Van
- 823 Tassell, J.L., Kovačič, M., Kapoor, B.G. (Eds.), The biology of gobies. Science Publishers,
- Enfield, New Hampshire, pp. 23–50.
- 825 Sakai, H., Ikoma, K., Frolov, S.J., Yamazaki, Y., Takahashi, H., Ida, H., 2000. Morphological
- features of a Russian freshwater goby, *Rhinogobius lindbergi* (Pisces: Gobiidae), and its
- genetic relationships to Japanese species. Biogeography 2, 51–61.
- 828 Schluter, D., 2000. The ecology of adaptive radiation. Oxford University Press, Oxford.
- 829 Schluter, D., 2009. Evidence for ecological speciation and its alternative. Science 323, 737–741.
- 830 Seehausen, O., 2004. Hybridization and adaptive radiation. Trends Ecol. Evol. 19, 198–207.
- Seehausen, O., 2006. African cichlid fish: a model system in adaptive radiation research. Proc. R.
 Soc. B 273, 1987–1998.
- 833 Seehausen, O., van Alphen, J.J.M., Witte, F., 1997. Cichlid fish diversity threatened by
- eutrophication that curbs sexual selection. Science 277, 1808–1811.
- Shimodaira, H., 2002. An approximately unbiased test of phylogenetic tree selection. Syst. Biol.
 51, 492–508.
- Shimodaira, H., Hasegawa, H., 2001. CONSEL: for assessing the confidence of phylogenetic tree
 selection. Bioinformatics 17, 1246–1247.
- 839 Stamatakis, A., 2006. RAxML–VI–HPC: Maximum likelihood based phylogenetic analysis with
- thousands of taxa and mixed models. Bioinformatics 22, 2688–2690.
- 841 Suzuki, T., 1992. Ogasawara shotou chichi jima de erareta yoshinobori no 1 shu–Ogasawara
- 842 yoshinobori (shinshou)–(yohou) (One of the Yoshinobori species found in Chichijima in Bonin

- 843 Island–Ogasawara yoshinobori (new name)–(advance report). Hyogo Freshw. Biol. 42, 5–12.
 844 (in Japanese)
- 845 Suzuki, T., Sakamoto, K., 2005. Record of a gobiid fish, *Rhinogobius* sp. TO (Perciformes,
- Gobiidae) from the Noubi and Okazaki plains, Japan. Bull. Biogeogr. Soc. Jpn. 60, 13–20. (in
- S47 Japanese with English abstract)
- Suzuki, T., Shibukawa, K., Yano, K., Senou, H., 2004. A photographic guide to the gobioid fishes
 in Japan. Heibonsha, Tokyo. (in Japanese)
- 850 Suzuki, T., Chen, I-S., 2011. Redescription of three species of genus Rhinogobius (Perciformes,
- 851 Gobiidae) described by Dr. Shigeho Tanaka. Bull. Osaka Mus. Nat. Hist. 65, 9–24. (in
- 352 Japanese with English abstract)
- 853 Suzuki, T., Chen, I-S., Senou, H., 2011. A new species of *Rhinogobius* Gill, 1859 (Teleostei:
- Gobiidae) from the Bonin Islands, Japan. J. Mar. Sci. Tech. 19, 693–701.
- 855 Suzuki, T., Mukai, T., 2010. Two lentic freshwater gobies, *Rhinogobius* sp. BF and *Rhinogobius* sp.
- TO: their morphological characteristics, distribution and present status. Jpn. J. Ichthyol. 57,
- 857 176–179. (In Japanese with English abstract)
- Tabata, R., Watanabe, K., 2013. Hidden mitochondrial DNA divergence in the Lake Biwa endemic
- goby *Gymnogobius isaza*: implications for its evolutionary history. Environ. Biol. Fish. 96,
- 860 701–712.
- 861 Takahashi, S., Okazaki, T., 2002. A new lentic form of the "yoshinobori" species complex,
- *Rhinogobius* spp. from Lake Biwa, Japan, compared with lake–river migrating *Rhinogobius* sp.
 OR. Ichthyol. Res. 49, 333–339.
- Tamada, K. 2000. Distribution of the spawning of four amphidromous gobies (*Rhinogobius* spp.)
- in the Aizu River, Wakayama Prefecture, Japan. Jpn. J. Ichthyol. 47, 55–59. (In Japanese with
- 866 English abstract)

- Tamada, K., 2001. Clutch size and egg size in three species of *Rhinogobius* complex dwelling in a
 single stream. Jpn. J. Ichthyol. 48, 49–52. (in Japanese with English abstract)
- 869 Tamada, K., 2008. Variation in male mating success in the paternal nest brooder, *Rhinogobius*
- goby, along a river course. Ecol. Res. 23, 91–97.
- 871 Tamada, K., 2009. Variation in clutch and egg sizes in the amphidromous goby *Rhinogobius* sp.
- CB along a river course and within a spawning season. Ichthyol. Res. 56, 69–75.
- 873 Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., Kumar, S., 2011. MEGA5: Molecular
- 874 Evolutionary Genetics Analysis using maximum likelihood, evolutionary distance, and
- 875 maximum parsimony methods. Mol. Biol. Evol. 28, 2731–2739.
- Toews, D.P., Brelsford, A., 2012. The biogeography of mitochondrial and nuclear discordance in
 animals. Mol. Ecol. 21, 3907–3930.
- 878 Tsujimoto, H., 2008. Nishinihon ni seisoku suru shisuiiki wo konomu 3 shu no yoshinobori nit
- suite–shoukai to kansatsu– (3 *Rhinogobius* species distributed in lentic area in Western Japan)
- Botejyako 13, 7–15. (in Japanese)
- Tsunagawa, T., Suzuki, T., Arai, T., 2010a. Migratory history of *Rhinogobius* sp. OR morphotype
 "Shimahire" as revealed by otolith Sr:Ca ratios. Ichthyol. Res. 57, 10–15
- Tsunagawa, T., Suzuki, T., Arai, T., 2010b. Otolith Sr:Ca ratios of freshwater goby *Rhinogobius* sp.
 TO indicating absence of sea migrating traits. Ichthyol. Res. 57, 319–322.
- Ueda, K., 2002. Tokai kyuryo youso no kigen to shinka (The origin and evolution of Tokai Hilly
- Land Spring-fed Mires), in: Hiroki, S. (Ed.), Satoyama no seitaigaku–sononaritachi to hozen
- no arikata (Ecology of satoyama–formation and conservation) The University of Nagoya Press,
- 888 Nagoya, Japan, pp. 42–57. (in Japanese with English Abstract)
- Vega, G.C., Wiens, J.J., 2012. Why are there so few fish in the sea? Proc. R. Soc. B 279, 2323–
- 890 2329.

