

Zeros of partial zeta functions off the critical line

By

Yoonbok LEE*

Abstract

We extend the joint universality theorem for Artin L-functions $L\left(s, \chi_{j}, K / \mathbb{Q}\right)$ from the previously known strip $1-\frac{1}{2 k}<\operatorname{Re} s<1$ for $k=\# G(K / \mathbb{Q})$ to the maximal strip $\frac{1}{2}<\operatorname{Re} s<1$ under an assumption of a weak version of the density hypothesis. Then, we study zeros of partial zeta functions $\zeta(s, \mathcal{A})$ inside the half of the critical strip as an application of universality.

\S 1. Introduction

Let $Q(m, n)=a m^{2}+b m n+c n^{2}$ be a positive definite quadratic form with its discriminant $D=b^{2}-4 a c<0$ and $a, b, c \in \mathbb{Z}$. We define the Epstein zeta function attached to Q by

$$
E(s, Q)=\sum_{(m, n) \neq(0,0)} \frac{1}{Q(m, n)^{s}}, \quad \operatorname{Re} s>1
$$

Then, it has a meromorphic continuation to \mathbb{C} with one simple pole at $s=1$, and has the functional equation

$$
\Phi(s):=\left(\frac{\sqrt{-D}}{2 \pi}\right)^{s} \Gamma(s) E(s, Q)=\Phi(1-s)
$$

$\operatorname{Voronin}([9]$ or [4]) studied zeros of $E(s, Q)$ inside the critical strip and proved the following theorem.

[^0]Theorem 1.1 (Voronin). Suppose that the class number of $\mathbb{Q}(\sqrt{D})$ is $h(D)>$ 1. The Epstein zeta function $E(s, Q)$ described above has at least $c T$ zeros on the rectangular region $\sigma_{1}<\operatorname{Re} s<\sigma_{2}, 0<\operatorname{Im} s<T$ for each $\frac{1}{2}<\sigma_{1}<\sigma_{2}<1$ and some $c>0$ as $T \rightarrow \infty$.

The main purpose of this paper is extending it to partial zeta functions which are natural algebraic generalizations of Epstein zeta functions.

Let \mathfrak{f} be an integral ideal of the number field K. Then, $J^{\mathfrak{f}}$ denotes the group of all ideals of K which are relatively prime to \mathfrak{f} and $P^{\mathfrak{f}}$ stands for the group of fractional principal ideals (a) such that $a \equiv 1 \bmod \mathfrak{f}$ with a totally positive. Choose an element \mathcal{A} of the ray class group $G^{\mathfrak{f}}=J^{\mathfrak{f}} / P^{\mathfrak{f}} \bmod \mathfrak{f}$. The partial zeta function $\zeta(s, \mathcal{A})$ attached to \mathcal{A} is defined by

$$
\zeta(s, \mathcal{A})=\sum_{\mathfrak{n} \in \mathcal{A}} \frac{1}{N(\mathfrak{n})^{s}} \quad \operatorname{Re} s>1
$$

where \mathfrak{n} runs through all ideals in O_{K} and $N(\mathfrak{n})$ denotes the norm of \mathfrak{n}. It has a meromorphic continuation to \mathbb{C} with only one simple pole at $s=1$ and the functional equation

$$
\xi(1-s, \mathcal{A})=\xi(s, \mathcal{A}):=D(\mathfrak{f})^{s} \Gamma(s)^{r_{2}} \prod_{m=1}^{r_{1}} \Gamma\left(\frac{s+a_{m}}{2}\right) \zeta(s, \mathcal{A})
$$

where r_{1} is the number of real places of $K, 2 r_{2}$ is the number of complex places of K. The constant $D(\mathfrak{f})$ depends only on \mathfrak{f} and a_{m} takes the value 0 or 1 . For details see Chapter 7 of [8].

The Hecke L-function attached to a ray class character $\psi: G^{\mathfrak{f}} \rightarrow S^{1}$ is defined by

$$
L(s, \psi)=\sum_{\mathfrak{n} \in J^{\mathfrak{f}}} \frac{\psi(\mathfrak{n})}{N(\mathfrak{n})^{s}}=\prod_{\mathfrak{p} \in J^{\mathfrak{f}}}\left(1-\frac{\psi(\mathfrak{p})}{N(\mathfrak{p})^{s}}\right)^{-1} \quad \operatorname{Re} s>1 .
$$

Since the functional equation of $\zeta(s, \mathcal{A})$ does not depend on the choice of \mathcal{A}, we can deduce the functional equation for the Hecke L-function $L(s, \psi)$ by

$$
L(s, \psi)=\sum_{\mathcal{A} \in G^{\mathfrak{f}}} \psi(\mathcal{A}) \zeta(s, \mathcal{A})
$$

