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RIMS Kôkyûroku Bessatsu
B35 (2012), 23–29

Simulation of dislocation cross-slip

By

Petr Pauš∗, Michal Beneš∗∗, and Jan Kratochv́ıl∗∗∗

Abstract

This contribution deals with the numerical simulation of dislocation dynamics, their inter-

action, merging and changes in the dislocation topology. The glide dislocations are represented

by parametrically described curves moving in slip planes. We focus on the simulation of the

cross-slip of two dislocation curves where each curve evolves in a different slip plane. The dis-

locations evolve, under their mutual interaction and under some external force, towards each

other and at a certain time their evolution continues outside slip planes. During this evolution

the dislocations merge by the cross-slip occurs. As a result, there will be two dislocations

evolving in three planes - two planes and one plane where cross-slip occurred. The goal of our

work is to simulate the motion of the dislocations and to determine the distance of slip planes

which is necessary for the cross-slip to occur. The simulation of the dislocation evolution and

merging is performed by improved parametric approach and numerical stability is enhanced

by the tangential redistribution of the discretization points.

§ 1. The model

Dislocation cross-slip is one of key processes of crystal plasticity. The most important

cross-slip models are reviewed in [1]. The present simulation is focused on the annihilation of

screw dislocation parts by cross-slip as an important factor in the generation and dynamics

of persistent slip bands. In the bands screw parts of glide dislocations moving in channels

of low dislocation density mutually annihilate when the distance between their respective slip

planes falls below a critical limit. The remaining edge parts are stored in multipolar walls. The
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annihilation by cross-slip is governed by the line tension, the applied stress in the channels and

the interaction force between dislocations. In the present simulation a dissociation of the glide

dislocations both in their slip planes and the cross-slip plane is neglected. In discrete dislocation

dynamics modeling dislocations as “zig-zag” lines jumping on a discrete network cross-slip is a

standard ingredient [2]. This article describes the incorporation of the annihilation by cross-slip

into the discrete dislocation dynamics by considering dislocations as moving smooth curves.

This approach is a mathematically challenging alternative.

The interaction of dislocations can be approximately described using the curvature flow.

We consider perfect dislocation curves with the Burgers vector b⃗ = (0, 0, b) oriented in the

x-direction of the x,y,z coordinate system. The discloation curve motion Γ is located in a

slip plane, identified as xz-plane. The glide of dislocation is governed by the relaxation law

in the form of the mean curvature flow equation in the direction of the normal vector to the

dislocation

(1.1) Bv = Lκ+ b(τapp + τint),

where B is a drag coefficient, and v(x⃗, t) is the normal velocity of a dislocation at x⃗ ∈ Γ and

time t. The term Lκ represents self-force expressed in the line tension approximation as the

product of the line tension L and local curvature κ(x, t). The term τapp represents the local

shear stress acting on the dislocation segment produced by the bulk elastic field. The term τint

represents interaction force between dislocations. In our simulations, we consider the “stress

controlled regime” where the applied stress in the channel is kept uniform. In the slip plane,

the applied stress τapp is the same at each point of the line and for numerical computations we

use τapp = const. The “strain controlled regime” analyzed in [3] could be an alternative.

§ 2. Parametric description

The motion law (1.1) in the case of dislocation dynamics is treated by parametrization

where the planar curve Γ(t) is described by a smooth time-dependent vector function X⃗ :

S×I → R2, where S = [0, 1] is a fixed interval for the curve parameter and I = [0, T ] is the time

interval. The curve Γ(t) is then given as the set Γ(t) = {X⃗(u, t) = (X1(u, t),X2(u, t)), u ∈ S}.
The evolution law (1.1) is transformed into the parametric form as follows. The unit

tangential vector T⃗ is defined as T⃗ = ∂uX⃗/|∂uX⃗|. The unit normal vector N⃗ is perpendicular

to the tangential vector and N⃗ · T⃗ = 0 holds. The curvature κ is defined as

κ =
∂uX⃗

⊥

|∂uX⃗|
· ∂uuX⃗

|∂uX⃗|2
= N⃗ · ∂uuX⃗

|∂uX⃗|2
,

where X⃗⊥ is a vector perpendicular to X⃗. The normal velocity v is defined as the time

derivative of X⃗ projected into the normal direction, v = ∂tX⃗ ·∂uX⃗
⊥/|∂uX⃗|. The equation (1.1)

can be written as

(2.1) B∂tX⃗ = L
∂uuX⃗

|∂uX⃗|2
+ b(τapp + τint)

∂uX⃗
⊥

|∂uX⃗|
.

This equation is accompanied by the periodic boundary conditions for closed curves, or by the

fixed-end boundary condition for open curves, and by the initial condition. These conditions are

considered similarly as in [4]. For long time computations with time and space variable force,

the algorithm for curvature adjusted tangential velocity is used. To incorporate a tangential
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Figure 1: Geometry of the model

redistribution, a tangential term α has to be added to equation (2.1). The term α depends on

the curvature κ of the dislocation and controls the distance between discretization points, i.e.,

either keeps the same distance of the discretization points along the whole curve, or accumulates

the points in areas with higher curvatures to improve accuracy. Details are described in [5].

