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RIMS Kôkyûroku Bessatsu
B34 (2012), 205–216

Zeros of partial zeta functions off the critical line

By

Yoonbok Lee∗

Abstract

We extend the joint universality theorem for Artin L-functions L(s, χj , K/Q) from the

previously known strip 1− 1
2k

< Re s < 1 for k = #G(K/Q) to the maximal strip 1
2

< Re s < 1

under an assumption of a weak version of the density hypothesis. Then, we study zeros of partial

zeta functions ζ(s,A) inside the half of the critical strip as an application of universality.

§ 1. Introduction

Let Q(m,n) = am2 + bmn + cn2 be a positive definite quadratic form with its
discriminant D = b2 − 4ac < 0 and a, b, c ∈ Z. We define the Epstein zeta function
attached to Q by

E(s,Q) =
∑

(m,n) 6=(0,0)

1
Q(m,n)s

, Re s > 1.

Then, it has a meromorphic continuation to C with one simple pole at s = 1, and has
the functional equation

Φ(s) :=
(√

−D

2π

)s

Γ(s)E(s, Q) = Φ(1 − s).

Voronin([9] or [4]) studied zeros of E(s,Q) inside the critical strip and proved the
following theorem.
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Theorem 1.1 (Voronin). Suppose that the class number of Q(
√

D) is h(D) >

1. The Epstein zeta function E(s,Q) described above has at least cT zeros on the
rectangular region σ1 < Re s < σ2, 0 < Im s < T for each 1

2 < σ1 < σ2 < 1 and some
c > 0 as T → ∞.

The main purpose of this paper is extending it to partial zeta functions which are
natural algebraic generalizations of Epstein zeta functions.

Let f be an integral ideal of the number field K. Then, J f denotes the group of
all ideals of K which are relatively prime to f and P f stands for the group of fractional
principal ideals (a) such that a ≡ 1 mod f with a totally positive. Choose an element
A of the ray class group Gf = J f/P f mod f. The partial zeta function ζ(s,A) attached
to A is defined by

ζ(s,A) =
∑
n∈A

1
N(n)s

Re s > 1,

where n runs through all ideals in OK and N(n) denotes the norm of n. It has a
meromorphic continuation to C with only one simple pole at s = 1 and the functional
equation

ξ(1 − s,A) = ξ(s,A) := D(f)sΓ(s)r2

r1∏
m=1

Γ
(

s + am

2

)
ζ(s,A),

where r1 is the number of real places of K, 2r2 is the number of complex places of K.
The constant D(f) depends only on f and am takes the value 0 or 1. For details see
Chapter 7 of [8].

The Hecke L-function attached to a ray class character ψ : Gf → S1 is defined by

L(s, ψ) =
∑
n∈Jf

ψ(n)
N(n)s

=
∏

p∈Jf

(
1 − ψ(p)

N(p)s

)−1

Re s > 1.

Since the functional equation of ζ(s,A) does not depend on the choice of A, we can
deduce the functional equation for the Hecke L-function L(s, ψ) by

L(s, ψ) =
∑

A∈Gf

ψ(A)ζ(s,A).

If we take a representative a ∈ A, then we have

ζ(s,A) =
1
h

∑
ψ

ψ̄(a)L(s, ψ),

where ψ runs through all ray class characters ψ defined on Gf, and h = #Gf.
For a positive definite quadratic form Q(m,n) with its discriminant D < 0, it is

known that
E(s,Q) = ωζ(s,A),
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where ω is the number of units of Q(
√

D) and A is an ideal class corresponding Q. So,
we have

E(s, Q) =
ω

h

∑
ψ

ψ̄(a)L(s, ψ)

and the condition h(D) > 1 of Theorem 1.1 means that h = h(D) = #G > 1 for
the ideal class group G of Q(

√
D). In other words, E(s, Q) is a linear combination of

at least two Hecke L-functions. Voronin’s proof of Theorem 1.1 is based on the joint
distribution of those Hecke L-functions in the above equation and Rouché’s theorem in
complex analysis.

Bauer [1] proved the following theorem concerning zeros of ζ(s,A) inside the critical
strip.

Theorem 1.2 (Bauer). If T is sufficiently large, then there is a number c > 0
such that there are at least cT zeros of ζ(s,A) in the region with 1

2 < Re s < 1, |Im s| <

T .