If we take a representative $\mathfrak{a} \in \mathcal{A}$, then we have

$$
\zeta(s, \mathcal{A})=\frac{1}{h} \sum_{\psi} \bar{\psi}(\mathfrak{a}) L(s, \psi)
$$

where ψ runs through all ray class characters ψ defined on G^{f}, and $h=\# G^{\mathrm{f}}$.
For a positive definite quadratic form $Q(m, n)$ with its discriminant $D<0$, it is known that

$$
E(s, Q)=\omega \zeta(s, \mathcal{A})
$$

where ω is the number of units of $\mathbb{Q}(\sqrt{D})$ and \mathcal{A} is an ideal class corresponding Q. So, we have

$$
E(s, Q)=\frac{\omega}{h} \sum_{\psi} \bar{\psi}(\mathfrak{a}) L(s, \psi)
$$

and the condition $h(D)>1$ of Theorem 1.1 means that $h=h(D)=\# G>1$ for the ideal class group G of $\mathbb{Q}(\sqrt{D})$. In other words, $E(s, Q)$ is a linear combination of at least two Hecke L-functions. Voronin's proof of Theorem 1.1 is based on the joint distribution of those Hecke L-functions in the above equation and Rouché's theorem in complex analysis.

Bauer [1] proved the following theorem concerning zeros of $\zeta(s, \mathcal{A})$ inside the critical strip.

Theorem 1.2 (Bauer). If T is sufficiently large, then there is a number $c>0$ such that there are at least $c T$ zeros of $\zeta(s, \mathcal{A})$ in the region with $\frac{1}{2}<\operatorname{Re} s<1,|\operatorname{Im} s|<$ T.

The main ingredient of its proof is the joint universality of Artin L-functions instead of Hecke L-functions. His argument counts the number of zeros in the strip $1-\frac{1}{2 k}<$ $\operatorname{Re} s<1$ for $k=\# \operatorname{Gal}(K / \mathbb{Q})$ because the inequality

$$
\int_{0}^{T}|f(\sigma+i t)|^{2} d t \ll T
$$

is required for the proof of the joint universality of Artin L-functions and known only for the strip $1-\frac{1}{2 k}<\operatorname{Re} s<1$ for $k=\# \operatorname{Gal}(K / \mathbb{Q})$.

§ 2. Joint distribution of Artin L-functions

Let K / \mathbb{Q} be a normal extension with number field K and G be its Galois group $G(K / \mathbb{Q})$. Let $\rho: G \rightarrow G L_{m}(\mathbb{C})$ be a m-dimensional representation of G in the general linear group $G L_{m}(\mathbb{C})$. The character $\chi: G \rightarrow \mathbb{C}$ of the representation ρ is given by

$$
\chi(g):=\operatorname{tr}(\rho(g))
$$

The Artin L-function of χ and G is defined by the Euler product

$$
L(s, \chi, K / \mathbb{Q})=\prod_{p: \text { unr. }} L_{p}(s, \chi), \quad \operatorname{Re} s>1
$$

where $L_{p}(s, \chi)=\operatorname{det}\left(I-\rho\left(\sigma_{p}\right) p^{-s}\right)^{-1}$ and σ_{p} denotes one of the conjugate Frobenius automorphisms over p. This definition is independent of the specific representation ρ of the character χ and the chosen conjugate of the Frobenius σ_{p}.

Brauer's theorem states that every character χ of a finite group G is a \mathbb{Z}-linear combination of characters $\psi_{l *}$ induced from characters ψ_{l} of degree 1 associated to subgroups H_{l} of G. Thus, for $j \leqslant J$ we have

$$
\chi_{j}=\sum_{l \leqslant l_{0}} n_{j, l} \psi_{l}^{*},
$$

where ψ_{l}^{*} are deduced from characters ψ_{l} of degree 1 associated to subgroups H_{l} of G and $n_{j, l} \in \mathbb{Z}$. As a consequence, we have

$$
\begin{equation*}
L\left(s, \chi_{j}, K / \mathbb{Q}\right)=\prod_{l \leqslant l_{0}} L\left(s, \psi_{l}\right)^{n_{j, l}} \tag{2.1}
\end{equation*}
$$

and $L\left(s, \psi_{l}\right)=L\left(s, \psi_{l}, H_{l}\right)$ are Hecke L-functions over number fields contained in K. Note that (2.1) shows that the Artin L-function $L\left(s, \chi_{j}, K / \mathbb{Q}\right)$ has a meromorphic continuation to \mathbb{C}.

Conjecture 2.1. Let $L(s, \chi, K / \mathbb{Q})$ be an Artin L-function and write

$$
L(s, \chi, K / \mathbb{Q})=\prod_{l \leqslant l_{0}} L\left(s, \psi_{l}\right)^{n_{l}}
$$

for some $n_{l} \in \mathbb{Z}$. Define $N_{\psi}(\sigma, T)$ by the number of zeros of Hecke L-function $L(s, \psi)$ on the region $\operatorname{Re} s>\sigma, 0<\operatorname{Im} s<T$. Then, there is a constant $c>0$ such that

