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We investigate nonlinear rheology of dilute liquid crystalline polymer solutions under time dependent
two-directional shear flow. We analyze the Smoluchowski equation, which describes the dynamics of
the orientation of a liquid crystalline polymer, by employing technique of the full counting statistics.
In the adiabatic limit, we derive the expression for time integrated currents generated by a Berry-like
curvature. Using this expression, it is shown that the expectation values of the time-integrated angular
velocity of a liquid crystalline polymer and the time-integrated stress tensor are generally not zero
even if the time average of the shear rate is zero. The validity of the theoretical calculations is
confirmed by direct numerical simulations of the Smoluchowski equation. Nonadiabatic effects are
also investigated by means of simulations and it is found that the time-integrated stress tensor depends
on the speed of the modulation of the shear rate if we adopt the isotropic distribution as an initial
state. C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4906557]

I. INTRODUCTION

Recently, nonlinear transport phenomena in stochastic
processes under an adiabatic modulation of the externally
controlled parameters have attracted much attention. It is
found that a current is generated under modulation even
if there is no mean bias because of the existence of a
geometrical phase which are analogous to Berry’s phase.1–7

We call such phenomena as geometric pumping in this paper.
In the context of steady state thermodynamics, Sagawa and
Hayakawa obtained the geometric expression of the excess
entropy production for a Markov jump process.8 We also
note that similar phenomena in quantum dot systems were
investigated by means of quantum master equations.9,10 The
nonadiabatic effects in quantum pumping for a spin-boson
system were also investigated recently.11 So far, however, most
of these studies were limited only to simple jump processes
and quantum dot systems. It may be of great interest to verify
whether similar effects exist even in macroscopic systems
using the framework of the geometrical pumping process.

We focus on dilute liquid crystalline polymer solutions in
this paper as one of the simplest macroscopic systems where
we can apply idea of the geometrical pumping. Note that liquid
crystalline polymers are characterized by their high rigidity.
Thus, for instance, a helix structure of some polypeptide and
tobacco mosaic viruses can be regarded as hard rods.12,13 It
is known that the macroscopic rheological behavior of liquid
crystalline polymer solutions as well as the dynamics of the
orientation of a liquid crystalline polymer can be described
in terms of the Smoluchowski equation.12 We analyze the
Smoluchowski equation by applying the framework of Ref. 8.

The behavior of liquid crystalline polymers under shear
flows has been studied extensively.14,15 The polymer motion
is influenced by the shear flow, while the conformation
dynamics of polymers influence the rheological properties of

the polymer solution.12 Harasim et al. recently observed the
dynamics of f-actins under a steady shear flow and found
that polymers undergo tumbling motion, but the periods of
tumbling motion are stochastically fluctuating.16 Recently,
van Leeuwen and Blöte carried out numerical simulations
of dynamics of a rod-like particle under a shear flow in the
large Weissenberg number regime and obtained asymptotic
behavior of the average of the angular velocity.17 We note
that there are several studies on nonlinear rheology of dilute
liquid crystalline polymers, they mostly focus on steady states
and the effects of shear modulation have not been investigated
systematically.18–20

In this paper, we consider situations where there is time-
dependent two-directional shear flow. We investigate the
averaged angular velocity of rods and the macroscopic stress
tensor under adiabatic modulation of the two shear rates. It
is shown that one component of the time-integrated angular
velocity of the rod and one component of the time-integrated
stress tensor are generally not zero even if the time average
of the shear rate is zero. The former result suggests that the
rod can work as a microscopic or nano-machine that converts
the angular velocity of the external shear flow to the rotation
of the rod under thermally fluctuating environment. The latter
result suggests that geometric pumping effect of a single rod is
related to a novel rheological response of macroscopic dilute
liquid crystalline solutions.

The organization of this paper is as follows. In Sec. II, we
briefly review the Smoluchowski equation, which is employed
to describe the dynamics of orientation of a hard rod under
external flow. In Sec. III, we formulate the full counting
statistics to derive the decomposition of the time integrated
current into the housekeeping and excess parts under adiabatic
modulation of externally controlled parameters. In Sec. IV,
we numerically calculate the excess angular velocity and the
excess stress tensor under two adiabatic shear rate protocols.
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We confirm that the theoretically predicted values calculat-
ed from the expression obtained in Sec. III agree well
with those obtained by direct numerical simulations of the
Smoluchowski equation in adiabatic condition.

II. MODEL

In this section, we briefly explain the model we use, and
explain the general framework of Smoluchowski equation.
We consider a dilute solution of liquid crystalline polymers
under a time-dependent uniform shear rate tensor

vα (x⃗, t) = καβ (t) xβ, (1)

where καβ (t) is the velocity gradient tensor. Here, we adopt
Einstein summation convention when an index variable
appears twice throughout this paper. In this paper, we consider
the two-directional shear rate tensor

καβ (t) = �
f1 (t) δαx + f2 (t) δαy

�
δβz. (2)

We assume that the shear flow is periodic in time, f i
�
t f
�

= f i (0). We assume that the polymers are rigid to regard them
as straight hard rods with an identical length. We denote the
orientation of the long-axis of a rod as u⃗ which satisfies |u⃗|
= 1. We ignore the interactions between polymers. We also
assume that the distribution function Ψ (u⃗, t) is spatially
uniform.