The main ingredient of its proof is the joint universality of Artin L-functions instead
of Hecke L-functions. His argument counts the number of zeros in the strip 1 − 1

2k <

Re s < 1 for k = #Gal(K/Q) because the inequality∫ T

0

|f(σ + it)|2dt ¿ T

is required for the proof of the joint universality of Artin L-functions and known only
for the strip 1 − 1

2k < Re s < 1 for k = #Gal(K/Q).

§ 2. Joint distribution of Artin L-functions

Let K/Q be a normal extension with number field K and G be its Galois group
G(K/Q). Let ρ : G → GLm(C) be a m-dimensional representation of G in the general
linear group GLm(C). The character χ : G → C of the representation ρ is given by

χ(g) := tr(ρ(g)).

The Artin L-function of χ and G is defined by the Euler product

L(s, χ,K/Q) =
∏

p:unr.

Lp(s, χ), Re s > 1,

where Lp(s, χ) = det(I − ρ(σp)p−s)−1 and σp denotes one of the conjugate Frobenius
automorphisms over p. This definition is independent of the specific representation ρ of
the character χ and the chosen conjugate of the Frobenius σp.
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Brauer’s theorem states that every character χ of a finite group G is a Z-linear
combination of characters ψl∗ induced from characters ψl of degree 1 associated to
subgroups Hl of G. Thus, for j 6 J we have

χj =
∑
l6l0

nj,lψ
∗
l ,

where ψ∗
l are deduced from characters ψl of degree 1 associated to subgroups Hl of G

and nj,l ∈ Z. As a consequence, we have

(2.1) L(s, χj ,K/Q) =
∏
l6l0

L(s, ψl)nj,l

and L(s, ψl) = L(s, ψl,Hl) are Hecke L-functions over number fields contained in K.
Note that (2.1) shows that the Artin L-function L(s, χj ,K/Q) has a meromorphic con-
tinuation to C.

Conjecture 2.1. Let L(s, χ,K/Q) be an Artin L-function and write

L(s, χ,K/Q) =
∏
l6l0

L(s, ψl)nl

for some nl ∈ Z. Define Nψ(σ, T ) by the number of zeros of Hecke L-function L(s, ψ)
on the region Re s > σ, 0 < Im s < T . Then, there is a constant c > 0 such that

Nψl
(σ, T ) ¿ T 1+c( 1

2−σ) log T

uniformly for σ > 1
2 and l 6 l0.

Now, we are ready to state the joint universality of Artin L-functions.

Theorem 2.2. Let K be a finite Galois extension of Q and let χ1, . . . , χJ be
C-linearly independent characters of the group G = Gal(K/Q). Assume Conjecture
2.1 for L(s, χj ,K/Q), j 6 J . Let D = Dr(s0) be the closed disc with center s0 and
radius r such that D is contained in the vertical strip 1

2 < Re s < 1. Suppose that
h1(s), . . . , hJ(s) are analytic and nonvanishing on s ∈ intD, and continuous on s ∈ D.
Then, for every ε > 0 we have

lim inf
T→∞

1
T

∣∣∣∣{τ ∈ [T, 2T ] : max
j6J

max
s∈D

|L(s + iτ, χj ,K/Q) − hj(s)| < ε}
∣∣∣∣ > 0.

We modify several lemmas from [1] and [6] for the proof of Theorem 2.2.

Lemma 2.3. Assume Conjecture 2.1 for L(s, χj ,K/Q), j 6 J . Let 1
2 < σ 6 1

and X = Tκ. Then,∫ 2T

T

∣∣∣∣∣∣log L(σ + it, χj ,K/Q) −
∑
p6X

log Lp(σ + it, χj)

∣∣∣∣∣∣
2

dt = O
(
T 1+c( 1

2−σ)
)

for some c > 0 and small enough κ > 0 and all j 6 J .
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Lemma 2 of [6] and (2.1) imply Lemma 2.3.

Lemma 2.4. Assume Conjecture 2.1 for L(s, χj ,K/Q), j 6 J . Let D = Dr(s0) ⊂
{s ∈ C : 1

2 < Re s < 1}.

max
j6J

max
s∈D

∣∣∣∣∣∣log L(s + iτ, χj ,K/Q) −
∑
p6X

log Lp(s + iτ, χj)

∣∣∣∣∣∣ 6 T−c2

for τ ∈ [T, 2T ] \ AT , |AT | 6 T 1−c1 .