$$
N_{\psi_{l}}(\sigma, T) \ll T^{1+c\left(\frac{1}{2}-\sigma\right)} \log T
$$

uniformly for $\sigma \geqslant \frac{1}{2}$ and $l \leqslant l_{0}$.
Now, we are ready to state the joint universality of Artin L-functions.
Theorem 2.2. Let K be a finite Galois extension of \mathbb{Q} and let $\chi_{1}, \ldots, \chi_{J}$ be \mathbb{C}-linearly independent characters of the group $G=\operatorname{Gal}(K / \mathbb{Q})$. Assume Conjecture 2.1 for $L\left(s, \chi_{j}, K / \mathbb{Q}\right)$, $j \leqslant J$. Let $D=D_{r}\left(s_{0}\right)$ be the closed disc with center s_{0} and radius r such that D is contained in the vertical strip $\frac{1}{2}<\operatorname{Re} s<1$. Suppose that $h_{1}(s), \ldots, h_{J}(s)$ are analytic and nonvanishing on $s \in \operatorname{int} D$, and continuous on $s \in D$. Then, for every $\epsilon>0$ we have

$$
\liminf _{T \rightarrow \infty} \frac{1}{T}\left|\left\{\tau \in[T, 2 T]: \max _{j \leqslant J} \max _{s \in D}\left|L\left(s+i \tau, \chi_{j}, K / \mathbb{Q}\right)-h_{j}(s)\right|<\epsilon\right\}\right|>0
$$

We modify several lemmas from [1] and [6] for the proof of Theorem 2.2.
Lemma 2.3. Assume Conjecture 2.1 for $L\left(s, \chi_{j}, K / \mathbb{Q}\right), j \leqslant J$. Let $\frac{1}{2}<\sigma \leqslant 1$ and $X=T^{\kappa}$. Then,

$$
\int_{T}^{2 T}\left|\log L\left(\sigma+i t, \chi_{j}, K / \mathbb{Q}\right)-\sum_{p \leqslant X} \log L_{p}\left(\sigma+i t, \chi_{j}\right)\right|^{2} d t=O\left(T^{1+c\left(\frac{1}{2}-\sigma\right)}\right)
$$

for some $c>0$ and small enough $\kappa>0$ and all $j \leqslant J$.

Lemma 2 of [6] and (2.1) imply Lemma 2.3.
Lemma 2.4. Assume Conjecture 2.1 for $L\left(s, \chi_{j}, K / \mathbb{Q}\right), j \leqslant J$. Let $D=D_{r}\left(s_{0}\right) \subset$ $\left\{s \in \mathbb{C}: \frac{1}{2}<\operatorname{Re} s<1\right\}$.

$$
\max _{j \leqslant J} \max _{s \in D}\left|\log L\left(s+i \tau, \chi_{j}, K / \mathbb{Q}\right)-\sum_{p \leqslant X} \log L_{p}\left(s+i \tau, \chi_{j}\right)\right| \leqslant T^{-c_{2}}
$$

for $\tau \in[T, 2 T] \backslash A_{T},\left|A_{T}\right| \leqslant T^{1-c_{1}}$.
Lemma 2.4 is a simple consequence of Lemma 4 of [6] and Lemma 2.3.
Define $L_{M}(s, \chi, \theta)=\prod_{p \in M} f_{p}\left(p^{-s} e\left(-\theta_{p}\right)\right)$ and $f_{p}(t)=\operatorname{det}\left(I-\rho\left(\sigma_{p}\right) t\right)^{-1}$. Lemma 2.2 of [1] is on the disc $D_{r}\left(1-\frac{1}{4 k}\right)$ with $0<r<\frac{1}{4 k}$, but its proof in fact proves more than written. So, we restate Lemma 2.2 of [1] based on its proof.

Lemma 2.5. Let $\chi_{1}, \ldots, \chi_{J}$ be \mathbb{C}-linearly independent characters of the Galois group $G=\operatorname{Gal}(K / \mathbb{Q})$, where K is a finite normal algebraic extension of \mathbb{Q}. Let $D=$ $D_{r}\left(s_{0}\right) \subset\left\{s \in \mathbb{C}: \frac{1}{2}<\operatorname{Re} s<1\right\}$. Suppose that $h_{1}(s), \ldots, h_{J}(s)$ are analytic and nonvanishing on $s \in \operatorname{int} D$, and continuous on $s \in D$. Then for every pair $\epsilon>0$ and $y>0$, there exists a finite set of primes M containing all primes smaller than y and a vector $\theta \in \mathbb{R}^{\mathbb{P}}$ such that

$$
\max _{j \leqslant J} \max _{s \in D}\left|L_{M}\left(s, \chi_{j}, \theta\right)-h_{j}(s)\right|<\epsilon
$$

Lemma 2.6. Let $f(s)$ be an analytic function on a region containing $|s| \leqslant R$ and $\alpha>0$. Then, we have

$$
|f(0)|^{\alpha} \leqslant \frac{1}{\pi R^{2}} \iint_{|s| \leqslant R}|f(s)|^{\alpha} d \sigma d t
$$

This is a property of subharmonic function $|f(s)|^{\alpha}$ and its proof can be found in Lemma 3 of [6].

