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RIMS Kôkyûroku Bessatsu
B34 (2012), 103–116

An analytic function in 3 variables related to

the value-distribution of log L,

and the “Plancherel volume”

By

Yasutaka Ihara∗

Introduction At the conference, the author spoke on his recent article [7] and
on related joint work with Kohji Matsumoto [9, 10]. These papers which contain full
details have meanwhile been published. On the other hand, his survey article [12] on
more or less the same subject written about a year ago remains formally unpublished.
So, here, we shall present a slightly revised version of [12]. In [7, 10], we worked over
general global base fields K, and treated both the “log L-” and the “d log L-versions”
simultaneously. But here, as in [9], we restrict our attention to the log L-version over
K = Q. For a more recent work related to the d log L-analogue of [9], cf. [13].

The first subject is of general and elementary nature. For a continuous density
measure M(x)|dx| on Rd, let µ = µM denote the variance and

ν = νM =
∫

M(x)2|dx| =
∫

|M̂(y)|2|dy|

the ”Plancherel volume”, where |dx| is the self-dual Haar measure of Rd and M → M̂

denotes the Fourier transform. We pay our attention to this basic integral invariant ν

of the measure, giving a basic elementary inequality which is slightly more general than
the one given in [7].

The main subject is a complex analytic function in 3 variables s, z1, z2 defined by
the Euler product

(0.1) M̃(s; z1, z2) =
∏
p

F (iz1/2, iz2/2; 1; p−2s) (<(s) > 1/2).
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Here, i =
√
−1, and F (a, b; c; t) is the Gauss hypergeometric series. This function arose

in connection with the two “mean-values”

{ζ(s)
iz1/2

ζ(s)iz2/2}Re(s)=σ, {L(s, χ)
iz1/2

L(s, χ)iz2/2}χ.

The average on the left probably requires no explanation. As for the one on the right, s

is fixed with Re(s) = σ, and χ runs over all Dirichlet characters with prime conductors.
By [9, 10] (to be reviewed in §3), when σ is real > 1/2 and at least when z2 = z̄1,
M̃(σ, z1, z2) can be interpreted as the function giving the above two mean-values (which
are, as expected, equal). In other words, M̃(σ, z, z̄) is the Fourier dual of the density
function Mσ(w) for the distribution of values of {log ζ(σ+ti)}t∈R and of {log L(s, χ)}χ.

But we consider M̃(s; z1, z2) as an analytic function also of the complex variable s.
We shall briefly review the main results of [7] on analytic continuation of M̃(s; z1, z2)
to the left of <(s) > 1/2, two other infinite product expansions, and also its limit
behaviours at s → 1/2, which will be applied to the determination of the corresponding
limits of the invariants related to Mσ(w) such as µMνM for M = Mσ.

§ 1. The Plancherel volume and a basic inequality (cf. [7],§1.1)

The readers mainly interested in the analytic function M̃(s; z1, z2) might skip this
section. Let Rd be the d-dimensional Euclidean space, with points denoted as x =
(x1, · · · , xd), and with the Haar measure |dx| = (dx1...dxd)/(2π)d/2, which is self-dual
with respect to the dual pairing ei〈x,x′〉 of Rd, where 〈x, x′〉 =

∑d
i=1 xix

′
i. Write, as

usual, |x| = 〈x, x〉1/2. Let M(x)|dx| be any density measure on Rd with center 0; in
other words, M(x) is a non-negative real-valued measurable function on Rd such that

(1.1)
∫

M(x)|dx| = 1;
∫

M(x)xi|dx| = 0 (1 ≤ i ≤ d),

where the integrals are over Rd. For any such M(x), put

(1.2) ν := νM =
∫

M(x)2|dx|

and call it the Plancherel volume of M(x) (or of M(x)|dx|). A reason for this naming
is that if M(x) is analytically “good enough” (which we shall not need as assumption
in §1), the following standard formulas in Fourier analysis hold;

M̂(y) :=
∫

M(x)ei〈x,y〉|dx|, M(x) =
∫

M̂(y)e−i〈x,y〉|dy|;(1.3)

νM =
∫

M(x)2|dx| =
∫

|M̂(y)|2|dy| (thePlancherel formula).(1.4)
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Now, if we write M−(x) := M(−x), then

(1.5) νM = (M ∗ M−) |x=0,

where ∗ denotes the convolution product with respect to |dx|. Thus, νM is the density at
the origin, of the differences of two random points in the measure space (Rd,M(x)|dx|).
On the other hand, for each k > 0, put

(1.6) µ(k) :=
∫

M(x)|x|k|dx|; µ = µ(2) : the variance.