Complete equation reads as

(2.2) B∂tX⃗ = L
∂uuX⃗

|∂uX⃗|2
+ Lα

∂uX⃗

|∂uX⃗|
+ b(τapp + τint)

∂uX⃗
⊥

|∂uX⃗|
.

For numerical approximation we consider a regularized form of (2.2),

(2.3) ∂tX⃗ =
∂uuX⃗

Q(∂uX⃗)2
− α

∂uX⃗

Q(∂uX⃗)
+ F (X, t)

∂uX⃗
⊥

Q(∂uX⃗)
,

where Q(x1, x2) =
√

x2
1 + x2

2 + ε2 with ε being a small parameter. The equation is then solved

by means of matrix factorization. Since there are two components of X⃗, two linear systems are

solved in each timestep.

In case of the single dislocation dynamics, the mathematical model of curve evolution is

2D only. However, the cross-slip phenomenon requires a 3D configuration to be considered

(two slip planes and one cross-slip plane). Our idea is to perform a linear mapping from a

virtual plane to 3D according to Fig. 1. The curve motion is computed in the virtual plane

and then mapped to the real physical configuration of the slip and cross-slip planes. The angle

β is π/4 according to the features of the crystalline lattice.

Since the parametric approach cannot handle topological changes, a modified algorithm

is used (see [6]). Every timestep, the distance of dislocation curves is determined and if the

distance is lower than a given threshold (in our case 5 nm), a new curve is created, discretization

points from both curves are copied in a correct order into the new one (points where minimal

distance was reached are omitted), and the computaion continues only with the new curve.

The interaction force between dislocations is computed by Devince’s formula [8] for a

straight dislocation segment. Stress fields of two half-line dislocations τA
int and τB

int, where τA
int

is a stress field from half line A to infinity; τB
int is a stress field from half line B to infinity, are

subtracted (see Fig. 2). The resulting stress from each segment of the dislocation curve in the

point X is computed as follows:

τint = τA
int − τB

int.

Using Peach-Koehler formula F⃗ = (τint · b⃗)× T⃗ , interaction force is computed from the stress

field. Here T⃗ = (T1, T2, T3)
T is a tangetial vector of the dislocation, b⃗ is a Burgers vector, τint
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Figure 2: Devincre’s formula for straight dislocation segment.

is a stress tensor. Taking into account the geometry of the model, the forcing term has the

following form

F⃗ = b(τ21T3 − τ31T2, τ11T3 − τ31T1, τ11T2 − τ21T1)
T .

The magnitude of the force on dislocation in normal direction is

F = F⃗ · N⃗ ,

where N⃗ is a normal vector of the dislocation which the force field is applied to.

§ 3. Numerical simulation

The numerical simulations were performed for copper under the following set of parame-

ters:

Burgers vector magnitude b = 0.25 nm

Line tension L = 2 nN

Drag coefficient B = 1.0 · 10−5 Pa · s
Applied stress τapp = 15 MPa

Plain distance D = 30− 45 nm

Cross-slip plane angle β = π/4

Channel width 1000 nm

Discretization points per curve M = 175

During the simulation, the dislocation curves have fixed ends at the channel edges and their

initial distance is 1100 nm. The number of discretization points does not have a big influence

on the simulation result. Less number causes worse detection of topological changes but speeds

the computation up. Accodring to our experience, M = 175 is a good compromise between

speed and accuracy.

We performed a set of numerical simulations of dislocation cross-slip to determine the

critical slip plane distance for which the cross-slip occurs. In our model, each dislocation

carries its own cross-slip plane with itself and when the two planes coincide, the condition for

cross-slip is evaluated. The condition is defined as follows: when the interaction force between

dislocations acting in the cross-slip plane is higher than the applied stress acting in the usual
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Figure 3: The interaction force between dislocations; slip plane distance (from top to

bottom): 30 nm, 35 nm, 37 nm, 40 nm, 45 nm. Discretization nodes M = 175.

slip plane, the cross-slip occurs. Otherwise, the dislocations continue to move in their slip

planes.

Computations in this article are done for τapp = 15 MPa. For such value of applied stress

and under parameters stated above, the simulation provided the critical cross-slip distance

approximately 37 nm. Figure 3 shows the graph of the interaction force for several slip plane

distances. Simulation was performed for 30 nm, 35 nm, 37 nm,40 nm, and 45 nm (from top to

bottom). The sharp point in the graph corresponds to the moment of cross-slip. In this point,

the force acting on the dislocation changes and with the decreasing distance both dislocations

are attracted more and more. When the dislocations touch, annihilation by cross-slip occurs.

The example in Fig. 4 shows the simulation of the actual annihilation by cross-slip.

Initially the dislocations move towards each other under the external stress τapp = 15 MPa.

When they approach each other the interaction force rises and they are pulled together into the

cross-slip plane. Finally they annihilate by cross-slip and stick to the channel walls. In reality

this mechanism is hindered by dissociation of dislocation core but the presented approximation

does not consider such phenomenon yet.
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Figure 4: Visualization of dislocation motion during annihilation by cross-slip, τapp =

15 MPa, t ∈ (0, 0.324), plane distance D = 37 nm, each dislocation curve discretized by

M = 175 nodes. This representes one simulation from Fig. 3.
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