- 891 Waters, J.M., Rowe, D.L., Burridge, C.P., Wallis, G.P., 2010. Gene trees versus species trees:
- Reassessing life-history evolution in a freshwater fish radiation. Syst. Biol. 59, 504–517.
- 893 Winker, K., 2000. Migration and speciation. Nature 404, 36.
- Yamada, T., Sugiyama, T., Tamaki, N., Kawakita, A., Kato M., 2009. Adaptive radiation of gobies
- in the interstitial habitats of gravel beaches accompanied by body elongation and excessive
- vertebral segmentation. BMC Evol. Biol. 9, 145.
- 897 Yokoyama, T., 1984. Stratigraphy of the Quaternary system around Lake Biwa and geohistory of
- the ancient Lake Biwa, in: Horie S (Ed.), Lake Biwa, Monographiae Biologicae, 54., Dr W
- Junk Publishers, Dordrecht, Boston, Lancaster. 43–128.
- 900 Yokoyama, T., Nakagawa, Y., 1991. Setonaikai no utsurikawari (Transition of the Seto Inland Sea),
 901 Sanwashobou, Hyogo, Japan. (in Japanese)
- 902 Yoder, J.B., Clancey, E., Des Roches, S., Eastman, J.B., Gentry, L., Godsoe, W., Hagey, T.J.,
- 903 Jochimsen, D., Oswald, B.P., Robertson, J., Sarver, B.A.J., Schenk, J.J., Spear, S.F., Harmon,
- 904 L.J., 2010. Ecological opportunity and the origin of adaptive radiations. J. Evol. Biol. 23,
- 905 1581–1596.
- 906 Yoshida, F., 1990. Stratigraphy of the Tokai Group and paleogeography of the Tokai sedimentary
- basin in the Tokai region, central Japan. Bull. Geol. Surv. Jpn. 41, 303–340. (In Japanese with
- 908 English abstract)
- 909 Yule, G.U., 1925. A mathematical theory of evolution: based on the conclusions of Dr. J.C. Willis.
- 910 Phil. Trans. R. Soc. B 213, 21–87.

911	Figure	legends
0		

912 Fig. 1.

913 A map of the collection sites. The location codes correspond to those in Table 1.

914

915 Fig. 2.

- 916 The Bayesian tree of the selected *Rhinogobius* species with estimated divergence time based on
- 917 partial mtDNA sequence data (2781 bp) inferred with BEAST. Support values are indicated
- 918 beside the branches (RAxML BP/ MrBayes PPM/ BEAST PPB). Only support values >70% in
- 919 ML, and >0.9 in PPM and PPB are indicated. Some support values for intraspecific relationships
- are not shown. Each bar plot indicates 95% HPD height of the node. CA2 indicates the position of
- 921 calibration point 2 (formation of the Tokara Gap).

922

- 923 Fig. 3.
- 924 The maximum likelihood tree of the selected *Rhinogobius* species inferred from concatenated
- 925 sequences of six nuclear genes (myh6, RYR3, Ptr, RAG2, sreb2, and EGR3; 4755bp). Maximum

926 likelihood bootstrap values (>70%) and Bayesian posterior probability (>0.9) are indicated

927 (BP/BPP). Some support values for intraspecific relationships are not shown.

- 928
- 929 Fig. 4.
- 930 (a) The Bayesian phylogenetic tree of the selected *Rhinogobius* species with ancestral state
- 931 reconstruction and divergence time inferred from concatenated sequences of six nuclear genes.
- Each bar plot indicates a height of 95% HPD of the corresponding node. Calibration points were
- 933 indicated as CA1 (formation of the Bonin Islands) and CA2 (formation of the Tokara Gap). Pie
- graphs of each node indicate the proportional likelihood of the states at the node inferred by the
- 935 MuSSE model. Statistical support values (> 0.9) are indicated next to the major nodes. The

- 936 proportional likelihood of the nodes indicated by an asterisk is inconsistent when another sample
- 937 of *Rhinogobius* sp. BF was used. (b)–(e) Phylogenetic relationships among selected species with
- 938 their present distribution patterns. See the Discussion section for details.

Fig. 1

0.02

Table 1

List of samples used in this study. Locality numbers correspond to those in Fig. 1. Asterisks indicate specimens used in the MuSSE analysis (see Fig. 4a).