Observe that the quantity

(1.7) (µ(k))d/kν

is invariant under scalar transforms

(1.8) M(x) 7−→ cdM(cx)

(c > 0), and observe (intuitively) that not both of ν and µ(k) can be small at the same
time. It is thus natural to ask: “does there exist a positive universal lower bound for the
quantity (1.7)?” In [7] Theorem 1, we proved the existence of such a bound for k = 2;

(1.9) µd/2ν ≥
(

2d

d + 4

)d/2 4Γ(d+4
2 )

d + 4
,

and described precisely when the equality holds. Here, we just add that this can be
generalized, with almost the same proof, to the case of any k > 0:

Theorem 1 For any k > 0 we have

(1.10) (µ(k))d/kν ≥ 2
d
2 +1Γ

(
d

2
+ 1

)
d + k

d + 2k

(
d

d + 2k

)d/k

,

with the equality if and only if M(x) coincides almost everywhere with a scalar transform
of the function Max(0, 1 − |x|k).

Proof (I) We may assume that M(x) is rotation-invariant; M(x) = f(|x|) with
some non-negative valued measurable function f(r) on r ≥ 0. As in loc.cit, put γd :=
(2π)d/2/Vol(Sd−1) = 2(d/2)−1Γ(d/2), where Vol(Sd−1) denotes the (ordinary) Euclidean
volume of the (d − 1)-dimensional sphere. Then by definitions,

(1.11)
∫ ∞

0

f(r)rd−1dr = γd,

∫ ∞

0

f(r)rd−1+kdr = γd µ(k),

∫ ∞

0

f(r)2rd−1dr = γd ν.

(II) The case f(r) = cMax(0, 1 − rk). By the first formula of (1.11) we obtain
c = (d(d + k)/k)γd, and by direct calculations, we also obtain the following formulas
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for the invariants for this case, which will be distinguished from the invariants for the
general case by the subscript ∗:

µ
(k)
∗ =

d

d + 2k
, ν∗ =

2d(d + k)
d + 2k

γd,(1.12)

(µ(k)
∗ )d/kν∗ = 2

d
2 +1Γ

(
d

2
+ 1

)
d + k

d + 2k

(
d

d + 2k

)d/k

.(1.13)

Note that the last value is equal to the quantity on the right hand side of (1.10).
(III) The general case. By a suitable scalar transform, we may assume µ(k) = µ

(k)
∗ .

The Schwarz inequality gives AB ≥ C2, for

(1.14) A =
∫ 1

0

(1 − rk)2rd−1dr, B =
∫ 1

0

f(r)2rd−1dr; C =
∫ 1

0

(1 − rk)f(r)rd−1dr.

By (1.12) we have

(1.15) A =
2k2

d(d + k)(d + 2k)
,

while, obviously,

(1.16) B ≤
∫ ∞

0

f(r)2rd−1dr = γd ν.

As for C, we have

C ≥
∫ ∞

0

(1 − rk)f(r)rd−1dr = γd(1 − µ(k))(1.17)

= γd(1 − µ
(k)
∗ ) = γd

2k

d + 2k
> 0

(note the positivity of the right hand side of (1.17)). Therefore,

(1.18)
(

2k2

d(d + k)(d + 2k)
γd ν

)1/2

≥ (AB)1/2 ≥ C ≥ γd
2k

d + 2k
,

which gives

(1.19) ν ≥ 2d(d + k)
d + 2k

γd = ν∗;

hence (µ(k))d/kν = (µ(k)
∗ )d/kν ≥ (µ(k)

∗ )d/kν∗, as desired. The second statement of the
theorem is clear from this proof.