Each rod undergoes rotational Brownian motion as well
as translational Brownian motion due to thermal fluctuations.
In overdamped cases, the Langevin equation for the orientation
of each polymer is given by12

du⃗
dt
= −∇⃗U (u⃗) +←→κ (t) · u⃗ − u⃗

(
u⃗ · ←→κ (t) · u⃗) + ξ⃗, (3)

where we have introduced the potential U (u⃗) which repre-
sents a softening constraint of |u⃗| = 1 and a zero-mean
Gaussian white noise ξ⃗ (t) which satisfies

ξ⃗ (t) ξ⃗ (t ′) = 2Drδ (t − t ′)←→1 , (4)

where Dr is the rotational diffusion constant. We note that
u⃗ is a dimensionless vector, and therefore, Dr has the
dimension of the inverse of time. The terms ←→κ · u⃗ − u⃗(
u⃗ · ←→κ · u⃗

)
represent the rotation of rods under the shear

rate καβ (t). It is known that Eq. (3) is equivalent to the
following Smoluchowski equation:12

∂Ψ

∂t
= DrR · RΨ − R ·

(
u⃗ × ←→κ (t) · u⃗Ψ)

. (5)

Here, we have introduced the rotational operator R as

R = u⃗ × ∂

∂u⃗
. (6)

The first term on the right hand side (RHS) of Eq. (5) de-
scribes the rotational diffusion of rod orientation, and the
second term represents the deterministic rotation of rods
under the external flow.

For dilute liquid crystalline polymers, the macroscopic
stress tensor σαβ can be decomposed into two parts,12,18,19

σαβ = σ
(e)
αβ + σ

(v)
αβ, (7)

where the elastic contribution σ
(e)
αβ and the viscous contribu-

tion σ
(v)
αβ are given by

σ
(e)
αβ = kBTν


3
(
uαuβ −

1
3
δαβ

)
, (8)

σ
(v)
αβ =

kBTν
2Dr



uαuβuµuν

�
κµν (t) , (9)

where ν is the number of polymers in unit volume. The
elastic contribution σ

(e)
αβ represents the free energy increment

due to the orientation alignment induced by the external
flow and the viscous contribution σ

(v)
αβ comes from the

dissipation of the free energy due to the friction between
the rod and the surrounding fluid. We note that the viscous
contribution depends on how we treat the hydrodynamic
interaction between the monomers in a liquid crystalline
polymer. The coefficient kBTν

2Dr
is evaluated using the so-called

shish-kebab model.12,18,19

Next, let us introduce the integrated angular velocity and
stress tensor J1 and J2,

J1 =

 t f

0
dt

u⃗ × ←→κ (t) · u⃗

x
, (10)

J2 =

 t f

0
dtσyz

= kBTν
 t f

0
dt


3uyuz +

1
2Dr

uyuzuµuνκµν (t)

. (11)

In this paper, we consider how the statistical average of these
integrated currents J1 and J2 depend on the time dependent
shear rate καβ (t).

III. FORMULATION

In this section, we consider the average value of the time
integrated quantity

J =
 t f

0
dt ′H

�
u⃗,
�
κ j (t ′)	� (12)

and derive the expression of the excess part of J under
time dependent shear rate ←→κ (t). Throughout this paper,
H
�
u⃗,
�
κ j (t ′)	� represents an arbitrary function. To prove our

results, we use the technique of the full counting statistics,21,22

which makes use of the cumulant generating function

S (i χ) = ln


dJeiχJP (J) , (13)

following Ref. 8 by Sagawa and Hayakawa. They applied the
adiabatic approximation to the cumulant generating function
and obtained a geometric expression of the excess currents.
First, we develop our formulation for a Brownian particle
under a potential. Next, we will impose the constraint |u⃗| = 1
by adding a steep potential as in Eq. (3), and we derive the
expression of the excess part of a time-integrated quantity for
a rod.

A. A Brownian particle under a potential

We consider a Brownian particle in three dimensional
space under external force f⃗

�
x⃗,
�
κ j (t)	� depending on the
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control parameters
�
κ j (t)	. Here, we assume that the motion of

the Brownian particle is described by the Langevin equation,

˙⃗x = f⃗
�
x⃗,
�
κ j (t)	� + ξ⃗ (t) , (14)

where ξ⃗ (t) is a zero-mean Gaussian white noise satisfying
ξ⃗ (t) ξ⃗ (t ′) = 2Dδ (t − t ′)←→1 , (15)

where D is the diffusion constant. We introduce the initial
probability distribution P0 (x⃗0) at the particle position x⃗0. Here,
we only consider a protocol satisfying

�
κ j
�
t f
�	
=
�
κ j (0)	.

In order to write down the path-integral expression of path
probability, we first discretize time t as

tn = nϵ (16)

for n = 0,1, . . . ,N and we take ϵ as Nϵ = t f . We will take
the continuous-time limit ϵ → 0 in deriving the continuous-
time expression. By employing Itō calculus, we discretize the
Langevin equation given by Eq. (14) as

x⃗n+1 = x⃗n + f⃗
�
x⃗n,

�
κ j (ϵn)	� ϵ + ξ⃗nϵ

= x⃗0 + ϵ

n
i=0

(
f⃗
�
x⃗i,

�
κ j (ϵi)	� + ξ⃗i

)
. (17)

Here, we now convert the Gaussian noise in Eq. (14) by
ξ⃗i(i = 0,1, . . . ,N − 1) which satisfies

⟨ξ⃗i⟩ = 0,

ξ⃗i ξ⃗ j


=

2D
ϵ

δi j
←→
1 . (18)

The distribution function for ξ⃗i is given by

P
(
ξ⃗0, . . . , ξ⃗N−1

)
=

(
ϵ

4πD

)3N/2
exp


− ϵ

4D

N−1
i=0

ξ⃗ 2
i


. (19)

Then, we convert the variable ξ⃗i to x⃗i in the above distribution
function P

(
ξ⃗0, . . . , ξ⃗N−1

)
by using Eq. (17). The Jacobi matrix(

∂xk
∂ξl

)
is an upper triangular matrix if we take the row elements

as
�
xN,1, xN,2, xN,3, xN−1,1, xN−1,2, xN−1,3, . . . , x1,1, x1,2, x1,3

	

and the line elements as {ξN−1,1, ξN−1,2, ξN−1,3, ξN−2,1, ξN−2,2,
ξN−2,3, . . . , ξ0,1, ξ0,2, ξ0,3}. Then, the Jacobian of the transfor-
mation ξ⃗i to x⃗i is given by

�������

∂ (x⃗1, . . . , x⃗N)
∂

(
ξ⃗0, . . . , ξ⃗N−1

) ������� = ϵ3N . (20)

Thus, we obtain the probability distribution function for a
discretized path x⃗0, x⃗1, . . . , x⃗N ,

P (x⃗0, x⃗1, . . . , x⃗N)
=

1
ϵ3N

(
ϵ

4πD

)3N/2

× exp

− ϵ

4D

N−1
i=0

(
x⃗i+1 − x⃗i

ϵ
− f⃗

�
x⃗i,

�
κ j (ϵi)	�

)2
.