Species: species code	Life history	Egg size	Specimen ID	River / River system (Locality)	Locality No.
Rhinogobius flumineus : RF	Fluvial	Large	RF-YN120714-1 PF_S7110011_28*	Fuefuki R. / Fujigawa R. (Koufu, Yamanashi)	9 10
			RF-GF110816-1	Irrigation channel / Ibi R. (Anpachi, Gifu)	10
			RF-KY120402-1	Kamo R. / Lake Biwa and Yodo R. (Kyoto, Kyoto)	18
			RF-ME120905-1	Nakamura R. / Kumozu R. (Matsuzaka, Mie)	19 20
			RF-OS110805-6*	Yamanaka R. / Onosato R. (Hannan, Osaka)	23
			RF-HI120512-1	Tabusa R. / Gounokawa R. (Shobara, Hiroshima)	31
Rhinogobous sp. YB: YB	Fluvial	Middle	YB-OK111211-3 VB_OK111211_4	Sukuta R. / Sukuta R. (Okinawa Island, Okinawa)	44
			YB-KR120624-1	Kura R. / Kura R. (Iriomote Island, Okinawa)	48
			YB-PN120622-5	Hinai R. / Hinai R. (Iriomote Island, Okinawa)	49
			YB-IR120328-3 VB_IR120328_4*	Urauchi R. / Urauchi R. (Iriomote Island, Okinawa)	50 50
Rhinogobius sp. BB: BB	Fluvial	Middle	BB-OK121111-1	Sate R. / Sate R. (Okinawa Island, Okinawa)	36
			BB-OK110924-15	Aha R. / Aha R. (Okinawa Island, Okinawa)	37
			BB-OK120305-1 BB-OK110924-32*	Uka R. / Uka R. (Okinawa Island, Okinawa)	38 39
			BB-OK121111-4	Shinkawa R. / Shinkawa R. (Okinawa)	40
			BB-OK121111-5	Shinkawa R. / Shinkawa R. (Okinawa Island, Okinawa)	40
Rhinogobius sp. OM: OM	Amphidromous	Small	BB-OK120305-2 OM-SG110725-1	Genka R. / Genka R. (Okinawa Island, Okinawa) Sakura R. / Lake Biwa and Yodo R. (Higashioumi, Shiga)	42 15
	1 implifutoritous	Sinun	OM-SG110725-2*	Sakura R. / Lake Biwa and Yodo R. (Higashioumi, Shiga)	15
Rhinogobius sp. OR: OR	Amphidromous	Small	OR-HO120408-1	Abashiri R. / Abashiri R. (Memanbetsu, Hokkaido)	1
			OR-IW090528-1 OR-IW081011-2	Channel / Kitakami R. (Oshu, Iwate) Pond / Kitakami R. (Ichinoseki, Iwate)	3
			OR-FS091026-1*	Ootakine R. / Abukuma R. (Tamura, Fukushima)	5
			OR-FS091026-2	Ootakine R. / Abukuma R. (Tamura, Fukushima)	5
			OR-NI110816-1* OR-NI110816-2	Seki R. / Seki R. (Joetsu, Niigata) Seki R. / Seki R. (Joetsu, Niigata)	6 6
			OR-YN120714-5	Fuefuki R. / Fujigawa R. (Koufu, Yamanashi)	9
			OR-HK110724-5	Irrigation channel / Saigou R. (Fukutsu, Fukuoka)	32
Rhinogobius brunneus : DA	Amphidromous	Small	DA-WK110/24-6	Esuno R. / Esuno R. (Nishimuro. Wakavama)	32 21
	-r		DA-WK110825-2	Esuno R. / Esuno R. (Nishimuro, Wakayama)	21
			DA-WK110825-3	Esuno R. / Esuno R. (Nishimuro, Wakayama)	21
			DA-KW120730-1* DA-SM120511-1	Yoshida R. / Yoshida R. (Shodoshima Island, Kagawa) Karakawa R. / Karakawa R. (Izumo, Shimane)	27 29
			DA-OK110924-23	Aha R. / Aha R. (Okinawa Island, Okinawa)	37
			DA-OK110923-3	Genka R. / Genka R. (Okinawa Island, Okinawa)	42
			DA-IR120626-1 DA-IR120625-1	Geda R. / Geda R. (Iriomote Island, Okinawa)	45 46
			DA-IR120622-4	Omija R. / Omija R. (Iriomote Island, Okinawa)	47
Phinoachius fluviatilis • I D	Amphidromous	Small	DA-IR120327-2	Urauchi R. / Urauchi R. (Iriomote Island, Okinawa) Migi Aizu P. / Aizu P. (Tanaba Wakayama)	50 22
Kninogoolus jiuvuulus . LD	Amphilatomous	Sillali	LD-WK110824-23	Migi-Aizu R. / Aizu R. (Tanabe, Wakayama)	22
			LD-OS110805-1	Yamanaka R. / Onosato R. (Hannan, Osaka)	23
			LD-OS110805-2*	Yamanaka R. / Onosato R. (Hannan, Osaka)	23
Rhinogobius sp. CO: CO	Amphidromous	Small	CO-SZ110911-1	Seto R. / Seto R. (Fujieda, Shizuoka)	50 11
0	L		CO-WK110824-2	Migi-Aizu R. / Aizu R. (Tanabe, Wakayama)	22
			CO-WK110824-17*	Migi-Aizu R. / Aizu R. (Tanabe, Wakayama)	22
Rhinogobius nagoyae : CB	Amphidromous	Small	CB-AK111003-3*	Nomura R. / Nomura R. (Oga, Akita)	22
0 01	L		CB-SZ110911-6	Seto R. / Seto R. (Fujieda, Shizuoka)	11
			CB-WK110824-6	Migi-Aizu R. / Aizu R. (Tanabe, Wakayama)	22 24
			CB-HY110809-2	Satsu R. / Satsu R. (Mikata, Hyogo)	24
			CB-HK110724-1	Saigo R. / Saigo R. (Fukutsu, Fukuoka)	33
			CB-HK110724-2 CB-OK130630-1	Saigo R. / Saigo R. (Fukutsu, Fukuoka) Sade R. / Sade R. (Okinawa Island, Okinawa)	33 36
			CB-OK130630-2	Sade R. / Sade R. (Okinawa Island, Okinawa)	36
			CB-OK110923-1	Genka R. / Genka R. (Okinawa Island, Okinawa)	42
			CB-IR120622-1	Omija R. / Omija R. (Iriomote Island, Okinawa)	43 47
			CB-IR120622-3	Omija R. / Omija R. (Iriomote Island, Okinawa)	47
Phinapphing on MO, MO	Amphideomous	Small	CB-IR120327-1	Urauchi R. / Urauchi R. (Iriomote Island, Okinawa)	50 26
Annogovius sp. MO: MO	Ampinuromous	SIIIäll	MO-OK11111-3	Hiranami R. / Hiranami R. (Okinawa Island, Okinawa)	36 41
			MO-OK111211-2	Hiranami R. / Hiranami R. (Okinawa Island, Okinawa)	41
Rhinogohius en DI · DI	Amnnidromous	Unknown	MO-OK110923-7* DL-IR120622-2	Genka R. / Genka R. (Okinawa Island, Okinawa) Omija R. / Omija R. (Iriomote Island, Okinawa)	42 47
Manogobias sp. DL. DL	Amphicionious	Clikilowii	DL-IR020223-1	Urauchi R. / Urauchi R. (Iriomote Island, Okinawa)	50
		a 11	DL-IR120328-1*	Urauchi R. / Urauchi R. (Iriomote Island, Okinawa)	50
Khinogobius ogasawaraensis : BI	Amphidromous	Small	BI-CC011116-1* BI-CC011116-2	Y atsuse R. / Y atsuse R. (Chichijima, Ogasawara) Yatsuse R. / Yatsuse R. (Chichijima, Ogasawara)	34 34
			BI-HH011124-1	Oki harbor (Hahajima, Ogasawara)	35
	.	G 11	BI-HH011124-2	Oki harbor (Hahajima, Ogasawara)	35
Khinogobius sp. BW: BW	Lentic	Small	BW-SG110623-3 BW-SG130523-1*	Lake Biwa, Imajuku / Lake Biwa and Yodo R. (Otsu, Shiga) Lake Biwa Imajuku / Lake Biwa and Yodo R. (Otsu, Shiga)	16 16
			BW-SG130601-1	Lake Biwa, Moriyama / Lake Biwa and Yodo R. (Moriyama, Shiga)	10
Rhinogobius sp. TO: TO	Lentic	Small	TO-GF110820-1*	Ogase pond / Kiso R. (Kakamigahara, Gifu)	12
			TO-GF110820-2 TO-GF120415-7	Ugase pond / Kiso R. (Kakamigahara, Gifu) Kandou pond / Kiso R. (Kakamigahara, Gifu)	12 13
Rhinogobius sp. BF: BF	Lentic	Small	BF-HY110605-1	Kakogawa R. / Kakogawa R. (Kakogawa, Hyogo)	25
			BF-HY110913-1*	Pond (Takasago, Hyogo)	26
Rhinogobius sn. KZ: KZ	Unknown	Unknown	вг-01110/22-1 КZ-СВ100418-1	Uryu K. / Yoshii K. (Okayama, Okayama) Mizusawa R. / Ichimiya R. (Chousei, Chiba)	28 7
	C.11110 1/11	C IACHO W II	KZ-CB100418-2*	Mizusawa R. / Ichimiya R. (Chousei, Chiba)	7
D1 · 1 · 1 · · · · · · · ·			KZ-CB100418-3	Mizusawa R. / Ichimiya R. (Chousei, Chiba)	7
kninogobius kurodai : KU	Unknown	Unknown	кu-тк100705-1* кu-тк100705-2	Sninjuku gyoen (Shinjuku, Tokyo) Shinjuku gyoen (Shinjuku, Tokyo)	8 9
			KU-TK100705-3	Shinjuku gyoen (Shinjuku, Tokyo)	8
Rhinogobius leavelli	Amphidromous	Unknown	R. leavelli	Fangcheng, Guangxi, China	
Khinogobius virgigena Outgroup	Unknown	Unknown	K. virgigena	Fangcheng, Guangxi, China	
Rhinogobius giurinus : RG	Amphidromous	Small	RG-HY110809-18	Satsu R. / Satsu R. (Mikata, Hyogo)	24
			RG-OK110924-19	Aha R. / Aha R. (Okinawa Island, Okinawa)	37
			ко-окт10925-17 RG-CH990405-1	Genka K. / Genka K. (Okinawa Island, Okinawa) Fangcheng, Guangxi, China	42

Table 2.

Estimated divergence time of major clades of Rhinogobius gobies.

mtDNA	tMRCA(Mya, hight mean)	95% HPD (Mya)
CA2 (M-5+M-6 vs. M-7)	1.17	0.62-1.70
M-5+M-6	1.02	0.49-1.52
M-7	0.97	0.47 - 1.44
All Japanese species	1.59	0.73-2.39
nuclear DNA		
CA1 (R. fluviatilis + R. ogasawaraensis)	1.55	1.05 - 2.00
CA2 (<i>R. nagoyae</i> in mainland + Ryukyu)	1.14	0.68-1.69
N-3-2	1.78	1.03-2.53
N-3-3	1.65	0.81-2.53
R. flumineus + R . sp. TO	1.43	0.49 - 2.44
R. sp. OR + R . sp. KZ + R . kurodai vs. R . sp. MO	+ 1.20	0.59-1.89
R. sp. BW + R . sp. BF + R . sp. OM	1.10	0.49 - 1.77
R. sp. BW + part of R . sp. BF	0.90	0.35-1.51
All Japanese species	4.48	2.38-6.66

Fig. S1 Photographs of all *Rhinogobius* species distributed in Japan.