Examples (i) M(x) = exp(−|x|2/2) (Gaussian). Then

(µ(k))d/kν =
(

Γ
(

d + k

2

)
/Γ

(
d

2

))d/k

.
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(ii) Let M(x) be the defining function of a compact set S ⊂ Rd with center of gravity
0 and the volume

∫
S
|dx| = 1. Then

(1.20) (µ(k))d/kν ≥ 2d/2Γ
(

d

2
+ 1

)(
d

d + k

)d/k

,

with the equality if and only if S is a ball with center 0 (modulo a set of measure 0). For
curious readers, the right hand side of (1.10) divided by that of (1.20) is 2(y/(1+y))y < 1,
y = (d + k)/k > 1.

When M(x) has analytic parameters, the quantity (µ(k))d/kν is often expressible
as the product of powers of Gamma functions whose arguments are simple functions of
the parameters. (This is in fact so e.g. when M(x) = |x|p−1 exp(−|x|q) (p, q > 0), or
M(x) = (|x|α + 1)−β (α, β > 0, αβ À 1), but the formulas do not seem illuminating.)
Thus, although the quantity itself takes positive real values, it can often be continued
analytically as a function of complex parameters. I have not understood the reason even
in the present case of interest.

§ 2. The analytic function M̃(s; z1, z2); introduction

First, recall that the Riemann zeta function ζ(s) has the Euler product expansion

(2.1) ζ(s) =
∏
p

ζp(s)

on Re(s) > 1, where

(2.2) ζp(s) = (1 − p−s)−1,

and also the Riemann-Hadamard decomposition

(2.3) ζ(s) = ε(s)−1
∏
ρ

(
1 − s

ρ

)
e

s
ρ ,

where ε(s) is of the form s(s− 1)eBsΓ(s/2) and ρ runs over all non-trivial zeros of ζ(s).
As is well-known, comparison of the two decompositions (2.1) and (2.3) leads to various
identities connecting “{p}” with “{ρ}”.

The function in the title, called M̃(s; z1, z2), in which complex powers of ζ(2s) are
comprised, also has two types of infinite product decompositions, each of which having
some common features with both (2.1) and (2.3) (see §7). Let us recall the definition.
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First, the local factor M̃p(s; z1, z2) for each prime p. Consider the power series expansion
in p−s of the complex x-th power of ζp(s):

(2.4) ζp(s)x = (1 − p−s)−x = 1 +
∞∑

n=1

an(x)p−ns,

(2.5) an(x) = (x)n =
x(x + 1) · · · (x + n − 1)

n!
.

It is convenient to use complex variables (x1, x2) and (z1, z2) related to each other by

(2.6) xν = izν/2 (ν = 1, 2),

where i =
√
−1. Then M̃p(s; z1, z2) is defined by

(2.7) M̃p(s; z1, z2) = 1 +
∞∑

n=1

an(x1)an(x2)p−2ns = F (x1, x2; 1; p−2s),

where

(2.8) F (a, b; c; t) = 1 +
a.b

1.c
t +

a(a + 1)b(b + 1)
1.2c(c + 1)

t2 + · · ·

(|t| < 1) denotes the Gauss hypergeometric series. It is clear that M̃p(s; z1, z2) is a
holomorphic function of s, z1, z2 on Re(s) > 0, symmetric in z1, z2. The zero divisor of
M̃p(s; z1, z2) is non-trivial (see below §6). The global holomorphic function M̃(s; z1, z2)
of s, z1, z2 on the domain Re(s) > 1/2 is defined by

(2.9) M̃(s; z1, z2) =
∏
p

M̃p(s; z1, z2)

which is absolutely convergent in the following sense. Fix any σ0 > 1/2 and R > 0.
Then |M̃p(s; z1, z2) − 1| < 1 holds on Re(s) ≥ σ0 and |z1|, |z2| ≤ R for almost all
p (depending on σ0, R), and the sum of log M̃p(s; z1, z2) (the principal branch) over
these p is absolutely convergent; thus M̃(s; z1, z2) is defined as the product of finitely
many local factors and the exponential of a holomorphic function on this domain. In
particular, the zero divisor of M̃(s; z1, z2) is the sum of those of local factors. Note that
M̃(s;−2i,−2ix) = ζ(2s)x (x ∈ C).