Lemma 2.4 is a simple consequence of Lemma 4 of [6] and Lemma 2.3.
Define LM (s, χ, θ) =

∏
p∈M fp(p−se(−θp)) and fp(t) = det(I − ρ(σp)t)−1. Lemma

2.2 of [1] is on the disc Dr(1 − 1
4k ) with 0 < r < 1

4k , but its proof in fact proves more
than written. So, we restate Lemma 2.2 of [1] based on its proof.

Lemma 2.5. Let χ1, . . . , χJ be C-linearly independent characters of the Galois
group G = Gal(K/Q), where K is a finite normal algebraic extension of Q. Let D =
Dr(s0) ⊂ {s ∈ C : 1

2 < Re s < 1}. Suppose that h1(s), . . . , hJ(s) are analytic and
nonvanishing on s ∈ intD, and continuous on s ∈ D. Then for every pair ε > 0 and
y > 0, there exists a finite set of primes M containing all primes smaller than y and a
vector θ ∈ RP such that

max
j6J

max
s∈D

|LM (s, χj , θ) − hj(s)| < ε.

Lemma 2.6. Let f(s) be an analytic function on a region containing |s| 6 R

and α > 0. Then, we have

|f(0)|α 6 1
πR2

∫ ∫
|s|6R

|f(s)|αdσdt.

This is a property of subharmonic function |f(s)|α and its proof can be found in
Lemma 3 of [6].

Lemma 2.7. ∫ T

0

∣∣∣∣∣∣
∑
n6N

ann−it

∣∣∣∣∣∣
2

dt =
∑
n6N

|an|2(T + O(n)).

Lemma 2.7 is well-known and we may refer [7] for its proof. Now, we are ready to
prove Theorem 2.2.

Proof of Theorem 2.2. By Lemma 2.4 and 2.5, it is enough to show that

max
j6J

max
s∈D

| log LM (s, χj , θ) −
∑
p6X

log Lp(s + iτ, χj)| < ε
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for a positive proportion of τ ∈ [T, 2T ] \ AT , where X = Tκ and M is a finite set of
primes containing all primes smaller than y > 0.

Define the sets C(δ,M, T ) and C(δ,M) by

C(δ,M, T ) = {τ ∈ [T, 2T ] : ||θp − τ

2π
log p|| <

δ

2
for all p ∈ M}

and

C(δ,M) = {(ϑp) ∈ Ω : ||ϑp − θp|| <
δ

2
for all p ∈ M}

where θ = (θp) ∈ RP is as given in Lemma 2.5 and ||x|| = min{|x − n| : n ∈ Z}. We
also use the short expression C(δ,X) = C(δ, {p 6 X}) for a real number X > 0. By
uniform continuity, there exists δ > 0 such that for τ ∈ C(δ,M, T )

(2.2) max
j6J

max
s∈D

∣∣∣∣∣∣log LM (s, χj , θ) −
∑
p∈M

log Lp(s + iτ, χj)

∣∣∣∣∣∣ < ε

and we have

|C(δ,M, T )| ∼ |C(δ,M)|T = δ|M |T, T → ∞

by Kronecker’s theorem.
Let D′ = DR(s0) be the disc containing D = Dr(s0) with R > r and con-

tained in the strip 1
2 < Re s < 1. Let σ0 = min{Re s : s ∈ D′}. Take Y >

max{yδ|M |(1−2σ0)
−1

, max{p ∈ M}} and let P be the largest prime 6 Y . We write
Y \ M for the set {p 6 Y : p /∈ M}. By Kronecker’s theorem, we have

lim
T→∞

1
T

∫
C(δ,M,T )

∣∣∣∣∣∣
∑
p∈M

log Lp(s + iτ, χj) −
∑
p6Y

log Lp(s + iτ, χj)

∣∣∣∣∣∣
2

dτ

=
∫

C(δ,M)

∣∣∣∣∣∣
∑

p∈Y \M

log Lp(s, χj , ϑ)

∣∣∣∣∣∣
2

dϑ2 · · · dϑP 6

6 δ|M |
∫ 1

0

· · ·
∫ 1

0

∣∣∣∣∣∣
∑

p∈Y \M

log Lp(s, χj , ϑ)