(21)

Then, the cumulant generating function for this discretized
process is expressed as

S (i χ) = ln


dJeiχJP (J)

= ln


d3xFN (i χ, x⃗) , (22)

where χ ∈ R is the counting field. Here, we have introduced
the probability distribution function P (J) and a function
Fm (i χ, x⃗) (m = 1,2, . . . ,N) as

P (J) = 1
ϵ3N

(
ϵ

4πD

)3N/2  N
i=0

d3xiP (x⃗0, x⃗1, . . . , x⃗N)

× δ *
,

J − ϵ

N−1
i=0

H
�
x⃗i,

�
κ j (ϵi)	�+

-
P0 (x⃗0) , (23)

Fm (i χ, x⃗) = 1
ϵ3m

(
ϵ

4πD

)3m/2  m−1
i=0

d3xi

× exp

i χϵ

m−1
i=0

H
�
x⃗i,

�
κ j (ϵi)	�



× exp

− ϵ

4D

m−1
i=0

(
x⃗i+1 − x⃗i

ϵ

− f⃗
�
x⃗i,

�
κ j (ϵi)	�

)2
P0 (x⃗0) , (24)

where x⃗m is fixed as x⃗m = x⃗ in Eq. (24). We can interpret
Fm (i χ, x⃗) as the path-integration of the path probability multi-
plied by the phase factor exp

�
i χ

 mϵ

0 H
�
x⃗ (t) ,�κ j (t ′)	� dt

�

� exp
�
i χϵ

m−1
i=0 H

�
x⃗i,

�
κ j (t ′)	�� with respect to all the paths

which satisfy x⃗ (mϵ) = x⃗. In the continuous time limit ϵ → 0,
we denote the continuous time limit of Fm (i χ, x⃗) as

F (i χ, x⃗, t) � Fm (i χ, x⃗) , (25)

where t � mϵ . From the definition of F (i χ, x⃗, t) in Eqs. (24)
and (25), we express the average value of

 t

0 dt ′H
�
x⃗,
�
κ j (t ′)	�

as  t

0
dt ′H

�
x⃗,
�
κ j (t ′)	�


=

1
i

(
∂S (i χ)
∂ χ

)
χ=0

=


d3x

1
i

(
∂F (i χ, x⃗, t)

∂ χ

)
χ=0

(
d3x ′F

(
0, x⃗ ′, t

))−1

=


d3x

1
i

(
∂F (i χ, x⃗, t)

∂ χ

)
χ=0

, (26)

where ⟨· · · ⟩ represents the statistical average. To obtain the
last expression, we have used the following relation:

d3x ′F
(
0, x⃗ ′, t

)
= 1. (27)

Next, let us evaluate F (i χ, x⃗, t). As in Appendix A,

dF
dt

(i χ, x⃗, t) = − ∂

∂xk

(
f⃗
�
x⃗,
�
κ j (t)	�

)
k
F (i χ, x⃗, t)

+D∇2F (i χ, x⃗, t)
+ i χ

�
H
�
x⃗,
�
κ j (t)	�� F (i χ, x⃗, t)

= K
�
χ,
�
κ j (t)	� F (i χ, x⃗, t) , (28)
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where the operator K
�
χ,
�
κ j (t)	� in the last expression of

Eq. (28) acting on an arbitrary function a(x⃗) is given by

K
�
χ,
�
κ j (t)	� a (x⃗)

= − ∂

∂xk

(
f⃗
�
x⃗,
�
κ j (t)	�

)
k
a (x⃗)

+D∇2a (x⃗) + i χ
�
H
�
x⃗,
�
κ j (t)	�� a (x⃗) . (29)

We denote the eigenfunction of K
�
χ,
�
κ j (t)	� for the n-th

largest real part by f nχ
��
κ j (t ′)	 , x⃗� and its eigenvalue by

λnχ

��
κ j (t ′)	�. When we set χ = 0, Eq. (28) reduces to the

Fokker-Planck equation for the probability distribution func-
tion P (x⃗, t) = F (0, x⃗, t). We assume that the Fokker-Planck
operator K

�
0,
�
κ j (t)	� is diagonalizable and λ0

χ=0

��
κ j (t ′)	�

= 0 is not degenerated. When | χ| is sufficiently small, K (χ,�
κ j (t)	� can be also diagonalized and λ0

χ

��
κ j (t ′)	� is not

degenerated. In order to solve the above equation, we expand
F (i χ, x⃗, t) in terms of the eigenfunctions as

F (i χ, x⃗, t) =

n

cn (t) exp
 t

0
dt ′λnχ

��
κ j (t ′)	�



× f nχ
��
κ j (t ′)	 , x⃗� . (30)

Using Eq. (28), we readily obtain

ċ0 (t) = −


d3x f̃ 0
χ

��
κ j (t ′)	 , x⃗�


n

cn (t)

× exp
 t

0
dt ′


λ
n
χ

��
κ j (t ′)	� − λ0

χ

��
κ j (t ′)	�

 

×
(

∂

∂κk
f nχ

��
κ j (t ′)	 , x⃗�

)
κ̇k (t ′) , (31)

where we have introduced the left eigenvector ˜f mχ
��
κ j (t ′)	 , x⃗�

satisfying
d3x ˜f mχ

��
κ j (t ′)	 , x⃗� f nχ

��
κ j (t ′)	 , x⃗� = δn,m, (32)