This function M̃(s; z1, z2) has a Dirichlet series expansion on Re(s) > 1/2 whose
coefficients are polynomials of z1, z2, formally arising from the Euler product expansion
(2.9). It is absolutely convergent also as Dirichlet series on the same domain. We recall
[10]§4 that (again for Re(s) > 1/2) it has an everywhere absolutely convergent power
series expansion in z1, z2:

(2.10) M̃(s; z1, z2) = 1 +
∑

a,b≥1

µ(a,b)(s)
xa

1xb
2

a!b!
= 1 − 1

4
µ(s)z1z2 + · · · ,
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where each µ(a,b)(s) is a certain Dirichlet series, and

(2.11) µ(s) = µ(1,1)(s) =
∑

p

(
∞∑

n=1

1
n2p2ns

).

Now, in the joint work with Matsumoto [9](cf. also [10]§4.1), we have constructed
for each σ > 1/2 a density measure Mσ(w)|dw| satisfying and determined by the fol-
lowing mutually inverse Fourier-transform equalities:

M̃(σ, z1, z2) =
∫
C

Mσ(w) exp
(

i

2
(z1w̄ + z2w)

)
|dw|(2.12)

Mσ(w) =
∫
C

M̃(σ; z, z̄)e−iRe(z̄w)|dz|(2.13)

(|dz| = dxdy/2π for z = x + iy). The first equality holds for any z1, z2 ∈ C, and the
second, for any w ∈ C. This Mσ(w) is a non-negative real valued continuous (in fact,
C∞-) function on C, satisfying

(2.14)
∫
C

Mσ(w)|dw| = 1,

∫
C

Mσ(w)w|dw| = 0.

It is thus a density function with the center of gravity 0. Its variance µσ is

µσ =
∫
C

Mσ(w)|w|2|dw| =
∂2

∂x1∂x2
M̃(σ; z1, z2) |(0,0)

= µ(σ) > 0,(2.15)

µ(s) being the Dirichlet series (2.11). This is real analytic in σ. On the other hand, its
Plancherel volume

(2.16) νσ =
∫

Mσ(w)2|dw| =
∫

|M̃(σ; z, z̄)|2|dz|

is at least continuous on σ > 1/2, but I do not know whether νσ is real analytic, and even
if so, whether it has an analytic continuation to the left of 1/2. We know by (1.9) that
µσνσ ≥ 8/9, and for a numerical example, µ1 = 0.474..., ν1 = 1.967...; µ1ν1 = 0.93....

§ 3. Connection with the value-distribution of the logarithm of Dirichlet
L-functions; review of joint work with K. Matsumoto [9, 10]

The value-distribution theory related to ζ and L-functions has a long history since
Bohr-Jessen [1]. Our work is closest in spirit with Bohr-Jessen and Jessen-Wintner [14],
but some of the works of Elliott [2, 3], Stankus [18, 19], Granville-Soundararajan [4],
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Lamzouri [15] are more or less related; cf. also Laurinčikas [16], Steuding [20]. We leave
precise descriptions of relations with past works to the introductory parts in [9, 11].

In [9, 10], we have established the Bohr-Jessen type equalities:

Theorem 2 (with Kohji Matsumoto [9, 10]) Let σ > 1/2. Then:
(i) The equalities ∫

C

Mσ(w)Φ(w)|dw|= AvgRe(s)=σΦ(log ζ(s))(3.1)

= AvgχΦ(log L(s, χ))(3.2)

hold for any bounded continuous function Φ on C. Here, AvgRe(s)=σ denotes the limit
of the average over the segment defined by Re(s) = σ and |Im(s)| ≤ T (T → ∞), χ runs
over a “density → 1” subset of the set of all Dirichlet characters with prime conductors,
L(s, χ) is the Dirichlet L-function, Avgχ is an average over χ in a suitable sense. Under
GRH, the Generalized Riemann Hypothesis, Φ (at least) in (3.2) can be any continuous
function with at most exponential growth. (ii) In particular, for Φ(w) = exp(x1w̄+x2w)
with fixed pair of complex numbers xν = izν/2 (ν = 1, 2),

M̃(σ; z1, z2) = AvgRe(s)=σ

(
ζ(s)

x1
ζ(s)x2

)
(3.3)

= Avgχ

(
L(s, χ)

x1
L(s, χ)x2

)
(3.4)

holds unconditionally as long as z2 = z̄1. Under GRH, (3.4) holds for any z1, z2 ∈ C.