Lemma 2.7.

$$
\int_{0}^{T}\left|\sum_{n \leqslant N} a_{n} n^{-i t}\right|^{2} d t=\sum_{n \leqslant N}\left|a_{n}\right|^{2}(T+O(n))
$$

Lemma 2.7 is well-known and we may refer [7] for its proof. Now, we are ready to prove Theorem 2.2.

Proof of Theorem 2.2. By Lemma 2.4 and 2.5, it is enough to show that

$$
\max _{j \leqslant J} \max _{s \in D}\left|\log L_{M}\left(s, \chi_{j}, \theta\right)-\sum_{p \leqslant X} \log L_{p}\left(s+i \tau, \chi_{j}\right)\right|<\epsilon
$$

for a positive proportion of $\tau \in[T, 2 T] \backslash A_{T}$, where $X=T^{\kappa}$ and M is a finite set of primes containing all primes smaller than $y>0$.

Define the sets $C(\delta, M, T)$ and $C(\delta, M)$ by

$$
C(\delta, M, T)=\left\{\tau \in[T, 2 T]:\left\|\theta_{p}-\frac{\tau}{2 \pi} \log p\right\|<\frac{\delta}{2} \text { for all } p \in M\right\}
$$

and

$$
C(\delta, M)=\left\{\left(\vartheta_{p}\right) \in \Omega:\left\|\vartheta_{p}-\theta_{p}\right\|<\frac{\delta}{2} \text { for all } p \in M\right\}
$$

where $\theta=\left(\theta_{p}\right) \in \mathbb{R}^{\mathbb{P}}$ is as given in Lemma 2.5 and $\|x\|=\min \{|x-n|: n \in \mathbb{Z}\}$. We also use the short expression $C(\delta, X)=C(\delta,\{p \leqslant X\})$ for a real number $X>0$. By uniform continuity, there exists $\delta>0$ such that for $\tau \in C(\delta, M, T)$

$$
\begin{equation*}
\max _{j \leqslant J} \max _{s \in D}\left|\log L_{M}\left(s, \chi_{j}, \theta\right)-\sum_{p \in M} \log L_{p}\left(s+i \tau, \chi_{j}\right)\right|<\epsilon \tag{2.2}
\end{equation*}
$$

and we have

$$
|C(\delta, M, T)| \sim|C(\delta, M)| T=\delta^{|M|} T, \quad T \rightarrow \infty
$$

by Kronecker's theorem.
Let $D^{\prime}=D_{R}\left(s_{0}\right)$ be the disc containing $D=D_{r}\left(s_{0}\right)$ with $R>r$ and contained in the strip $\frac{1}{2}<\operatorname{Re} s<1$. Let $\sigma_{0}=\min \left\{\operatorname{Re} s: s \in D^{\prime}\right\}$. Take $Y>$ $\max \left\{y \delta^{|M|\left(1-2 \sigma_{0}\right)^{-1}}, \max \{p \in M\}\right\}$ and let P be the largest prime $\leqslant Y$. We write $Y \backslash M$ for the set $\{p \leqslant Y: p \notin M\}$. By Kronecker's theorem, we have

$$
\begin{aligned}
& \lim _{T \rightarrow \infty} \frac{1}{T} \int_{C(\delta, M, T)}\left|\sum_{p \in M} \log L_{p}\left(s+i \tau, \chi_{j}\right)-\sum_{p \leqslant Y} \log L_{p}\left(s+i \tau, \chi_{j}\right)\right|^{2} d \tau \\
& \quad=\int_{C(\delta, M)}\left|\sum_{p \in Y \backslash M} \log L_{p}\left(s, \chi_{j}, \vartheta\right)\right|^{2} d \vartheta_{2} \cdots d \vartheta_{P} \leqslant \\
& \leqslant \delta^{|M|} \int_{0}^{1} \cdots \int_{0}^{1}\left|\sum_{p \in Y \backslash M} \log L_{p}\left(s, \chi_{j}, \vartheta\right)\right|_{p \in Y \backslash M}^{2} d \vartheta_{p}=\delta^{|M|} \sum_{p \in Y \backslash M} \sum_{m=1}^{\infty} \frac{\left|a_{p, j, m}\right|^{2}}{p^{2 m \sigma}}
\end{aligned}
$$

where $\log L_{p}\left(s, \chi_{j}\right)=\sum_{m=1}^{\infty} a_{p, j, m} p^{-m s}$. Since $\left|a_{p, j, m}\right| \leqslant[K: \mathbb{Q}]$ for all p, j, m, we have

$$
\lim _{T \rightarrow \infty} \frac{1}{T} \int_{C(\delta, M, T)}\left|\sum_{p \in M} \log L_{p}\left(s+i \tau, \chi_{j}\right)-\sum_{p \leqslant Y} \log L_{p}\left(s+i \tau, \chi_{j}\right)\right|^{2} d \tau \leqslant c_{3} \delta^{|M|} y^{1-2 \sigma}
$$

for some $c_{3}>0$. Thus, we have
$\int_{C(\delta, M, T)} \iint_{D^{\prime}}\left|\sum_{p \in M} \log L_{p}\left(s+i \tau, \chi_{j}\right)-\sum_{p \leqslant Y} \log L_{p}\left(s+i \tau, \chi_{j}\right)\right|^{2} d \sigma d t d \tau \leqslant c_{4} \delta^{|M|} y^{1-2 \sigma_{0}} T$ for some $c_{4}>0$ and sufficiently large T.