- 1: *Rhinogobius flumineus* (Mizuno, 1960), Nagaragawa River, Gifu Pref. A: OMNH-P 40703, male, B: OMNH-P 40704, female.
 2: *Rhinogobius* sp. YB, Hinaigawai River, Iriomote Island, the Ryukyu Islands. A: OMNH-P 40256, male, B: OMNH-P 40255, female.
 3: *Rhinogobius* sp. BB, Ooigawa River, Okinawa Island, the Ryukyu Islands. A: OMNH-P 40303, male, B: OMNH-P 40302, female.
 4: *Rhinogobius* sp. OM. A: OMNH-P 40605, male, Yasugawa River, Shiga Pref., B: OMNH-P 40609, female, Ukawa-river, Shiga Pref.
 5: *Rhinogobius* sp. OR. A: OMNH-P 40721, male, Maruyamagawa River, coast of Japan Sea of Hyogo Pref., B: OMNH-P 34814, male, pond, Ichinoseki, Iwate Pref.
 6: *Rhinogobius brunneus* (Temminck and Schlegel, 1845), Aikawagawa River, Nagasaki Pref. A: OMNH-P 35063, male, P: OMNH-P 325064, fomale.

- B: OMNH-P 35064, female.
 7: *Rhinogobius fluviatilis* Tanaka, 1925, Tairagawa River, Kagoshima Pref. A: OMNH-P 18393, male, B: OMNH-P 18392, female.
 8: *Rhinogobius* sp. CO, Inouzawagawa River, Shizuoka Pref. A: OMNH-P 40616, male, B: OMNH-P 40618, female.

Fig. S1 Continued.

- 9: *Rhinogobius nagoyae* Jordan and Seale, 1906. A: OMNH-P 37667, male, Maruyamagawa River, coast of Japan Sea of Hyogo Pref., B: OMNH-P 38182, male, Teimagawa River, Okinawa Island, the Ryukyu Islands. 10: Rhinogobius sp. MO, Sate River, Okinawa Island, the Ryukyu Islands. A: OMNH-P 40281, male,
- B: OMNH-P 40282, female. 11: *Rhinogobius* sp. DL, Urauchi River, Iriomote Island, the Ryukyu Islands. A: OMNH-P 40035, male, B: OMNH-P 40036, female.

- B: OMNH-P 40036, female.
 12: *Rhinogobius ogasawaraensis* Suzuki, Chen and Senou, 2011, Chichi Island, Ogasawara Is. A: OMNH-P 8262, male, Yatsusegawa River, B: OMNH-P 8257, female, Oomura.
 13: *Rhinogobius* sp. BW, Ukawa, Lake Biwa, Shiga Pref. A: OMNH-P 23928, male, B: OMNH-P 23929, female.
 14: *Rhinogobius* sp. TO, Kanaregawa River, Aichi Pref. A: OMNH-P 40705, male, B: OMNH-P 40708, female.
 15: *Rhinogobius* sp. BF, Maruyamagawa River, coast of Japan Sea of Hyogo Pref. A: OMNH-P 37710, male, B: OMNH-P 37711, female.
 16: *Rhinogobius* sp. KZ, Isumigawa River, Chiba Pref. A: OMNHP 40656, male, B: OMNHP 40663, female.
 17: *Rhinogobius* kurodai (Tanaka. 1908), Moat, Chiyouda, Tokyo. A: OMNH-P 21132, male, B: OMNH-P 21136, female.

Fig. S2 Maximum likelifood trees of the selected Rhinogobius species based on respective nuclear gene sequences. Bootstrap values of >70% are indicated.

(d) RAG2

0.0060

Table	S1 .
-------	-------------

Scientific name	Japanese name	Distribution in Japan (the mainland of Japan/Ryukyu Archipelago)	Distribution outside Japan	Life history	Egg size	References
Rhinogobius flumineus	Kawa-Yoshinobori	Yamanashi–Kyushu/—		Fluvial	Large	Mizuno (1960)
Rhinogobius sp. YB	Kibara-Yoshinobori	—/Ryukyu Archipelago	_	Fluvial	Middle	Shinomiya et al. (2005);
						Nishida (2001); Kon and Hirashima and Tachihara
Rhinogobius sp. BB	Aobara-Yoshinobori	—/North area of Okinawa Island	_	Fluvial	Middle	(2000) Kato and Nishida
~ •						(1994); Nishida (2001)
Rhinogobius sp. OM	Oumi-voshinobori	Shiga, Lake Biwa/—		Amphidromo	us Small	Maruyama et al. (2004);
					G 11	Takahashi and Okazaki
Rhinogobius sp. OR"	Tou-Yoshinobori	Hokkaido–Kyushu/—	—	Amphidromo	us Small	Akihito et al. (2002)
Phinagabius brunnaus	Kuro Voshinohori	Chiba Kuushu/Vakushima Iriomota Island		Amphidromo	16 Small	I sunagawa and Aral (2008); Kata and Nishida (1004);
Kninogobius brunneus	Kulo-Tosimioboli	Chiba-Kyushu/ Takushima-momote Island		Ampinuromo	is Sillali	Kato and Nishida (1994) , Tamada $(2005a)$
					~ ~ ~	Tsunagawa and Arai (2008);
Rhinogobius fluviatilis	Oo-Yoshinobori	Honshu–Kyushu/—	—	Amphidromous Small		Tamada (2001)
Phinagabius sp CO	Puri Voshinohori	Hokkoido Kunchu/	Korea	Amphidromous Small		Tsunagawa and Arai (2008);
Killiogobius sp. CO	Kuii-Tosiinioboli	Hokkaldo-Kyushu/—	Korea	Ampinutomo	us Sinan	Tamada (2001)
					G 11	Tamada (2001); Kato and
Rhinogobius nagoyae	Shima-Yoshinobori	Mainlands/Ryukyu Archipelago	Korea, Taiwan, China	Amphidromo	us Small	Nishida (1994); Tsunagawa
Rhinogobius sp MO	Ava-Voshinohori	/Amamioshima-Kume-jima Island		Amphidromo	16 Small	and Arai (2008); Wu et al. Kondo et al. (2013)
Rhinogobius sp. MO	Hira-Yoshinobori	—/Yakushima-Iriomote-jima Island		Amphidromo	is no data	Akibito et al. (2013)
Rhinogobius ogasawaraensis	Ogasawara-Yoshinobori	Bonin Islands		Amphidromous Small		Suzuki et al. (2013)
Rhinogobius sp. BW	Biwa-Yoshinobori	Lake Biwa/—	<u> </u>	Lentic	Small	Takahashi and Okazaki
						Tsunagawa et al. (2010a);
Rhinogobius sp. TO	Tokai-Yoshinobori	Aichi, Mie, Gifu/—	—	Lentic	Small	Tsujimoto (2008); Yamasaki
						(personal observation) Tsunagawa et al. (2010b):
				.	G 11	Tsujimoto (2008); Tsujimoto
Rhinogobius sp. BF	Shimahire-Yoshinobori	Kinki and Setouchi district/—	—	Lentic	Small	et al. (2003); Hirashima and
						Nakamura. (2014)
Rhinogobius sp. KZ	Kazusa-yoshinobori	Chiba/—		no data	no data	Akihito et al. (2013)
Rhinogobius kurodai	Kuroda-haze	Tokyo, Kanagawa, Shizuoka/—		no data	no data	Akihito et al. (2013)
Rhinogobius giurinus	Gokurakuhaze	Mainlands/Ryukyu Archipelago	Korea, Taiwan, China	Amphidromo	us Small	Wu et al. (2008) ; Akihito et
		•••••••		•		al. (2013); Tamada (2005b)

Distribution and life history characteristics of Japanese *Rhinogobius* species.