The equality (3.1) for bounded continuous test functions Φ, and (3.3) for z2 =
z̄1, are, at least essentially, due to Bohr-Jessen [1](cf. [9] Remark 9.1). Over C, the
two types of averages, the“vertical”, i.e., log ζ(s) over Re(s) = σ, and the “character-
type”, i.e., log L(s, χ) over χ, correspond to the same density function, and we find it
meaningful to present this explicitly. However,

(Warning)This is not at all a general phenomenon. In fact, these two types of
averages (distributions) possess the same density only when the base field is Q. The
main reason is that vertical type distribution corresponds to consideration of characters
that depend only on the norm of primes. The vertical type for a number field case
is interesting and offers deep problems cf. [17], while for function fields over finite
fields, the zeta functions are vertically periodic and the average on this direction is not
interesting. In contrast to these, the character type average has a common feature for
all global fields. Many people consider that the vertical type distribution is the main
thing and the character type results are something secondary and easily predictable. Is
it really so ?

Finally, in the character type case, there are stronger and weaker averages. Results
on stronger averages can be obtained for function fields over finite fields, or for some
number fields under GRH. For these details, cf. [9, 10] (or a survey [11]).
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The following equalities are expected to hold in general:

µσ = AvgRe(s)=σ| log ζ(s)|2 = Avgχ| log L(s, χ)|2;(3.5)

νσ = the density at 0 of the distribution of(3.6)

{log (ζ(σ + ti)/ζ(σ + t′i))}t,t′∈R, {log (L(s, χ)/L(s, χ′))}χ,χ′ .

§ 4. Limit behaviors at s = 1/2 (review of [7])

It is natural to pay attention to the “variance-normalized” function

(4.1) M?
σ(w) = µσMσ(µ1/2

σ w)

which has the variance = 1 and the Fourier transform

(4.2) M̃?
σ(z) = M̃(σ; µ−1/2

σ z, µ−1/2
σ z̄).

As in §1, consider the Plancherel volume

(4.3) νσ :=
∫
C

Mσ(w)2|dw| =
∫
C

|M̃(σ; z, z̄)|2|dz|.

The product µσνσ, which may be expressed as

(4.4) µσνσ =
∫
C

M?
σ(w)2|dw| =

∫
C

|M̃?
σ(z)|2|dz|,

is an interesting object of study. Recall that µσνσ ≥ 8/9.

Theorem 3 ([7]§2) As s → 1/2 + 0,

µ(s)/ log
1

2s − 1
→ 1,(4.5)

M̃(s;µ(s)−1/2z1, µ(s)−1/2z2)→ exp(−z1z2/4).(4.6)

In particular,

(4.7) M̃?
σ(z) → exp(−|z|2/4).

The convergences in (4.6)(4.7) are uniform in the wider sense. These follow from
the special case N = 1 of Theorem 4 below. We have also proved the following rapid
decay property of |M̃σ(z)|: Take any 0 < ε < 1, and let (2σ − 1)−1 Àε 1. Then the
inequality

(4.8) |M̃(σ; z, z̄)|2 ≤ exp
(
−1 − ε

2
µσ|z|2(1−ε′)

)
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holds for all z ∈ C, where ε′ = ε (resp. 0) for |z| ≥ 1 (resp. |z| < 1) ;[7]§4 Theorem 7C.
These provide enough ingredients for the proof of:

Theorem 3’([7]§2) As σ → 1/2 + 0,

M?
σ(w)→ 2 exp(−|w|2),(4.9)

µσνσ → 1.(4.10)

(As for the equality (4.9), the author first worked on its d log-analogue and com-
puted the corresponding values for two special “central” points w = 0 and w =
−(d log ζ)(2σ), for comparison. Professor S.Takanobu who attended the author’s talk in
a workshop (July, 2008) kindly pointed out how this can immedidately be generalized
(without further ingredients) to a formula for any w. An analogous method works for
the present log-case.)