By lemma 2.7, we have

$$
\begin{aligned}
\int_{T}^{2 T}\left|\sum_{Y<p \leqslant X} \log L_{p}\left(s+i \tau, \chi_{j}\right)\right|^{2} d \tau & \leqslant 2 \int_{T}^{2 T}\left|\sum_{Y<p \leqslant X} \frac{\chi_{j}\left(\sigma_{p}\right)}{p^{s+i \tau}}\right|^{2} d \tau+O\left(T Y^{2-4 \sigma}\right) \\
& \leqslant 2 \sum_{Y<p \leqslant X} \frac{d^{2}}{p^{2 \sigma}}(T+O(p))+O\left(T Y^{2-4 \sigma}\right) \\
& \leqslant c_{5} T Y^{1-2 \sigma}
\end{aligned}
$$

for some $c_{5}>0$ and all $s \in D^{\prime}$ and as a consequence

$$
\begin{equation*}
\int_{C(\delta, M, T)} \iint_{D^{\prime}}\left|\sum_{Y<p \leqslant X} \log L_{p}\left(s+i \tau, \chi_{j}\right)\right|^{2} d \sigma d t d \tau \leqslant c_{6} T Y^{1-2 \sigma_{0}}<c_{6} \delta^{|M|} y^{1-2 \sigma_{0}} T \tag{2.4}
\end{equation*}
$$

Then (2.3) and (2.4) yield

$$
\int_{C(\delta, M, T)} \iint_{D^{\prime}}\left|\sum_{p \in X \backslash M} \log L_{p}\left(s+i \tau, \chi_{j}\right)\right|^{2} d \sigma d t d \tau \leqslant c_{7} \delta^{|M|} y^{1-2 \sigma_{0}} T,
$$

where $X \backslash M$ denotes the set $\{p \leqslant X: p \notin M\}$ and $c_{7}>0$ is some constant. From the simple inequality $\max _{n \leqslant N}\left|\alpha_{n}\right| \leqslant \sum_{n \leqslant N}\left|\alpha_{n}\right|$, we have

$$
\int_{C(\delta, M, T)} \max _{j \leqslant J} \iint_{D^{\prime}}\left|\sum_{p \in X \backslash M} \log L_{p}\left(s+i \tau, \chi_{j}\right)\right|^{2} d \sigma d t d \tau \leqslant c_{7} J \delta^{|M|} y^{1-2 \sigma_{0}} T .
$$

As a consequence, we have

$$
\left|\left\{\tau \in C(\delta, M, T): \max _{j \leqslant J} \iint_{D^{\prime}}\left|\sum_{p \in X \backslash M} \log L_{p}\left(s+i \tau, \chi_{j}\right)\right|^{2} d \sigma d t \leqslant y^{\frac{1}{2}-\sigma_{0}}\right\}\right|>\frac{1}{2} \delta^{|M|} T
$$

by taking y satisfying $c_{7} J y^{\frac{1}{2}-\sigma_{0}}<\frac{1}{2}$. By Lemma 2.6, we have

$$
\left|\left\{\tau \in C(\delta, M, T): \max _{j \leqslant J} \max _{s \in D}\left|\sum_{p \in X \backslash M} \log L_{p}\left(s+i \tau, \chi_{j}\right)\right| \leqslant \frac{1}{\sqrt{\pi}(R-r)} y^{\frac{1}{4}-\frac{1}{2} \sigma_{0}}\right\}\right|>\frac{1}{2} \delta^{|M|} T .
$$

By taking a real number y satisfying $\frac{1}{\sqrt{\pi}(R-r)} y^{\frac{1}{4}-\frac{1}{2} \sigma_{0}}<\epsilon$, we have

$$
\left|E_{T}\right|>\frac{1}{2} \delta^{|M|} T,
$$

where
$E_{T}=\left\{\tau \in C(\delta, M, T): \max _{j \leqslant J} \max _{s \in D}\left|\sum_{p \in M} \log L_{p}\left(s+i \tau, \chi_{j}\right)-\sum_{p \leqslant X} \log L_{p}\left(s+i \tau, \chi_{j}\right)\right| \leqslant \epsilon\right\}$.
Therefore, there exists a $\delta>0$ and a finite set M such that

$$
\max _{j \leqslant J} \max _{s \in D}\left|\log L\left(s+i \tau, \chi_{j}, K / \mathbb{Q}\right)-\log h_{j}(s)\right|<4 \epsilon
$$

for $\tau \in E_{T} \backslash A_{T}$ with $\left|E_{T} \backslash A_{T}\right| \geqslant\left|E_{T}\right|-\left|A_{T}\right| \geqslant \frac{1}{2} \delta^{|M|} T+o(T)$.