K †
�
χ,
�
κ j (t)	� f̃ nχ

��
κ j (t ′)	 , x⃗� = λnχ f̃ nχ

��
κ j (t ′)	 , x⃗� , (33)(

f̃ 0
χ

��
κ j (t ′)	 , x⃗�

)
χ=0
= 1. (34)

Here, the operator K †
�
χ,
�
κ j (t)	� is the conjugate to K�

χ,
�
κ j (t)	� acting on an arbitrary function a (x⃗) as

K †
�
χ,
�
κ j (t)	� a (x⃗) = (

f⃗
�
x⃗,
�
κ j (t)	�

)
k

∂

∂xk
a (x⃗) + D∇2a (x⃗)

+ i χ
�
H
�
x⃗,
�
κ j (t)	�� a (x⃗) . (35)

If we modulate the control parameter much slower than
a typical relaxation rate of the system, the contributions from
cn (t) (n , 0) in Eq. (30) are negligible and we obtain

F (i χ, x⃗, t) � c0 (i χ) f 0
χ

��
κ j (t)	 , x⃗� exp

 t

0
dt ′λ0

χ

��
κ j (t ′)	�



× exp
(
−
 t

0
dt ′


d3x f̃ 0

χ

��
κ j (t ′)	 , x⃗�

×
(

∂

∂κk
f 0
χ

��
κ j (t ′)	 , x⃗�

)
κ̇k (t ′)

)
, (36)

where we have assumed that the real part of λnχ
��
κ j (t ′)	� −

λ0
χ

��
κ j (t ′)	� is negative for n , 0. We also assume

c0 (i χ) =


d3x f̃ 0
χ

��
κ j (0)	 , x⃗�

(
f 0
χ

��
κ j (0)	 , x⃗�

)
χ=0

, (37)

i.e., the initial state is the stationary state
(

f 0
χ

��
κ j (0)	 , x⃗�

)
χ=0

for the initial control parameter
�
κ j (0)	. Using Eqs. (26),

(32), (34), (36), and (37), we can evaluate the average t f
0 dt ′H

�
x⃗,
�
κ j (t ′)	�


as t f

0
dt ′H

�
x⃗,
�
κ j (t ′)	�


=


d3x

1
i
*
,

∂F
�
i χ, x⃗, t f

�

∂ χ
+
-χ=0

= −1
i

 t f

0
dt ′


d3x *

,

∂ f̃ 0
χ

∂ χ

��
κ j (t ′)	 , x⃗�

×

k

(
∂

∂κk
f 0
χ

��
κ j (t ′)	 , x⃗� κ̇k (t ′)

)
+
-χ=0

+

 t f

0
dt ′Hhk

��
κ j (t ′)	�

+


d3x

1
i
*
,

∂ f 0
χ

∂ χ

��
κ j
�
t f
�	
, x⃗
�+
-χ=0

−


d3x
1
i
*
,

f 0
χ

��
κ j
�
t f
�	
, x⃗
�

×


d3x ′ *
,

∂ f 0
χ

∂ χ

(�
κ j
�
t f
�	
, x⃗ ′

)
−
∂ f 0

χ

∂ χ

(�
κ j (0)	 , x⃗ ′

)+
-
+
-χ=0

+

(
1
i
∂c0

∂ χ
(i χ)

)
χ=0

, (38)

where we have defined the housekeeping part of the current

as Hhk

��
κ j (t ′)	� ≡ 1

i

(
∂λ0χ
∂χ

��
κ j (t ′)	�

)
χ=0

. The housekeeping

part represents the average current


H
�
x⃗,
�
κ j (t ′)	�� under the

steady state corresponding to the control parameters
�
κ j (t ′)	.

We note the following relation:(
∂c0 (i χ)
∂ χ

)
χ=0

=


d3x

∂ f̃ 0
χ

∂ χ

��
κ j (0)	 , x⃗�

(
f 0
χ

��
κ j (0)	 , x⃗�

)
χ=0

= −


d3x
∂ f 0

χ

∂ χ

��
κ j (0)	 , x⃗�

(
f̃ 0
χ

��
κ j (0)	 , x⃗�

)
χ=0

= −


d3x
∂ f 0

χ

∂ χ

��
κ j (0)	 , x⃗� , (39)

where we have used Eqs. (32) and (34). From the above rela-
tion and

�
κ j
�
t f
�	
=
�
κ j (0)	, we finally obtain a simple expres-

sion of the statistical average as t f

0
dt ′H

�
x⃗,
�
κ j (t ′)	�


= −1

i

 t f

0
dt ′


d3x*

,

∂ f̃ 0
χ

∂ χ

��
κ j (t ′)	 , x⃗�+

-χ=0
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×
(

∂

∂κk
f 0 ��κ j (t ′)	 , x⃗�

)
χ=0

κ̇k (t ′)

+

 t f

0
dt ′Hhk

��
κ j (t ′)	� . (40)

Thus, the statistical average of the time-integrated quantity t f
0 dt ′H

�
x⃗,
�
κ j (t ′)	�


under adiabatic modulation of the

externally controlled parameter, in general, can be decom-
posed into the excess part and the house keeping part.