^a Akihito et al. (2013) newly separated six morphological species (*Rhinogobius* sp. OM, *Rhinogobius* sp. KZ, *R*. *kurodai*, *Rhinogobius* sp. BW, *Rhinogobius* sp. TO, *Rhinogobius* sp. BF) from *Rhinogobius* Sp. OR in Akihito et al. (2002), and proposed discarding the name "*Rhinogobius* sp. OR". However, there exist one or more other species in *Rhinogobius* sp. OR (sensu Akihito et al., 2002) that are not included in the six morphological species, for which no sicientific names/codes are given in Akihito et al. (2013). We hence use the name "*Rhinogobius* sp. OR" for the remaining species in the present paper.

^b*Rhinogobius* sp. OM mainly inhabits the middle to lower reaches of rivers flowing into Lake Biwa and its shore. It exhibits amphidromous life history using the lake instead of the ocean, and is treated as the amphidromous type.

References

Hirashima, K., Nakamura, K., 2014. Larval morphological changes and salinity tolerance of aquarium-held freshwater goby *Rhinogobius* sp. BF. Jpn. J. Ichthyol. 61, 53–57. (in Japanese with English abstract) Kon, T., Yoshino, T., 2003. Coloration and ontogenetic features of fluviatile species of *Rhinogobius* (Gobioidei: Gobiidae) in Amami-oshima Island, Ryukyu Island, Japan. Ichthyol. Res. 50, 109–116. Maruyama, A., Yuma, M., Onoda, Y., 2004. Egg size variation between the fluvial-lacustrine and lacustrine types of s landlocked *Rhinogobius* goby in the Lake Biwa water system. Ichthyol. Res. 51, 172–175. Shinomiya, A., Sasabe, K., Sakurai, M., Kishino, T., 2005. Morphological characters of newly hatched larvae and their habitat selection of a fluviatile goby, Rhinogobius sp. YB in the upper stream of Sumiyo River, Amami-oshima Island, Japan. Japan. J. Ichthyol. 52, 1–8. (in Japanese with English abstract) Tamada, K., 2005a. Clutch and Egg size in *Rhinogobius* sp. DA inhabiting small rivers, Japan. J. Ichthyol. 52, 17–20. (in Japanese with English abstract)

- Tamada, K., 2005b. Egg and clutch sizes of a goby Rhinogobius giurinus in the Aizu River, Kii Peninsula, Japan. Ichthyol. Res. 52. 392–395.
- Tsunagawa, T., Arai, T., 2008. Flexible migration of Japanese freshwater gobies *Rhinogobius* spp. as revealed by otolith Sr:Ca ratio. J. Fish Biol. 73, 2421–2433.

Wu H-L, Chen I-S., Zhong, J-S., 2008. *Rhinogobius* Gill, 1859. in: Wu, H-L., Zhong, J-S. (Eds.), Fauna Sinica Osteichthyes Perciformes (V) Gobioidei. Science Press, Beijing, China, pp. 568–635, 891-985.(in Chinese)

Table S2

Accession and voucher numbers of samples used in this study.