§ 5. Analytic continuation (cf. [7]§3)

Put

(5.1) D = {Re(s) > 0; s 6= 1
2n

,
ρ

2n
; ρ : nontrivial zeros of ζ(s), n ∈ N}.

Theorem 4 ([7]§3) M̃(s; z1, z2) extends to a multivalent analytic function on
D × C2.

This means that M̃(s; z1, z2) extends to an analytic function on D̃ × C2, where D̃
is the universal covering of D. Actually, D̃ can be replaced by the maximal unramified
abelian covering of D. Let

(5.2) `(t) = − log(1 − t) = t +
1
2
t2 + · · · ,

and Pn(x1, x2) (n = 1, 2, · · · ) be the polynomial of degree ≤ n in each variable defined
by the formal power series equality

(5.3) log F (x1, x2; 1; t) =
∞∑

n=1

Pn(x1, x2)`(tn).

Then a more descriptive account of Theorem 4 reads as follows.

Theorem 4’([7]§3)

(5.4) M̃(s; z1, z2) =
∞∏

n=1

ζ(2ns)Pn(x1,x2)
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holds in the following sense; (i) for any N ≥ 0, the quotient of M̃(s; z1, z2) by the
partial product over n ≤ N on the right hand side extends to a holomorphic function on
Re(s) > 1/(2N +2); (ii) the equality (5.4) holds on |z1|, |z2| ≤ R and Re(s) ≥ σ0 > 1/2,
provided that either R is fixed and σ0 is sufficiently large, or σ0 is fixed and R is
sufficiently small.

We have P1(x1, x2) = x1x2 and P2(x1, x2) = −x1x2(x1 − 1)(x2 − 1)/4. Note that
(5.3) already gives the “formal local version”

(5.5) log M̃p(s; z1, z2) =
∞∑

n=1

Pn(x1, x2) log ζp(2ns)

of (5.4). To prove the global analytic equality (5.4), we need to justify the commutativity
of summations over p and those over the exponents of p−2s, x1, x2. This follows from
suitable estimations of various summands. If z1, z2 are fixed and s encircles a punctured
point s0 ∈ {Re(s) > 0} \ D in the positive direction, and if, say, s0 can be expressed in
just one way as s0 = ρ/2n with some n ≥ 1 and with a simple zero ρ of ζ(s), then the
function M̃(s; z1, z2) is multiplied by

exp(2πiPn(x1, x2)).

§ 6. Zeros of M̃(s; z1, z2) ([7]§0.4)

One can prove that the zero divisor of the analytic continuation of M̃(s; z1, z2) on
D̃ ×C2 is well-defined as a divisor on D ×C2, and that it is simply the (locally finite)
sum over p of the zero divisor of M̃p(s; z1, z2). The zero divisor of the local factor

(6.1) M̃p(s; z1, z2) = F (x1, x2; 1; t2)

(zν = ixν/2, t = tp = p−s) is smooth, because of the Gauss differential equation. Its
property has not been analyzed systematically. But the intersection with the hyperplane
defined by x1 + x2 = 0 can be analyzed as follows. For |t| < 1, consider the “locally
normalized” function

(6.2) ft(x) = F (x/(2 arcsin(t)),−x/(2 arcsin(t)); 1; t2).

Then f0(x) = J0(x), the Bessel function of order 0. Let ±{γν}∞ν=1 with 0 < γ1 < γ2 <

· · · denote all the zeros of J0(x), so that γν ∈ ((ν − 1/2)π, νπ). Then we can prove:

Proposition 1 There exists 0 < t0 < 1 such that for |t| ≤ t0, (i) each γν

extends uniquely and holomorphically to a zero γν(t) of ft(x) satisfying Re(γν(t)) ∈
((ν − 1/2)π, νπ) and |Im(γν(t))| < 1, and (ii) there are no zeros of ft(x) other than
±{γν(t)}.
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These lead directly to the Weierstrass decomposition

(6.3) ft(x) =
∞∏

ν=1

(
1 − x2

γν(t)2

)
of ft(x), from which follows the second infinite product decomposition of M̃(s; z1, z2)
on z1 + z2 = 0:

Theorem 5 We have

(6.4) M̃(s; z,−z) =
∏
p

∞∏
ν=1

(
1 +

(
arcsin(p−s)

γν(p−s)

)2

z2

)
=

∞∏
µ=1

(1 + θµ(s)2z2),

{θµ(s)}µ being a reordering of {arcsin(p−s)/γν(p−s)}p,ν according to the absolute values.