B. Geometrical phase of a rigid rod under shear

In this section, we apply the general framework developed
in Subsection III A to Eq. (3), which describes the dynamics
of the orientation of a rod under a shear flow. We take the
shear rate f1 and f2 defined in Eq. (2) as external controlled
parameters

�
κ j (t)	 in this case and we derive the expression

of the statistical average
 t f

0 dt ′H
(
u⃗,←→κ (t ′)). In Sec. IV, we

apply this result to

H1 ≡

u⃗ × ←→κ (t) · u⃗

x
(41)

and

H2 ≡

3uyuz +

1
2Dr

uyuzuµuνκµν (t)

. (42)

In this subsection, to simplify the argument, we adopt the
following potential U (u⃗) for the restriction |u⃗| = 1:

U (u⃗) = 0 (1 − δ ≤ |u⃗| ≤ 1 + δ) (43)
= ∞ (otherwise) , (44)

and we will take the limit δ → 0, though our formulation is
also applicable to arbitrary potentials that realize the restriction
|u⃗| = 1. In this case, |u⃗| is confined in a thin region between
1 − δ ≤ |u⃗| ≤ 1 + δ. Let us introduce

F ′ (i χ, u⃗, t) =
 1+δ

1−δ
dαF (i χ,αu⃗, t) (45)

on the spherical surface |u⃗| = 1. In the limit δ → 0, we expect
that the variation of F (i χ,αu⃗, t) along the direction parallel to
u⃗ is small and it can be expressed as

F (i χ,αu⃗, t) � 1
2δ

F ′ (i χ, u⃗, t) . (46)

By setting the diffusion constant in Eq. (15) as D = Dr with
the aid of Eq. (28), the time evolution equation for F ′ (i χ, u⃗, t)
can be rewritten as
dF ′

dt
(i χ, u⃗, t)

� − ∂

∂u j

((←→κ · u⃗)
j
− u j

(
u⃗ · ←→κ (t) · u⃗Ψ))

F ′ (i χ, u⃗, t)


+Dr∇2
⊥F ′ (i χ, u⃗, t) + i χ

(
H

(
u⃗,
←→κ (t))) F ′ (i χ, u⃗, t)

= DrR · (RF ′ (i χ, u⃗, t)) − R · (u⃗ × ←→κ (t) · u⃗F ′ (i χ, u⃗, t))
+ i χH

(
u⃗,
←→κ (t)) F ′ (i χ, u⃗, t)

=
(
K ′0

(←→κ (t)) + i χH
(
u⃗,
←→κ (t))) F ′ (i χ, u⃗, t) ,

(47)

where ∇2
⊥ is the spherical Laplacian and the operator

K ′0
(←→κ (t)) on the spherical surface |u⃗| = 1 acting on an

arbitrary function f (u⃗) has been defined as

K ′0
(←→κ (t)) f (u⃗) = DrR · (R f (u⃗))

−R ·
(
u⃗ × ←→κ (t) · u⃗ f (u⃗)) . (48)

The statistical average
 t f

0 dt ′H
(
u⃗,←→κ (t ′)) in this case can

be also derived using Eq. (40) as t f

0
dt ′H

(
u⃗,←→κ (t ′))

= −1
i

 t f

0
dt ′


dΩ*

,

∂ f̃ 0
χ

∂ χ

(←→κ (t ′) , u⃗)+
-χ=0

×
(
∂

∂ f j
f 0
χ

(←→κ (t ′) , u⃗))
χ=0

ḟ j (t ′)

+

 t f

0
dt ′Hhk

(←→κ (t ′)) , (49)

where f 0
χ

(←→κ (t ′) , u⃗) and f̃ 0
χ

(←→κ (t ′) , u⃗) are, respectively, the
right and left eigenfunctions of the operator K ′0

(←→κ (t))
+ i χH corresponding to the eigenvalue λ0

χ

(←→κ (t)) .


dΩ
denotes integration over |u⃗| = 1. The right eigenfunction f 0

χ(←→κ (t ′) , u⃗) , now, satisfies the eigenequation

DrR ·
(
R f 0

χ

(←→κ (t ′) , u⃗))
−R ·

((
u⃗ × ←→κ (t ′) · u⃗) f 0

χ

(←→κ (t ′) , u⃗))
+ i χH

(
u⃗,
←→κ (t ′)) f 0

χ

(←→κ (t ′) , u⃗)
= λ0

χ

(←→κ (t ′)) f 0
χ

(←→κ (t ′) , u⃗) . (50)

Using Green’s theorem, the first term on RHS in Eq. (49) can
be rewritten as

∓1
i


C

dS


dΩϵ3 jk
∂

∂ fk
*
,

∂ f̃ 0
χ

∂ χ

(←→κ (t ′) , u⃗)+
-χ=0

× ∂

∂ f j

(
f 0
χ

(←→κ (t ′) , u⃗))
χ=0

, (51)

where ϵ3 jk is the Levi-Civita symbol in three dimensional
space and C is the domain in f1 − f2 space which is surrounded
by the closed path f1 (t) and f2 (t) introduced in Eq. (2) for
0 ≤ t ≤ t f . We take the − (+) sign if the path ( f1 (t) , f2 (t))
circulates around the domain C clockwise (anti-clockwise).
Here, we can regard

−1
i


dΩϵ3 jk

∂

∂ fk
*
,

∂ f̃ 0
χ

∂ χ

(←→κ (t ′) , u⃗)+
-χ=0

× ∂

∂ f j

(
f 0
χ

(←→κ (t ′) , u⃗))
χ=0

(52)

as a Berry-like curvature in the parameter space which creates
the excess time-integrated current by an adiabatic modulation
of the shear rates.