Specimen ID	Voucher	Nuclear/myh6	RYR3	Ptr	RAG2	sreb2	EGR3	mtDNA/CO1	ND5	cytb
RF-OS110805-6	NSMT-P 120783	AB988263	AB988345 A	AB988427	AB988509	AB988591	AB988673	AB988755	AB988833	AB988911
RF-GF110816-1	NSMT-P 120784	AB988264	AB988346 A	AB988428	AB988510	AB988592	AB988674	AB988756	AB988834	AB988912
RG-HY110809-18	NSMT-P 120785	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	AB988757	AB988835	AB988913
BF-HY110605-1	NSMT-P 120786	AB988265	AB988347 A	AB988429	AB988511	AB988593	AB988675	N.D.	N.D.	N.D.
LD-08110805-1	NSMT-P 120787	AB988266	AB988348 A	AB988430	AB988512	AB988594	AB988676	AB988758	AB988836	AB988914
ID = 0.05110805 = 2	NSMT_P 120788	AB988267	AB988349 A	AB988431	AB988513	AB988595	AB988677	AB988759	AB988837	AB988915
LD WK110824 23	NSMT D 120780	AB988268	AB98835(A	R988432	AB988514	AB988596	AB988678	AB988760	AB988838	AB988916
LD=WK110824-23	NSWIT-F 120709	AD900200	AB088351 A	D000432	AD000515	AB088507	AD00070	AD900700	AD200030	AB088017
LD = WK110824 = 24	NSMI-P 120790	AD988209	AD9003317	MD200400	AD900315.	AD900397	AD700077	AD900701	AD900039	AD900917
OM-SG110725-1	NSM1-P 120/91	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	AD988/02	AD988840	AD988918
OM-SG110/25-2	NSMT-P 120/92	AB988270	AB988352 F	AB988434	AB98851C	AB988598	AB988680	AB988/63	AB988841	AB988919
OR-NI110816-1	NSMT-P 120793	AB988271	AB988353 A	AB988435	AB988517	AB988595	AB988681	AB988/64	AB988842	AB988920
OR-NI110816-2	NSMT-P 120794	AB988272	AB988354 A	AB988436	AB988518	AB988600	AB988682	AB988765	AB988843	AB988921
CB-HK110724-1	NSMT-P 120795	AB988273	AB988355 A	AB988437	AB988519	AB988601	AB988683	AB988766	AB988844	AB988922
CB-HK110724-2	NSMT-P 120796	AB988274	AB988356 A	AB988438	AB988520	AB988602	AB988684	AB988767	AB988845	AB988923
CB-HY110809-1	NSMT-P 120797	AB988275	AB988357 A	AB988439	AB988521	AB988603	AB988685	AB988768	AB988846	AB988924
CB-HY110809-2	NSMT-P 120798	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	AB988769	AB988847	AB988925
CB-WK110824-6	NSMT-P 120799	AB988276	AB988358 A	AB98844C	AB988522	AB988604	AB988686	AB988770	AB988848	AB988926
TO-GF110820-1	NSMT-P 120800	AB988277	AB988359 A	AB988441	AB988523	AB988605	AB988687	AB988771	AB988849	AB988927
$TO_{GF110820_{2}}$	NSMT_P 120801	AB988278	AB98836(A	AB988442	AB988524	AB988606	AB988688	AB988772	AB988850	AB988928
CO WK 110824 2	NSMT D 120001	ND	ND		ND	ND	ND	AB988773	AB988851	AB088020
CO WK110824 - 2	NSWIT-F 120602	A B 08270	N.D.	N.D.	IN.D.	IN.D.	N.D.	AD900773	AD2000001	AB088030
CO-WK110824-17	NSMI-P 120803	AD900279	AD9003017	1D70044J	AD900323	AD988007	AD700005	AD900775	AD900032	AD900930
CO-WK110824-21	NSM1-P 120804	AD900200	AD988302 F	1D900444	AD988320	AD988000	AD900090	AD900//J	AD900054	AD988931
DA-WK110825-1	NSMT-P 120805	AB988281	AB988363 P	AB988443	AB988527	AB988605	AB988691	AB988//6	AB988854	AB988932
DA-WK110825-2	NSMT-P 120806	AB988282	AB988364 A	AB988446	AB988528	AB988610	AB988692	AB988///	AB988855	AB988933
DA-WK110825-3	NSMT-P 120807	AB988283	AB988365 A	AB988447	AB988529	AB988611	AB988693	AB988778	AB988856	AB988934
BW-SG110623-3	NSMT-P 120808	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	AB988779	AB988857	AB988935
CO-SZ110911-1	NSMT-P 120809	AB988284	AB988366 A	AB988448	AB988530	AB988612	AB988694	AB988780	AB988858	AB988936
CB-SZ110911-6	NSMT-P 120810	AB988285	AB988367 A	AB988449	AB988531	AB988613	AB988695	AB988781	AB988859	AB988937
RF-SZ110911-28	NSMT-P 120811	AB988286	AB988368 A	AB988450	AB988532	AB988614	AB988696	AB988782	AB988860	AB988938
BF-HY110913-1	NSMT-P 120812	AB988287	AB988369 A	AB988451	AB988533	AB988615	AB988697	AB988783	AB988861	AB988939
DA-OK110923-3	NSMT-P 120813	AB988288	AB98837(A	AB988452	AB988534	AB988616	AB988698	AB988784	AB988862	AB988940
DA = OK110924 = 23	N D	AB988289	AB988371A	B988453	AB988535	AB988617	AB988699	AB988785	AB988863	AB988941
MO_OK110923_7	NSMT_P 120815	AB988290	AB988372 A	B988454	AB988536	AB988618	AB988700	AB988786	AB988864	AB988942
DP OV110024 15	NSMT D 120015	ND	ND		ND			AB988787	AB988865	AB9889/3
BB-OK110924-13	NSWII-F 120010	A D 0 8 2 0 1	N.D.	N.D.	N.D.	IN.D.	N.D.	AD/00700	AD/000005	AD000043
BB-OK110924-32	NSMI-P 12081/	AD900291	AD900372F	1D9004JJ	AD900337	AD900015	AD900/01	AD900/00	AD900000	AD900944
RG-OK110924-19	NSMT-P 120818	AB988292	AB988374P	AB98843C	AB988538.	AB988020	AB988/02	AB988/89	AB98880/	AB988945
RG-OK110925-17	NSMT-P 120819	AB988293	AB9883/5 A	AB988457	AB988535	AB988621	AB988/03	AB988/90	AB988868	AB988946
CB-AK111003-3	NSMT-P 120820	AB988294	AB988376 A	AB988458	AB988540	AB988622	AB988/04	AB988/91	AB988869	AB988947
BI-CC011116-1	NSMT–P 65160	AB988295	AB9883777	AB988455	AB988541	AB988623	AB988705	AB988792	AB988870	AB988948
BI-CC011116-2	NSMT-P 65160	AB988296	AB988378 <i>A</i>	AB98846C	AB988542	AB988624	AB988706	AB988793	AB988871	AB988949
BI-HH011124-1	NSMT–P 65165	AB988297	AB988379 A	AB988461	AB988543	AB988625	AB988707	AB988794	AB988872	AB988950
BI-HH011124-2	NSMT-P 65165	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	AB988795	AB988873	AB988951
DL-IR020223-1	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	AB988796	AB988874	AB988952
RF-KY120402-1	NSMT-P 120821	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	AB988797	AB988875	AB988953
OR-HK110724-5	NSMT-P 120822	AB988298	AB98838(A	AB988462	AB988544	AB988626	AB988708	AB988798	AB988876	AB988954
OR-HK110724-6	NSMT-P 120823	AB988299	AB988381A	AB988463	AB988545	AB988627	AB988709	N.D.	N.D.	N.D.
CB-IR120327-1	NSMT-P 120824	AB988300	AB988382 A	AB988464	AB988546.	AB988628	AB988710	AB988799	AB988877	AB988955
DA-IR120327-2	NSMT-P 120825	AB988301	AB988383 A	AB988465	AB988547	AB988629	AB988711	AB988800	AB988878	AB988956
MO-OK111211-1	ND	AB988302	AB988384 A	AB988466	AB988548	AB98863(AB988712	AB988801	AB988879	AB988957
MO_OK111211_2	NSMT_P 120826	ND	ND	ND	ND	ND	ND	AB988802	AB988880	AB988958
BB_0K120305_1	NSMT_P 120827	AB988303	AB988385 A	AB988467	AB988549	AB988631	AB988713	AB988803	AB988881	AB988959
BB-OK120305-1	NSMT D 120827	AB988304	AB988386 A	R988468	AB98855(AB988632	ΔR988712	ND	ND	ND
DI ID 120228 1	ND	AB088305	AB088387 /	B088/6C	AB088551	AB088633	AB088714	N.D.	N.D.	N.D.
DL-IR120526-1	N.D.	AD900305	AD9003077	DO00405	AD988551	AD900032	AD700714		N.D.	
YB-OK111211-3	N.D.	AD988300	AD90030CF	10900471	AD988332	AD988034	AD900/10	AD900004	AD900002	AD988900
YB-OK111211-4	N.D.	AB988307	AB988385 P	AB9884/1	AB988555	AB988635	AB988/1/	AB988805	AB988883	AB988961
YB-IR120328-3	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	AB988806	AB988884	AB988962
YB-IR120328-4	NSMT-P 120829	AB988308	AB988390 A	AB988472	AB988554	AB988636	AB988718	AB988807	AB988885	AB988963
BF-OY110722-1	N.D.	AB988309	AB988391A	AB988473	AB988555	AB988637	AB988719	AB988808	AB988886	AB988964
DA-SM120511-1	NSMT-P 120830	AB988310	AB988392 A	AB988474	AB988556	AB988638	AB988720	AB988809	AB988887	AB988965
LD-SM120511-5	NSMT-P 120831	AB988311	AB988393 A	AB988475	AB988557	AB988639	AB988721	AB988810	AB988888	AB988966
TO-GF120415-7	NSMT-P 120832	AB988312	AB988394 A	AB988476	AB988558	AB988640	AB988722	AB988811	AB988889	AB988967
CB-OK110925-2	NSMT-P 120814	AB988313	AB988395 A	AB988477	AB988559	AB988641	AB988723	N.D.	N.D.	N.D.
DA-IR120622-4	N.D.	AB988314	AB988396 A	AB988478	AB988560	AB988642	AB988724	AB988812	AB988890	AB988968
DA-IR120625-1	N.D.	AB988315	AB988397 A	AB988479	AB988561	AB988643	AB988725	AB988813	AB988891	AB988969
DA-IR120626-1	N D	AB988316	AB988398 A	AB988480	AB988562	AB988644	AB988726	AB988814	AB988892	AB988970
$DI_{IR120620-1}$	NSMT_D 120822	AB988317	AB98839C	B988481	AB988563	AB988645	AB988727	AB988815	AB988893	AB988971
CR ID 120022-2	NSMT D 120033	AB988318	AB988400 M	B988481	AB98856/	AB9886//	AB988729	AB988816	AB08880/	AB988077
CB = IR 120022 - 1	N D	AR988310	AB988401 /	B988482	AB988565	AB9886/17	AR988770		N D	N D
UD - IK 120022 - 3	IN.D.	۸۵۵۵۵۶۹۲ ۸۵۵۵۵۶۹۵	AB000401 A	BU00403	VBU00207	ABU00641	ABU00175	IN.D.	IN.D.	IN.D.
I D - MI 20022 - 3	N.D.	AB088201	AB020402 A	200404 R000104	ABU0020C	ABU00640	ABU00/3(ABU00010	VB00000	ABU00212
ID-KK120024-1	N.D.	AD000221	AD000403 A	שאסטקעג 1000402 שני	AD000570/	AD000/5	100700/J	AD000010	AD000007	AD00075
UK-F5091020-1	N.D.	AD0000222	AD000404	тоонос Пооолос	AD00054	AD0007E1	AD000700	AD200017	לאסטקעה/	ע/לסטלתה
UK-F5091026-2	N.D.	AD700323	AD000402 A	D00040/	לסנססלעה. ג לחנסס <i>ריי</i> ר	AD000750	AD00070			
K.leavelli	INSMT-P 120835	ADY88324	ADY88400 A	1DY00408	adyððj /l.	ADY88032	ADY88/34	adyððð20	ADY88898	ADY889/0