∣∣∣∣∣∣
2 ∏

p∈Y \M

dϑp = δ|M |
∑

p∈Y \M

∞∑
m=1

|ap,j,m|2

p2mσ
,

where log Lp(s, χj) =
∑∞

m=1 ap,j,mp−ms. Since |ap,j,m| 6 [K : Q] for all p, j,m, we have

lim
T→∞

1
T

∫
C(δ,M,T )

∣∣∣∣∣∣
∑
p∈M

log Lp(s + iτ, χj) −
∑
p6Y

log Lp(s + iτ, χj)

∣∣∣∣∣∣
2

dτ 6 c3δ
|M |y1−2σ
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for some c3 > 0. Thus, we have
(2.3)∫

C(δ,M,T )

∫ ∫
D′

∣∣∣∣∣∣
∑
p∈M

log Lp(s + iτ, χj) −
∑
p6Y

log Lp(s + iτ, χj)

∣∣∣∣∣∣
2

dσdtdτ 6 c4δ
|M |y1−2σ0T

for some c4 > 0 and sufficiently large T .
By lemma 2.7, we have

∫ 2T

T

∣∣∣∣∣∣
∑

Y <p6X

log Lp(s + iτ, χj)

∣∣∣∣∣∣
2

dτ 6 2
∫ 2T

T

∣∣∣∣∣∣
∑

Y <p6X

χj(σp)
ps+iτ

∣∣∣∣∣∣
2

dτ + O(TY 2−4σ)

6 2
∑

Y <p6X

d2

p2σ
(T + O(p)) + O(TY 2−4σ)

6 c5TY 1−2σ

for some c5 > 0 and all s ∈ D′ and as a consequence
(2.4)∫

C(δ,M,T )

∫ ∫
D′

∣∣∣∣∣∣
∑

Y <p6X

log Lp(s + iτ, χj)

∣∣∣∣∣∣
2

dσdtdτ 6 c6TY 1−2σ0 < c6δ
|M |y1−2σ0T.

Then (2.3) and (2.4) yield

∫
C(δ,M,T )

∫ ∫
D′

∣∣∣∣∣∣
∑

p∈X\M

log Lp(s + iτ, χj)

∣∣∣∣∣∣
2

dσdtdτ 6 c7δ
|M |y1−2σ0T,

where X \ M denotes the set {p 6 X : p /∈ M} and c7 > 0 is some constant. From the
simple inequality maxn6N |αn| 6

∑
n6N |αn|, we have

∫
C(δ,M,T )

max
j6J

∫ ∫
D′

∣∣∣∣∣∣
∑

p∈X\M

log Lp(s + iτ, χj)

∣∣∣∣∣∣
2

dσdtdτ 6 c7Jδ|M |y1−2σ0T.

As a consequence, we have∣∣∣∣∣∣∣
τ ∈ C(δ,M, T ) : max

j6J

∫ ∫
D′

∣∣∣∣∣∣
∑

p∈X\M

log Lp(s + iτ, χj)

∣∣∣∣∣∣
2

dσdt 6 y
1
2−σ0


∣∣∣∣∣∣∣ >

1
2
δ|M |T

by taking y satisfying c7Jy
1
2−σ0 < 1

2 . By Lemma 2.6, we have∣∣∣∣∣∣
τ ∈ C(δ,M, T ) : max

j6J
max
s∈D

∣∣∣∣∣∣
∑

p∈X\M

log Lp(s + iτ, χj)

∣∣∣∣∣∣ 6 1√
π(R − r)

y
1
4−

1
2 σ0


∣∣∣∣∣∣ >

1
2
δ|M |T.
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By taking a real number y satisfying 1√
π(R−r)

y
1
4−

1
2 σ0 < ε, we have

|ET | >
1
2
δ|M |T,

where

ET =

τ ∈ C(δ,M, T ) : max
j6J

max
s∈D

∣∣∣∣∣∣
∑
p∈M

log Lp(s + iτ, χj) −
∑
p6X

log Lp(s + iτ, χj)

∣∣∣∣∣∣ 6 ε

 .

Therefore, there exists a δ > 0 and a finite set M such that

max
j6J

max
s∈D

| log L(s + iτ, χj ,K/Q) − log hj(s)| < 4ε

for τ ∈ ET \ AT with |ET \ AT | > |ET | − |AT | > 1
2δ|M |T + o(T ).

§ 3. Zeros of the partial zeta functions

We extends Theorem 1.1 to partial zeta functions subject to Conjecture 2.1 as an
application of joint universality of Artin L-functions. Let K be a number field and Gf

be its ray class group. By class field theory, there is a unique Abelian extension L of K

with Gf ' G(L/K). Thus, every Abelian Artin L-function is a Hecke L-function, and
vice versa. There is a unique minimal normal extension N of Q containing L.