IV. ANALYSIS AND RESULTS

Now, let us calculate the excess currents J1 and J2 using
Eq. (49). Several formulae used in the following calculations
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are given in Appendix B. We need to find the eigenvalue
λ0
χ

(←→κ (t)) and its corresponding right and left eigenvectors
f 0
χ

(←→κ , u⃗
)

and f̃ 0
χ

(←→κ , u⃗
)

for the operator K ′0
(←→κ (t))

+ i χHi. For this purpose, let us expand f 0
χ

(←→κ , u⃗
)

and
f̃ 0
χ

(←→κ , u⃗
)

in terms of the spherical harmonics Ylm (u⃗) as

f 0
χ

(←→κ , u⃗
)
=

∞
l=0

l
m=−l

alm

(
χ,←→κ

)
Ylm (u⃗) . (53)

For l = 1, 2, . . . and m = −l, −l + 1, . . . , l − 1, l, the spherical
harmonics Ylm (u⃗) are given by Eq. (B1). Using Eqs. (49),
(B3), and (B4), we can construct a finite-dimensional matrix
by projecting the operator K ′0

(←→κ (t)) + i χHi to a space
spanned by finite number of spherical harmonics. By solving
its eigenequation Eq. (50), we can evaluate the Berry-like
curvatures Eq. (52) for the excess part of the time-integrated
currents J1 and J2. Here, we truncate the spherical harmonic
functions up to l = 10 and numerically evaluate the Berry-like
curvatures as presented in Fig. 1, where we use the scaled
shear rate f i = Dr f̃ i. Note that, in the cases of steady shear,
the dimensionless number


f̃ 2

1 + f̃ 2
2 is known as Weissenberg

number.
To check the validity of the theoretical calculations, we

simulate Langevin equation Eq. (3) under the following two
shear protocols, where the housekeeping contributions in Eq.
(49) vanish in adiabatic condition. For 0 ≤ t ≤ t f , protocol I,

�
f̃1 (t) , f̃2 (t)� = �

5 − 5 cos
�
2πt/t f

�
, 5 sin

�
2πt/t f

��
, (54)

and protocol II,

�
f̃1 (t) , f̃2 (t)� =




�
0,30t/t f

� (
t <

1
6

t f

)
(
30

(
t/t f −

1
6

)
,5

) (
1
6

t f ≤ t <
2
6

t f

)
(
5,30

(
1
2
− t/t f

)) (
2
6

t f ≤ t <
4
6

t f

)
(
30

(
5
6
− t/t f

)
,−5

) (
4
6

t f ≤ t <
5
6

t f

)
�
0,30

�
t/t f − 1

�� (
5
6

t f ≤ t < t f

)
.

(55)

To evaluate the dependence of J1 and J2 on the initial
distribution of u⃗, we repeat each protocol twice, namely,

�
f̃1 (t) , f̃2 (t)� = �

f̃1
�
t − t f

�
, f̃2

�
t − t f

�� �
t f ≤ t ≤ 2t f

�
.

(56)

This choice implies that the measurement starts from F ′�
0, u⃗, t f

�
in the second cycle. In numerical simulations, we

discretize the time with ∆t = 0.002D−1
r and we investigate

how the time integrated currents J1 and J2 obtained from
simulations approaches to the theoretically predicted values
when we increase t f . As the initial distribution of u⃗ at
t = 0, we adopt the isotropic distribution, which is the steady
state for ( f1(0), f2(0)) = (0,0). Then, we expect that J1 (J2)
integrated during 0 ≤ t ≤ t f is equal to J1 (J2) integrated
during t f ≤ t ≤ 2t f in the adiabatic limit t f → ∞. We take
statistical average of the time integrated quantities J1 and J2
over N = 100 000−8 000 000 ensembles, depending on t f , for
the protocols I and II. We note that larger number of ensembles
is needed for larger t f to reduce the statistical error. The error
bars of the numerical results are evaluated by calculating the
dispersions of the sample averages σa using the relation

σ2
a =

σ2

N − 1
, (57)

where σ is the dispersion of the sample itself. We also evaluate
the theoretical value by numerically integrating the Berry-like
curvature Eq. (52) inside the domains CI and CI I surrounded
by the path ( f1 (t) , f2 (t)) �0 ≤ t ≤ t f

�
in protocols I and II,

respectively. We note that ( f1 (t) , f2 (t)) �0 ≤ t ≤ t f
�

circulates
clockwise around CI (I I ) in protocol I(II).

The comparison between the theoretical values and the
simulated values is shown in Fig. 2. Here, we plot the simulated
value of J1 and J2 integrated during the first cycle

�
0 ≤ t ≤ t f

�

and the second cycle
�
t f ≤ t ≤ 2t f

�
to compare them with the

theoretical values predicted in the adiabatic limit. As for J1,
the values obtained from both the first cycle and the second
cycle except for t f = 2 agree with the theoretical values within
the sum of the statistical errors (shown by the error bars) and
the systematic errors, which are of the order of a few percent
of the theoretical values. The systematic error may be due to
the discrete time interval used in our simulations. As for J2,
the values obtained from the first cycle are much larger for
t f . 25D−1

r than the theoretical values, which suggests J2 for
smaller t f has large dependence on the initial condition. We
can also see that the values of J2 obtained from the second cycle
agree well with the theoretical values within the error bars.

V. DISCUSSIONS

In this paper, we have analyzed the Smoluchowski equa-
tion under a time-dependent shear. We have found that the
time-integrated angular velocity and the time-integrated stress
tensor are generated due to the geometrical phase such as
Berry-like phase created by an adiabatic modulation of the

FIG. 1. The Berry-like curvatures in
f̃1 − f̃2 plane associated with the time-
integrated angular velocity J1 (left) and
the scaled time-integrated stress tensor
J2Dr/νkBT (right).
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FIG. 2. Comparison between the theoretically predicted values and the results of numerical simulations.

shear rate even when the housekeeping contributions vanish.
It has been shown that the expectation values of the time-
integrated angular velocity of a liquid crystalline polymer and
the time-integrated stress tensor are generally not zero even
if the time average of the shear rate is zero. In the adiabatic
limit, the excess part of a time integrated current generated
by the geometrical phase does not depend on the period t f of
the shear rate protocol, while the house keeping part, which
can be measured with standard experiments under steady shear
flow, is proportional to t f . Therefore, it is not easy to detect the
geometrical pumping experimentally. However, there are some
cases to cancel the house keeping part in some situations such as
Ref. 11. In such a situation, the geometrical pumping becomes
the leading contribution. The validity of our theoretical calcu-
lation has been verified by the direct simulation of the Smolu-
chowski equation. We have confirmed that the theoretically pre-
dicted values calculated from the expression obtained in Sec. III
agree well with those obtained by direct numerical simula-
tions of the Smoluchowski equation in adiabatic condition
(t f → ∞).