R.virgigena	NSMT-P 120836	AB988325	AB988407	AB988489	AB988571	AB988653	AB988735	AB988821	AB988899	AB988977
RG-CH990405-1	NSMT-P 120837	AB988326	AB988408	AB988490	AB988572	AB988654	AB988736	N.D.	N.D.	N.D.
OR-IW081011-2	N.D.	AB988327	AB988409	AB988491	AB988573	AB988655	AB988737	N.D.	N.D.	N.D.
OR-IW090528-1	NSMT-P 120838	AB988328	AB988410	AB988492	AB988574	AB988656	AB988738	AB988822	AB988900	AB988978
OR-HO120408-1	N.D.	AB988329	AB988411	I AB988493	AB988575	AB988657	AB988739	N.D.	N.D.	N.D.
RF-HI120512-1	N.D.	AB988330	AB988412	AB988494	AB988576	AB988658	AB988740	N.D.	N.D.	N.D.
RF-YN120714-1	NSMT-P 120839	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	AB988823	AB988901	AB988979
OR-YN120714-5	NSMT-P 120840	AB988331	AB988413	AB988495	AB988577	AB988659	AB988741	N.D.	N.D.	N.D.
RF-ME120905-1	NSMT-P 120841	AB988332	AB988414	AB988496	AB988578	AB988660	AB988742	N.D.	N.D.	N.D.
RF-NR120930-1	NSMT-P 120842	AB988333	AB988415	AB988497	AB988579	AB988661	AB988743	N.D.	N.D.	N.D.
DA-KW120730-1	NSMT-P 120843	AB988334	AB988416	EAB988498	AB988580	AB988662	AB988744	N.D.	N.D.	N.D.
KU-TK100705-1	NSMT-P 120844	AB988335	AB988417	AB988499	AB988581	AB988663	AB988745	AB988824	AB988902	AB988980
KU-TK100705-2	NSMT-P 120845	AB988336	AB988418	AB988500	AB988582	AB988664	AB988746	AB988825	AB988903	AB988981
KU-TK100705-3	NSMT-P 120846	AB988337	AB988419	AB988501	AB988583	AB988665	AB988747	N.D.	N.D.	N.D.
BW-SG130523-1	NSMT-P 120849	AB988338	AB988420	AB988502	AB988584	AB988666	AB988748	N.D.	N.D.	N.D.
BW-SG130601-1	NSMT-P 120850	AB988339	AB988421	AB988503	AB988585	AB988667	AB988749	AB988826	AB988904	AB988982
BB-OK121111-1	NSMT-P 120851	AB988340	AB988422	AB988504	AB988586	AB988668	AB988750	N.D.	N.D.	N.D.
BB-OK121111-4	NSMT-P 120852	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	AB988827	AB988905	AB988983
BB-OK121111-5	NSMT-P 120853	AB988341	AB988423	AB988505	AB988587	AB988669	AB988751	N.D.	N.D.	N.D.
MO-OK121111-3	NSMT-P 120854	AB988342	AB988424	AB988506	AB988588	AB988670	AB988752	N.D.	N.D.	N.D.
KZ-CB100418-1	NSMT-P 120855	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	AB988828	AB988906	AB988984
KZ-CB100418-2	NSMT-P 120856	AB988343	AB988425	AB988507	AB988589	AB988671	AB988753	AB988829	AB988907	AB988985
KZ-CB100418-3	NSMT-P 120857	AB988344	AB988426	AB988508	AB988590	AB988672	AB988754	AB988830	AB988908	AB988986
CB-OK130630-1	NSMT-P 120860	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	AB988831	AB988909	AB988987
CB-OK130630-2	NSMT-P 120861	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	AB988832	AB988910	AB988988

Informat	ion of loci and prime	ers used in	this study				
		Number					
		of	Ann				
		Parsimo	eali				
		nv	ng				
	Number of	informat	ing t tom				
Louis	I an est variable site	s ive site			On dimining on		
Locus	Length variable site $(1-a)^a$	$(1,)^a$	p. (2nd primer		Defense of a incom
name	(bp) (bp)	(bp)	C) 1st primer name	primer 1 (5'-3')	name	primer 2 (5'-3')	Reference of primers
Nuclear	710 29/20	22/12	55 mah (E450		mult (E507		$L_{1}^{2} = t_{1}^{2} (2007)$
myno	/19/38/29	22/12	55 myno_F459		myno_F507	GUAUAAICAKICKGIGUICAICA	L_1 et al. (2007)
	206 15/22	21/10	111910_K1323		myno_K1522		List al. (2007)
K I K S	800 45/32	51/19	33 KIK_{13}		$KIK3_F22$		Li et al. (2007)
D4.4	(2(2))	24/14	K I K 3_K 908		K1K5_K951	AGAAICCRUIGAAGAGCAICCA	List al. (2007), this study
Ptr	030 30/22	24/14	JJ K-PUF				Li et al. (2007) ; this study
	000 115/07	70/50	K-PIIK				Louise at al (2001), this stud
KAG2	882 115/87	19/50	D D A COD				Lovejoy et al. (2001); this stud
anah O	970 21/27	1 / / 1 1	K- K AU2 K		anah 2 E27	TCCACCCACCACAMCAT	L_{1}^{1} at al. (2007)
sreb2	870 31/27	14/11	55 sreb2_F10	AIGGUGAACIAYAGUCAIGU	sreb2_F27		Li et al. (2007)
ECD2	040.00/01	01/12	sred2_R1094		sreb2_K1082	CAGIASAGGAGCGIGGIGCI	C_{1} (2008)
EGR3	842 33/21	21/13	55 E5 F101 E2 112CD				Chen et al. (2008)
mtDN A			E3 1130K	GGYTTCHGICCHCIGHTSAG			
	(20 171/154	105/07					Ward at al. (2005)
COI	038 1/1/134	123/87	40 FISHCOIF				ward et al. (2003)
NID5	065 210/296	270/200	FISIICUIK				Mive and Nichida (2000)
ND5	905 519/280	270/209	48 L12329-Leu				Miya and Nishida (2000)
			H15590-ND5				Mine and Nishida (2000)
			L12321-Leu				Multai at al. (2012)
arth	1170 251/200	207/225	HI3300-IND3-KN1				Niukai et al. (2012)
cytb	11/8 331/309	291/223	48 L14/24				Paiumot et al. (1991)
			H16500-CK	GUULIGAAATAGGAAUUAGA			Inoue et al. (2000)

^a With outgroup / without outgroup

Reference

Table S3.

Chen, W.J., Miya, M., Saitoh, K., Mayden, R.L., 2008. Phylogenetic utility of two existing and four novel nuclear gene loci in reconstructing tree of life of ray–finned fishes: The order Cypriniformes (Ostariophysi) as a case study. Gene 243, 125–134.

Inoue, J.G., Miya, M., Tsukamoto, K., Nishida, M., 2000. Complete mitochondrial DNA sequence of the Japanese sardine, Sardinops melanostictus. Fish. Sci. 66, 924–932.