Theorem 3.1. Assume Conjecture 2.1 for L(s, χ,N/Q) for all characters χ de-
fined on G(N/Q), where the field N is as described above. Suppose that #Gf > 1 and
A ∈ Gf. Then, the number of zeros of the partial zeta function ζ(s,A) on the rectangular
region σ1 < Re s < σ2, 0 < Im s < T is bigger than

À T

for any fixed 1
2 < σ1 < σ2 < 1.

Proof. Suppose that χ 6= 1 is an irreducible character of G(L/K) ' Gf. By
Frobenius reciprocity, we know that

(χ∗, 1)G(N/Q) = (χ, 1|G(N/K))G(N/K) = (χ, 1)G(N/K) = 0.

If we denote the irreducible characters of G(N/Q) by φ1 := 1, φ2, . . . , φk, then for every
non-trivial character of G(L/K) we have

χ∗ =
k∑

j=2

mjφj , mj ∈ Z>0.
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For the induced character 1∗ of the trivial character 1 defined on G(L/K), we get

(1∗, 1)G(N/Q) = (1, 1|G(N/K))G(N/K) = (1, 1)G(N/K) = 1.

Therefore, we have

1∗ = φ1 +
k∑

j=2

njφj , nj ∈ Z>0.

So we get

(3.1) L(s, 1) = L(s, 1∗, N/Q) = L(s, φ1, N/Q)
k∏

j=2

L(s, φj , N/Q)nj

and for the non-trivial Abelian characters χ of G(L/K)

(3.2) L(s, χ) =
k∏

j=2

L(s, φj , N/Q)mj .

Since the irreducible characters φj are linearly independent, we apply Theorem 2.2
to L(s, χj , N/Q) with 1 6 j 6 k. For any ε > 0, there exists a set Aε ⊂ [T, 2T ] with

(3.3) lim inf
T→∞

1
T

|Aε| > 0

such that ∣∣∣∣∣∣L(s + iτ, φ1, N/Q) − (s − s0 −
∑
χ 6=1

χ̄(a))

∣∣∣∣∣∣ < ε

and
|L(s + iτ, φj , N/Q) − 1| < ε

for any 2 6 j 6 k, s ∈ Ds0(r) ⊂ {z ∈ C : σ1 < Re z < σ2} and τ ∈ Aε and for an
integral ideal a ∈ A. By (3.1) and (3.2), we have∣∣∣∣∣∣L(s + iτ, 1) − (s − s0 −

∑
χ 6=1

χ̄(a))

∣∣∣∣∣∣ < ε

and for χ 6= 1 we find
|L(s + iτ, χ) − 1| < ε

for all s ∈ Ds0(r) and τ ∈ Aε.
Note that

(3.4) ζ(s,A) =
1
h

∑
χ

χ̄(a)L(s, χ)



214 Yoonbok Lee

for some a ∈ A and h = #Gf. We have∣∣∣∣ζ(s + iτ,A) − s − s0

h

∣∣∣∣
6 1

h

∑
χ 6=1

|χ̄(a)L(s + iτ, χ) − χ̄(a)| +

∣∣∣∣∣∣L(s + iτ, 1) − (s − s0 −
∑
χ6=1

χ̄(a))

∣∣∣∣∣∣
 < ε

for all s ∈ Ds0(r) and all τ ∈ Aε. Suppose that ε < r
h , then∣∣∣∣ζ(s + iτ,A) − s − s0

h

∣∣∣∣ <

∣∣∣∣s − s0

h

∣∣∣∣
on the circle |s − s0| = r. Inside the disc |s − s0| < r, there is exactly one zero of
ζ(s + iτ,A) by Rouché Theorem for each τ ∈ Aε. By (3.3), we complete the proof of
Theorem 3.1.

Let Nζ(s,A)(σ1, σ2;T ) be the number of zeros of ζ(s,A) on the rectangular region
σ1 < Re s < σ2, 0 < Im s < T . Theorem 3.1 gives a lower bound for Nζ(s,A)(σ1, σ2;T )
on the assumption of Conjecture 1. What can we say about an upper bound for
Nζ(s,A)(σ1, σ2; T )? The following theorem gives an answer.