We can interpret that such excess contributions originate
from the deviation of the orientation distribution function from
the steady state distribution function as follows. When we
modulate the external parameter slowly compared with the
rotational diffusion,

(
←̇→κ (t)

)
is proportional to the slowness

parameter ϵ . We expect that F ′ (0, u⃗, t) can be expanded in
terms of ϵ as

F ′ (0, u⃗, t) � (
f 0
χ

(←→κ (t) , u⃗))
χ=0
+ ϵδF ′ (0, u⃗, t) +O

�
ϵ2� ,

(58)

where δF ′ (0, u⃗, t) is of the order O (1). Therefore, ϵδF ′ (0, u⃗, t)
gives the O (1) correction to the time-integrated current Ji
because the required time for a protocol is the order of O

�
ϵ−1�.

We examined the dependence of the integrated currents
J1 and J2 on the initial condition. Our results suggest that
the dependence of J1 on the initial condition is not so strong,
which is in contrast to the result for a spin-boson system.11

The values of J2 obtained from the numerical simulations are
much larger than the theoretically predicted values if we take
the isotropic distribution as an initial condition for t f . 25D−1

r ,
while J2 obtained from the numerical simulation agrees well
with the theoretical prediction if we adopt the distribution
F ′

�
0, u⃗, t f

�
obtained numerically as an initial condition. This

effect should be regarded as a nonadiabatic effect11 because
F ′

�
0, u⃗, t f

�
approaches to the isotropic distribution in the limit

t f → ∞.
We note that our formulation in Sec. III for Langevin

systems is quite general and applicable to other systems.
For example, the motion of a Brownian particle under an
adiabatically modulated trapping potential can be discussed
within our formulation.

J1 can be measured by means of direct observation of
the orientation of a rod under shear. However, it requires
large number of ensembles (about 100 000 ensembles even
for t f = 2D−1

r ) in order to reduce the statistical error. J2 can be
measured by macroscopic rheological experiments on a dilute
liquid crystalline solution. In such cases, we expect that it is
not needed to make statistical average because there exist large
number of liquid crystalline polymers in the solution.

We have discussed the rheology of dilute liquid crystalline
solutions, which can be described only by the one-body
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distribution function of the orientation vectors u⃗ of rods. It is
of interest to investigate whether path-dependent rheological
response also exists in other fluid systems where the interac-
tions between particles are important and spatial correlations
exist. To investigate such systems, we need to extend our
formulation for Liouville equations which describe interacting
particle systems or fluctuating hydrodynamic equations.

It may be also intriguing to investigate whether a Berry
curvature due to modulation of shear rate plays a role in
transition from reversible behavior to irreversible behavior
due to the occurrence of chaos in colloidal suspensions
under time-dependent shear flow.23,24 However, we should
note that those systems are non-Brownian systems and our
formulation under thermal noise is not directly applicable to
them, because the noise produces an irreversible force to relax
to an equilibrium state.
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APPENDIX A: DERIVATION OF EQ. (28)

In this section, we derive Eq. (28). At t = mϵ , we approxi-
mate dF

dt
(i χ, x⃗, t) as dF

dt
(i χ, x⃗, t) � 1

ϵ
(Fm (i χ, x⃗) − Fm−1

(i χ, x⃗)). Then, it can be evaluated as

dF
dt

(i χ, x⃗, t) � 1
ϵ
(Fm (i χ, x⃗) − Fm−1 (i χ, x⃗))

=
1
ϵ

(
1
ϵ3

(
ϵ

4πD

)3/2 
d3xm−1

× exp
�
i χϵ

�
H
�
x⃗m−1,

�
κ j (ϵ (m − 1))	���

× exp

− ϵ

4D

(
x⃗ − x⃗m−1

ϵ

− f⃗
�
x⃗m−1,

�
κ j (ϵ (m − 1))	�

)2
Fm−1 (i χ, x⃗m−1) +

-

− 1
ϵ

Fm−1 (i χ, x⃗) . (A1)

Here, we have used the following relation, which can be
derived from the path-integral expression of Fm−1 (i χ, x⃗m−1)
given by Eq. (24):

Fm (i χ, x⃗) = 1
ϵ3

(
ϵ

4πD

)3/2 
d3xm−1

× exp
�
i χϵ

�
H
�
x⃗m−1,

�
κ j (ϵ (m − 1))	���

× exp

− ϵ

4D

(
x⃗ − x⃗m−1

ϵ

− f⃗
�
x⃗m−1,

�
κ j (ϵ (m − 1))	�

)2
× Fm−1 (i χ, x⃗m−1) . (A2)

By expanding Fm−1 (i χ, x⃗m−1) around x⃗:

Fm−1 (i χ, x⃗m−1)
= Fm−1 (i χ, x⃗) − (x⃗ − x⃗m−1)k ∂

∂xk
Fm−1 (i χ, x⃗)

+
1
2
(x⃗ − x⃗m−1)k(x⃗ − x⃗m−1)l ∂2

∂xk∂xl
Fm−1 (i χ, x⃗) + · · ·,

(A3)

we can derive the following equation in the continuous time
limit (ϵ → 0) by keeping only the terms O (1):

dF
dt

(i χ, x⃗, t)

�
1
ϵ

1
ϵ3

(
ϵ

4πD

)3/2 
d3xm−1 exp


− ϵ

4D

(
x⃗ − x⃗m−1

ϵ

− f⃗
�
x⃗m−1,

�
κ j (ϵ (m − 1))	�

)2

×
�
1 + i χϵH

�
x⃗m−1,

�
κ j (ϵ (m − 1))	� +O

�
ϵ2��

×
(
Fm−1 (i χ, x⃗) − (x⃗ − x⃗m−1)k ∂

∂xk
Fm−1 (i χ, x⃗)