Remark Here, in order to assure that each γν(p−s) makes clear sense, we need
to assume that Re(s) is sufficiently large. On the other hand, (6.3) itself holds for each
fixed t if we simply let ±γν(t) denote all the zeros of ft(x). So, (6.4) remains valid for
each fixed s with Re(s) > 1/2 after suitable modifications of local factors for small p’s.
We might add here that limt→1 ft(x) = sin x/x.

We shall indicate here the main ingredients for the proofs of the above statements
on the zeros of ft(x), in order to supplement [7]§0.4 and explain why arcsin(t) should
appear. First we need:

Key lemma A The function ft(x) admits a Neumann series expansion

(6.5)
∞∑

n=0

a2n(t)J2n(x),

where J2n(x) is the Bessel function of order 2n, and a2n(t) is a holomorphic function
of t2 on |t| < 1 divisible by t2n, with a0(t) = 1 and a2n(t) ¿ |t|2n, with ¿ independent
of n (depending only on the compact subdomain of |t| < 1 considered).

To prove this lemma, we may assume that t is positive real. Then the key parameter
arcsin(t) appears as the maximal value of |Arg(1 − te−iθ)| for θ ∈ R/2π. By using the
new argument θ′ defined via

(6.6) Arg(1 − te−iθ)/ arcsin(t) = sin θ′,

we may express ft(x) as

ft(x) =
1
2π

∫ 2π

0

eix sin θ′
(dθ/dθ′)dθ′

=
2
π

∫ π/2

0

Kτ (θ′) cos(x sin θ′) cos(τ sin θ′)dθ′,(6.7)
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where τ = arcsin(t) and

Kτ (θ′) =
τ cos θ′√

sin2 τ − sin2(τ sin θ′)

=
∞∑

µ=0

α2µ(τ) cos(2µθ′),(6.8)

with α2µ(τ) given explicitly and divisible by τ2µ. We thus obtain

(6.9) ft(x) =
1
2

∞∑
µ=0

α2µ(τ)(J2µ(x + τ) + J2µ(x − τ)),

from which follows the lemma by the addition formula for Bessel functions.

By this lemma, ft(x) and dft(x)/dx are “close to” J0(x) and −J1(x) (respectively)
of which the asymptotic behaviors away from zeros are well-understood ([21]§7.21). A
quantitative closeness is guaranteed by:

Key lemma B

(6.10) |Jn(x)| ¿abs. (n + 1)1/2|x|−1/2e|Im(x)| (n = 0, 1, 2, · · · ; x ∈ C).

This proof is parallel to that of Lemma 3.3.4 of [5] which was for x ∈ R; just replace
Jn(x) there by e−|Im(x)|Jn(x).

§ 7. Comparisons

We thus have two decompositions related to M̃(s; z1, z2): The first one

(7.1) M̃(s; z1, z2) =
∞∏

n=1

ζ(2ns)Pn(x1,x2)

is similar to the Riemann-Hadamard decomposition (2.3) of ζ(s) in the sense that it is
related to analytic continuation with respect to s, but is similar to the Euler product
decomposition (2.1) of ζ(s) in the sense that it tells us nothing about the zeros. The
second,

(7.2) M̃(s; z,−z) =
∏
p

∞∏
ν=1

(
1 +

(
arcsin(p−s)

γν(p−s)

)2

z2

)
=

∞∏
µ=1

(1 + θµ(s)2z2),

is similar to (2.1) in the sense that it is firstly the product over p, while in the sense that
it is the Weierstrass decomposition according to zeros, it is similar to (2.3). It is still
mysterious, but we hope that the comparison of these two decompositions will bring us
some new insight.



116 Yasutaka Ihara

References
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