Theorem 3.2. Let K be a number field and Gf be its ray class group. Assume
Conjecture 1 for all Hecke L-functions L(s, χ) with χ : Gf → S1. Suppose that #Gf > 1
and A ∈ Gf. Then, the number of zeros of the partial zeta function ζ(s,A) on the
rectangular region Re s > σ0, 0 < Im s < T is less than

¿ T

for any fixed σ0 > 1
2 .

Proof. By Littlewood’s lemma, we have

2π

∫ ∞

σ

N(u, T )du =
∫ T

0

log |ζ(σ + it,A)|dt + O(log T ),

where N(u, T ) denotes the number of zeros of ζ(s,A) on the region Re s > u, 0 < Im s <

T . Thus, it is enough to show that the integral on the right is less than ¿ T .
We are going to use a simple inequality. First,∣∣∣∣∣∣ 1

J

∑
j6J

zj

∣∣∣∣∣∣ 6 1
J

∑
j6J

|zj | 6 max
j6J

|zj |.
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Take logarithms on both sides, then

(3.5) log

∣∣∣∣∣∣ 1
J

∑
j6J

zj

∣∣∣∣∣∣ 6 max
j6J

log |zj |.

By (3.4) and (3.5), we have∫ T

0

log |ζ(σ + it,A)|dt ¿
∫ T

0

max
χ

log |L(σ + it, χ)|dt.

Apply Lemma 2 of [6], then we have

∫ T

0

max
χ

log |L(σ + it, χ)|dt 6
∫ T

0

max
χ

∣∣∣∣∣∣log |L(σ + it, χ)|dt − Re
∑
p6X

a(p, χ)
pσ+it

∣∣∣∣∣∣ dt

+
∫ T

0

max
χ

∣∣∣∣∣∣Re
∑
p6X

a(p, χ)
pσ+it

∣∣∣∣∣∣ dt

6
∑

χ

∫ T

0

∣∣∣∣∣∣log |L(σ + it, χ)|dt − Re
∑
p6X

a(p, χ)
pσ+it

∣∣∣∣∣∣ dt

+
∑

χ

∫ T

0

∣∣∣∣∣∣
∑
p6X

a(p, χ)
pσ+it

∣∣∣∣∣∣ dt,

where X = Tκ, 0 < κ < 1
2 , a(p, χ) =

∑
Np=p,p|p χ(p), |a(p, χ)| 6 [K : Q]. By Cauchy’s

inequality and Lemma 2 of [6], we have

∫ T

0

∣∣∣∣∣∣log |L(σ + it, χ)|dt − Re
∑
p6X

a(p, χ)
pσ+it

∣∣∣∣∣∣ dt

¿
√

T

∫ T

0

∣∣∣∣∣∣log |L(σ + it, χ)|dt − Re
∑
p6X

a(p, χ)
pσ+it

∣∣∣∣∣∣
2

dt


1
2

¿ T,

and by Lemma 2.7

∫ T

0

∣∣∣∣∣∣
∑
p6X

a(p, χ)
pσ+it

∣∣∣∣∣∣ dt ¿
√

T

∫ T

0

∣∣∣∣∣∣
∑
p6X

a(p, χ)
pσ+it

∣∣∣∣∣∣
2

dt


1
2

=
√

T

∑
p6X

|a(p, χ)|2

p2σ
(T + O(p))

 1
2

¿ T.
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Thus, the proof is complete.

§ 4. Concluding remarks

The author [5] improved Theorem 1.1 by obtaining asymptotic formula cT + o(T )
for the number of zeros of Epstein zeta function E(s,Q) on the rectangular region
1
2 < σ1 < Re s < σ2, 0 < Im s < T with the constant c has an integral formula
c =

∫ σ2

σ1
µ(σ)dσ for some density function µ(σ). The main ingredient of the proof is the

method given by Borchsenius and Jessen [2]. Based on Theorems 3.1 and 3.2, we expect
the following statement.

Conjecture 4.1. Let K be a number field and let Gf be its ray class group.
Let A ∈ Gf. Then, the number of zeros of partial zeta function ζ(s,A) on the region
1
2 < σ1 < Re s < σ2, 0 < Im s < T is

= cT + o(T ),

where c =
∫ σ2

σ1
µ(σ)dσ for some density function µ(σ) depending on A.

The simplest case K = Q is considered and completed by the author with Haseo
Ki [3].
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