§ 3. Zeros of the partial zeta functions

We extends Theorem 1.1 to partial zeta functions subject to Conjecture 2.1 as an application of joint universality of Artin L-functions. Let K be a number field and G^{f} be its ray class group. By class field theory, there is a unique Abelian extension L of K with $G^{\mathfrak{f}} \simeq G(L / K)$. Thus, every Abelian Artin L-function is a Hecke L-function, and vice versa. There is a unique minimal normal extension N of \mathbb{Q} containing L.

Theorem 3.1. Assume Conjecture 2.1 for $L(s, \chi, N / \mathbb{Q})$ for all characters χ defined on $G(N / \mathbb{Q})$, where the field N is as described above. Suppose that $\# G^{\dagger}>1$ and $\mathcal{A} \in G^{\mathfrak{f}}$. Then, the number of zeros of the partial zeta function $\zeta(s, \mathcal{A})$ on the rectangular region $\sigma_{1}<\operatorname{Re} s<\sigma_{2}, 0<\operatorname{Im} s<T$ is bigger than

$$
\gg T
$$

for any fixed $\frac{1}{2}<\sigma_{1}<\sigma_{2}<1$.
Proof. Suppose that $\chi \neq 1$ is an irreducible character of $G(L / K) \simeq G^{\mathfrak{f}}$. By Frobenius reciprocity, we know that

$$
\left(\chi^{*}, 1\right)_{G(N / \mathbb{Q})}=\left(\chi, 1_{\mid G(N / K)}\right)_{G(N / K)}=(\chi, 1)_{G(N / K)}=0 .
$$

If we denote the irreducible characters of $G(N / \mathbb{Q})$ by $\phi_{1}:=1, \phi_{2}, \ldots, \phi_{k}$, then for every non-trivial character of $G(L / K)$ we have

$$
\chi^{*}=\sum_{j=2}^{k} m_{j} \phi_{j}, \quad m_{j} \in \mathbb{Z}_{\geqslant 0}
$$

For the induced character 1^{*} of the trivial character 1 defined on $G(L / K)$, we get

$$
\left(1^{*}, 1\right)_{G(N / \mathbb{Q})}=\left(1,1_{\mid G(N / K)}\right)_{G(N / K)}=(1,1)_{G(N / K)}=1 .
$$

Therefore, we have

$$
1^{*}=\phi_{1}+\sum_{j=2}^{k} n_{j} \phi_{j}, \quad n_{j} \in \mathbb{Z}_{\geqslant 0}
$$

So we get

$$
\begin{equation*}
L(s, 1)=L\left(s, 1^{*}, N / \mathbb{Q}\right)=L\left(s, \phi_{1}, N / \mathbb{Q}\right) \prod_{j=2}^{k} L\left(s, \phi_{j}, N / \mathbb{Q}\right)^{n_{j}} \tag{3.1}
\end{equation*}
$$

and for the non-trivial Abelian characters χ of $G(L / K)$

$$
\begin{equation*}
L(s, \chi)=\prod_{j=2}^{k} L\left(s, \phi_{j}, N / \mathbb{Q}\right)^{m_{j}} \tag{3.2}
\end{equation*}
$$

Since the irreducible characters ϕ_{j} are linearly independent, we apply Theorem 2.2 to $L\left(s, \chi_{j}, N / \mathbb{Q}\right)$ with $1 \leqslant j \leqslant k$. For any $\epsilon>0$, there exists a set $A_{\epsilon} \subset[T, 2 T]$ with

$$
\begin{equation*}
\liminf _{T \rightarrow \infty} \frac{1}{T}\left|A_{\epsilon}\right|>0 \tag{3.3}
\end{equation*}
$$

such that

$$
\left|L\left(s+i \tau, \phi_{1}, N / \mathbb{Q}\right)-\left(s-s_{0}-\sum_{\chi \neq 1} \bar{\chi}(\mathfrak{a})\right)\right|<\epsilon
$$

and

$$
\left|L\left(s+i \tau, \phi_{j}, N / \mathbb{Q}\right)-1\right|<\epsilon
$$

for any $2 \leqslant j \leqslant k$, $s \in D_{s_{0}}(r) \subset\left\{z \in \mathbb{C}: \sigma_{1}<\operatorname{Re} z<\sigma_{2}\right\}$ and $\tau \in A_{\epsilon}$ and for an integral ideal $\mathfrak{a} \in \mathcal{A}$. By (3.1) and (3.2), we have

$$
\left|L(s+i \tau, 1)-\left(s-s_{0}-\sum_{\chi \neq 1} \bar{\chi}(\mathfrak{a})\right)\right|<\epsilon
$$

and for $\chi \neq 1$ we find

$$
|L(s+i \tau, \chi)-1|<\epsilon
$$

for all $s \in D_{s_{0}}(r)$ and $\tau \in A_{\epsilon}$.
Note that

$$
\begin{equation*}
\zeta(s, \mathcal{A})=\frac{1}{h} \sum_{\chi} \bar{\chi}(\mathfrak{a}) L(s, \chi) \tag{3.4}
\end{equation*}
$$