+
1
2
(x⃗ − x⃗m−1)k(x⃗ − x⃗m−1)l ∂2

∂xk∂xl
Fm−1 (i χ, x⃗) + · · ·

)
− 1
ϵ

Fm−1 (i χ, x⃗)
= −

(
f⃗
�
x⃗,
�
κ j (ϵ (m − 1))	�)

k

∂

∂xk
Fm−1 (i χ, x⃗)

+D∇2Fm−1 (i χ, x⃗)
−

(
∂

∂xk

(
f⃗
�
x⃗,
�
κ j (ϵ (m − 1))	�)

k

)
Fm−1 (i χ, x⃗)

+ i χH
�
x⃗,
�
κ j (ϵ (m − 1))	� Fm−1 (i χ, x⃗) . (A4)

Here, we have employed the following equations:

1
ϵ

1
ϵ3

(
ϵ

4πD

)3/2 
d3xm−1 exp


− ϵ

4D

(
x⃗ − x⃗m−1

ϵ

− f⃗
�
x⃗m−1,

�
κ j (ϵ (m − 1))	�

)2
=

1
ϵ
−


k

∂

∂xk

(
f⃗
�
x⃗,
�
κ j (ϵ (m − 1))	�)

k
+O (ϵ) , (A5)

1
ϵ

1
ϵ3

(
ϵ

4πD

)3/2 
d3xm−1 exp


− ϵ

4D

(
x⃗ − x⃗m−1

ϵ

− f⃗
�
x⃗m−1,

�
κ j (ϵ (m − 1))	�

)2
(x⃗ − x⃗m−1)k

=
(

f⃗
�
x⃗,
�
κ j (ϵ (m − 1))	�)

k
+O (ϵ) , (A6)

1
ϵ

1
ϵ3

(
ϵ

4πD

)3/2 
d3xm−1 exp


− ϵ

4D

(
x⃗ − x⃗m−1

ϵ

− f⃗
�
x⃗m−1,

�
κ j (ϵ (m − 1))	�

)2

× (x⃗ − x⃗m−1)k(x⃗ − x⃗m−1)l
= 2Dδkl +O (ϵ) . (A7)

APPENDIX B: SEVERAL FORMULAE USED
IN THE EVALUATION OF THE BERRY-LIKE
CURVATURES

In this section, we give several formulae used in the calcu-
lations in Sec. IV. For l = 1, 2, . . . and m = −l, −l + 1, . . . ,
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l − 1, l , the spherical harmonics is defined as

Ylm (u⃗) = (−1)(m+|m |)/2


2l + 1

4π


(l − |m|)!
(l + |m|)! P|m |

l
(cos θ) eimφ,

(B1)

where P|m |
l

are associated Legendre polynomials. We note that
the polar coordinates θ and φ are connected to u⃗ as

u⃗ = (cos θ cos φ,cos θ sin φ,sin φ) . (B2)

The matrix representations of K ′0 and Hi for i = 1,2 are given
by


lm

�
K ′0

�
l ′m′

�

= −l (l + 1) δll′δmm′ −
1
3


(2l ′ + 1)
(2l + 1) ⟨l,0 |2,0, l ′0⟩

×
( f1 − i f2)


l (l + 1) − (m − 1)m ⟨l, (m − 1) |2,0, l ′m′⟩

+ (− f1 − i f2)


l(l + 1)−(m + 1)m⟨l, (m + 1) |2,0, l ′m′⟩

+ (− f1 + i f2) 1
6


l (l + 1) − (m − 1)mδm−1,m′δl,l′

+ ( f1 + i f2) 1
6


l (l + 1) − (m + 1)mδm+1,m′δl,l′

+m ⟨l,0 |2,0, l ′0⟩


(2l ′ + 1)
6 (2l + 1)

× ((− f1 + i f2) ⟨l,m |2,1, l ′m′⟩
+ (− f1 − i f2) ⟨l,m |2,−1, l ′m′⟩) , (B3)

⟨lm |H1| l ′m′⟩ = − f2
1
3
*.
,
2


(2l ′ + 1)
(2l + 1)

× ⟨l,0 |2,0, l ′0⟩ ⟨l,m |2,0, l ′m′⟩ + δll′δmm′
+/
-
, (B4)

⟨lm |H2| l ′m′⟩

=


(2l ′ + 1)
(2l + 1)


⟨l,0 |4,0, l ′0⟩

×
(
− 1

7
√

10
(i f1 + f2) ⟨l,m |4,2, l ′,m′⟩

+
1

7
√

10
(i f1 − f2) ⟨l,m |4,−2, l ′,m′⟩

− 2
35

f1 ⟨l,m |4,0, l ′,m′⟩
)
+ ⟨l,0 |2,0, l ′0⟩

× *
,

1
14


1
6
(−i f1 − f2) ⟨l,m |2,2, l ′,m′⟩

+


3
2

i ⟨l,m |2,1, l ′,m′⟩

+
1

42
f2 ⟨l,m |2,0, l ′,m′⟩ +


3
2

i ⟨l,m |2,−1, l ′,m′⟩

+
1

14


1
6
(i f1 − f2) ⟨l,m |2,−2, l ′,m′⟩+

-

+
1

30
f2δll′δmm′


. (B5)

Here, we have employed the Dirac’s bra-ket notation and
|l,m⟩ represents Ylm (u⃗). We have also introduced the Clebsch-
Gordan coefficients ⟨l,m |l ′m′, l ′′m′′⟩. In deriving these
expressions, we have used the following formula:25

dΩ(Ylm (u⃗))∗Yl1m1 (u⃗)Yl2m2 (u⃗)

=


(2l1 + 1) (2l2 + 1)

4π (2l + 1) ⟨l0 |l10, l20⟩ ⟨lm |l1m1, l2m2⟩ .

(B6)
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