Li, C., Orti, G., Zhang, G., Lu, G., 2007. A practical approach to phylogenomics: the phylogeny of ray-finned fish (Actinopterygii) as a case study. BMC Evol. Biol. 7, 44.

Lovejoy, N.R., Collette, R.B., 2001. Phylogenetic relationships of New World needlefishes (Teleosti: Belonidae) and the biogeography of transitions between marine and freshwater habitats. Copeia 2,

Miya, M., Nishida, M., 2000. Use of mitogenomic information in teleostean molecular phylogenetics: a tree-based exploration under the maximum-parsimony optimality criterion. Mol. Phylogenet. Evol 17 437-455

Palumbi, S., Martin, A., Romano, S., McMillian, W.O., Stice, L., Grabowski, G., 1991. The simple fool's guide to PCR. University of Hawaii, Honolulu.

Ward, R.D., Zemlak, T. S., Innes, B.H., Last, P.R., Hebert, P.D.N., 2005. DNA barcoding Australia's fish species Phil. Trans. R. Soc. B 360, 1847–1857.

Table S4.

Subset	Subset partition	Best model
RAxML/r	ntDNA	
	1 CO1-1st, CO1-2nd, ND5-1st, ND5-2nd, cytb-1st, cytb-2nd	GTR+I+G
	2 CO1-3rd, ND5-3rd, cytb-3rd	GTR+I+G
MrBayes/	mtDNA	
	1 CO1-2nd, ND5-2nd, cytb-2nd	GTR+I
	2 CO1-3rd, ND5-3rd, cytb-3rd	GTR+I+G
	3 CO1-1st, ND5-1st, cytb-1st	K80+I+G
RAxML/r	nuclear	
	1 myh6-1st, myh6-2nd, RYR3-1st, RYR3-3rd, Ptr-1st, Ptr-2nd, RAG2-2nd, RAG2-3rd, sreb2-1st,	GTR+I+G
	sreb2-2nd, EGR3-1st, EGR3-2nd	
	2 myh6-3rd, RYR3-2nd, Ptr-3rd, RAG2-1st, sreb2-3rd, EGR3-3rd	GTR+I+G
MrBayes/	nuclear	
	1 myh6-2nd, RYR3-1st	F81+1
	2 myh6-3rd, RYR3-2nd, Ptr-3rd, sreb2-3rd, EGR3-3rd	GTR+I+G
	3 myh6-1st, RYR3-3rd, Ptr-1st, RAG2-2nd, RAG2-3rd, sreb2-1st	HKY+I
	4 Ptr-2nd, sreb2-2nd	F81
	5 RAG2-1st	HKY+I
	6 EGR3-1st, EGR3-2nd	F81

Models selected by Partitionfinder, using AIC for RAxML and BIC for MrBayes.

Table S5										
Models for BEAST analysis selected by										
BIC implemented by jModelTest v 2.1.3.										
mtDNA		-								
CO1	TrN+G									
ND5	TrN+I+G									
cytb	GTR+I+G									
nuclear DNA										
Concatenated	HKY+I+G									

Table S6		Estimated parameters by state dependent diversification analysis under the MuSSE model. Character state codes (1-3)												
		indicate amphidromous, lentic, and fluvial in life history analysis, and small, middle, large in egg size analysis respectively.												
	The	se mode	ls estir	nated spe	ciation	(λ) , extinc	tion (μ), ar	nd transitio	on rates	(q).				
Model	DF	AIC	λ1	λ2	λ3	μ1	μ2	μ3	q12	q21	q13	q31	q23	q32
Life History														
Full	12	118.18	0.485	0.37	9 0.145	7.48E-09	1.28E-06	2.40E-05	0.0830	4.03E-07	0.0744	3.67E-06	0.550	0.286
Equal λ	10	115.21	0.447	-	-	2.72E-11	9.36E-10	0.255	0.0783	1.12E-07	0.0938	1.19E-06	0.589	0.280
Equal μ	10	114.18	0.485	0.37	9 0.145	6.29E-07	-	-	0.0830	9.68E-09	0.0744	1.50E-05	0.550	0.286
Equal q	9	112.77	0.492	0.35	4 0.140	0	3.45E-07	0	0.0749	-	0.1035	-	0.489	-
Equal λ and μ	8	111.29	0.429	-	-	5.19E-09	-	-	0.0679	1.83E-07	0.0845	7.67E-08	0.513	0.318
Equal λ and q (reversal transition rates are equal)	7	109.98	0.439	-	-	4.32E-09	0.189	0.00857	0.0698	-	0.1065	-	0.444	-
Equal μ and q (reversal transition rates are equal)	7	108.77	0.492	0.35	4 0.140	8.86E-09	-	-	0.0749	-	0.1035	-	0.489	-
Equal q (all transition rates are equal)	7	109.53	0.512	0.35	9 0.204	6.87E-06	0.363	1.34E-05	0.1274	-	-	-	-	-
Equal λ, μ, q (reversal transition rates are equal)	5	106.02	0.429	-	-	2.70E-08	-	-	0.0567	-	0.1057	-	0.447	-
Equal λ and q (all transition rates are equal)	5	106.71	0.462	-	-	3.75E-08	0.444	0.149	0.1249	-	-	-	-	-
Equal μ and q (all transition rates are equal)	5	105.80	0.496	0.30	4 0.198	3.88E-08	-	-	0.1099	-	-	-	-	-
Equal λ, μ, q (all transition rates are equal)	3	103.06	0.429	-	-	1.58E-08	-	-	0.0983	-	-	-	-	-
Egg size														
Full	12	106.22	0.511	1.21E-0	5 0.335	4.91E-06	1.97E-11	5.54E-06	0.2125	1.085	5.12E-11	0.334	3.21E-09	3.58E-06
Equal λ	10	102.86	0.438	-	-	6.44E-09	1.63E-05	0.102	0.3941	2.298	6.15E-07	0.311	7.26E-08	5.95E-08
Equal µ	10	102.22	0.511	1.75E-0	5 0.335	6.04E-07	-	-	0.2125	1.085	5.04E-07	0.334	1.91E-09	1.07E-06
Equal q	9	103.62	0.506	4.39E-0	9 0.222	1.39E-07	0.592	1.42E-06	0.1372	-	0.0661	-	5.19E-07	-
Equal $\hat{\lambda}$ and μ	8	98.88	0.429	-	-	9.15E-07	-	-	0.3955	2.304	5.66E-07	0.348	2.15E-09	7.88E-10
Equal λ and q (reversal transition rates are equal)	7	101.05	0.484	-	-	6.76E-07	1.023	0.330	0.1470	-	0.0783	-	7.07E-09	-
Equal μ and q (reversal transition rates are equal)	7	100.19	0.482	2.78E-0	7 0.225	2.76E-05	-	-	0.0803	-	0.0695	-	3.55E-05	-
Equal q (all transition rates are equal)	7	100.07	0.498	2.42E-0	9 0.212	8.33E-08	0.429	0.132	0.0929	-	-	-	-	-
Equal λ, μ, q (reversal transition rates are equal)	5	98.17	0.429	-	-	2.62E-07	-	-	0.0758	-	0.0651	-	1.28E-07	-
Equal λ and q (all transition rates are equal)	5	97.50	0.476	-	_	3.70E-08	0.855	0.387	0.1022	-	-	-	-	-
Equal μ and q (all transition rates are equal)	5	96.41	0.481	1.06E-0	5 0.211	2.90E-07	-	-	0.0725	-	-	-	-	-
Equal λ, μ, q (all transition rates are equal)	3	94.45	0.429	-	-	2.26E-07	-	-	0.0675	-	-	-	-	-