for some $\mathfrak{a} \in \mathcal{A}$ and $h=\# G^{\mathfrak{f}}$. We have

$$
\begin{aligned}
& \left|\zeta(s+i \tau, \mathcal{A})-\frac{s-s_{0}}{h}\right| \\
& \quad \leqslant \frac{1}{h}\left(\sum_{\chi \neq 1}|\bar{\chi}(\mathfrak{a}) L(s+i \tau, \chi)-\bar{\chi}(\mathfrak{a})|+\left|L(s+i \tau, 1)-\left(s-s_{0}-\sum_{\chi \neq 1} \bar{\chi}(\mathfrak{a})\right)\right|\right)<\epsilon
\end{aligned}
$$

for all $s \in D_{s_{0}}(r)$ and all $\tau \in A_{\epsilon}$. Suppose that $\epsilon<\frac{r}{h}$, then

$$
\left|\zeta(s+i \tau, \mathcal{A})-\frac{s-s_{0}}{h}\right|<\left|\frac{s-s_{0}}{h}\right|
$$

on the circle $\left|s-s_{0}\right|=r$. Inside the disc $\left|s-s_{0}\right|<r$, there is exactly one zero of $\zeta(s+i \tau, \mathcal{A})$ by Rouché Theorem for each $\tau \in A_{\epsilon}$. By (3.3), we complete the proof of Theorem 3.1.

Let $N_{\zeta(s, \mathcal{A})}\left(\sigma_{1}, \sigma_{2} ; T\right)$ be the number of zeros of $\zeta(s, \mathcal{A})$ on the rectangular region $\sigma_{1}<\operatorname{Re} s<\sigma_{2}, 0<\operatorname{Im} s<T$. Theorem 3.1 gives a lower bound for $N_{\zeta(s, \mathcal{A})}\left(\sigma_{1}, \sigma_{2} ; T\right)$ on the assumption of Conjecture 1. What can we say about an upper bound for $N_{\zeta(s, \mathcal{A})}\left(\sigma_{1}, \sigma_{2} ; T\right)$? The following theorem gives an answer.

Theorem 3.2. Let K be a number field and $G^{\mathfrak{f}}$ be its ray class group. Assume Conjecture 1 for all Hecke L-functions $L(s, \chi)$ with $\chi: G^{\mathfrak{f}} \rightarrow S^{1}$. Suppose that $\# G^{\mathfrak{f}}>1$ and $\mathcal{A} \in G^{\dagger}$. Then, the number of zeros of the partial zeta function $\zeta(s, \mathcal{A})$ on the rectangular region $\operatorname{Re} s>\sigma_{0}, 0<\operatorname{Im} s<T$ is less than

$$
\ll T
$$

for any fixed $\sigma_{0}>\frac{1}{2}$.

Proof. By Littlewood's lemma, we have

$$
2 \pi \int_{\sigma}^{\infty} N(u, T) d u=\int_{0}^{T} \log |\zeta(\sigma+i t, \mathcal{A})| d t+O(\log T)
$$

where $N(u, T)$ denotes the number of zeros of $\zeta(s, \mathcal{A})$ on the region $\operatorname{Re} s>u, 0<\operatorname{Im} s<$ T. Thus, it is enough to show that the integral on the right is less than $\ll T$.

We are going to use a simple inequality. First,

$$
\left|\frac{1}{J} \sum_{j \leqslant J} z_{j}\right| \leqslant \frac{1}{J} \sum_{j \leqslant J}\left|z_{j}\right| \leqslant \max _{j \leqslant J}\left|z_{j}\right| .
$$

Take logarithms on both sides, then

$$
\begin{equation*}
\log \left|\frac{1}{J} \sum_{j \leqslant J} z_{j}\right| \leqslant \max _{j \leqslant J} \log \left|z_{j}\right| . \tag{3.5}
\end{equation*}
$$

By (3.4) and (3.5), we have

$$
\int_{0}^{T} \log |\zeta(\sigma+i t, \mathcal{A})| d t \ll \int_{0}^{T} \max _{\chi} \log |L(\sigma+i t, \chi)| d t
$$

Apply Lemma 2 of [6], then we have

$$
\begin{aligned}
\int_{0}^{T} \max _{\chi} \log |L(\sigma+i t, \chi)| d t & \leqslant \int_{0}^{T} \max _{\chi}|\log | L(\sigma+i t, \chi)\left|d t-\operatorname{Re} \sum_{p \leqslant X} \frac{a(p, \chi)}{p^{\sigma+i t}}\right| d t \\
& +\int_{0}^{T} \max _{\chi}\left|\operatorname{Re} \sum_{p \leqslant X} \frac{a(p, \chi)}{p^{\sigma+i t}}\right| d t \\
& \leqslant \sum_{\chi} \int_{0}^{T}|\log | L(\sigma+i t, \chi)\left|d t-\operatorname{Re} \sum_{p \leqslant X} \frac{a(p, \chi)}{p^{\sigma+i t}}\right| d t \\
& +\sum_{\chi} \int_{0}^{T}\left|\sum_{p \leqslant X} \frac{a(p, \chi)}{p^{\sigma+i t}}\right| d t
\end{aligned}
$$

where $X=T^{\kappa}, 0<\kappa<\frac{1}{2}, a(p, \chi)=\sum_{N \mathfrak{p}=p, \mathfrak{p} \mid p} \chi(\mathfrak{p}),|a(p, \chi)| \leqslant[K: \mathbb{Q}]$. By Cauchy's inequality and Lemma 2 of [6], we have

$$
\begin{aligned}
& \int_{0}^{T}|\log | L(\sigma+i t, \chi)\left|d t-\operatorname{Re} \sum_{p \leqslant X} \frac{a(p, \chi)}{p^{\sigma+i t}}\right| d t \\
& \ll \sqrt{T}\left(\int_{0}^{T}|\log | L(\sigma+i t, \chi)\left|d t-\operatorname{Re} \sum_{p \leqslant X} \frac{a(p, \chi)}{p^{\sigma+i t}}\right|^{2} d t\right)^{\frac{1}{2}} \ll T
\end{aligned}
$$

and by Lemma 2.7

$$
\begin{aligned}
\int_{0}^{T}\left|\sum_{p \leqslant X} \frac{a(p, \chi)}{p^{\sigma+i t}}\right| d t & \ll \sqrt{T}\left(\int_{0}^{T}\left|\sum_{p \leqslant X} \frac{a(p, \chi)}{p^{\sigma+i t}}\right|^{2} d t\right)^{\frac{1}{2}} \\
& =\sqrt{T}\left(\sum_{p \leqslant X} \frac{|a(p, \chi)|^{2}}{p^{2 \sigma}}(T+O(p))\right)^{\frac{1}{2}} \ll T .
\end{aligned}
$$

Thus, the proof is complete.

§4. Concluding remarks

The author [5] improved Theorem 1.1 by obtaining asymptotic formula $c T+o(T)$ for the number of zeros of Epstein zeta function $E(s, Q)$ on the rectangular region $\frac{1}{2}<\sigma_{1}<\operatorname{Re} s<\sigma_{2}, 0<\operatorname{Im} s<T$ with the constant c has an integral formula $c=\int_{\sigma_{1}}^{\sigma_{2}} \mu(\sigma) d \sigma$ for some density function $\mu(\sigma)$. The main ingredient of the proof is the method given by Borchsenius and Jessen [2]. Based on Theorems 3.1 and 3.2, we expect the following statement.

Conjecture 4.1. Let K be a number field and let G^{f} be its ray class group. Let $\mathcal{A} \in G^{\boldsymbol{f}}$. Then, the number of zeros of partial zeta function $\zeta(s, \mathcal{A})$ on the region $\frac{1}{2}<\sigma_{1}<\operatorname{Re} s<\sigma_{2}, 0<\operatorname{Im} s<T$ is

$$
=c T+o(T)
$$

where $c=\int_{\sigma_{1}}^{\sigma_{2}} \mu(\sigma) d \sigma$ for some density function $\mu(\sigma)$ depending on \mathcal{A}.
The simplest case $K=\mathbb{Q}$ is considered and completed by the author with Haseo Ki [3].

References

[1] Bauer, H., The value distribution of Artin L-series and zeros of zeta-functions, J. Number Theory, 98 (2003), 254-279.
[2] Borchsenius, V. and Jessen, B., Mean Motions and values of the Riemann zeta function, Acta Math., 80 (1948), 97-166.
[3] Ki, H. and Lee, Y., On the zeros of degree one L-functions from the extended Selberg class, Acta Arith, 149 (2011), 23-36.
[4] Karatsuba, A. A. and Voronin, S. M., The Riemann Zeta-Function, Berlin, New York: Walter de Gruyter, 1992.
[5] Lee, Y., On the zeros of Epstein zeta functions, Forum Math., (to appear), available at http://arxiv.org/abs/1204.6297.
[6] Lee, Y., The Universality Theorem for Hecke L-functions, Math Z. online first, DOI: 10.1007/s00209-011-0895-6.
[7] Montgomery, H. L. and Vaughan, R. C. Hilbert's Inequality, J. London Math. Soc. (2), 8 (1974), 73-82.
[8] Neukirch, J., Algebraic number theory, Grundlehren der Mathematischen Wissenschaften 322, Springer-Verlag, Berlin, 1999.
[9] Voronin, S. M., The zeros of zeta-functions of quadratic forms. (Russian), Trudy Mat. Inst. Steklov. 142 (1976), 135-147.

[^0]: Received March 16, 2011. Accepted September 16, 2011.
 2000 Mathematics Subject Classification(s): 11M41
 Key Words: Joint universality, Artin L-function, density hypothesis, zero, partial zeta function.
 *KIAS, School of Mathematics, Hoegiro 85, Dongdaemun-gu, Seoul 130-722, Korea.
 e-mail: leeyb@kias.re.kr
 Present address: Department of Mathematics, University of Rochester, Rochester, NY 14627, USA. email:lee@math.rochester.edu

